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The tuberculosis (TB) vaccine MTBVAC is the only live-atten-
uated Mycobacterium tuberculosis (Mtb)-based vaccine in clin-
ical development, and it confers superior protection in
different animal models compared to the current vaccine,
BCG (Mycobacterium bovis bacillus Calmette-Guérin). With
the aim of using MTBVAC as a vector for a dual TB-HIV vac-
cine, we constructed the recombinant MTBVAC.HIVAZ*"*°
strain. First, we generated a lysine auxotroph of MTBVAC
(MTBVACAIlys) by deleting the IysA gene. Then the
auxotrophic MTBVACAlys was transformed with the
E. coli-mycobacterial vector p2auxo.HIVA, harboring
the IysA-complementing gene and the HIV-1 clade A immu-
nogen HIVA. This TB-HIV vaccine conferred similar efficacy
to the parental strain MTBVAC against Mtb challenge in
mice. MTBVAC.HIVA*"*° was safer than BCG and
MTBVAC in severe combined immunodeficiency (SCID)
mice, and it was shown to be maintained up to 42 bacterial
generations in vitro and up to 100 days after inoculation
in vivo. The MTBVAC.HIVA?"™° vaccine, boosted with
modified vaccinia virus Ankara (MVA).HIVA, induced
HIV-1 and Mtb-specific interferon-y-producing T cell re-
sponses and polyfunctional HIV-1-specific CD8+ T cells pro-
ducing interferon-y (IFN-y), tumor necrosis factor alpha
(TNF-a), and CD107a in BALB/c mice. Here we describe
new tools to develop combined vaccines against TB and
HIV with the potential of expansion for other infectious
diseases.

INTRODUCTION

Today, tuberculosis (TB) has reached alarming proportions. An
estimated 10 million people have developed TB in 2017 and 9%
were people living with HIV (72% in Africa). There were an estimated
1.3 million TB deaths among HIV-negative people and an additional
300,000 deaths among HIV-positive people, as reported by the World
Health Organization (WHO)' in 2018. TB is poverty related with a

major burden in the poor and developing parts of the world, and it
is aggravated by the HIV-AIDS pandemic, which greatly increases
the risk of the infection evolving into active TB disease.

HIV-AIDS is a major global public health issue. Between 2010 and
2016, new HIV infections fell by 11% in adults and 47% in children,
and AIDS-related deaths fell by 48% since the peak in 2005. This
achievement was the result of great efforts by national HIV programs
supported by civil society and a range of development partners.”
However, sub-Saharan Africa accounted for 64% of new HIV infec-
tions in 2016, and, even though it is encouraging that 1.6 million
people are currently receiving treatment in resource-poor settings,
ensuring universal access to antiretroviral therapy still represents an
enormous challenge.” Thus, the development of effective, safe, and
affordable vaccines against both diseases could have a tremendous
impact on public health.

The risk of active TB is estimated to be between 16 and 27 times
greater in people living with HIV than among those without HIV
infection.* Mpycobacterium bovis bacillus Calmette-Guérin (BCG)
has been the only licensed vaccine against TB for more than 90 years,’
but the BCG-induced protective effects against pulmonary disease
over all ages are variable.®” Nevertheless, BCG® vaccination has
several beneficial effects: (1) BCG vaccination reduces rates of
Mpycobacterium tuberculosis (Mtb) infection, aiding in the decrease
of the pool of latent infections from which future cases of active
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disease may arise;” (2) BCG provides strong protection against
disseminated forms of the disease in infants and young children;'>"!
(3) BCG revaccination of adolescents may provide additional benefits
for the prevention of TB;'* and (4) BCG vaccination reduces all-cause
mortality through beneficial non-specific (heterologous) effects on
the immune system.'»'* These four effects strengthen the motivation
for the inclusion of BCG in the global vaccination program.'”

We previously constructed and characterized MTBVAC, the first
and only live-attenuated Mtb-based vaccine candidate in clinical
development against TB disease in the pipeline. MTBVAC con-
tains two independent deletions in the phoP and fadD26 genes
without antibiotic resistance markers, and it fulfills the Geneva
consensus requirements for progressing into clinical trials.'® The
vaccine candidate MTBVAC was safe, and it conferred
superior protection in different animal models compared to the
licensed BCG reference strain in use today. To date, phase I trials
in adults and neonates (ClinicalTrials.gov: NCT02013245 and
NCT02729571) have been successfully completed, and phase II tri-
als for dose definition, at birth and in adults with and without
latent TB, are in progress (ClinicalTrials.gov: NCT02933281 and
NCT03536117). Clinical results showed that MTBVAC was immu-
nogenic, in a dose-dependent manner, and it had a similar safety
profile as that of BCG.'*"”

It is well known that there is strong evidence in favor of a role for
HIV-1-specific T cell responses in the control of HIV-1 replica-
tion.'™"” One promising approach for T cell induction is M. bovis
BCG as a bacterial live recombinant vaccine vehicle. Specific humoral
and cellular immune responses against HIV-1 have been detected
after immunization of mice with recombinant BCG (rBCG) express-
ing HIV-1 antigens.”’** We previously developed several rBCG
HIV-1 vaccine candidates with the aim of inducing protective cell-
mediated responses. Confirming the efficacy of an HIV-1 vaccine
candidate in humans is as of yet not possible in animal studies alone.
Achieving protection against HIV infection in humans following
active vaccination, and subsequently identifying the correlates of pro-
tection, would allow the validation of protection in animal models.
Our aim is to induce a strong CD8+ T cell response capable of aiding
and complementing the protective efficacy of antibody-based vac-
cines, while providing viral control in the case of an infection
occurring.

