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Abstract. We develop an operator-theoretical method for the analysis on well posedness
of partial differential-difference equations that can be modeled in the form

(∗)


∆αu(n) = Au(n+ 2) + f(n, u(n)), n ∈ N0, 1 < α ≤ 2;

u(0) = u0;
u(1) = u1,

where A is a closed linear operator defined on a Banach space X. Our ideas are inspired on
the Poisson distribution as a tool to sampling fractional differential operators into fractional
differences. Using our abstract approach, we are able to show existence and uniqueness
of solutions for the problem (*) on a distinguished class of weighted Lebesgue spaces of
sequences, under mild conditions on sequences of strongly continuous families of bounded
operators generated by A, and natural restrictions on the nonlinearity f . Finally we present
some original examples to illustrate our results.

1. Introduction4

Many physical signals, such as electrical voltages produced by a sound or image recording5

instrument or a measuring device, are essentially continuous-time signals. Computers and6

related devices operate on a discrete-time axis. Continuous-time signals that are to be pro-7

cessed by such devices therefore first need be converted to discrete-time signals. One way to8

do it is by sampling.9

Let A be a closed linear operator with domain D(A) defined on a Banach space X, and10

let u : R+ → X be a function that represents a continuous-time signal. Motivated by11

previous studies of Cuesta, Lubich and Palencia [17, 18], Lizama introduced in [24] a method12

of sampling for the time-fractional abstract Cauchy problem Dα
t u(t) = Au(t), where Dα

t is13

the Riemann-Liouville differential operator of order α > 0, by means of what he called the14

Poisson transformation, which is defined by:15

(1.1) u(n) := P(u)(n) =

∫ ∞
0

pn(t)u(t)dt, n ∈ N0, 0 < α ≤ 1,

where pn(t) = e−t t
n

n! denotes the Poisson distribution. This transformation has remarkable16

properties, and some of them have been studied in [24]. A notable property related with the17

Riemann-Liouville differential operator of order 0 < α < 1, Dα
t , is the following:18

(1.2) ∆αu(n) =

∫ ∞
0

pn+1(t)Dα
t u(t)dt, n ∈ N0,
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where ∆α is the operator defined for m− 1 < α < m, m ∈ N, by

∆αv(n) = ∆m

(
n∑
j=0

km−α(n− j)v(j)

)
, kβ(n) :=

Γ(β + n)

Γ(β)Γ(n+ 1)
n ∈ N0, β > 0,

and ∆m is the m-th order forward difference operator. See [24] for the proof. Observe1

that the operator ∆α is equivalent by translation with the fractional difference operator2

introduced by Atici and Eloe [9], which has been used recently by some authors in order3

to obtain several qualitative properties of fractional difference equations concerning stability4

[16, 34, 37]. However, these properties are given only in the finite dimensional case of X.5

Also, the kernel kβ appears in many mathematical areas of interest and has some interesting6

properties. Some of them have been recently discussed in [3]. It is worthwhile to mention7

that kα = P(gα) where gα(t) = tα−1

Γ(α) for t > 0.8

Recently, some interesting applications of fractional difference equations have appeared in9

the literature. In [34] the authors proposed a class of linear fractional difference equations10

with discrete time delay and impulse effects. They obtained the exact solution via discrete11

Mittag-Leffler functions and they provided some results about stability and numerical exper-12

iments. Some recent applications to image encryption are revisited in [12]. In particular the13

stability of impulsive fractional difference equations and impulsive effects were introduced14

jointly with some numerical results which provided support to the analysis. Generalized dif-15

ferential optimization problems driven by the Caputo derivative were treated in [37]. Then16

existence of weak Carathéodory and a numerical approximation algorithm were also intro-17

duced, and some convergence theorems were established. Finally these results were verified18

by an algorithm in a nonlinear programming problem, see more details in [37].19

In [24], it is used the procedure of sampling, by means of (1.1), in order to prove the20

existence of a unique solution to the initial value problem21

(1.3)

{
∆αu(n) = Au(n+ 1) + f(n), n ∈ N0;

u(0) = u0 ∈ X,

where 0 < α ≤ 1, and it is derived several sufficient conditions for stability in terms of A.22

For instance, when A is the generator of a C0-semigroup. However, the study of the case23

1 < α ≤ 2 was left as an open problem. We observe that in the scalar case, a characterization24

of stability has been recently proven (see [15, Theorem 3.1]). It is remarkable that such25

characterization coincides with the corresponding one, which appears in [24], when A = λI26

where I denotes the identity operator.27

In the paper [25], the author proved a characterization of maximal regularity for the model28

(1.3) on vector valued `p spaces of sequences for 0 < α ≤ 1 and A being a bounded operator.29

The case 1 < α ≤ 2 was settled in [27]. However, in both cases, a characterization for30

unbounded operators A is an untreated topic. This problem is important in view of recent31

advances in numerical methods for Partial Differential Equations [6, 22]. In the work [26],32

sufficient conditions for the well posedness of the corresponding semilinear problem (1.3) (i.e.33

with f(n) replaced by f(n, u(n))) were proven but, again, the case 1 < α ≤ 2 was left as an34

open problem. Note that more recently, a new method to establish the well-posedness in the35

time scale Z was proposed in [28]. In such paper, the handling of the full range α > 0 was36

done succesfully.37

The general aim of this paper is to continue in this new avenue of research. In particular,38

we are interested in the following specific problem:39
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(Q) Given A : D(A) ⊂ X → X a closed linear operator defined on a Banach space X, can1

we establish well-posedness for the linearized version of the abstract problem2

(1.4)

