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Abstract Acetic acid as catalyst in pure water was found to be an excellent reaction medium for

the direct dehydrative functionalization of p-activated alcohols using a wide variety of interesting

C-, P-, and S-centered nucleophiles, such as indoles, pyrrole, anilines, 1,3-dicarbonyl compounds,

diphenyl phosphite and pyridine-2-thiol. The smooth reaction conditions, along with high yields,

short reaction times, clean reaction crudes, an easy product isolation procedure, plus the reusability

of the catalyst and the use of no excess of nucleophiles, make this approach an atom economical,

green and appealing method to efficiently trap carbocations in pure water, leading to new Csp3AX

bonds (X = Csp2, Csp3, P and S).
� 2018 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the last decades, the role of alcohols as environmental
friendly alkylation agents has gain increasing importance.
The dehydrative functionalization of the CAOH bond is very

convenient since only water is generated as by-product
(Bandini and Tragni, 2009; Dryzhakov et al., 2016; Kumar
and Van der Eycken, 2013). However, due to the poor capacity

of the OH group as leaving group, the reaction generally
requires its previous transformation into a good leaving group
or its activation with an excess of a Brønsted acid or a stoichio-

metric amount of a Lewis acid.
Therefore, it is desirable the development of new direct cat-

alytic CAX bond forming strategies, which avoid the need for

wasteful pre-functionalization of the alcohol, allowing the use
of mild reaction conditions.

It is accepted that p-activated alcohols with a Csp3AOH
bond (benzylic, allylic, propargylic alcohols) can proceed via

conversion of the CAOH to a carbocation, followed by attack
of the nucleophile (Dryzhakov et al., 2016; Emer et al., 2011).
Hereof, the generation of stable carbocations from alcohols

and their further SN1 nucleophilic substitution has gain inter-
est in the last decade (Baeza and Nájera, 2014; Biannic and
Aponick, 2011; Cera et al., 2012; Gualandi et al., 2013;
rabian
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Gualandi and Cozzi, 2013; Muzart, 2008; Ortiz and Herrera,
2017).

Herein, we describe a new direct dehydrative functionaliza-

tion of Csp3AOH bond of alcohols with various carbon nucle-
ophiles such as, arenes/heteroarenes and active methylene
compounds, e.g., 1,3-dicarbonyl compounds; as well as non-

carbon nucleophiles such as, phosphite and thiol.
In the case of arenes/heteroarenes, Friedel–Crafts (F–C)

reaction represents one of the most powerful CAC bond form-

ing tools in organic synthesis (Friedel and Crafts, 1877a,
1877b). Among the developed F–C reactions, together with
the advantages that this strategy offers, the chemistry of indole
has been widely explored to obtain valuable structural deriva-

tives (Fu, 2010; Kochanowska-Karamyan and Hamann, 2010;
Lancianesi et al., 2014). The importance of developing new 3-
susbtituted indoles lies in the presence of this privileged motif

in remarkable natural and unnatural compounds with phar-
macological and agrochemical properties (Bronner et al.,
2011; Kaushik et al., 2013; Wu, 2010; Zhang et al., 2015).

The use of water as solvent or as co-solvent has recently
gained special attention as the most environmentally friendly
medium (Jessop, 2011; Lindström, 2007). Moreover, the use

of water would reduce the employment of harmful organic sol-
vents and the consumption of drying agents, which is in agree-
ment with some of the twelve principles in Green Chemistry
(Anastas and Warner, 1998; Constable et al., 2007; Sheldon,

2012; Tundo et al., 2000). However, despite the number of pro-
cesses that have been investigated and developed in water, this
medium is still not commonly used as a sole solvent for organic

reactions (Blackmond et al., 2007; Hayashi, 2006; Marqués-
López et al., 2008). Therefore, the development of reactions
in pure water is still an exciting research topic. Particularly,

the dehydrative reaction in water is a most challenging task
(Ortiz and Herrera, 2017).