Our starting platform was based on a heterologous rBCG prime and
recombinant modified vaccinia virus Ankara (MVA) boost regimen
delivering a common immunogen called HIVA (MVA.HIVA),
which is derived from consensus Gag protein of HIV-1 clade A,
prevalent in central and eastern Africa, and a string of human CD8"
T cell epitopes.”® Recently, we engineered a new BCG.HIV
vaccine strain harboring an antibiotic-free plasmid selection
system and maintenance. The BCG.HIVA®*"*° vaccine in combina-
tion with MVA.HIVA was safe, and it induced HIV-1 and Mtb-

specific interferon-y-producing T cell responses in adult BALB/c
26
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mice.
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In this study we have constructed a novel live-attenuated vaccine for
HIV-1 and TB that is vectored by a lysine auxotroph of MTBVAC,
MTBVAC.HIVA®**"*°, This is an innovative approach to develop
bivalent TB and HIV vaccines that could be administered at birth
and with the potential to confer protection against both diseases.

RESULTS

Construction and Characterization of a Lysine Auxotroph of
MTBVAC, the MTBVAC 4lys Strain

For MTBVACAIys construction, the previously described recombin-
eering-based technique was used.”” Rv1293 (lysA) gene, which codes
for the last enzyme involved in Lysine (Lys) synthesis,”® was inacti-
vated by homologous recombination with a PCR product containing
a kanamycin (Km) resistance cassette disturbing the lysA gene (Fig-
ure 1A). To ensure proper selection of recombinants, the final
MTBVAC transformed with the homologous PCR product lysA-
Km was plated on 7H10 complete medium supplemented with Km
and Lys. Correct recombination was confirmed by PCR using three
different pairs of primers, which amplify the complete recombined
region (Lys-fw/Lys-rv), the upstream (Lys-fw/km-OUT1-rv), or the
downstream (km-OUT2-fw/Lys-rv) region (Figure 1B). After
MTBVACAIys construction, Lys auxotrophy was confirmed by
plating on 7H10-ADC with and without Lys supplementation
(Figure 1C) and also by colony-forming unit (CFU) enumeration
after removing Lys from medium (data not shown). Results showed
the absence of MTBVACAIys growth in non-lysine-supplemented
plates, whereas the MTBVAC strain grew at a similar level in
both supplemented and non-supplemented plates. Accordingly, this
auxotrophic MTBVACAIlys strain was used in the subsequent
experiments to generate recombinant vaccines expressing the HIVA
immunogen.

Construction and Characterization of the MTBVAC.HIVAZ2"*°
Vaccine Strain

The plasmid p2auxo.HIVA (Figure 2A)*® was transformed into
the MTBVACAlys host strain to generate the recombinant
MTBVAC.HIVA*™° The selection of positive recombinant
MTBVACHIVA*™° colonies was performed by culturing the
MTBVACAIys transformants on Middlebrook agar 7H10 medium
without lysine supplementation. The MTBVAC.HIVA®*® strain
harboring the lysine-complementing gene abolished the requirement
for exogenous lysine, and colonies were observed in non-lysine-
supplemented agar plates (Figure 2B).

The expression of the full-size chimeric 19-kDa signal sequence-
HIVA protein (total weight, 64 kDa) was confirmed by western blot
analysis of the MTBVAC.HIVA®™"° cell lysates (Figure 2C). No
HIVA protein expression was detected in recombinant MTBVAC
strains harboring the p2auxo plasmid without heterologous insert
(MTBVAC."*°, negative control).

This proper molecular characterization led us to prepare a master
seed stock and derivative working vaccine stock for downstream
experiments.
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In Vitro and In Vivo Maintenance of p2auxo.HIVA in
MTBVAC.HIVA®*“*° Strain

To assess the in vitro stability of the p2auxo.HIVA plasmid, subcul-
tures of MTBVAC.HIVA®***° on selective media (no lysine supple-
mentation) were carried out every 7 days. The maintenance of the
p2auxo.HIVA plasmid DNA was evaluated by PCR analysis of
HIVA and GlyA DNA-coding sequences. Bands corresponding
to the HIVA DNA-coding sequence (Figure 3A) and to the
E. coli GlyA-coding sequence (Figure S1A) were observed in all
6 MTBVAC.HIVA®° subcultures (42 bacterial generations), indi-
cating that there were no major genetic rearrangements in the
HIVA and glyA genes of MTBVAC.HIVA®™™° vaccine strain
over the subsequent subculturing passages. In vivo stability of
p2auxo.HIVA plasmid in MTBVAC.HIVA®*™° was assessed in se-
vere combined immunodeficiency (SCID) mice used in the safety
trial. Homogenized spleens were plated on Lys-supplemented me-
dium, and p2auxo.HIVA presence in the mycobacterial burden was
analyzed by colony PCR using primers to detect the HIVA DNA-
coding sequence (Figure 3B) and the glyA gene (Figure S1B). The
analysis showed that 95.5% of the colonies retained the plasmid
during in vivo infection.