 ∆αu(n) = Au(n+ 2) + f(n, u(n)), n ∈ N0;
u(0) = u0 ∈ X;
u(1) = u1 ∈ X,

in case 1 < α ≤ 2?. Can we obtain an explicit representation of the solution in terms of3

operator families when A is the generator of a C0-semigroup? Or a cosine/sine family?.4

Initial studies on the model (1.4) when A is a complex or real valued matrix, have only5

appeared [11, 20]. From a numerical point of view, our analysis refers to schemes that are6

discretized only in time. The theory of time-discrete fractional equations is a promising tool7

for several biological and physical applications where the memory effect appears [10, 13].8

For example, an application to a model of growth of tumors has been analyzed by Atici and9

Sengül in [10]. Fractional differences do not only exhibit the advantages of memory effects,10

as does the continuous case, but they also involve fewer numerical computations. Recent the11

work of Wu, Baleanu and Xie [35] on fractional chaotic maps reveals this interest. See also12

the references therein. The study of the chaotic behaviour of the fractional discrete logistic13

map with delay was recently proposed in an interesting work by Wu and Baleanu [36]. Also,14

the rate of convergence in the approximation of discrete solutions to continuous solutions has15

a great importance (see [1, 12]).16

The outline of this paper is as follows: In Section 2, we give some background on the
definitions to be used, and provide some key properties. For example, we check that

C∆αu(n) = ∆αu(n)− k2−α(n+ 1)[u(1)− 2u(0)]− k2−α(n+ 2)u(0), n ∈ N0,

and

∆α(u ∗ v)(n) = (∆αu ∗ v)(n) + (u(1)− αu(0))v(n+ 1) + u(0)v(n+ 2), n ∈ N0,

for 1 < α ≤ 2 and suitable sequences u and v (Theorems 2.5 and 2.6).17

In Section 3, we use successfully the preceding definitions and properties to solve the
problem (1.4), firstly, in the homogeneous linear case. In order to do that, we construct a
distinguished sequence of bounded and linear operators {Sα(n)}n∈N0 that solves the homo-
geneous linear initial value problem ∆αu(n) = Au(n+ 2), n ∈ N0, 1 < α ≤ 2;

u(0) = u0 ∈ D(A);
u(1) = u1 ∈ D(A),

see Theorem 3.5. This sequence of bounded and linear operators, is defined axiomatically by18

means of the following two properties:19

(i) Sα(n)Ax = ASα(n)x for n ∈ N0 and x ∈ D(A);20

(ii) Sα(n)x = kα(n)x+A(kα ∗ Sα)(n)x, for all n ∈ N0 and x ∈ X.21

In particular, when the operator A is bounded with ‖A‖ < 1 we derive an explicit represen-
tation of the solution, namely

Sα(n) =
∞∑
j=0

kα(j+1)(n)Aj , n ∈ N0,

(see Proposition 3.2). From a different point of view, this representation can be considered as22

the discrete counterpart of the Mittag-Leffler function tα−1Eα,α(Atα) (when A is a complex23

number) which interpolates between the exponential and hyperbolic sine function for 1 <24

α < 2. In contrast, when A is unbounded, we give an interesting characterization of the25
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sequence {Sα(n)}n∈N0 in terms of a series of powers of the bounded operator (I −A)−1. See1

Theorem 3.3.2

In Section 4 we study the fully nonlinear problem (1.4). After to introduce the notion of
solution, which is motivated by the representation of the solution in the non-homogeneous lin-
ear case (Corollary 3.6), we consider a distinguished class of vector-valued spaces of weighted
sequences, that behaves like

`∞w (N0;X) :=

{
ξ : N0 → X / sup

n∈N0

‖ξ(n)‖
nn!

<∞
}
.

This vector-valued Banach spaces of sequences will play a central role in the development of3

this section. The main ingredient for the success of our analysis is the observation that the4

special weight w(n) = nn!, that represents the factorial representation of a positive integer,5

proves to be suitable to find existence and uniqueness of solutions for (1.4) in the above defined6

space `∞w (N0;X) under the hypothesis of only boundedness of the sequence of operators7

{Sα(n)}n∈N0 . We give two positive results in this direction. The first, requires a Lipschitz8

type condition on the nonlinear term f and uses the Banach fixed point theorem as main9

tool. The second, replaces the Lipschitz type condition by compactness of a distinguished10

set of points that depends on the sequence {Sα(n)}n∈N0 and f . In this case, we used the11

Leray-Schauder alternative theorem. See Theorems 4.4 and 4.6, respectively.12

In Section 5, we study the Poisson transformation. In order to do this, we first study in
detail the Poisson distribution from a functional-analytical point of view (Proposition 5.1).
Then, we prove several relations between the continuous and discrete setting, including a
generalization of the notable identity (1.2):

P(Dα
t u)(n+m) =

∫ ∞
0

pn+m(t)Dα
t u(t)dt = ∆αP(u)(n), n ∈ N0,

where m − 1 < α ≤ m. See Theorem 5.5 below. This relations are obtained in the context13

of the Poisson transformation (1.1) whose main properties are established in Theorem 5.2,14

extending the pioneer results in [24]. Note that the idea of discretization of the fractional15

derivative in time was employed in the paper [19] (see also [17] and references therein).16

We finish this section with concrete examples of Poisson transforms for some well known17

functions.18

Section 6 is devoted to the construction of sequences of operators {Sα(n)}n∈N0 via sub-
ordination by the Poisson transformation of α-resolvent families (Sα(t))t>0 generated by A,
i.e.,