Hence, in order to develop a more environmentally benign

version of the reaction under study via a metal-free catalytic
approach, we firstly focused on the secondary benzylic alcohol:
9H-xanthen-9-ol (1a) (Scheme 1), which has been centre of pre-
vious investigations using diverse conditions (Cozzi and Zoli,

2007, 2008; Cozzi et al., 2009; Funabiki et al., 2014; Liu
et al., 2011, 2012; Petruzziello et al., 2012; Trillo et al., 2013;
Vicennati and Cozzi, 2007; Wang and Ji, 2008; Xiao et al.,

2011, 2012; Xiao, 2012; Zhang et al., 2010; Zhou et al., 2011;
Zhu et al., 2011).
2. Materials and methods

2.1. General experimental methods

When necessary, purification of reaction products was carried
out by flash chromatography using silical-gel (0.063–0.200 mm).
Scheme 1 Benchmark reaction for the catalytic direct d
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Analytical thin layer chromatography was performed on 0.25
mm silical gel 60-F plates. ESI ionization method andmass ana-
lyzer typeMicroTof-Q were used for the ESI measurements. 1H

NMR spectra were recorded at 300 MHz and 13CNMR spectra
were recorded at 75 MHz, using CDCl3 as the solvent. Chemical
shifts were reported in the d scale relative to residual CHCl3
(7.26 ppm) for 1H NMR and to the central line of CDCl3
(77.00 ppm) for 13C APT-NMR (Attached Proton Test).

All commercially available solvents and reagents were used

as received. The 1H and 13C NMR spectra for compounds 3aa
(Cozzi and Zoli, 2008), 3ab (Wang and Ji, 2008), 3ac (Wang and
Ji, 2008), 3ad (Liu et al., 2011), 3ae (Liu et al., 2011), 3af (Cozzi
and Zoli, 2008), 3aaf (Funabiki et al., 2014), 3ai (Pintér and

Klussmann, 2012), 3aj (Pintér and Klussmann, 2012), 3ba

(Hikawa et al., 2013) and 3bc (Hikawa et al., 2013) are consis-
tent with values previously reported in the literature.

2.2. Representative procedure for the reaction of 9H-xanthen-9-

ol (1a) with nucleophiles 2a-e,g-l

To a mixture of 9H-xanthen-9-ol (1a) (19.8 mg, 0.1 mmol) and
AcOH (1.1 lL, 0.02 mmol) in distilled H2O (0.5 mL), nucle-
ophile 2a-e,g-l (0.1 mmol) was added and the resulting mixture

was stirred in a tube at room temperature until the disappear-
ance of the starting material (checked by thin-layer chro-
matography, TLC). Then, the reaction mixture was extracted
with Et2O (4 � 1 mL). The combined organic layers were dried

using Na2SO4, filtered and then concentrated under vacuum to
afford the pure final product 3aa-ae,ag-al. When necessary the
crude was purified by column chromatography. Yields are

reported in Table 2 and pure compounds were obtained as
stable solids.

2.2.1. N,N-Dimethyl-4-(9H-xanthen-9-yl)aniline (3ag)

Following the general procedure, compound 3ag was obtained
after 6 h of reaction at room temperature as a grey solid in
88% yield. M.p. 149–150 �C. 1H NMR (300 MHz, CDCl3) d
7.24–7.18 (m, 2H), 7.15–7.07 (m, 6H), 6.99 (ddd, J = 7.7 Hz,
7.0 Hz, 1.5 Hz, 2H), 6.69 (d, J= 8.7 Hz, 2H), 5.19 (s, 1H),
2.93 (s, 6H). 13C APT-NMR (75 MHz, CDCl3) d 151.1 (2C),

129.7 (2C), 129.1 (2C), 127.1 (2C), 125.1 (2C), 123.1 (2C),
116.1 (2C), 112.9 (1C), 43.4 (2C), 40.7 (1C). IR (KBr film)
(cm–1) m 3061, 3035, 2885, 2805, 1614, 1571, 1522, 1479,
1449, 1357, 1254, 1205, 1116, 1094, 937, 900, 843, 800, 749,

691, 618, 574, 555, 523, 462. HRMS (ESI+) calcd
C21H20NO 302.1539; found 302.1536 [M + H].

2.2.2. 3-Methoxy-N,N-dimethyl-4-(9H-xanthen-9-yl)aniline
(3ah)

Following the general procedure, compound 3ah was obtained
after 3 h of reaction at room temperature as a brown solid in
ehydrative functionalization of 9H-xanthen-9-ol (1a).

hols by trapping carbocations in pure water under smooth conditionsq. Arabian
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89% yield. M.p. 163–166 �C. 1H NMR (300 MHz, CDCl3) d
7.20–7.08 (m, 6H), 6.96 (ddd, J= 7.8 Hz, 7.0 Hz, 1.5 Hz,
2H), 6.81 (d, J = 8.4 Hz, 1H), 6.29 (d, J= 2.4 Hz, 1H), 6.22

