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Abstract

The 2D Necklace Flower Constellation theory is a new design framework based

on the 2D Lattice Flower Constellations that allows to expand the possibilities

of design while maintaining the number of satellites in the configuration. The

methodology presented is a generalization of the 2D Lattice design, where the

concept of necklace is introduced in the formulation. This allows to assess the

problem of building a constellation in orbit, or the study of the reconfiguration

possibilities in a constellation. Moreover, this work includes three counting

theorems that allow to know beforehand the number of possible configurations

that the theory can provide. This new formulation is especially suited for design

and optimization techniques.
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1. Introduction

The use of satellites provide countless possibilities including a great variety of

missions such as Earth and space observation, telecommunications or global po-

sitioning systems. Moreover, many missions require multiple satellites working

cooperatively to achieve a common mission, that is, a satellite constellation. In5

that sense, in the last years an increasing number of space missions have benefit

from the advantages that satellite constellations provide, such as the improve-

ment on the performance of the system, or the reduction of the costs associated

with the mission. Examples of such missions are GPS, Galileo, Glonass, Irid-

ium, A-train [1] or X-Tandem [2]. However, the simultaneous study of multiple10

satellites, and more importantly, the relations that appear in the internal struc-

ture of the constellation, increases the complexity of the problem to solve, but

it also enhances the use of the available satellites, and the ability to expand the

possibilities of design at our disposal.

Satellite constellation design has been since its beginning a process that15

required a high number of iterations due to the lack of established models for the

generation and study of constellations. This situation resulted in the necessity

of specific studies for each particular mission, being unable of extrapolate the

results from one mission to another.

Fortunately, in the last decades, several satellite constellation design method-20

ologies have appeared, such as Walker Constellations [3] for circular orbits or

the design of Draim [4] for elliptic orbits. Later, in 2004, the Flower Constel-

lation Theory [5, 6, 7] was presented, including in its formulation both circular

and elliptic orbits, and containing the former designs of Walker and Draim.

The theory was later improved by the 2D Lattice [8] and 3D Lattice [9] theo-25

ries which simplified the formulation and made the configuration independent

of any reference frame. Other more recent examples of satellite constellation

design include the Ground-track Constellations [10, 11] for any kind of constel-

lation configuration, the Helix constellation [2] for very safe formation flying, or

polar constellations for discontinuous coverage [12].30
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Flower Constellations can be defined in any rotating frame of reference, al-

though in general, the Earth Fix is considered due to its advantages for several

missions. In these reference systems, the orbits acquire a shape that reminds

the one of the petals of a flower, where these constellations take their name.

The most important property of Flower Constellations however is that the dis-35

tributions generated present a high number of symmetries, which makes this

methodology of design very interesting for many applications, especially global

coverage and global positioning.

In a Lattice Flower Constellation, the possible configurations that the theory

provides is proportional to the number of satellites in the constellation, and40

thus, it imposes a great limitation in the design of small constellations. In

order to solve this issue, the concept of necklace was introduced for the 2D

Lattice formulation [13] where the condition for maintaining the uniformity and

symmetries of the configurations was presented. However, necklaces were not

included directly in the formulation of the constellation and its computation45

was difficult to handle in a computer. This resulted in the impossibility to

automatize the computation of the different configurations and the requirement

to calculate all the available positions instead of just the real locations of the

satellites. Thus, a new design framework was required to solve these difficulties.

In this work we introduce the formulation of the 2D Necklace Flower Con-50

stellations. This design framework constitutes the generalization of the method-

ology presented in 2D Lattice Flower Constellations using necklaces [13, 14] and

includes in its definition all the former 2D lattice configurations. This method-

ology of design allows also to study the sequence of launches for constellation

building, as well as possible reconfigurations available in case of failure of some55

satellites of the distribution. In addition, three counting theorems are included,

which allow to know beforehand the number of configurations obtained using

this theory for the cases of fixed fictitious constellation, fixed symmetries of the

configuration, and fixed number of satellites. This formulation is able to not

only define the symmetries, but also to provide a methodology to easily de-60

fine constellations, which will be used in future work for optimization, station-
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keeping [15], constellation reconfiguration [16] and satellite launching schedule

studies.

2. Preliminaries

In this section we present the 2D Lattice Flower Constellation theory and its65

variant using necklaces. These are included as a background of the 2D Necklace

Flower Constellation methodology that is introduced in this work. In addition,

a brief description of the concepts of necklaces and Burnside’s Lemma have been

included, due to their use in several parts of this manuscript.

2.1. 2D Lattice Flower Constellations70

A 2D Lattice Flower Constellation [8] (2D-LFC) is described by nine pa-

rameters: three integers and six continuous parameters. The first three param-

eters are the number of inertial orbits (No), the number of satellites per orbit

(Nso) and the configuration number (Nc), which is a parameter that satisfies

Nc ∈ [0, No − 1] and governs the phasing of the constellation. In particular, the

location of the satellites in a 2D-LFC corresponds to a lattice in the (Ω,M)-

space [17], that is, a space generated in the orbital variables right ascension of

the ascending node Ω and mean anomaly M of all the satellites of the constel-

lation in a given instant. The (Ω,M)-space can be also regarded as a 2D torus

(both axes, Ω and M , are modulo 2π) where the points represented coincide

with the solutions of the following system of equations: No 0

Nc Nso

 ∆Ωij

∆Mij

 = 2π

 i− 1

j − 1

 , (1)

where i = 1, · · · , No, j = 1, · · · , Nso, and Nc ∈ [0, No − 1], and ∆Ωij and

∆Mij represent the satellite distribution in the right ascension of the ascending

node and the mean anomaly with respect to a reference satellite. Indexes (i, j)

represent the j-th satellite on the i-th orbital plane. Note that this system of

equations is derived from the Hermite Normal Form of the lattice, which is the75

minimum representation of a lattice in a 2D distribution [8].
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On the other hand, the other six parameters are the semi-major axis (a),

the eccentricity (e), the inclination (i) and the argument of perigee (ω) (which

are the same for all the satellites of the constellation), and the longitude of

the ascending node and the initial mean anomaly of the first satellite of the80

constellation, that is, Ω11 and M11, which define a reference for the constellation.