Sα(n) := P(Sα)(n), n ∈ N0,

(Theorem 6.3). Then, two interesting examples are provided. The first, corresponds to19

the discrete counterpart of the Mittag-Leffler function tα−1Eα,α(Atα) and, the second, cor-20

responds to a sequence of operators {Sα(n)}n∈N0 that originates from the generator of a21

bounded sine family (Examples 6.4 and 6.5, respectively).22

A remarkable consequence is Theorem 6.6, which proves existence and uniqueness of so-23

lution for the nonlinear problem (1.4) in the space `∞w (N0;X) under the hypothesis that A24

is the generator of a bounded sine family such that the resolvent operator (λ − A)−1 is a25

compact operator for some λ large enough.26

Finally, Section 7 provides us with several examples and applications of our general the-
orems, notably concerning the cases where either A is a multiplication operator, Af(x) =
m(x)f(x) defined on L2(a, b) and m a continuous function, see example 7.1, or the second

order partial differential operator ∂2

∂x2
, see example 7.2. We also pay special attention to the
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case α = 2 and to some related problems formatted in a slightly different way than (1.4). In
particular, we consider difference equations in the form ∆2u(n) = Bu(n+ 1) + g(n, u(n)), n ∈ N0;

u(0) = u0;
u(1) = u1,

where B is a linear operator defined on a Banach space X, see Propositions 7.3 and 7.4.1

2

Notation We denote by N0 := {0, 1, 2, ...}, the set of non-negative integer numbers and X
a complex Banach space. We denote by s(N0;X) the vectorial space consisting of all vector-
valued sequences u : N0 → X. We recall that the Z-transform of a vector-valued sequence
f ∈ s(N0;X), is defined by

ũ(z) :=

∞∑
j=0

z−ju(j)

where z is a complex number. Note that convergence of the series is given for |z| > R with3

R sufficiently large.4

Recall that the finite convolution ∗ of two sequences u ∈ s(N0;C) and v ∈ s(N0;X) is
defined by

(u ∗ v)(n) :=
n∑
j=0

u(n− j)v(j), n ∈ N0.

It is well known that5

(1.5) (̃u ∗ v)(z) = ũ(z)ṽ(z), |z| > max{R1, R2},

where R1 and R2 are the radius of convergence of the Z-transforms of u and v respectively.
The Banach space `1(N0;X) is the subset of s(N0;X) such that ‖u‖1 :=

∑∞
n=0 ‖u(n)‖ <∞;

and the Lebesgue space L1(R+;X) is formed by measurable functions f : R+ → X such that

‖f‖1 :=

∫ ∞
0
‖f(t)‖dt <∞.

The usual Laplace transform is given by

f̂(λ) :=

∫ ∞
0

e−λtf(t)dt, <λ > 0, f ∈ L1(R+;X).

In the case X = C, the Banach space L1(R+) is, in fact, a Banach algebra with the usual
convolution product ∗ given by

f ∗ g(t) :=

∫ t

0
f(t− s)g(s)ds, t ≥ 0, f, g ∈ L1(R+).

The same holds in the case of (`1, ∗). The Banach space C(m)(R+;X) is formed for continuous6

functions which have m-continuous derivatives defined on R+ with m ∈ N0.7

Let S : R+ → B(X) be strongly continuous, that is, for all x ∈ X the map t → S(t)x
is continuous on R+. We say that a family of bounded and linear operators {S(t)}t≥0 is
exponentially bounded if there exist real numbers M > 0 and ω ∈ R such that

‖S(t)‖ ≤Meωt, t ≥ 0.

We say that {S(t)}t≥0 is bounded if ω = 0. Note that if {S(t)}t≥0 is exponentially bounded8

then the Laplace transform Ŝ(λ)x exists for all <(λ) > ω.9
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2. Fractional difference operators1

The forward Euler operator ∆ : s(N0;X)→ s(N0;X) is defined by

∆u(n) := u(n+ 1)− u(n), n ∈ N0.

For m ∈ N, we define recursively ∆m : s(N0;X)→ s(N0;X) by ∆1 = ∆ and

∆m := ∆m−1 ◦∆.

The operator ∆m is called the m-th order forward difference operator and2

(2.1) ∆mu(n) =
m∑
j=0

(
m

j

)
(−1)m−ju(n+ j), n ∈ N0,

for u ∈ s(N0;X). We also denote by ∆0 = I, where I is the identity operator.3

We define4

(2.2) kα(n) :=
Γ(α+ n)

Γ(α)Γ(n+ 1)
, n ∈ N0, α > 0.

This sequence, introduced in [24], has appeared in [2], [25] among others, in connection with5

fractional difference operators. The semigroup property kα ∗ kβ = kα+β and the generating6

formula7

(2.3)
∞∑
n=0

kα(n)zn =
1

(1− z)α
, |z| < 1,

hold for α, β > 0, see for example [38, Vol. I, p.77].8

The following definition of fractional sum (also called Cesàro sum in [38]) has appeared9

recently in some papers, see for example [2, 24, 25]. It has proven to be useful in the10

treatment of fractional difference equations. Note that this definition is implicitly included11

in e.g. [5, 9, 29].12

Definition 2.1. [25, Definition 2.5] Let α > 0. The α-th fractional sum of a sequence13

u : N0 → X is defined as follows14

(2.4) ∆−αu(n) :=

n∑
j=0

kα(n− j)u(j) = (kα ∗ u)(n), n ∈ N0.