(dd, J = 8.5 Hz, 2.5 Hz, 1H), 5.69 (s, 1H), 3.86 (s, 3H), 2.93
(s, 6H). 13C APT-NMR (75 MHz, CDCl3) d 157.2 (1C),
151.5 (2C), 150.5 (1C), 130.6 (1C), 129.5 (2C), 127.2 (2C),

125.5 (2C), 123.9 (1C), 122.9 (2C), 116.0 (2C), 105.3 (1C),
96.2 (1C), 55.5 (1C), 40.6 (2C), 36.3 (1C). IR (KBr film)
(cm–1) m 2930, 1711, 1654, 1606, 1573, 1503, 1478, 1447,

1327, 1345, 1300, 1251, 1118, 1095, 1032, 892, 748. HRMS
(ESI+) calcd C22H21NO2Na 354.1465; found 354.1476 [M
+ Na].

2.2.3. Diphenyl 9H-xanthen-9-ylphosphonate (3ak)

Following the general procedure, compound 3ak was
obtained after 3 h of reaction at room temperature as a pur-

ple solid in 60% yield. M.p. 158–161 �C. 1H NMR (300
MHz, CDCl3) d 7.55–7.51 (m, 2H), 7.37–7.31 (m, 2H),
7.22–7.05 (m, 10H), 6.83–6.79 (m, 4H), 4.92 (d, J = 23.9 H
z, 1H). 13C APT-NMR (75 MHz, CDCl3) d 152.5 (d, J = 5

.5 Hz, 2C), 150.5 (d, J = 10.5 Hz, 2C), 130.4 (d, J= 4.6 H
z, 2C), 129.5 (4C), 129.2 (d, J = 3.9 Hz, 2C), 124.9 (2C),
123.4 (d, J = 3.4 Hz, 2C), 120.2 (d, J = 4.3 Hz, 4C), 116.9

(d, J= 3.6 Hz, 2C), 116.0 (d, J = 8.5 Hz, 2C), 40.7 (d, J
= 143.4 Hz, 1C). IR (KBr film) (cm–1) m 3074, 3060, 3037,
2914, 1586, 1574, 1486, 1476, 1458, 1451, 1263, 1253, 1205,

1183, 1159, 1117, 941, 925, 905, 825, 806, 769, 754, 688,
589, 507, 498, 485. HRMS (ESI+) calcd C25H19O4PNa
437.0913; found 437.0903 [M + Na].

2.2.4. 2-(9H-Xanthen-9-ylthio)pyridine (3al)

Following the general procedure, compound 3al was
obtained after 3 h of reaction at room temperature as a yel-

low solid in 84% yield. M.p. 77–80 �C. 1H NMR (300 MHz,
CDCl3) d 8.58 (ddd, J = 4.9 Hz, 1.8 Hz, 0.9 Hz, 1H), 7.52–
7.46 (m, 3H), 7.24–7.21 (m, 2H), 7.11–6.99 (m, 6H), 6.77 (s,
1H). 13C APT-NMR (75 MHz, CDCl3) d 157.8 (1C), 152.1

(2C), 149.3 (1C), 136.4 (1C), 129.4 (2C), 128.6 (2C), 123.4
(2C), 123.2 (1C), 122.3 (2C), 120.5 (1C), 116.5 (2C), 41.2
(1C). IR (KBr film) (cm–1) m 3040, 2918, 2878, 2851, 1651,

1616, 1602, 1573, 1554, 1479, 1449, 1441, 1328, 1253,
1210, 1146, 1115, 1098, 1033, 984, 899, 830, 744, 717, 663,
470. HRMS (ESI+) calcd C18H13NOSNa 314.0610; found

314.0614 [M + Na].

2.3. Procedure for the regioselective reaction of 9H-xanthen-9-ol
(1a) with pyrrole (2f)

To a mixture of 9H-xanthen-9-ol (1a) (19.8 mg or 41.6 mg, 0.1
or 0.21 mmol) and AcOH (1.1 lL, 0.02 mmol) in H2O (0.5
mL), pyrrole (2f) (13.8 lL or 6.9 lL, 0.2 or 0.1 mmol) was

added and the resulting mixture was stirred in a tube at room
temperature until the disappearance of the starting material
(checked by thin-layer chromatography, TLC). After 3 h, the

reaction mixture was extracted with Et2O (4 � 1 mL). The
combined organic layers were dried using Na2SO4, filtered
and then concentrated under vacuum. The crudes were purified

by column chromatography to afford the final products 3af

and 3aaf with >95% yield.
Please cite this article in press as: Ortiz, R. et al., Functionalization of p-activated alco
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2.4. Representative procedure for the reaction of 9H-xanthen-9-
ol (1a) with indole (2a) in vinegar