2.2. 2D Lattice Flower Constellations using Necklaces

The theory of 2D Lattice Flower Constellations generates uniform and sym-

metric configurations. However, provided a set of satellites, the number of

possible different configurations is limited by the combinations between the in-85

teger parameters that constitute the Hermite Normal Form (most importantly

the number of orbital planes), and thus, bigger constellations generate a larger

number of distributions. In order to solve this issue and allow more possible

configurations in small constellations, the concept of necklaces was introduced

for the case of 2D Lattice Flower Constellations [13].90

2.2.1. Definition of a Necklace

A necklace is a subset of points selected from a set of n available positions

that present modular arithmetic, that is, location 1 in the available positions

is the same as location n + 1. They are represented by the subset G ⊆ Zn =

{1, ..., n}. As an example, if we have a configuration in which four positions95

are available, a necklace consisting in three points can be created as seen in

Figure 1. In the figure, we have occupied three positions (the colored circles)

form an available set of four positions, forming a necklace that is represented as

G = {1, 2, 4} ⊆ Z4.

Figure 1: Example of necklace.
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However, this is not the only representation that corresponds to this partic-

ular necklace. To be more precise, all the distributions that are obtained from a

rotation of the whole configuration are considered identical. That is, two neck-

laces (G1 and G2) are considered to be identical, that is, an equivalence relation
∼=, if they fulfill the following expression:

G1
∼= G2 ⇐⇒ ∃s : G1 = G2 + s mod (n), (2)

where s is an integer that belongs to the group Zn. Taking as an example the

necklace from Figure 1 and varying the parameter s, all these configurations

can be obtained:

G = {1, 2, 4} ∼= {1, 2, 3} ∼= {2, 3, 4} ∼= {1, 3, 4} ; (3)

which correspond to the graphical representation shown in Figure 2. As it can100

be seen, the difference between them is just a rotation in the circular loop, not

changing the distribution in the process.

Figure 2: Identical necklaces.

2.2.2. Symmetry of a Necklace

The symmetry of a necklace is a parameter that provides information on how

uniform the necklace distribution is [18]. This is done by counting the minimum105

number of times that the configuration can be rotated in the available positions

in order to obtain the same necklace in the modular arithmetic.

Let K(n) be the set of equivalence classes of necklaces modulo the relation

defined by ∼=:

K(n) = {necklaces ⊆ Zn}/ ∼=, (4)
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and let G be a necklace such that G ⊆ Zn. The symmetry of a necklace (Sym(G))

is defined as the smallest value of r ∈ Zn such that G + r = G in Zn:

Sym(G) = min {1 ≤ r ≤ n : G + r = G in Zn} . (5)

This means that r is the smallest value that the configuration has to be rotated

in order to obtain the same initial configuration. In other words, if G1
∼= G2,

then Sym(G1) = Sym(G2) and thus, the symmetry can be defined over an110

equivalence class:

Sym : K(n) −→ N

G 7−→ Sym(G). (6)

Equivalent classes defined in this manner can be also regarded as the orbits that

different symmetries of a necklace (seen as an action) generate in the group of

possible combinations of elements taken from the available positions.

As an example of this concept, let assume that a configuration with six115

available positions is generated (n = 6), where a necklace G = {1, 3, 5} ⊆ Z6 is

defined. The representation of this example can be seen in Figure 3.

Figure 3: Symmetry of a necklace.

For this particular case, Sym(G) = 2 because {1, 3, 5} ≡ {3, 5, 7} mod (6).

Note that, in this example, although {2, 4, 6} is an identical necklace with re-

spect to G, as defined in Equation (2), it does not fulfill the definition of sym-120

metry of a necklace.
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2.2.3. The Necklace problem

The necklace problem is a combinatorial problem that studies the number

of different arrangements of n elements in a circular loop that can be generated

assuming that each element comes in one of k different colors. In this definition,

two arrangements are considered to be identical if they only differ by a rotation

inside the loop (see Equation (2)). The number of different arrangements is

given by the application of Burnside’s counting theorem, which, applied to this

particular case, can be summarized by the following formula[19]:

Nk(n) =
1

n

∑
d|n

φ(d)kn/d, (7)

where the sum is taken over all the divisors d of n, and φ(d) is called the Euler’s

totient function of d, an arithmetic function that counts the number of positive

integers less than or equal to d that are coprime with d. It is important to note125

that the number of different arrangements of pearls provided by Equation (7)

is also representing the number of equivalent classes (that is, orbits) defined by

the group and actions considered.

The case of study is a simplification of the general necklace problem, since

only two different states for each position are possible, the first one having the130

position occupied, and the second, the case in which it is not. Thus, for this

particular case, the number of colors is k = 2.

However, the question of why using a representation in which the positions

are distributed in a circular loop still remains. 2D Lattice Flower Constellations

generate a distribution related to a reference satellite, which means that we are135

interested in the relative positions of the satellites (∆Ωij and ∆Mij), and not

the absolute positions. In fact, having two configurations with shifted positions

in M only means that the same constellation is observed at a different time,

while a shifting in Ω represents a rotation of the full constellation. Both shifting

movements generate the same structure, and thus, there is no point in consid-140

ering all combinations of parameters. Moreover, ∆Ωij and ∆Mij have modular

arithmetic nature, which translates into the representation as a circular loop in

the necklace.