One of the reasons to choose this operator in this paper is because their flexibility to be15

handled by means of Z-transform methods. Moreover, it has a better behavior for mathe-16

matical analysis when we ask, for example, for definitions of fractional sums and differences17

on subspaces of s(N0;X) like e.g. `p spaces. We notice that, recently, this approach by means18

of the Z-transform has been followed by other authors, see [15, 16].19

The next concept is analogous to the definition of a fractional derivative in the sense20

of Riemann-Liouville, see [8, 29]. In other words, to a given vector-valued sequence, first21

fractional summation and then integer difference are applied.22

Definition 2.2. [25, Definition 2.7] Let α ∈ R+\N0. The fractional difference operator of
order α in the sense of Riemann-Liouville, ∆α : s(N0;X)→ s(N0;X), is defined by

∆αu(n) := ∆m(∆−(m−α)u)(n), n ∈ N0,

where m− 1 < α < m.23
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Example 2.3. Let 1 < β. Then

∆kβ(n) =
Γ(β + n+ 1)

Γ(β)Γ(n+ 2)
− Γ(β + n)

Γ(β)Γ(n+ 1)
=

(β − 1)Γ(β + n)

Γ(β)Γ(n+ 2)
= kβ−1(n+ 1), n ∈ N0.

We iterate m-times with m ∈ N to get for β > m that

∆mkβ(n) = kβ−m(n+m), n ∈ N0.

Let 0 < α < β and m− 1 < α < m for m ∈ N. By Definition 2.2 and (2.1), we get that

∆αkβ(n) = ∆m(∆−(m−α)kβ)(n) = ∆m(km−α ∗ kβ)(n) = ∆m(km−α+β) = kβ−α(n+m),

for n ∈ N0. This equality extends [24, Corollary 3.6] given for 0 < α < 1.1

Interchanging the order of the operators in the definition of fractional difference in the2

sense of Riemann-Liouville, and in analogous way as above, we can introduce the notion of3

fractional difference in the sense of Caputo as follows.4

Definition 2.4. [25, Definition 2.8] Let α ∈ R+\N0. The fractional difference operator of
order α in the sense of Caputo, C∆α : s(N0;X)→ s(N0;X), is defined by

C∆αu(n) := ∆−(m−α)(∆mu)(n), n ∈ N0,

where m− 1 < α < m.5

For further use, we note the following relation between the Caputo and Riemann-Liouville6

fractional differences of order 1 < α < 2. The connection between the Caputo and Riemann-7

Liouville fractional differences of order 0 < α < 1 is given in [24, Theorem 2.4].8

Theorem 2.5. For each 1 < α < 2 and u ∈ s(N0;X), we have

C∆αu(n) = ∆αu(n)− k2−α(n+ 1)[u(1)− 2u(0)]− k2−α(n+ 2)u(0), n ∈ N0.

Proof. By definition and (2.4) we have

∆−(2−α)(∆2u)(n) =

n∑
j=0

k2−α(n− j)∆2u(j) =

n∑
j=0

k2−α(n− j)u(j + 2)

−2

n∑
j=0

k2−α(n− j)u(j + 1) +

n∑
j=0

k2−α(n− j)u(j)

=
n+2∑
j=2

k2−α(n+ 2− j)u(j)− 2
n+1∑
j=1

k2−α(n+ 1− j)u(j)

+

n∑
j=0

k2−α(n− j)u(j)

=
n+2∑
j=0

k2−α(n+ 2− j)u(j)

−2

n+1∑
j=0

k2−α(n+ 1− j)u(j) +

n∑
j=0

k2−α(n− j)u(j)

−k2−α(n+ 2)u(0)− k2−α(n+ 1)u(1) + 2k2−α(n+ 1)u(0)

= ∆2(∆−(2−α)u)(n)− k2−α(n+ 1)(u(1)− 2u(0))− k2−α(n+ 2)u(0),

and so we obtain the desired result. �9
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We also have the following property for the Riemann-Liouville fractional difference of the1

convolution.2

Theorem 2.6. Let 1 < α ≤ 2, u ∈ s(N0;C) and v ∈ s(N0;X). Then, for each n ∈ N0 the
following identity holds

∆α(u ∗ v)(n) = (∆αu ∗ v)(n) + (u(1)− αu(0))v(n+ 1) + u(0)v(n+ 2).

Proof. For each n ∈ N0,3

∆α(u ∗ v)(n) = ∆−(2−α)(u ∗ v)(n+ 2)− 2∆−(2−α)(u ∗ v)(n+ 1) + ∆−(2−α)(u ∗ v)(n)

=
n+2∑
j=0

(k2−α ∗ u)(n+ 2− j)v(j)− 2
n+1∑
j=0

(k2−α ∗ u)(n+ 1− j)v(j)

+
n∑
j=0

(k2−α ∗ u)(n− j)v(j)

=

n∑
j=0

(k2−α ∗ u)(n+ 2− j)v(j)− 2

n∑
j=0

(k2−α ∗ u)(n+ 1− j)v(j)

+

n∑
j=0

(k2−α ∗ u)(n− j)v(j) + (k2−α ∗ u)(1)v(n+ 1)

+(k2−α ∗ u)(0)v(n+ 2)− 2(k2−α ∗ u)(0)v(n+ 1)

=
n∑
j=0

∆2(k2−α ∗ u)(n− j)v(j) + (k2−α(0)u(1) + k2−α(1)u(0))v(n+ 1)

+(k2−α(0)u(0))v(n+ 2)− 2(k2−α(0)u(0))v(n+ 1)

=
n∑
j=0

∆αu(n− j)v(j) + (u(1) + (2− α)u(0))v(n+ 1) + u(0)v(n+ 2)

−2u(0)v(n+ 1)

= (∆αu ∗ v)(n) + (u(1)− αu(0))v(n+ 1) + u(0)v(n+ 2),

proving the claim. �4

We notice that for 0 < α ≤ 1 the above property reads

∆α(u ∗ v)(n) = (∆αu ∗ v)(n) + u(0)v(n+ 1), n ∈ N0.