To a mixture of 9H-xanthen-9-ol (1a) (19.8 mg, 0.1 mmol) and
vinegar (0.5 mL), indole 2a (11.7 mg, 0.1 mmol) was added and

the resulting mixture was stirred in a tube at room temperature
until the disappearance of the starting material (checked by
thin-layer chromatography, TLC). After 1 h, the reaction mix-
ture was extracted with Et2O (4 � 1 mL). The combined

organic layers were dried using Na2SO4, filtered and then con-
centrated under vacuum to afford the pure final product 3aa
with >95% yield without additional purification.

2.5. Representative procedure for the reaction of bis(4-

methoxyphenyl)methanol (1b) with nucleophiles 2a,c

To a mixture of bis(4-methoxyphenyl)methanol (1b) (24.7 mg,
0.1 mmol) and AcOH (1.1 lL, 0.02 mmol) in H2O (0.5 mL),
nucleophile 2a,c (0.1 mmol) was added and the resulting mix-

ture was stirred in a tube at 40 �C during 18 h. Then, the reac-
tion mixture was extracted with Et2O (4 � 1 mL). The
combined organic layers were dried using Na2SO4, filtered
and then concentrated under vacuum to afford the pure final

product 3ba-3bc with >99% yield without additional
purification.

3. Results and discussion

To explore the viability of a catalytic version of the direct
dehydrative functionalization of Csp3AOH bond of alcohols,

we chose acetic acid (AcOH) as commercially available, handy
and cheap catalyst. To start with, we tested the aforesaid reac-
tion with 1 equivalent of indole (2a) as nucleophile (Table 1).

Using stoichiometric amounts of the substrates we minimized
waste and facilitated the purification of the final product in
completed reactions, where a simple extraction with ethyl ether

(Et2O) is sufficient.
We started our investigation using 30 mol% of AcOH as

catalyst and different solvents (entries 1–7). To our delight,
good results were obtained with all of them, even with pure

water (entry 7), what encouraged us to continue with this green
solvent, following our goal of developing a method as green as
possible. It is interesting to highlight that in this case, the reac-

tion has a heterogeneous appearance due to the low solubility
of the reactants in water (Fig. 1, the solubility of indole in
water is 16 mL/mL) (Peariman et al., 1984). In the literature,

hydrophobic effects are hypothesized to support the accelera-
tion of the reactions using water as a solvent when the reac-
tants are slightly soluble or insoluble in this medium
(Breslow, 1991; Narayan et al., 2005; Pirrung et al., 2008;

Rideout and Breslow, 1980), such as probably occurs in our
case.

In F–C alkylations and mechanistically related reactions

that are carried out in aqueous media, Brønsted acids are used
to generate small equilibrium concentrations of carbocations
(Hofmann et al., 2004). Thus, solvolytically generated carboca-

tions can be trapped by p systems such as, donor-substituted
arenes and alkenes. According to Mayr’s nucleophilicity scales
studies, these species are more nucleophilic than aqueous or
hols by trapping carbocations in pure water under smooth conditionsq. Arabian
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Table 1 Initial screening for the direct dehydrative alkylation of alcohol 1a, using indole (2a) as nucleophile.a

Entry Cat. (mol%) Solvent (mL) Time (h) Conv.b

1 AcOH (30) MeOH (0.5) 3 >99

2 AcOH (30) CH3CN (0.5) 3 >99

3 AcOH (30) AcOEt (0.5) 3 >99

4 AcOH (30) CH2Cl2 (0.5) 3 >99

5 AcOH (30) CHCl3 (0.5) 3 >99

6 AcOH (30) Toluene (0.5) 3 >99

7 AcOH (30) H2O (0.5) 3 >99

8 AcOH (20) H2O (0.5) 3 >99 (95c)

9 AcOH (10) H2O (0.5) 6 >99

10 AcOH (20) H2O (1) 7 95c

11 AcOH (20) H2O (2) 14 95c

12d Vinegar (0.5) 1 >95c

13 – H2O (0.5) 18 n.r.e

a Otherwise indicated: To a solution of 9H-xanthen-9-ol (1a) (0.1 mmol) and AcOH (0.01–0.03 mmol) in the corresponding solvent (0.5, 1 or

2 mL) [0.2 M, 0.1 M or 0.05 M of 1a in the solvent, respectively], indole (2a) (0.1 mmol) was added at room temperature. The reactions were

monitored by thin-layer chromatography. After disappearance of the starting materials or a reasonable reaction time, product 3aa was isolated

by a simple extraction.
b Conversions determined by 1H NMR spectroscopy.
c Isolated yield after extraction with ethyl ether (Et2O, 4 � 1 mL).
d Reaction performed in 0.5 mL of vinegar of red wine as the reaction medium.
e No reaction observed.