MTBVAC.HIVAZ2"*° Prime and MVA.HIVA Boost Vaccination
Schedule Elicited HIV-1- and PPD-Specific T Cell Responses in
Mice

We previously demonstrated that heterologous BCG.HIVA
prime boosted with MVA.HIVA elicited high-quality HIV-1-spe-
cific T cell responses.26‘29’3[) In this study, we evaluated the

Figure 1. Construction and Characterization of
MTBVACAlys Strain

(A) lysA gene (gray arrow) from MTBVAC was inactivated
using homologous recombination techniques by intro-
ducing a kanamycin resistance cassette (gray rectangle),
flanked by two resolvase sites (white arrowheads) in order
to allow the release of the resistance cassette. The in-
activated phoP and fadD26 genes in the MTBVAC
parental strain are also illustrated. (B) Genotypic charac-
terization of the lysA gene inactivation by the kanamycin
cassette (km) insertion, primers used, and expected sizes
of the PCR products are indicated. MTBVAC sample was
used in lanes 3, 5, and 7 and MTBVACAlys samples in
lanes 4, 6, and 8. Lane 1, molecular weight marker; lane 2,
negative control; lanes 3 and 4, PCR product of the lysA
gene using Lys-fw and Lys-rv primers; lanes 5 and 6, PCR
of the &' insertion point of km expression cassette using
Lys-fw and km-OUT-rv primers; and lanes 7 and 8, PCR
of the 3 insertion point of km expression cassette using
km-OUT-fw and Lys-rv primers. Genes are represented
as gray arrows; gray rectangles illustrate antibiotic resis-
tance markers and white arrowheads depict resolvase
recognition sequences or res sites. (C) Phenotypic lysine
auxotrophic verification by plating MTBVACAlys strain in
7H10-ADC with and without lysine supplementation.

7H10-ADC-Lys

7H10-ADC

specific HIV-1 T cell responses in adult BALB/c mice after
intradermal  immunization ~with MTBVACHIVA®™° or
MTBVAC.Q*"° prime and intramuscular MVA.HIVA boost
(Figure 4A). The intradermal route mimics the administration per-
formed in human BCG vaccination, and it has been shown to elicit
a higher HIV-1-specific CD8+ T cell response in adult BALB/c
mice.”’ The immunogenicity readout was focused on the P18-110
epitope, an immunodominant cytotoxic T-lymphocytes (CTL)
epitope derived from HIV-1 Env and H-2D? murine restricted,
which was fused to HIVA immunogen to evaluate the immunoge-
nicity in mice.

On day 0, adult mice were either left unimmunized or primed with
MTBVAC.HIVA***® or MTBVAC.0**"*, and on week 6 the ani-
mals received an MVA.HIVA boost. Mice were sacrificed on week
8, and the functional quality of the elicited CD8+ T cells to produce
interferon-y (IFN-v) and tumor necrosis factor alpha (TNF-a) and
to degranulate (surface expression of CD107a) in response to
P18-I10 peptide stimulation was measured by intracellular
cytokine staining (ICS) (Figure 4B). We observed in adult mice that
MTBVAC.HIVA*"° prime and MVA.HIVA boost induced higher
frequencies of P18-110 epitope-specific CD8+ splenocytes producing
IFN-vy, TNF-a, and CD107 than mice primed with MTBVAC.Q***°,
MVA.HIVA alone, or naive mice. We found that MTBVAC.
HIVA*"° prime and MVA.HIVA boost induced higher frequencies
of trifunctional specific CD8+ T cells compared with the
MTBVAC.©0***° priming and MVA.HIVA boost and with MVA.
HIVA alone (Figure 4C).
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The capacity of splenocytes from vaccinated mice to secrete IFN-y
was also assessed by the enzyme-linked immunosorbent spot
(ELISPOT) assay. We observed the highest frequency of specific
cells secreting IFN-y when stimulated with P18-110 in mice primed
with MTBVAC.HIVA?*"™° and boosted with MVA.HIVA, 1,280
spot-forming units (SFU)/10° splenocytes, compared to 1,043
SFU/10° splenocytes obtained when mice were primed with
MTBVAC.0*™ and 1,095 SFU/10° splenocytes when mice were
only boosted with MVA.HIVA (Figure 4D). The capacity of spleno-
cytes from vaccinated mice to secrete IFN-v after overnight stimu-
lation with the Mtb-purified protein derivative (PPD) was also
assessed by ELISPOT. The median SFUs per 10° splenocytes were
similar in mice primed with MTBVACHIVA®™™° and
MTBVAC.Q**™° (102 and 86 SFU/10° splenocytes, respectively;
Figure 4E).

MTBVAC.HIVAZ2"*° Prime and MVA.HIVA Boost Were Well
Tolerated in Mice

As shown in Figure 5, the body mass was monitored over time and
recorded to depict any adverse events and body mass loss due to
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Figure 2. Construction of MTBVAC.HIVA22ux°

(A) The HIVA gene was fused to the region encoding the
19-kDa lipoprotein signal sequence of the episomal
p2auxo.@ E. coli-mycobacterial shuttle plasmid to obtain
p2auxo.HIVA plasmid. The BALB/c mouse T cell and
Mab-Pk epitopes used in this study are depicted. P a-Ag
(M. tuberculosis a-antigen promoter), PHSP60 (heat
shock protein 60 gene promoter), and glyA- and lysA-
complementing genes are used as markers for selection
and maintenance in E. coli M15AGly and MTBVACAlys,
respectively. (B) Phenotypic characterization of the lysine
auxotrophy and plasmid complementation of MTBVACA
lys and MTBVAC.HIVAZ2¥° (MTBVACAlys plated on
lysine-supplemented 7H10, left; MTBVACAlys plated on
non-lysine-supplemented 7H10, center; and MTBVA-
C.HIVAZ2¥° plated on non-lysine-supplemented 7H10,
right). (C) Western blot of MTBVACHIVAZ™® |ysates.
Lanes 1 and 2, MTBVAC.Z%?° clones 1 and 2; lanes 3
and 5, MTBVAC.HIVA%2¥®; |ane 6, BCG wild-type lysate
(negative control). HIVA immunogen was detected using
the anti-Pk monoclonal antibodies (mAbs) followed by

p2auxo.HIVA

horseradish peroxidase-protein A and enhanced chem-

iluminescence detection.