8
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2.2.4. Admissible pairs

We define the admissible pairs of a configuration to the set of constellation145

parameters that makes the distribution independent under a complete rotation

in either the mean anomaly or the right ascension of the ascending node. This

means that the constellation present the same relative geometry no matter the

orbital plane or the moment in which it is observed.

Let G ⊆ ZNso
be a necklace defined in the variable mean anomaly. We know150

from Equation (1) that the values of the mean anomaly depend on the values of

the longitude of the ascending node. Thus, we define k ∈ {1, . . . , Sym(G)−1} as

the shifting parameter, which is a constant integer that represents the additional

movement required by the necklace each time that we change the position in the

variable ∆Ω. This parameter allows to obtain the symmetric configurations.155

Expanding Equation (1) and computing the variation of the mean anomaly

between two consecutive values of the right ascension of the ascending node, we

obtain the ∆M -Shifting, defined as:

∆M =
2π

Nso
k − 2π

Nso

Nc

No
, (8)

where k is the shifting parameter. Moreover, imposing that the value of the

mean anomaly is invariant under the addition of No∆M , we can obtain the

relation that must be fulfilled by all admissible pairs:

Sym(G) | kNo −Nc, (9)

which reads Sym(G) divides kNo − Nc. Equation (9) provides all possible ad-

missible pairs given the values of the symmetry of the necklace Sym(G), the

number of orbits No and the configuration number Nc.

As an example, suppose that a constellation is distributed in six orbits (No =

6), where a necklace comprised by two satellites in four available positions (G =160

{1, 2} ⊆ Z4, Nso = 4) is defined in each orbit, with a configuration number

Nc = 2. From the definition of symmetry of the necklace (Equation (5)), we

obtain Sym(G) = 4. Now, we have to find the possible values of k that allow to

obtain the same configuration when ∆Ω = 2π following Equation (1).

9
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Figure 4: Satellite distribution for k = 1 (left) and k = 3 (right).

Using Equation (9) and applying it to the values of the example:

4 | 6k − 2, (10)

where we can obtain the two values of the shifting parameter k = 1, 3 that165

fulfill that expression. The representation of both configurations can be seen

in Figure 4. As it can be observed, both distributions are completely different

and maintain the properties of symmetry that we were looking for, that is, the

configuration is the same no matter the orbital plane observed..

2.3. Burnside’s Lemma170

In this work, we introduce three counting theorems that rely on Burnside’s

Lemma. Thus, and for the sake of completeness, a summary of the Lemma and

the concepts that it introduces is presented in this section.

Let G be a group, and let + be an action of this group over a set X, that

is, an application defined as:175

+ : G×X −→ X

(g, x) 7−→ g + x, (11)

such that:

g1 + (g2 + x) = (g1 + g2) + x

1G + x = x

 ∀ g1, g2 ∈ G, x ∈ X (12)

In addition, let an orbit (orbit(x)) be the set of elements that can be obtained

from x by the application of the action (+), in other words:

orbit(x) = {g + x | g ∈ G} ⊆ X; (13)

10
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and let the fix of g (Fix(g)) be the elements of X that are invariant under the

multiplication by g, that is:

Fix(g) = {x ∈ X | g + x = x}. (14)

The action partitions the set X into orbits, since if y = g+x, then orbit(y)=orbit(x).

Thus, the number of orbits induced by the action + is given by the Burnside’s

Lemma:
1

|G|
∑
g∈G

|Fix(g)|, (15)

where we denote |Y | to the number of elements of the set Y .

3. 2D Necklace Flower Constellation

We begin the Necklace Flower Constellation Theory with the case of a 2D

Lattice. This is chosen in order to introduce in a clear way the new formulation180

that is carried out during the Necklace Flower Constellation Theory, as well as

to serve as a common link between old and new formulations. In addition, this

new formulation allows to have a better control in the design, since the necklace

definition is performed directly in the formulation.

A 2D lattice can be generated in the same way as shown in Equation (1): LΩ 0

LMΩ LM

 ∆Ωij

∆Mij

 = 2π

 i− 1

j − 1

 , (16)

where we denote LΩ to the number of orbital planes, LM to the number of185

satellites per orbit and LMΩ to the combination number between the right as-

cension of the ascending node and the mean anomaly. Moreover, Equation (16)

can be expanded in order to obtain the distribution as a function of the integers

i ∈ {1, LΩ} and j ∈ {1, LM}:

∆Ωij =
2π

LΩ
(i− 1) ,

∆Mij =
2π

LM
(j − 1)− 2π

LM

LMΩ

LΩ
(i− 1) , (17)

11
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where this equation corresponds to a complete configuration. Now, instead of

considering all the admissible locations, we select a set of satellites that maintain

the properties of uniformity and symmetry of the former configuration, that is,

the same distribution can be observed with independence on the orbital plane

chosen. In order to do that, we define a necklace in the mean anomaly GM as a

subset of ZLM
of cardinality NM which contains the positions occupied by the

necklace (and that also corresponds to the number of real satellites per orbit).

A necklace is a subset GM of the set of admissible locations:

GM ⊆ {1, . . . , LM}, (18)

such that |GM | = NM is the number of elements of the necklace GM . On the

other hand, and in order to simplify the notation used, we assume that:

GM = {GM (1), . . . ,GM (j∗), . . . ,GM (NM )}, (19)

with

1 ≤ GM (1) < · · · < GM (j∗) < · · · < GM (NM ) ≤ LM , (20)

where the index j∗ names each element of the necklace GM and it is represented190

by an integer modulo NM , that is, j∗+NM is the same index as j∗. This allows

to interpret necklaces as injective functions:

GM : ZNM
−→ ZLM

j∗ 7−→ GM (j∗). (21)

For this reason, it makes sense to refer to GM (j∗), where the integer parameter

j∗ ∈ {1, . . . , NM} represents the movement inside the necklace defined. In

addition, and for simplicity of notation, we denote mod(a, b) = a mod (b).