Fig. 1 Appearance of the reaction using AcOH in pure water.

4 R. Ortiz et al.
alcoholic solutions employed as solvents for SN1 reactions

(Hofmann et al., 2004). Moreover, although the carbocations
have very short lifetimes in aqueous media as a consequence
of their rapid reactions with molecules of water (Richard

et al., 2001), those times can be significantly augmented by
Please cite this article in press as: Ortiz, R. et al., Functionalization of p-activated alco
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the introduction of electron-donating substituents on the aryl

ring, as in 9H-xanthen-9-ol (1a). Additionally, the amount of
catalyst was varied without remarkably impairing in the reac-
tivity of the process (entries 7–9). With only 10 mol% of

AcOH (entry 9), longer reaction time is required to complete
the process. When no AcOH is used, no reaction is observed
(entry 13). This lack of reactivity indicates that in our case

the water by itself is not able to activate the reaction, in con-
trast to that previously proposed by Cozzi and Zoli, 2008.
Remarkably, using vinegar as a cheap and accessible source
of acidic protons, instead of the mixture AcOH/H2O, the reac-

tion is even faster (1 h vs 3 h) with very good yield (>95%)
(entry 12). In order to facilitate the stirring, hindered by the
high density of the reaction medium, we diluted the reaction

using 1 and 2 mL of water, obtaining also good results but
again, increasing the reaction time (entries 10 and 11, respec-
tively). After exploring different parameters, the use of 20

mol% of AcOH and 0.5 mL of H2O (entry 8) was considered
as the conditions of choice, although good results were found
as well in other cases.

In order to demonstrate the generality of the procedure and
to establish the scope of this CAX bond formation protocol,
we explored different nucleophiles that are able to trap the
in situ generated carbocation (Table 2).
hols by trapping carbocations in pure water under smooth conditionsq. Arabian
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Table 2 Scope of the reaction.

Entry Nucleophile Product Time (h) Yield (%)a

1 3aa 3 95

2 3ab 3 91 (>99)b

3 3ac 3 93 (>99)b

4 3ad 3 76 (85)b

5 3ae 3 73 (86)b

6 3af/3aaf 3 (>99)b

7 3ag 6 88 (>95)b

8 3ah 3 89 (>99)b

9 3ai 10 81 (>99)b

10 3aj 3 83 (>99)b

11 HP(O)(OPh)2 2k 3ak 3 60 (70)b

12 3al 3 84 (>99)b

a Isolated yields after simple extraction or column chromatography.
b Conversions determined by 1H NMR spectroscopy.

Functionalization of p-activated alcohols 5
Particularly, we were able to perform the reaction with dif-
ferent substituted indoles 2b-e with very good to excellent

yields (73–93%, entries 2–5). When the starting material is
consumed, a further simple extraction with Et2O from the
reaction mixture would lead to the final product without a sub-

sequent purification by column chromatography. Interestingly,
Please cite this article in press as: Ortiz, R. et al., Functionalization of p-activated alco
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when the reaction was performed using other heteroarene such
as pyrrole (2f), a mixture of two compounds 3af:3aaf (82:18)

was initially observed in the reaction crude (entry 6). Since pyr-
role derivatives are appealing compounds from a biological
point of view, we further analyzed and explored in detail this

reaction to improve the results (Scheme 2). We found that it
hols by trapping carbocations in pure water under smooth conditionsq. Arabian
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Scheme 2 Special case of pyrrole (2f) as nucleophile: Total control of the final product slightly varying the reaction conditions.

Table 3 Recycling the catalyst.

1 run 2 run 3 run 4 run 5 run

>99%a 95%a 93%a 89%a 89%a

a Conversions determined by 1H NMR spectroscopy.