vaccination. To detect vaccine-derived adverse
events, a 12-week period between MTBVA-
C.HIVA***® and MVA.HIVA boost was estab-
lished for this trial. Importantly, no statistically
significant (by ANOVA)
observed between the vaccinated mouse groups
and the control mouse group at the final time
point. Furthermore, between weeks 1 and 14,
the body mass monitored in all vaccinated
mouse groups was found to lie between the
mean *= 2 SD body mass curves in control
mice. It is also important to mention that no mice died during the
trial, and no local adverse events or associated systemic reactions
were observed.

difference was

76 KDa

64 KDa
52 KDa

MTBVAC.HIVAZ2“*° Protective Efficacy against M. tuberculosis
in Mice Was Similar to MTBVAC

We evaluated the efficacy of the bivalent vaccine strain MTBVAC.
HIVA®"*° with respect to the parental MTBVAC vaccine. Groups
of 6 C57BL/6 mice were left unimmunized or vaccinated with
MTBVAC, MTBVAC.HIVAZ*™°, or MTBVACAIys by subcutane-
ous injection, a route previously used for efficacy studies in mouse
models.”® At 7 weeks post-vaccination, the mice were challenged
with the pathogenic H37Rv strain by the intranasal route. Bacterial
load in lungs and spleens was examined 4 weeks post-challenge
by plating homogenized organs on complete 7HI10 medium
(Figure 6). In all vaccinated groups, the bacterial reduction was
significant with respect to the unvaccinated group, both in
lungs and spleens. The auxotrophic strain MTBVACAlys,
which was expected not to be able to survive without lysine,
also displayed significant protection against Mtb H37Rv when

Molecular Therapy: Methods & Clinical Development Vol. 13 June 2019



www.moleculartherapy.org

Figure 3. Genetic Stability of p2auxo.HIVA Plasmid DNA

(A) In vitro. Serial passages of the working vaccine stock (WVS) were performed
weekly (+1 to +6), and HIVA PCRs were used to check stability of the plasmid
DNA. Lane 1, WVS MTBVAC.HIVAZ2¥®: |anes 2-4, passages +4, +5, and +6
WVS MTBVAC.HIVAZ2¥®: |ane 5, H,0 (negative control); lane 6, positive control;
lane 7, molecular weight marker. (B) In vivo. Spleens from SCID mice inoculated
with 108 CFU MTBVAC.HIVA?2° and used for safety experiments were
harvested and plated on complete 7H10 supplemented with Lys and Km. The
presence of p2auxo.HIVA plasmid in the colonies from these mice was
analyzed by specific PCR using the pairs of primers to detect HIVA (19kDss-
fw/HIVA-rv). Each number represents one colony and numbers with # symbol
indicate colonies from the same animal. Minus and plus symbols indicate
negative and positive controls of PCR, respectively. Plasmid maintained in vivo
was calculated as the percent of positive colonies with respect to total colonies
analyzed.

compared to the naive group. No differences were found between
the different MTBVAC strains tested, which validates the protec-
tive behavior of MTBVAC.HIVA®"*® vaccine against Mtb despite
the genetic manipulations introduced.

MTBVAC.HIVAZ2“*° Was Highly Attenuated in the SCID Mouse
Model

As well as affecting vaccine efficacy, genetic manipulation may also
affect attenuation of live vaccines.”” With the aim of corroborating
the attenuation status of MTBVAC.HIVA®*® and MTBVACAlys
strains, SCID mice were inoculated with 10° CFU by the intraperito-
neal route, and the survival of animals was monitored (Figure 7).
SCID mice are the reference model for safety assessments of live vac-
cines in preclinical TB studies, as recommended by regulatory
bodies.** Intraperitoneal, as well as intravenous, administration is a
systemic inoculation route that allows rapid dissemination of the
bacteria and, thereby, virulence assessments.>” The auxotrophic
MTBVACAIys strain showed a hyper-attenuated profile; all mice
inoculated with this strain survived until the endpoint of the experi-
ment at week 31. Bacterial burden per spleen of these SCID mice
vaccinated with MTBVACAIlys at week 31 was approximately 5 X
10° CFU (Figure S2), which demonstrated that this strain survived
in vivo.

When we analyzed survival time of MTBVAC.HIVA**"*°-vaccinated
mice, data revealed a marked attenuation profile (they survived
approximately 160 days) when compared to the BCG-vaccinated
mice (deceased by day 90) and the MTBVAC-vaccinated mice
(deceased by day 120).

DISCUSSION

Despite the progress made in the development of a safe, effective, and
affordable vaccine against HIV-1 and TB shortly after birth, the pre-
vention of mother-to-child HIV-1 transmission via breast milk and
childhood TB still remain great challenges.

The use of mycobacteria as a vaccine vector is an attractive option;
on top of the previously mentioned advantages (cheap mass produc-
tion, good safety profile, suitable for neonates, etc.), it induces a
potent Th1 type immune response (the central defense mechanism
against intracellular pathogens) in humans and mice.***> Three
experimental systems must be orchestrated to develop a recombi-
nant Mycobacterium-based HIV vaccine: (1) a live vaccine vehicle
based on mycobacteria, (2) an E. coli-mycobacterial expression
vector without antibiotic resistance markers, and (3) an HIV immu-
nogen design. In this study, we have engineered a novel live-attenu-
ated vaccine for HIV-1 and Mtb infection that is vectored by a lysine
auxotroph of MTBVAGC,'® which expresses the HIV-1 clade
A-derived immunogen HIVA.>

The use of mycobacterial vectors>***” for antigen expression in
M. bovis BCG,2>***° M. smegmatis,/m or M. vaccae*"** has been
documented. Through a Barcelona-Oxford collaboration, we previ-
ously engineered a mycobacterial vaccine platform for HIV-TB by
using lysine auxotrophic strains of BCG as vectors: an E. coli-
mycobacterial expression vector containing an antibiotic-free
selection system and different HIV immunogen designs to improve
the specific HIV-1 immunogenicity.”***"*>*
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The auxotrophy-complementation strategy has also been used in the
context of other intracellular pathogens as Listeria monocytogenes to
express simian immunodeficiency virus (SIV) or HIV antigens.*
Despite being highly effective and safe in mice, including neonatal
animals, the success observed in the murine model was not translat-
able upon immunogenicity and efficacy assessment of the Lmdd-
BdopSIVgag in non-human primates.*® This should be taken into
consideration during further stages of MTBVAC.HIVA*"™°
development.