It has been proved only recently in [25, Lemma 3.6].5

3. Linear fractional difference equations on Banach spaces6

Let A be a closed linear operator defined on a Banach space X. In this section we study7

the problem8

(3.1)

 ∆αu(n) = Au(n+ 2) + f(n), n ∈ N0, 1 < α ≤ 2;
u(0) = u0;
u(1) = u1.

Following [24], we say that a vector valued sequence u ∈ s(N0;X) is a solution of (3.1) if9

u(n) ∈ D(A) for all n ∈ N0 and u satisfies (3.1).10

We will use the notion of discrete α-resolvent family introduced in [2, Definition 3.1] to11

obtain the solution of the problem (3.1). Note that the knowledge of the abstract properties of12
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this family of bounded operators provide insights on the qualitative behavior of the solutions1

of fractional difference equations.2

Definition 3.1. Let α > 0 and A be a closed linear operator with domain D(A) defined3

on a Banach space X. An operator-valued sequence {Sα(n)}n∈N0 ⊂ B(X) is called a discrete4

α-resolvent family generated by A if it satisfies the following conditions5

(i) Sα(n)Ax = ASα(n)x for n ∈ N0 and x ∈ D(A);6

(ii) Sα(n)x = kα(n)x+A(kα ∗ Sα)(n)x, for all n ∈ N0 and x ∈ X.7

The family {Sα(n)}n∈N0 is said bounded if ‖S‖∞ := supn∈N0
‖Sα(n)‖ <∞.8

An explicit representation of a discrete α-resolvent family generated by a bounded operator9

A with ‖A‖ < 1 is given in the following proposition.10

Proposition 3.2. Let α > 0 and A ∈ B(X), with ‖A‖ < 1. Then the operator A generates
a discrete α-resolvent family {Sα(n)}n∈N0 given by

Sα(n) =
∞∑
j=0

kα(j+1)(n)Aj , n ∈ N0.

Proof. Since kα(n) = nα−1

Γ(α) (1 + O( 1
n)), for n ∈ N (see for example [38, Vol. I, (1.18)]), then11

the series is convergent for ‖A‖ < 1. Take x ∈ X and n ∈ N0. Then we get that12

A(kα ∗ Sα)(n)x = A

n∑
j=0

kα(n− j)Sα(j)x = A

n∑
j=0

kα(n− j)
∞∑
i=0

kα(i+1)(j)Aix

=

∞∑
i=0

Ai+1x

n∑
j=0

kα(n− j)kα(i+1)(j) =

∞∑
i=0

kα(i+2)(n)Ai+1x,

where we have applied the semigroup property of the kernel kα. Then we obtain

kα(n)x+A(kα ∗ Sα)(n)x =

∞∑
i=0

kα(i+1)(n)Aix = Sα(n)x, n ∈ N0,

and we conclude the proof. �13

For α > 0 fixed and each n ∈ N the sequence {βα,n(j)}j=1,...,n was introduced in [2, Section14

3.1] as follows:15

For n = 1,
βα,1(1) = kα(1) = α.

For n = 2,16

βα,2(1) = kα(2)− kα(1)βα,1(1) = kα(2)− (kα(1))2 ,

βα,2(2) = kα(1)βα,1(1) = (kα(1))2 = α2.

For n = 3,17

βα,3(1) = kα(3)− kα(2)βα,1(1)− kα(1)βα,2(1) = kα(3)− 2kα(2)kα(1) + (kα(1))3,

βα,3(2) = kα(2)βα,1(1) + kα(1)βα,2(1)− kα(1)βα,2(2) = 2kα(2)kα(1)− 2 (kα(1))3 ,

βα,3(3) = kα(1)βα,2(2) = (kα(1))3 = α3.

For n ≥ 4,18

βα,n(1) = kα(n)−
n−1∑
j=1

kα(n− j)βα,j(1),
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βα,n(l) =
n−1∑
j=l−1

kα(n− j)βα,j(l − 1)−
n−1∑
j=l

kα(n− j)βα,j(l) for 2 ≤ l ≤ n− 1,

βα,n(n) = kα(1)βα,n−1(n− 1) = (kα(1))n = αn

In case that A is closed, but not necessarily bounded, the authors in [2, Theorem 3.2]
proven that given {Sα(n)}n∈N0 ⊂ B(X) a discrete α-resolvent family generated by A, then
1 ∈ ρ(A) and Sα(0) = (I − A)−1; Sα(0)x ∈ D(A) and Sα(n)x ∈ D(A2) for all n ∈ N, and
x ∈ X; and

Sα(n)x =
n∑
j=1

βα,n(j)(I −A)−(j+1)x, n ∈ N, x ∈ X.