Thus, due to the modular arithmetic inside the necklace:

GM (j∗) = GM (mod(j∗ +NM , NM )), (22)

which corresponds to a complete loop in the available positions in the mean

anomaly. It is important to note that this rotation is equivalent to a movement

12
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in the admissible locations defined by:

j = j + LM mod (LM ), (23)

as both represent the same movement of the necklace, one using the parametriza-

tion of the necklace and the other using the parametrization of the fictitious

constellation.195

On the other hand, we require a parameter (the shifting parameter) that

is able to modify the mean anomaly with respect to the change in the right

ascension of the ascending node. Let SMΩ ∈ Z be that parameter. Thus, it

is possible to define an application (T1) between the positions in the necklace

necklace and the overall available positions:200

T1 : (ZLΩ
× ZNM

) −→ (ZLΩ
× ZLM

)

(i, j∗) 7−→ (i, j), (24)

where the integer j is described as:

j = GM (j∗) + SMΩ(i− 1). (25)

In order to agree with the formulation introduced in Equation (16), one unit is

subtracted from the previous expression leading to:

j − 1 = GM (j∗)− 1 + SMΩ(i− 1). (26)

However, there is a modular behavior between the necklace and the available

positions in the mean anomaly. Using the definition of symmetry of a necklace

provided by Equation (5):

GM = GM + Sym(GM ) in ZLM
, (27)

and thus, the movement in j is described as:

j − 1 = mod (GM (j∗)− 1 + SMΩ(i− 1), Sym(GM )) . (28)

13



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Introducing this expression in the original distribution shown in Equation (17),

we obtain:

∆Ωij∗ =
2π

LΩ
(i− 1) ,

∆Mij∗ =
2π

LM
(mod (GM (j∗)− 1 + SMΩ(i− 1), Sym(GM )))−

− 2π

LM

LMΩ

LΩ
(i− 1) , (29)

which describes all possible movements that the necklace GM can perform in

the space generated. Using this formulation, i represents the movement of

the necklace in the right ascension of the ascending node while j∗ defines the205

positions inside the necklace. One important thing to notice is that, although the

shifting parameter SMΩ can present any integer value, we only consider SMΩ ∈

{0, . . . , Sym(GM )−1}, since other values generate equivalent configurations due

to the arithmetic nature of the problem in Sym(GM ).

Now, we impose the condition of symmetry, that is, a complete rotation in210

either variable, the right ascension of the ascending node or the mean anomaly,

provides the same initial configuration. This definition is equivalent to:

Rotation in M :

 ∆Ωij∗ = ∆Ωi(j∗+NM ),

∆Mij∗ = ∆Mi(j∗+NM ),


Rotation in Ω:

 ∆Ωij∗ = ∆Ω(i+LΩ)j∗ ,

∆Mij∗ = ∆M(i+LΩ)j∗ ,

 (30)

where all relations must be fulfilled at the same time. From the first rotation

in M there is no effect on the right ascension of the ascending node:

2π

LΩ
(i− 1) =

2π

LΩ
(i− 1) , (31)

while focusing on the mean anomaly, it must satisfy that:

mod (GM (j∗)− 1 + SMΩ(i− 1), Sym(GM )) =

= mod (GM (mod(j∗ +NM , NM ))− 1 + SMΩ(i− 1), Sym(GM )) . (32)

This relation is achieved without imposing further conditions since GM (j∗) =

GM (mod(j∗ + NM , NM )) (see also Equation (22)). On the other hand, in the

14
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rotation of the right ascension of the ascending node, the first relation is auto-

matically achieved:

2π

LΩ
(i− 1) =

2π

LΩ
(LΩ + i− 1) mod (LΩ), (33)

while the second relation does not. Imposing the condition:

LM

2π
∆M(i+LΩ)j∗ =

LM

2π
∆Mij∗ , (34)

provides the following expression:

mod (GM (j∗)− 1 + SMΩ(LΩ + i− 1), Sym(GM ))− LMΩ

LΩ
(LΩ + i− 1) =

= mod (GM (j∗)− 1 + SMΩ(i− 1), Sym(GM ))− LMΩ

LΩ
(i− 1) . (35)

Then, by the properties of modular arithmetics, there exists A ∈ Z such that215

the former expression can be transformed into:

GM (j∗)− 1 + SMΩ(i− 1) +ASym(GM ) =

= GM (j∗)− 1 + SMΩ(LΩ + i− 1)− LMΩ, (36)

Finally, the terms that are equal in both sides of the equation can be simplified,

providing the expression:

ASym(GM ) = SMΩLΩ − LMΩ, (37)

which relates the shifting parameter (SMΩ) with both the necklace (GM ) and

the fictitious orbit (LΩ and LMΩ). Equation (37) can also be represented as:

Sym(GM ) | SMΩLΩ − LMΩ, (38)

which reads, Sym(GM ) divides (SMΩLΩ −LMΩ) and constitutes a Diophantine

equation that is also subjected to modular arithmetic. It is important to note

that Equation (38) is equivalent to Equation (9). However, the new formulation

allows to show an alternative proof to the relation proposed in [13] as well as220

present a methodology that can be used for optimization since only the real

positions of the satellites of the constellation have to be computed.
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The combination of Equations (29) and (38) allows to compute all possible

symmetric configurations for a particular necklace GM and a fictitious expanded

constellation. In the following sections, an example of application is shown225

and then, the number of possible configurations that the 2D Necklace Flower

Constellations can provide is studied.

3.1. Example of application

As an example of a 2D Necklace Flower Constellation, we design a con-

stellation made of 14 satellites in circular orbits e = 0, with semi-major axis230

a = 14420 km and inclination i = 63.435o. The satellites are distributed in

seven inertial orbits (LΩ = 7), which means that there are two satellites per

orbit (NM = 2). The number of possible configurations that we can obtain

using the Lattice Flower Constellation Theory in this case is given by the possi-

ble values of the combination number Nc = {0, . . . , 6}, which is seven different235

distributions. However, the Necklace Flower Constellation Theory can be used

to increase this number of possibilities.