In 2014, the promising live-attenuated Mtb vaccine, MTBVAC, was
developed.'® It conferred improved immunogenicity and protection
and had a higher safety profile compared to BCG in preclinical

Molecular Therapy: Methods & Clinical Development

Figure 4. Induction of HIV-1- and Mtb-Specific T Cell
Responses by the MTBVAC.HIVAZ2"*° Prime
MVA.HIVA Boost Regimen

(A) Adult (7-week-old) mice were either left unimmunized
or primed with 10° CFU MTBVAC.HIVA%Y© or
MTBVAC.@?3%° (intradermally) and boosted with 10°
plaque-forming units (PFUs) of MVA.HIVA (intramuscu-
larly) 6 weeks post-MTBVAC inoculation. Mice were
sacrificed 2 weeks later for T cell analysis. (B) Analysis of
IFN-y and CD107 vaccine elicited HIV-1-specific CD8+
T cell responses. The frequencies of cells producing
cytokines are shown. Data are presented as means
(SD; n =7 for groups A, B, and D and n = 6 for group C).
(C) The functionality of vaccine-induced CD8+ T cell re-
sponses was assessed in a multicolor intracellular cyto-
kine staining assay. The group mean frequencies of single,
double, and triple cytokine-producing P18-110-specific
cells are shown for the four vaccination groups. (D)
Elicitation of specific T cell responses was assessed in an
ex vivo IFN-y enzyme-linked immunosorbent spot
(ELISPQT) assay using the immunodominant P18-110
CD8+ T cell epitope peptide. The median spot-forming
units (SFUs) per 10° splenocytes for each group of mice
(n=7forgroups A, B, and D and and n = 6 for group C) as
well as individual animal responses are shown. (E) Purified
protein derivative (PPD)-specific T cell responses elicited
by MTBVAC.HIVAZ2¥°_ Immune responses to mycobac-
teria were assessed in an ex vivo IFN-y ELISPOT assay
using PPD as the antigen. The median SFUs per 10°
splenocytes for each group of mice (n = 7 for groups A, B,
and D and and n = 6 for group C) as well as individual
animal responses are shown. Statistical analysis was
performed by ANOVA plus Bonferroni multiple com-
parisons test (p < 0.05, “*p < 0.01, **p < 0.001, and
****p < 0.0001).

studies. Furthermore, MTBVAC has ad-
vanced through phase I (ClinicalTrials.gov:
NCT02013245 and NCT02729571)"” and into
phase II (ClinicalTrials.gov: NCT02933281 and
NCT03536117) clinical trials.

It is important to recall that, of the 1,603 exper-

imentally validated T cell epitopes present in
M. tuberculosis, 433 of these epitopes were lost during the in vitro
attenuation of BCG. Conversely, MTBVAC maintains the whole anti-
genic repertoire of the human pathogen Mtb."” Further, MTBVAC
displayed increased secretion and immunogenicity against some
key antigens (such as those of the Ag85 complex) as a consequence
of the phoP mutation.”®* > Thus, MTBVAC may well be a better
platform than BCG when it comes to the expression of heterologous
antigens, based on its higher immunogenicity.

The MTBVAC.HIVA*"® and MTBVAC.ZJ**"* strains constructed
in this study grew properly without lysine supplementation in
the medium, which demonstrated the usefulness of the auxotrophy-
complementation system for the selection and maintenance of
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Figure 5. MTBVAC.HIVA®*"*° Prime and MVA.HIVA Boost Safety in

Adult Mice

Adult mice were either left unimmunized or immunized with 10° CFU of
MTBVAC.HIVAZ3¥° by intradermal route and subsequently given a booster dose of
10° PFU of MVA.HIVA at week 12 by intramuscular route. The body mass was
recorded over time, and the mean for each group of mice is shown (n = 5). Data from
control mice are presented as mean + 2 SD (dashed lines). The weight differences
between vaccinated and naive mouse group were analyzed at the final time
point by ANOVA.

plasmids in Mtb-based vaccines.”®>" Use of the lysine auxotroph-

lysine complementation system was previously shown to increase
plasmid stability and to prevent extensive genetic rearrangements
in recombinant mycobacteria.”***”' Plasmid stability in recombinant
mycobacteria has always been a critical and controversial issue.
Méderlé et al.”* evaluated the genetic stability of recombinant BCG
strains harboring episomal or integrative vectors expressing nef
and gag genes from SIV. They observed a higher genetic stability
in vivo and in vitro as well an increased duration of heterologous
gene expression in vivo using the integrative plasmid.”> Recently,
we published that the in vitro stability of the integrative plasmid
p2auxo.HIVA™ was increased 4-fold compared with the BCG strain
harboring the episomal plasmid.*’
with Méderlé et al. However, as there are more copies of episomal
vector per cell, higher levels of recombinant protein can be expressed
than from integrative vectors. Although our previous results and a

number of others have demonstrated that integrative vectors are
52,53

These results were in concordance

more stable than episomal vectors, it has also been demonstrated
that an initial, high level of antigen expression is necessary to prime
an immune response.52 In this study, we demonstrated that the
episomal p2auxo.HIVA plasmid transformed into the MTBVACAIlys
strain was retained in vivo over 220 days in SCID mice and after 42
bacterial generations in vitro. Sequencing of the recovered plasmids
in vitro and in vivo would be desirable to accurately confirm the ge-

netic stability of p2auxo.HIVA plasmid at the nucleotide level.