The last equality provides an explicit representation of discrete α-resolvent families in terms1

of a bounded linear operators which is, in fact, a characterization of this family of operators2

as the next theorem shows.3

Theorem 3.3. Let λ, α > 0, (A,D(A)) be a closed operator on the Banach space X and4

{Sα(n)}n∈N0 ⊂ B(X) be a sequence of bounded operators. Then the following conditions are5

equivalent.6

(i) The family {Sα(n)}n∈N0 ⊂ B(X) is a discrete α-resolvent family generated by A.7

(ii) 1 ∈ ρ(A), the operator Sα(0) = (I −A)−1 and

Sα(n)x =
n∑
j=1

βα,n(j)(I −A)−(j+1)x, n ∈ N, x ∈ X.

If there exists λ0 > 0 such that supn∈N0
λ−n0 ‖Sα(n)‖ <∞, both equations are equivalent to8

(iii)

(
λ− 1

λ

)α
∈ ρ(A) and9

(3.2)

((
λ− 1

λ

)α
−A

)−1

x =

∞∑
n=0

λ−nSα(n)x, x ∈ X, |λ| > max{λ0, 1}.

Proof. The condition (i) implies the condition (ii) is given in [2, Theorem 3.2]. Now we10

suppose that the condition (ii) holds. Then Sα(n)x ∈ D(A) for any x ∈ X and n ∈ N0. For11

n ∈ N and x ∈ X we have that12

(I −A)Sα(n)x =
n∑
j=1

βα,n(j)(I −A)−jx = (kα(n)−
n−1∑
i=1

kα(n− i)βα,i(1))(I −A)−1x

+
n−1∑
j=2

(
n−1∑
i=j−1

kα(n− i)βα,i(j − 1)−
n−1∑
i=j

kα(n− i)βα,i(j))(I −A)−jx

+kα(1)βα,n−1(n− 1)(I −A)−nx

= kα(n)(I −A)−1x+
n−1∑
j=1

n−1∑
i=j

kα(n− i)βα,i(j)((I −A)−(j+1) − (I −A)−j)x.

Applying that (I −A)−1 − I = A(I −A)−1 and Sα(0) = (I −A)−1 we get that13

(I −A)Sα(n)x = kα(n)(I +ASα(0))x+A

n−1∑
i=1

kα(n− i)
i∑

j=1

βα,i(j)(I −A)−(j+1)x
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= kα(n)(I +ASα(0))x+A
n−1∑
i=1

kα(n− i)Sα(i)x,

and clearly it follows that Sα(n)x = kα(n)x+A(kα ∗ Sα)(n)x for n ∈ N. The case n = 0 is a1

simple check.2

Finally we prove that if there exists λ0 > 0 such that supn∈N0
λ−n0 ‖Sα(n)‖ < ∞, (iii) is3

equivalent to (i). Assume that {Sα(n)}n∈N0 ⊂ B(X) is a discrete α-resolvent family generated4

by A, then applying Z-transform we get for |λ| > max{λ0, 1} that5

S̃α(λ)x =

∞∑
j=0

λ−jSα(j)x = k̃α(λ)x+Ak̃α(λ)S̃α(λ)x

=

(
λ

λ− 1

)α
x+

(
λ

λ− 1

)α
AS̃α(λ)x, x ∈ X,

and

S̃α(λ)x =

(
λ

λ− 1

)α
x+

(
λ

λ− 1

)α
S̃α(λ)Ax, x ∈ D(A),

where we have used that (1.5) and (2.3). Thus the operator
(
λ−1
λ

)α − A is invertible, and6

we get (3.2). Conversely, let |λ|, |µ| > max{λ0, 1} and x ∈ D(A), then there exists y ∈ X7

such that x =
((

µ−1
µ

)α
−A

)−1
y. Using that

((
λ−1
λ

)α −A)−1
and

((
µ−1
µ

)α
−A

)−1
are8

bounded operators and commute, and A is closed we have that9

S̃α(λ)x = S̃α(λ)

((
µ− 1

µ

)α
−A

)−1

y

=

((
µ− 1

µ

)α
−A

)−1((
λ− 1

λ

)α
−A

)−1

y

=
∞∑
n=0

λ−n
((

µ− 1

µ

)α
−A

)−1

Sα(n)

((
µ− 1

µ

)α
−A

)
x.

The uniqueness of Z-transform proves that

Sα(n)x =

((
µ− 1

µ

)α
−A

)−1

Sα(n)

((
µ− 1

µ

)α
−A

)
x.

Then we have Sα(n)x ∈ D(A), and therefore ASα(n)x = Sα(n)Ax for all x ∈ X. Finally note10

that for |λ| > max{λ0, 1} and x ∈ D(A) we have using (2.3) that11

k̃α(λ)x = k̃α(λ)S̃α(λ)

((
λ− 1

λ

)α
−A

)
x

= S̃α(λ)x− ˜(kα ∗ Sα)(λ)Ax,

and by the uniqueness of Z-transform we get the result. �12

A nice consequence of Theorem 3.3 is the following result about sums of combinatorial13

numbers which seems to be new.14

Corollary 3.4. Take α > 0, n ∈ N and {βα,n(j)}j=1,...,n defined as above. Then15

(i)

n∑
j=1

βα,n(j)

(1− λ)j+1
=

∞∑
l=0

λl
Γ(α(l + 1) + n)

Γ(α(l + 1))Γ(n+ 1)
, for |λ| < 1.16
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(ii)
n∑
j=1

βα,n(j)
Γ(l + 1 + j)

Γ(l + 1)Γ(j + 1)
=

Γ(α(l + 1) + n)

Γ(α(l + 1))Γ(n+ 1)
, for l ∈ N.1

Proof. (i) We take |λ| < 1, then using Proposition 3.2 and Theorem 3.3 in the scalar case we
have that

n∑
j=1

βα,n(j)

(1− λ)j+1
=

∞∑
l=0

λlkα(l+1)(n) =

∞∑
l=0

λl
Γ(α(l + 1) + n)

Γ(α(l + 1))Γ(n+ 1)
, n ∈ N.