Let LM = 20 be the number of available positions in the mean anomaly that

are defined in order to create a fictitious constellation composed by LΩLM = 140

satellites. In this fictitious constellation we look for the configurations with240

NM = 2 that are symmetric in the sense of Equation (30). That way, we obtain

70 different distributions, ten times the former number of possible constellations.

In order to describe a simple example, we select only the distributions where

GM = {1, 2} ⊆ Z20 and LMΩ = 6 from the set obtained. This implies that

the symmetry of the necklace is Sym(GM ) = 20, since {1, 2} = {1, 2} + 20

mod (20). Then, using Equation (38):

Sym(GM ) | SMΩLΩ − LMΩ ⇒ 20 | 7SMΩ − 6, (39)

which leads to SMΩ = 18. Figure 5 shows the distribution of the constellation in

the (Ω,M)-space, where, without losing generalization, we have chosen Ω11 =

M11 = 0 as the initial position of the reference satellite of the constellation. As245

it can be seen, the distribution when Ω = 0 and when Ω = 2π is the same, and
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thus, the properties of symmetry of the constellation are maintained from the

original lattice in LΩ and LM .

Figure 5: Representation of the initial positions of the satellites in the (Ω,M)-space.

On the other hand, in Figure 6, the (Ω,M)-torus representation of the con-

stellation is shown. There, it can be observed clearer how the satellites are250

positioned following two closed lines (as NM = 2) around the surface of the

torus, not having any satellite outside this configuration.

Figure 6: Representation of the initial positions of the satellites in the (Ω,M)-torus.

Finally, Figure 7 shows the inertial orbits of the constellation from an isomet-

ric view (left) and a polar view (right). This constellation presents two curious

properties. First, all the satellites of the constellation are always positioned in255
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an interval of Earth longitudes smaller than 90o. This means, that they fly as

a formation over the same regions of the Earth. Second, from the polar view,

we observe that the constellation generates two heptagons of satellites that are

bounded. In fact, during the motion of the constellation, these heptagons are

maintained, from a polar perspective, creating a rigid structure that is rotating260

with no collisions between both structures.
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Figure 7: Initial distribution of the constellation in the ECI frame of reference.

As it can be seen, using this new formulation (see Equations (29) and (38)),

we can expand the searching space as much as required without having to com-

pute all available positions in the fictitious constellation generated. This allows

to considerably reduce the amount of computations required, as only the real po-265

sitions are calculated, a property that will be used in the future in optimization

problems using this new design methodology.

4. Number of symmetric configurations in a 2D Necklace Flower Con-

stellation

During this section, we deal with the computation of the number of con-270

figurations that the Necklace Flower Constellation Theory provides. In that

respect, we consider three cases of interest which have different applications.
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4.1. Fixing the necklace GM and the Hermite Normal Form

In this case we focus on the study of the number of possibilities given a neck-

lace GM and the complete Hermite Normal Form for the fictitious constellation.275

By doing this, the available positions are fixed (they cannot shift), and thus,

this methodology provides the number of symmetric configurations that follow

a particular distribution given by the Hermite Normal Form. This is equivalent

to compute the number of possible values that the shifting parameter SMΩ can

present in Equation (38).280

Theorem 1. Given a necklace in the mean anomaly GM and a fixed Hermite

Normal Form, there exists symmetric distributions in the constellation if and

only if gcd(Sym(GM ), LΩ) | LMΩ, being the number of different configurations

in that case:

gcd(Sym(GM ), LΩ). (40)

Proof. Equation (37) can be written as:

ASym(GM ) + LΩSMΩ = LMΩ, (41)

where A is a unknown integer. If we select A and SMΩ as the variables of

study, the expression becomes a linear Diophantine equation where, by the use

of Bézout’s identity, we can conclude that there exist solution if and only if:

gcd(Sym(GM ), LΩ) | LMΩ. (42)

In the case the former expression is fulfilled, there are an infinite number of

solutions of Equation (41) that have the form:

(SMΩ)λ = (SMΩ)0 + λ∆l, with ∆l =
Sym(GM )

gcd(Sym(GM ), LΩ)
,

(A)λ = (A)0 − λ
LΩ

gcd(Sym(GM ), LΩ)
, (43)

where (SMΩ)0 and (A)0 is a known pair of solutions, and λ is an integer number.
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However, the variables and parameters from Equation (41) have some con-

straints due to the modular nature of the problem, in particular:285

Sym(GM ) ∈ {1, . . . , LM},

SMΩ ∈ {0, . . . , Sym(GM )− 1},

LMΩ ∈ {0, . . . , LΩ − 1}, (44)

and thus, there are a finite number of different solutions to this problem. From

the second boundary, we can derive that the difference between the maximum

and the minimum value of SMΩ is, at most, ∆SMΩ = (Sym(GM ) − 1). Now,

we are interested to know the number of different values of λ that allows Equa-

tion (43) to be inside this constraints. Thus, we first count the number of integer290

sections of length ∆l that lay in the interval ∆SMΩ, that is:⌊
∆SMΩ

∆l

⌋
=

⌊
(Sym(GM )− 1) gcd(Sym(GM ), LΩ)

Sym(GM )

⌋
=

=

⌊
gcd(Sym(GM ), LΩ)−

gcd(Sym(GM ), LΩ)

Sym(GM )

⌋
, (45)

where ⌊x⌋ is the round down integer of x.