We assessed the HIV-1- and Mtb-specific T cell-mediated immune
responses elicited after BALB/c prime-boost immunization with
MTBVAC expressing HIVA immunogen (MTBVAC.HIVA®"™®),
Mice were primed with MTBVAC.HIVA®™° or MTBVAC.Z**"™°
(plasmid with no HIVA DNA-coding sequence) and boosted with
MVAHIVA. This way, we were able to detect the non-specific
immune responses due to intrinsic immunogenic properties of
mycobacteria.”* The frequencies of CD8+ T cells producing IFN-y,
TNF-a, and CD107a were higher in mice vaccinated with
MTBVACHIVA*™° in comparison with mice primed with
MTBVAC.Z*™. A similar profile was observed in spleen cells
producing IFN-y after P18-110 peptide stimulation measured by
ELISPOT assay. These results are in concordance with our previously
published data using BCG.HIVA*™"° and BCG wild-type as priming
agents.”® The extent of T cell polyfunctionality was correlated to pro-
tection against leishmaniasis in mice, HIV-1 in humans, and SIV in
non-human primates.”” It has also been demonstrated that the
magnitude and polyfunctionality of virus-specific CD8+ T cell re-
sponses were associated with the control of viral replication after
SHIV-89.6P challenge in rhesus monkeys.”

The construction of Mtb auxotrophs (ApanCD, leuCD, and secA2)
expressing HIV or SIV antigens with the aim of developing a dual
pediatric vaccine against TB and HIV has been described as oral vacci-
nation of macaques at birth.”” However, unexpectedly, vaccinated
infants required fewer SIV exposures to become infected compared
to naive controls. Considering that the current TB vaccine, BCG,
can induce potent innate immune responses and confer pathogen-un-
specific trained immunity, they hypothesized that an imbalance be-
tween enhanced myeloid cell function and immune activation might
have influenced the outcome of oral SIV challenge in AMtb-SIV-
vaccinated infants. Ideally, an appropriately targeted specific response
directed toward beneficial epitopes of HIV would overcome the dan-
gers of trained immunity while maintaining its positive aspects, which
have been linked to decreased mortality in children receiving BCG, as
well as lead to the control or prevention of HIV infection.™

When developing a dual vaccine against TB and HIV, it is important
to confirm that the inclusion of HIV immunogens does not increase
the metabolic burden in the TB vaccine that could affect its protective
efficacy. We have already described this issue in previous publica-
tions, demonstrating that recombinant BCG-based HIV vaccine
conferred the same level of protection as the wild-type.*” In the pre-
sent study, we confirm that MTBVAC and MTBVAC.HIVAZue
confer equivalent levels of protection against Mtb challenge and,
consequently, vaccine efficacy is not compromised after genetic ma-
nipulations for HIVA expression.

The recombinant MTBVAC.HIVA®™® strain showed an increased
safety profile in comparison with the parental MTBVAC strain. This
finding might support the potential use of this vaccine in individuals
at risk of immunosuppression. On the other hand, the auxotrophic
MTBVACAlys strain had a highly attenuated profile, with 100% sur-
vival in this group after 220 days of inoculation. This hyper-attenuated

Molecular Therapy: Methods & Clinical Development Vol. 13 June 2019 259


http://www.moleculartherapy.org

Molecular Therapy: Methods & Clinical Development

. . 2auxo H
A Lung B Spleen Flgl.fl’e 6. Efficacy of MTBVAC.HIVA Vaccine
against M. tuberculosis
ok ** C57BL/6 mice were vaccinated subcutaneously with
| | 5 . . .
*x ! il 10° CFU of the strains indicated, MTBVAC, MTBVAC.
o = HIVAZa¥>©  and MTBVACAlys, or naive (unvaccinated
7- ° as control). At 8 weeks post-vaccination, mice were
_ % 61 ° challenged by intranasal route with 200 CFU H37Rv.
3 6 ¢ ’g 54 3 Bacterial burden was assessed in lungs (A) and in spleen
w n
o * 5 o (B) 4 weeks post-challenge. Data are expressed as
§ 51 -3 -y * > 44 u - .
4 b u S ° ﬁ' % mean + SEM and compared by 2-way ANOVA test, using
2 44 M ;; 34 f = *e Bonferroni multiple comparison post-test (**p < 0.01).
~ [ ] n
? 3 § 2] ® *
2 T T T T 1 . . .
(9] & @ <@ O s & @
R\ o S > s o S 3 i
é& K\s 4\’& <~ «Q?\ \\; AVg’v 4 Construction of MTBVACAlys,
N
\5,9‘ é& A K é& MTBVAC.HIVAZ2"*° and MTBVAC.%2"°
,&4 «Qﬁv Strains
S A\ The strain MTBVACAlys was constructed
)

profile of MTBVACAlys was observed with other auxotrophic BCG
and Mtb strains,”” ' due to lower viability and growth limitation
without amino acid supplementation in vivo. Despite the growth lim-
itation, the strain could be isolated in the spleens of SCID mice at the
end of the trial, demonstrating that the auxotrophic strain was not fully
cleared on day 220 after inoculation. It may suggest that the increased
attenuation profile of the recombinant MTBVAC.HIVA?**° could be
due to episomal plasmid loss. However, in our study, the persistence of
plasmid was 95% in the isolated colonies from spleens of SCID mice
inoculated with MTBVAC.HIVA®*™,

We also demonstrated that MTBVAC.HIVA®***® prime and MVA.
HIVA boost were well tolerated in adult BALB/c mice by monitoring
and recording body mass over time. The findings were along the lines

of previous observations with recombinant BCG expressing HIVA.”