(ii) Let |λ| < 1, then

n∑
j=1

βα,n(j)

(1− λ)j+1
=

∞∑
l=0

λl
n∑
j=1

βα,n(j)
Γ(l + 1 + j)

Γ(l + 1)Γ(j + 1)
, n ∈ N,

where we have applied that
1

(1− λ)j+1
=

∞∑
l=0

λl
Γ(l + 1 + j)

Γ(l + 1)Γ(j + 1)
. Then we apply (i) to get2

the result. �3

Our main result in this section is the following theorem.4

Theorem 3.5. Let 1 < α ≤ 2. Suppose that A is the generator of a discrete α-resolvent5

family {Sα(n)}n∈N0 on a Banach space X. Then the fractional difference equation6

(3.3) ∆αu(n) = Au(n+ 2), n ∈ N0,

with initial conditions u(0) = u0 ∈ D(A) and u(1) = u1 ∈ D(A) admits the unique solution

u(n) = Sα(n)(I −A)u(0)− αSα(n− 1)u(0) + Sα(n− 1)(I −A)u(1), n ∈ N0.

Proof. Convolving the identity given in Definition 3.1(ii) by k2−α, we obtain

(k2−α ∗ Sα)(n)x = (k2−α ∗ kα)(n)x+A(k2−α ∗ kα ∗ Sα)(n)x, n ∈ N0.

Using the semigroup property for the kernels kα we have

(k2−α ∗ Sα)(n)x = k2(n)x+A(k2 ∗ Sα)(n)x, n ∈ N0.

This is equivalent, by definition of fractional sum and convolution, to the following identity

∆−(2−α)Sα(n)x = k2(n)x+A
n∑
j=0

k2(n− j)Sα(j)x, n ∈ N0.

Therefore, we get using ∆2k2(j) = 0 for j ∈ N0 that

∆2 ◦∆−(2−α)Sα(n)x = ∆2k2(n)x+A∆2
n∑
j=0

k2(n− j)Sα(j)x

= A
[ n+2∑
j=0

k2(j)Sα(n+ 2− j)x− 2
n+1∑
j=0

k2(j)Sα(n+ 1− j)x

+

n∑
j=0

k2(j)Sα(n− j)x
]

= A
[ n+2∑
j=2

k2(j)Sα(n+ 2− j)x− 2

n+1∑
j=1

k2(j)Sα(n+ 1− j)x
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+
n∑
j=0

k2(j)Sα(n− j)x+ Sα(n+ 2)k2(0)x

+ Sα(n+ 1)k2(1)x− 2Sα(n+ 1)k2(0)x
]

= A
[ n∑
j=0

k2(j + 2)Sα(n− j)x− 2
n∑
j=0

k2(j + 1)Sα(n− j)x

+

n∑
j=0

k2(j)Sα(n− j)x+ Sα(n+ 2)x
]

for all n ∈ N0. We note that the left hand side in the above identity corresponds to the1

fractional difference of order α ∈ (0, 2) in the sense of Riemann-Liouville. Therefore, we2

obtain3

(3.4) ∆αSα(n)x = ASα(n+ 2)x,

for all n ∈ N0 and all x ∈ X. Define u(n) as

u(n) := Sα(n)(I −A)u(0)− αSα(n− 1)u(0) + Sα(n− 1)(I −A)u(1), n ∈ N0.

It then follows from (3.4) that u solves (3.3). Finally, from the identities

Sα(0)x = kα(0)x+A(kα ∗ Sα)(0)x = x+Akα(0)Sα(0)x = x+ASα(0)x,

and
Sα(1)x = kα(1)x+A(kα ∗ Sα)(1)x = αSα(0)x+ASα(1)x,

which follow from Definition 3.1 (ii), we obtain u(0) = Sα(0)(I − A)u0 = u0 and u(1) =4

Sα(1)(I −A)u0 − αSα(0)u0 + Sα(0)(I −A)u1 = u1, and we conclude the proof. �5

In the non homogeneous case, we derive the following result.6

Corollary 3.6. Let 1 < α ≤ 2. Suppose that A is the generator of a discrete α-resolvent7

family {Sα(n)}n∈N0 on a Banach space X and f be a vector-valued sequence. The fractional8

difference equation9

(3.5) ∆αu(n) = Au(n+ 2) + f(n), n ∈ N0, 1 < α ≤ 2,

with initial conditions u(0) = u0 ∈ D(A) and u(1) = u1 ∈ D(A), admits the unique solution

u(n) = Sα(n)(I −A)u(0)− αSα(n− 1)u(0) + Sα(n− 1)(I −A)u(1) + (Sα ∗ f)(n− 2),

for all n ≥ 2.10

Proof. Indeed, by Theorem 3.5 and Theorem 2.6 we have u(n) ∈ D(A) for all n ≥ 2 and11

∆αu(n) = ∆α(Sα(n)(I −A)u(0)− αSα(n− 1)u(0) + Sα(n− 1)(I −A)u(1))

+∆α(Sα ∗ f)(n− 2)

= A(Sα(n+ 2)(I −A)u(0)− αSα(n+ 1)u(0) + Sα(n)(I −A)u(1))

+(∆αSα ∗ f)(n− 2) + (Sα(1)− αSα(0))f(n− 1) + Sα(0)f(n)

= Au(n+ 2)− (ASα ∗ f)(n) + (∆αSα ∗ f)(n− 2)

+(Sα(1)− αSα(0))f(n− 1) + Sα(0)f(n).