It is elemental that gcd(Sym(GM ), LΩ) is an integer, so Equation (45) can

be expressed as:

gcd(Sym(GM ), LΩ)−
⌈
gcd(Sym(GM ), LΩ)

Sym(GM )

⌉
, (46)

where ⌈x⌉ is the round up integer of x. On the other hand, we know that

gcd(Sym(GM ), LΩ) ∈ [1, Sym(GM )] by the definition of greatest common divi-

sor, thus:
gcd(Sym(GM ), LΩ)

Sym(GM )
∈ (0, 1] , (47)

and applying this result we derive that the number of intervals is:

gcd(Sym(GM ), LΩ)− 1. (48)

Finally, the number of intervals defines a set of different elements inside the

interval ∆SMΩ equal to the number of intervals plus one. Consequently, the
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number of different values that (SMΩ)λ can take is:

gcd(Sym(GM ), LΩ), (49)

which is the number of solutions of Equation (41) provided that the number

of orbital planes LΩ, the combination number LMΩ, and the symmetry of the

necklace Sym(GM ) are fixed. Note that this number of solutions only applies if295

the condition of existence of solution provided by Equation (42) is achieved.

4.2. Fixing the necklace GM , LΩ and LM

On the other hand, in this second case, we fix the necklace GM and the size

of the extended space, that is, the parameters LΩ and LM from the Hermite300

Normal Form. This provides the information of how many different distributions

can be created with a given set of satellites (through the parameter Sym(GM )).

This problem is equivalent to compute the amount of pairs {SMΩ, LMΩ} that

are solution of Equation (38).

Theorem 2. Given a necklace in the mean anomaly GM and a size of the305

fictitious constellation (LΩ and LM ), the number of different symmetric con-

stellation configurations is LΩ.

Proof. Equation (37) can be reordered as:

LΩSMΩ − 1LMΩ = ASym(GM ), (50)

where the parameters have the constraints shown in Equation (44). In this

expression, we consider SMΩ and LMΩ the variables of the problem, and thus,

the equation has solution only and only if:

gcd(LΩ, 1) | ASym(GM ), (51)

which is always true as gcd(LΩ, 1) = 1 and ASym(GM ) is an integer value.

This provides an important result: given a symmetry of the necklace Sym(GM ),

and a number of orbital planes LΩ, there is always at least one solution to the310
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equation. The objective now is to compute the number of solutions that this

result represents.

Equation (50) is a linear Diophantine equation whose solutions are provided

by the following relation:

(SMΩ)λ = (SMΩ)0 + λ,

(LMΩ)λ = (LMΩ)0 − λLΩ, (52)

where (SMΩ)0 and (LMΩ)0 are a pair of possible solutions of Equation (50)315

and λ is an integer. From Equation (52), we can derive that there is only one

solution for a fixed ASym(GM ), since LMΩ ∈ {0, . . . , LΩ−1}. Thus, the number

of possible solutions is provided by the number of different equations in the form

of Equation (52) (which is equivalent to the number of possible values of the

integer A).320

From Equation (50), the maximum and minimum values of ASym(GM ) can

be obtained:

min (ASym(GM )) = −(LΩ − 1),

max (ASym(GM )) = (Sym(GM )− 1)LΩ. (53)

Then, we derive the maximum variation of the parameter ASym(GM ):

∆(ASym(GM )) = max (ASym(GM ))−min (ASym(GM )) =

= LΩSym(GM )− 1. (54)

Moreover, Sym(GM ) is constant in this variation, thus:

∆(ASym(GM )) = ∆ASym(GM ), (55)

where we can conclude that the admissible values of A lay in an interval of

amplitude:

∆A = LΩ − 1

Sym(GM )
. (56)

Now, we are interested in the number of complete intervals of amplitude 1 that

are inside ∆A (remember that A is an integer number), since this number plus
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one defines the number of possible values of A. The number of complete intervals

is:

⌊∆A⌋ =
⌊
LΩ − 1

Sym(GM )

⌋
= LΩ −

⌈
1

Sym(GM )

⌉
. (57)

Moreover, since ⌈Sym(GM )−1⌉ ∈ (0, 1] , the number of complete intervals is

(LΩ − 1), which define LΩ different values that the parameter A can take in325

Equation (52). The different values of A are providing the number of possible

different equations that we can obtain from Equation (52). Furthermore, we

already know that each equation has only one solution. Thus, the total number

of solutions of Equation (52) is LΩ.

330

One important thing to notice is that the number of solutions provided by

Theorem 2 requires to set a particular symmetry of the necklace Sym(GM ).

If the symmetry of the necklace is not fixed, and instead only the size of the

fictitious constellation is fixed, that is, LΩ and LM , we have to use the Burnside’s

counting theorem applied to this particular case in addition to the methodology

presented in this section. That way, the number of possible solutions that

a fictitious constellation distributed in LΩ orbital planes, with LM available

positions in each orbit is:
LΩ

LM

∑
d|LM

φ(d)2LM/d, (58)

where the sum is taken over all the divisors d of LM , and φ(d) is the Euler’s

totient function of d. Equation (58) represents a combinatorial problem where

the number of possible combinations of necklaces is given by Burnside’s counting

theorem while the number of pairs {LMΩ, SMΩ} are given by Theorem 2. This

combination can be freely performed since the number of pairs {LMΩ, SMΩ}335

does not depend on the symmetry of the necklace (the only parameter that is

changing in Burnside’s counting theorem).

4.3. Fixing NM , LΩ and LM

This case is an interesting variation of the previous counting methodology,

where now, the real satellites per orbit, that is, NM = |GM |, is fixed instead340
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of the necklace. Thus, it provides information on the number of possibilities

of design that are available with a set of satellites and a size of a fictitious

constellation. It is important to note that, in this case, the sizes of both the

real and the fictitious constellations are fixed.