In conclusion, the development of a recombinant MTBVAC-based
HIV-TB vaccine may provide a new and improved tool for mycobac-
terial-based vaccine design. In the future, MTBVAC could be further
developed as a vector to express optimized HIV immunogens and
utilized in prime-boost vaccination protocols along with new boost-
ing agents. It could, furthermore, be used as a novel mycobacterial
vaccine platform for infectious diseases, such as malaria, whooping
cough, and other tropical diseases, to prime protective immune re-
sponses shortly after birth.

MATERIALS AND METHODS

Bacterial Strains and Culture Conditions

Mycobacterial cultures were grown in Middlebrook 7H9 broth me-
dium or on Middlebrook agar 7H10 (Becton Dickinson) medium
supplemented with albumin-dextrose-catalase (ADC; Difco Labora-
tories) and containing 0.05% Tween 80 and 20 pg/mL kanamycin.
The L-lysine monohydrochloride (Sigma) was dissolved in distilled
water and used at a concentration of 40 ng/mL. Mycobacterial sus-
pensions for animal inoculation were prepared in PBS from frozen
glycerol stocks previously titrated by plating serial dilutions.

260

following the bacterial artificial chromosome-
recombineering (BAC-rec) strategy described by Aguilo et al.”’
Briefly, the target gene rv1293/lysA was identified in the E. coli BAC
library (kindly donated by Roland Brosch from Institut Pasteur,
Paris). In this clone, the target gene IysA was interrupted with a kana-
mycin resistance cassette by heterologous recombination mediated by
PCR product, which was amplified by using specific primers LysA-
P1-pKD4-fw and LysA-P2-pKD4-rv (Table S1). The disrupted
lysA-Km gene was amplified by PCR using ArgS1-fw and ThrBl-rv
primers (Table S1). This PCR product containing the lysA-Km frag-
ment was introduced into the MTBVAC genome by homologous
recombination. MTBVACAIlys recombinant colonies were selected
by plating on 7H10-ADC supplemented with Km and Lysine, and
proper recombination was checked by PCR using the pairs of primers
Lys-fw/km-OUT1-rv and Lys-rv/km-OUT2-fw (Table S1).

For the construction of MTBVAC.HIVA***° and MTBVAC.(Z****°
strains, MTBVACAlys culture was grown until log phase and condi-
tioned for electroporation by washing with 10% glycerol, according to
the method described by Wards and Collins.”> Electrocompetent
MTBVACAlys was transformed with 0.5-1 pg p2auxo.HIVA or
p2auxo.,”® using a Bio-Rad gene pulser electroporator at 2.5 kV,
25 mF, and 1,000 Q, and plated onto Middlebrook agar 7H10-ADC
medium without lysine supplementation. Recombinant MTBVA-
CHIVA*™"° and MTBVAC.Z*"™° colonies containing the corre-
sponding plasmids p2auxo.HIVA and p2auxo.J were selected by
PCR using the pair of primers 19kDss-fw/HIVA-rv and 19kDss-fw/
Pglya-rv, respectively (Table S1). The MTBVAC.HIVA*"* colonies
were assessed for heterologous HIVA protein expression, and clone 2
was selected and preserved using the seed-lot system. A master seed
stock and derivative working stock, which we used also as a vaccine
stock, were prepared and stored at —80°C with 20% glycerol as a
preservative.

SDS-PAGE and Western Blot Analysis
Cell lysates of mid-logarithmic-phase cultures of MTBVAC.HI-
VA*™° and MTBVAC.**"™ strains were prepared, separated by
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Figure 7. MTBVAC-HIVA?2“*° Safety in SCID Mice

SCID mice were inoculated by intraperitoneal route with 10° CFU BCG, MTBVAC,
MTBVAC-HIVAZ2>°  MTBVACAlys, or naive (unvaccinated as control). Analysis
of survival was done applying the Mantel-Cox test (*p < 0.05 and **p < 0.01).

SDS-PAGE using pre-cast 8%-16% gradient acrylamide gels
(GeBaGel, Israel), and electroblotted onto polyvinylidene fluoride
(PVDF) membranes using a semi-dry system (Bio-Rad). HIVA
protein was detected using anti-Pk antibody (MCA 1360; Pierce,
USA) with an enhanced chemiluminescence kit (WesternBright
ECL; Advansta, USA). To visualize the bands, the LAS500 gel imaging
system (GE Healthcare) was used.

In Vitro Stability of the MTBVAC.HIVAZ*"*° Strain

Six subcultures (~42 bacterial generations) of MTBVAC.HIVA®**°
(working vaccine stock), harboring the episomal p2auxo.HIVA
plasmid DNA that contains the lysine-complementing gene, were
grown in 7H9 broth on selective media (no lysine supplementation).
Subcultures were performed every 7 days by transferring 100 pL
stationary-phase culture to 5 mL fresh medium. PCR analysis of
HIVA DNA-coding sequence and GlyA gene (Table S1) was per-
formed to detect plasmid genetic rearrangements.

Mouse Trials

For immunogenicity studies, adult (7-week-old) female BALB/c mice
were left either unimmunized or immunized with MTBVAC.
HIVAZ™° or MTBVAC.@**°, and they were boosted with
MVA.HIVA at doses, routes, and schedules outlined in the Figure 4
legend. On the day of sacrifice, individual spleens were collected,
and splenocytes were isolated by homogenizing spleens using a cell
strainer (Falcon; Becton Dickinson) and a 5-mL syringe rubber
plunger. Following the removal of red blood cells with ACK lysing
buffer (Lonza, Barcelona, Spain), the splenocytes were washed and
resuspended in complete medium (R10 [RPMI 1640 supplemented
with 10% fetal calf serum and penicillin-streptomycin], 20 mmol/L
HEPES, and 15 mmol/L 2-mercaptoethanol).