6 R. Ortiz et al.
was possible to control the reaction regioselectivity, obtaining
each single product just by varying the substrates initial ratio

1a:2f. Thus, a full conversion into the product 3af can be
achieved using an excess of pyrrole (2f) (2 equiv.). Further-
more, compound 3aaf was the unique reaction product when

2.1 equivalents of 1a were added. This full control over the
production of both compounds improves previous reported
work, where a mixture of both products was always found

(Funabiki et al., 2014).
We further checked the reactivity of other carbon nucle-

ophiles, such as arenes (Csp2AH, anilines 2 g-h; entries 7 and
8) and active methylene compounds (Csp3AH, 1,3-dicarbonyl

compounds 2i-j; entries 9 and 10), under the same reaction
conditions. The final product containing the newly formed
Csp3ACsp2 and Csp3ACsp3 bonds, were obtained also with

high yields (88–89% and 81–83%, respectively).
Scheme 3 Reaction of indoles 2a and 2c with pro-electrophilic alcoh

previous works: (b) (Cozzi and Zoli, 2007; Funabiki et al., 2014) and

Please cite this article in press as: Ortiz, R. et al., Functionalization of p-activated alco
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Finally, two more non-carbon nucleophiles, such as phos-
phite 2k and thiol 2l, also demonstrated to be suitable for this
reaction. Thus, allowing an efficient formation of CAP and

CAS bonds, respectively, in the final products (60–84%,
entries 11 and 12).

We were also interested in determining whether the AcOH

remained in the water after the extraction with Et2O. In this
case, we studied the possibility of reusing the catalyst several
times. Hence, we performed a few cycles of the reaction of

1a and 2a reusing the resulting aqueous phase after each
extraction (lower phase). Thus, after the first reaction was
completed, the product was readily separated from the reac-
tion vessel by a simple extraction with Et2O (4 � 1 mL). Then,

the resulting aqueous phase, with the remaining catalyst, was
reused in the same vessel without any other treatment, adding
again both reactants (1a and 2a). As shown in Table 3, the pro-

cess was carried out 5 times without considerable loss of reac-
tivity (>99%? 89%). This result further demonstrates the
simplicity and the green character of the developed procedure.

Remarkably, we were able to trap the carbocation gener-
ated from alcohol 1b with the indoles 2a and 2c, following this
simple procedure (i.e., AcOH (20 mol%)/H2O (0.5 mL) and 1

equivalent of the indole) (Scheme 3, a) (Bisaro et al., 2002;
Coote et al., 1989; Gullickson and Lewis, 2003; Hofmann
et al., 2004; Westermaier and Mayr, 2006). The reactions were
ol 1b, under current protocol conditions (a) and comparison with

(c) (Hikawa et al., 2013).

hols by trapping carbocations in pure water under smooth conditionsq. Arabian
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Scheme 4 Proposed reaction mechanism.
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heated at 40 �C during 18 h, obtaining clean reaction crudes
and full conversions. In a previous work, this reaction failed

on water and required a fluorinated solvent, higher tempera-
ture, an excess of substrates and longer reaction times, to pro-
vide a much lower yield of the final product 3ba (38% vs >

99%) (Scheme 3, b) (Cozzi and Zoli, 2008; Funabiki et al.,
2014). In a more recent publication the use of a gold catalyst
is reported to achieve similar results, but requiring higher reac-

tion temperature and the use of a slight excess of the substrates
(Scheme 3, c) (Hikawa et al., 2013).

In the catalytic cycle illustrated in Scheme 4 the AcOH is

responsible for the generation of the carbocation 4. The final
attack of the nucleophile (NuH) of the reaction will generate
the products 3 observed.

Since water can also react as a nucleophile, the presence of

water in an SN1-type reaction could compete with the real
nucleophile of the process, hindering the attack of the latter
on the electrophile. For this reason our developed procedure

is one of the scarce examples where carbocation can be trapped
in pure water (Ortiz and Herrera, 2017), successfully demon-
strating this challenging competitive process.

4. Conclusions

This study pioneers the use of easily accessible AcOH as suit-

able catalyst for the nucleophilic substitution of alcohols 1a-b
in pure water, affording final products with excellent yields
after a simple extraction, in most of the cases. The mild

and sustainable conditions and the operational simplicity of
the procedure make this work an interesting example of trap-
ping carbocations in pure water. The reusability of the cat-
alytic medium has also been demonstrated to be possible

without a significant efficiency loss after five times, following
a very simple protocol. Finally, we were able to control by
the first time the regioselectivity in the case of pyrrole as

nucleophile, varying only the initial ratio of the substrates
alcohol 1a: pyrrole 2f. As a result, this study signifies a piv-
otal precedent of a green and appealing process to efficiently

trap carbocations in pure water allowing a variety of new
CAX bonds formation.
Please cite this article in press as: Ortiz, R. et al., Functionalization of p-activated alco
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