Theorem 3. Given a number of satellites per orbit NM , and a size of fictitious

constellation (LΩ and LM ), the number of different symmetric constellation

configurations is:
LΩ

LM

LM∑
g=1
g|LM

LM
g |NM

|Fix(g)| , (59)

where Fix(g) is the number of elements contained in the Fix of a given symmetry

g, and can be computed using the following recursive function:

|Fix(g)| = LM

g


 g

NM

LM
g

−
g−1∑
g′=1
g′|g

LM
g′ |NM

g′

LM
|Fix(g′)|


. (60)

Proof. The process followed in this case is based on applying Burnside’s Lemma345

to count the number of different solutions. In order to use it, we require to set

first a particular symmetry of a necklace and compute the Fix in the space of

all possible configurations under that symmetry. Second, we remove the config-

urations that were considered in other symmetries before. Third, the number

of orbits for a particular symmetry is computed using Burnside’s Lemma. And350

finally, the total number of solutions is obtained as a sum of all the possible

symmetries.

Let +ZLM
be the possible actions that are considered in this problem, which

correspond to the possible different rotations that a necklace GM can perform

in the modulo ZLM
. In addition, G = ZLM

is the group of possible actions that355

can apply to any necklace defined in LM available positions. That way, the map
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ϕ can be defined as:

ϕ : G×X −→ X

(g, x) 7−→ x+ g mod (LM ). (61)

The objective is to apply the Burnside’s Lemma to this application, and thus,

we have to compute |Fix(g)| (see Equation (15)). The Fix of a given action is the

set of elements that remain unaltered under the application of that action. In360

that respect, from the definition of symmetry of a necklace (see Equation (5)),

we know that the only possible values of g ∈ G that have elements in the

Fix(X) are the ones that presents symmetries, that is, when an element fulfills

g = Sym(GM ). This means that only the values such that g|LM and LM

g |NM

contribute to the elements of the Fix.365

First, we focus in a particular value of symmetry of the necklace g =

Sym(GM ) and its Fix (Fix(g)). As there exists symmetry in the necklace, the

configuration can be regarded as a pattern comprised of g available positions

that is repeated LM/g times in the LM available positions. In this pattern,

there must be NMg/LM elements from the necklace since all the patterns must

have the same number of elements. Thus, the number of possible combinations

that exists in a pattern of size g (PC(g)) is:

PC(g) =

 g
NM

LM
g

 . (62)

On the other hand, each pattern can rotate LM/g possible times in the

LM available positions while maintaining the same configuration (due to the

symmetry that we are imposing). Thus, the number of combinations of NM

elements in LM available positions that present a given symmetry g is:

LM

g
PC(g) =

LM

g

 g
NM

LM
g

 . (63)

However, this counting also includes some elements that belong to other symme-

tries, and thus, they must be removed from this set of combinations in order to
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avoid duplicities in the counting process. For instance, if LM = 4 and NM = 2

and we consider g = 4 as the symmetry in study, the number of combinations

that we compute with Equation (62) include combinations of elements that also370

present symmetry of g = 2: {1, 3} and {2, 4}; and thus, we could count them

twice if we are not careful in the counting process. In order to avoid these cases,

we only consider g as the smallest symmetry that a combination of elements

can present.

From the definition of Fix, we know that the number of possible combi-

nations of NM elements with a particular symmetry g is the |Fix(g)| itself. In

addition, the possible combinations of elements must have been generated based

on patters of size g (as in Equation (62)). Thus, the number of different patterns

that exist for a particular symmetry g′ is:

PC(g′) =
g′

LM
|Fix(g′)| . (64)

Then, we can remove from the counting process, of the different pattern gen-

erators with symmetry g, all the elements that belong to a different symmetry

such that g′ < g:

PC(g) =

 g
NM

LM
g

−
g−1∑
g′=1
g′|g

LM
g′ |NM

g′

LM
|Fix(g′)| , (65)

where the sum is performed in all the symmetries g′ such that g′|g and LM

g′ |NM375

since g′ must also fulfill the conditions for symmetry.

Once the number of pattern combinations is computed, the |Fix(g)| can be

obtained using Equation (65), leading to:

|Fix(g)| = LM

g


 g

NM

LM
g

−
g−1∑
g′=1
g′|g

LM
g′ |NM

g′

LM
|Fix(g′)|


, (66)

which is a recursive function that can be easily computed. Equation (66) allows

to obtain the number of different necklaces under a given symmetry g. This

26



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

is done by the direct application of Burnside’s Lemma (Equation (15)), where

G = ZLM
as pointed out before. That way, we can derive Corollary 1.380

Corollary 1. The number of different necklaces with a given symmetry g that

can be obtained with NM elements taken from LM available positions is:

1

g


 g

NM

LM
g

−
g−1∑
g′=1
g′|g

LM
g′ |NM

g′

LM
|Fix(g′)|


. (67)

where |Fix(g′)| is provided by Equation (66).

In addition, if we fix the necklace, we obtain the same conditions as in

Theorem 2, which implies that the number of possible different configurations

that each necklace can provide is LΩ. Thus, and for a given symmetry g, the

number of possible configurations is:

LΩ

g


 g

NM

LM
g

−
g−1∑
g′=1
g′|g

LM
g′ |NM

g′

LM
|Fix(g′)|


. (68)

Finally, since we already know the number of possible configurations that

each symmetry can provide, we can sum all the contributions from the different

symmetries to obtain the total number of configurations of a 2D Necklace Flower

Constellation:

LM∑
g=1
g|LM

LM
g |NM

LΩ

g


 g

NM

LM
g

−
g−1∑
g′=1
g′|g

LM
g′ |NM

g′

LM
|Fix(g′)|


, (69)
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which can be rewritten as:

LΩ

LM

LM∑
g=1
g|LM

LM
g |NM

|Fix(g)| , (70)

where |Fix(g)| is provided by Equation (66).