Body mass was monitored over time and recorded to depict any
adverse events and body mass loss due to vaccination. To detect
vaccine-related adverse events, a 12-week period between
MTBVAC.HIVA*"° prime and MVA.HIVA boost was established
for this trial.

For protection studies, groups of 6 female C57BL/6 mice (Janvier
Biolabs) were mock treated or subcutaneously vaccinated with 10°
CFU MTBVAC, MTBVACAlys, or MTBVAC.HIVA®"°, At 8 weeks
post-vaccination, mice were intranasally challenged with 200 CFU
virulent M. tuberculosis H37Rv. Bacterial burden was assessed 4 weeks
post-challenge by plating homogenized lungs and spleen on complete
7H10 medium.

For safety studies, groups of 6 female CB-17/Icr-Prkdc SCID mice
(Janvier Biolabs) received a single intraperitoneal inoculation of
10° CFU BCG Pasteur, MTBVAC, MTBVACAIlys, or MTBVAC.HI-
VA®™°_ Mice were monitored for any sign of disease and body mass
measurements were performed weekly. Experimental endpoint was
set as a 20% body weight reduction. In the case of the MTBVACAlys
group, the endpoint was established at 220 days post-inoculation,
upon which surviving animals were humanely euthanized and bacte-
rial load in spleen was quantified. Samples were also obtained from
MTBVAC.HIVA*"° animals euthanized during the protocol to
check for plasmid stability by colony PCR analysis using 19kDss-
fw/HIVA-rv and HIVA-fw/Pglya-rv primers (Table S1).

Peptides

For assessing the immunogenicity of HIVA in the BALB/c mice, the
following peptides were used: H-2D%restricted epitope P18-110
(RGPGRAFVTI). The PPD (AJVaccines, Copenhagen, Denmark)
was used to assess the immunogenicity induced by MTBVAC.

Ex Vivo IFN-y ELISPOT Assay

The ELISPOT assay was performed using a commercial IFN-y
ELISPOT kit (Mabtech, Nacka Strand, Sweden), following the manu-
facturer’s instructions. The ELISPOT plates (MSISP4510, 96-well
plates with polyvinylidene difluoride membranes; Millipore, Billerica,
MA) were coated with purified anti-mouse IFN-y capture mono-
clonal antibody diluted in PBS to a final concentration of 5 pug/mL
at 4°C overnight. A total of 5 x 10° fresh splenocytes was added to
each well and stimulated with 2 pg/mL P18-110 peptide or 5 pg/mL
PPD for 16 h at 37°C. Wells were washed four times with PBS
0.05% Tween 20 and twice with PBS before incubating with 100 uL
5-bromo-4-chloro-3-indoyl-phosphate/nitro blue tetrazolium sub-
strate solution (Sigma). After 5-10 min, the plates were washed
with tap water and dried, and the resulting spots were counted using
an ELISPOT reader (Autoimmun Diagnostika, Strassberg, Germany).

Intracellular Cytokine Staining

One million splenocytes were added to each well of a 96-well round-
bottomed plate (Costar, Corning, NY), pulsed with 2 ng/mL P18-110
peptide and kept at 37°C and 5% CO, for 60 min, followed by the
addition of GolgiStop (Becton Dickinson) containing monensin.
After 5 h of incubation, the reaction was terminated by transferring
the plate to 4°C. The cells were washed with wash buffer (PBS, 2%
fetal calf serum, and 0.01% azide) and blocked with anti-CD16/32
(BD Biosciences) at 4°C for 30 min. All subsequent antibody
stains were performed using the same conditions. Cells were then
washed and stained with anti-CD8-PerCP (BD Biosciences) and
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anti-CD107a-fluorescein isothiocyanate (FITC), washed again, and
permeabilized using the Cytofix/Cytoperm kit (BD Biosciences).
Perm-wash buffer (BD Biosciences) was used to wash cells before
staining with anti-IFN-y-APC and anti-TNF-o.-PE (BD Biosciences).
Cells were fixed with CellFIX (Becton Dickinson) and stored at 4°C
until analysis. All chromogen-labeled cells were analyzed in a Becton
Dickinson FACScalibur, using the CellQuest software (Becton Dick-
inson) for acquisition and the Flow]Jo software (Tree Star, Ashland,
OR) for analysis.

Statistical Analysis

Immunogenicity data are shown as group means or group medians as
well as individual responses. Statistical significance was determined
by ANOVA and Bonferroni post-test. In safety experiments H37Rv
bacterial burdens are shown as mean + SEM. Groups were compared
using one-way ANOVA and Bonferroni post-test. Survival data were
analyzed applying Mantel-Cox test. In all cases, confidence intervals
were as follows: *p < 0.05, **p < 0.01, and **p < 0.01. GraphPad
Prism 5.0 software was used for representation and statistical analysis
of the data.

Ethics Statement

All mice were kept under controlled conditions and observed for any
sign of disease. The care and use of animals were performed accord-
ingly with the Spanish Policy for Animal Protection RD53/2013,
which meets the European Union Directive 2010/63 on the protection
of animals used for experimental and other scientific purposes.

Immunological mouse experiments were approved by the local
Research Ethics Committee (Procedure Med 365/16, Clinical Medi-
cine, School of Medicine and University of Barcelona) and by the
Ethical Committee for animal experimentation from the University
of Barcelona, and they strictly conformed to the Generalitat de
Catalunya animal welfare legislation. Experiments with SCID mice
were carried out under Project License 17/17 and M. tuberculosis
protection studies under Project License 50/14. Both procedures
were approved by the Ethics Committee for Animal Experiments of
the University of Zaragoza.
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