The set of equations given by Theorem 3 are the general expressions to

calculate the number of possible combinations that the 2D Necklace Flower385

Constellation methodology provides for a given number of satellites and a given

size of the fictitious constellation. It also allows to fix the cost of the mission (the

number of satellites and their general distribution), while providing information

of the design possibilities available before starting the computation. That way,

it is possible to decrease or increase the size of the fictitious constellation to390

adapt the number of possibilities to the memory and time available.

5. Generalizing into a double necklace

In Section 3 a necklace in the mean anomaly was introduced and then in

Section 4 the number of possible configurations was assessed. In this section

we introduce the formulation for a double necklace in the satellite distribution.395

This means that two necklaces are generated, one in the mean anomaly GM and

the other in the right ascension of the ascending node GΩ.

Let NΩ and LΩ be the real and fictitious number of orbital planes in which

the constellation is distributed. That way, the necklace in the right ascension

of the ascending node can be defined as the subset:

GΩ ⊆ {1, . . . , LΩ}, (71)

such that |GΩ| = NΩ. In addition we define the index i∗ as the parameter of

distribution inside the necklace GΩ. That way:

GΩ(i
∗) = GΩ(mod(i∗ +NΩ, NΩ)), (72)
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which is equivalent to:

i = mod(i+ LΩ, LΩ). (73)

Now, an application between i and i∗ can be defined using the necklace GΩ:

i = GΩ(i
∗), (74)

and introducing this expression into Equation (29), we obtain:

∆Ωi∗j∗ =
2π

LΩ
(GΩ(i

∗)− 1) ,

∆Mi∗j∗ =
2π

LM
(mod (GM (j∗)− 1 + SMΩ(GΩ(i

∗)− 1), Sym(GM )))−

− 2π

LM

LMΩ

LΩ
(GΩ(i

∗)− 1) , (75)

which is the general expression that allows to generate all the possible config-

urations when two necklaces are included. On the other hand the symmetric400

configurations of this formulation are still given by Equation (38) since the

rotations in this new necklace does not modify the behavior of the system.

One important thing to notice is that this formulation represents the re-

moval of complete orbital planes from the original configuration given by Equa-

tion (29). This means that, unless the necklace GΩ presents a symmetry, the405

configuration will lose the property of having an uniform distribution no matter

the orbital plane observed. However, the resultant configuration still presents a

structure related to the original distribution.

6. Generation of all the configurations

In this section, we present a general scheme in order to generate all the410

possible constellation configurations that the 2D Necklace theory can provide.

In that respect, Figure 8 shows the summary of the process.

First, the general classic elements for the whole constellation are defined,

namely, the semi-major axis a, the eccentricity e, the inclination i and the ar-

gument of perigee ω. Second, the sizes of the real and fictitious constellations415

are set (NΩ, NM for the real and LΩ, LM for the expanded distributions). Then,
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LΩ, LM

NΩ, NM GΩ, GM

a, e, i, ω

Sym(GM ) | SMΩLΩ − LMΩ

SMΩ, LMΩ

∆Ωi∗j∗

∆Mi∗j∗
2DNFC

Figure 8: Flowchart of the 2D Necklace Flower Constellation generation process

using these sizes, all the possible necklaces are generated using a generation al-

gorithm [20, 21]. With the results obtained, we apply Equation (38) to generate

the shifting parameters SMΩ and the configuration numbers LMΩ that corre-

spond to each combination of necklaces. Finally, the distribution in the right420

ascension of the ascending node (∆Ωi∗j∗) and in the mean anomaly (∆Mi∗j∗) is

computed, and thus, in combination with the classical elements already defined,

the configuration of the whole 2D Necklace Flower Constellation is defined.

This process can be parallelized in the generation of necklaces, the solution

of the Diophantine equation and the generation of the distributions, allowing to425

generate and study a large number of configurations in a small amount of time.

On the other hand, as the number of parameters required to define a constella-

tion is very low, it is easy to store in memory all the possible combinations for

later study in other applications.

7. Conclusion430

This work presents a new methodology of satellite constellation design, the

2D Necklace Flower Constellations. This methodology allows to overcome the

limitation on the number of possibilities of design that the original 2D Lattice

Flower Constellations presented while maintaining the number of satellites of
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the configuration. This is achieved by an expansion of the configuration into a435

fictitious constellation in which a set of satellites that maintain the properties

of uniformity and symmetry are selected. Other applications of this design

framework are the definition of the sequence of launches for large constellations,

the study of possible reconfiguration strategies of a given constellation with very

little fuel consumption, or the assessment of the effect of failure in satellites of440

the configuration.

Compared to previous formulations, the main advantage of 2D Necklace

Flower Constellations is that it introduces the concept of necklaces directly into

its formulation, which allows to have closed expressions of the distributions

that a constellation can present. This is especially interesting for design since445

it provides more control in the process, and for optimization techniques, since

it is possible to generate any configuration that the theory can provide in a fast

and easy procedure.

In addition, three counting theorems are presented, which allow to predict

the number of possible combinations that the 2D Necklace Flower Constellations450

theory can provide. The first covers the number of constellation configurations

where a particular distribution is fixed. The second theorem provides the in-

formation of the number of possibilities that a particular symmetry generates

in the design methodology. On the other hand, the third theorem allows to

compute the total number of configurations that a set of satellites can provide455

for a particular size of fictitious constellation.

Finally, it is important to notice that the number of possibilities obtained

using this methodology depends on the size of the fictitious constellation, and

thus, it can be increased as much as required. This property is very interesting

from a design point of view, since it allows to optimize the methodology to the460

computational resources available.
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Highlights 
 Necklace Flower Constellations is a new design framework to define constellations. 

 It allows to expand the possibilities of design, maintaining the number of satellites. 

 It contains, as a subset, Walker, Dufour, Draim and 2D Lattice Flower Constellations. 

 The configurations obtained present stable structures with symmetric properties. 

 The formulation is specially devised for optimization problems. 