From (3.4) it follows (∆αSα ∗ f)(n − 2) = (ASα ∗ f)(n) − ASα(1)(n − 1) − ASα(0)(n), and12

hence we obtain13

∆αu(n) = Au(n+ 2) + (I −A)Sα(0)f(n) + ((I −A)Sα(1)− αSα(0))f(n− 1)



14 ABADIAS, LIZAMA, MIANA, AND VELASCO

= Au(n+ 2) + f(n),

where we have used that Sα(0) = (I − A)−1 and (I + A)Sα(1) = αSα(0). For n = 0 and1

n = 1 it is a simple check, using the same above arguments, that u is solution of (3.5). �2

4. Non-linear fractional difference equations on Banach spaces3

Let A be a closed linear operator defined on a Banach space X. In this section we study4

the non linear problem5

(4.1)

 ∆αu(n) = Au(n+ 2) + f(n, u(n)), n ∈ N0, 1 < α ≤ 2;
u(0) = 0;
u(1) = 0.

For the case 0 < α ≤ 1 see the reference [26]. The following definition is motivated by6

Corollary 3.6. In particular, it shows consistence with the problem (4.1).7

Definition 4.1. Under the assumption that the operator A is the generator of a discrete
α-resolvent family {Sα(n)}n∈N0 on a Banach space X, we say that u : N0 → X is a solution
of the non-linear problem (4.1) if u satisfies

u(n) =

n−2∑
k=0

Sα(n− 2− k)f(k, u(k)), n = 2, 3, 4, ...

The next concept of admissibility is one of the keys ingredients for the estimates that we8

will use in the proofs of our main results on existence of solutions to (4.1).9

Definition 4.2. We say that a sequence h : N0 → (0,∞) is an admissible weight if

lim
n→∞

h(n) =∞ and lim
n→∞

1

h(n)

n−2∑
k=0

h(k) = 0.

Example 4.3. The sequence h(n) = nn!, that represents the factorial number system, is an10

admissible weight function, since by [30, formula 33 p.598], we have
n∑
k=1

kk! = (n+ 1)!− 1.11

For each admissible weight sequence h, we consider the vector-valued weighted space

`∞h (N0;X) = {ξ : N0 → X | ‖ξ‖h <∞} ,

where the norm ‖ ‖h is defined by ‖ξ‖h := sup
n∈N0

‖ξ(n)‖
h(n)

.12

The following is our first positive result on existence of solutions for the problem (4.1). It13

uses a Lipschitz type condition.14

Theorem 4.4. Let h be an admissible weight and define

H := sup
n∈{2,3,...}

1

h(n)

n−2∑
k=0

h(k).

Let A be the generator of a bounded discrete α-resolvent family {Sα(n)}n∈N0 on a Banach15

space X for some 1 < α ≤ 2, and let f : N0 ×X → X be given and verifying the following16

hypothesis:17

(F) f(k, 0) 6= 0 for all k ∈ N0 and there exists a positive sequence a ∈ `1(N0) and constants18

c ≥ 0, b > 0 such that ‖f(k, x)‖ ≤ a(k)(c‖x‖+ b) for all k ∈ N0 and x ∈ X.19
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(L) The function f satisfies a Lipschitz condition in x ∈ X uniformly in k ∈ N0, that1

is, there exists a constant L > 0 such that ‖f(k, x) − f(k, y)‖ ≤ L‖x − y‖, for all2

x, y ∈ X, k ∈ N0, with L < (‖Sα‖∞H)−1.3

Then the problem (4.1) has an unique solution in `∞h (N0;X).4

Proof. Let us define the operator G : `∞h (N0;X)→ `∞h (N0;X) given by

Gu(n) =

n−2∑
k=0

Sα(n− 2− k)f(k, u(k)), n ≥ 2.

First, we show that G is well defined: Let u ∈ `∞h (N0;X) be given. By using the assumption
(F) and the boundedness of {Sα(n)}n∈N0 we get that,

‖Gu(n)‖ ≤
n−2∑
k=0

‖Sα(n− 2− k)‖‖f(k, u(k))‖ ≤
n−2∑
k=0

‖Sα(n− 2− k)‖a(k)[c‖u(k)‖+ b]

≤ c‖Sα‖∞‖a‖∞‖u‖h
n−2∑
k=0

h(k) + b‖Sα‖∞‖a‖1

for each n ∈ N0. Hence,

‖Gu(n)‖
h(n)

≤ c‖Sα‖∞‖a‖∞‖u‖h
1

h(n)

n−2∑
k=0

h(k) +
1

h(n)
b‖Sα‖∞‖a‖1.

and since h is an admissible weight, the above inequality proves that Gu ∈ `∞h (N0;X). We5

next prove that G is a contraction on `∞h (N0;X). Indeed, let u, v ∈ `∞h (N0;X) be given.6

Then, for each n ∈ N0,7

‖Gu(n)−Gv(n)‖ ≤
n−2∑
k=0

‖Sα(n− 2− k)‖‖f(k, u(k))− f(k, v(k))‖

≤ ‖Sα‖∞
n−2∑
k=0

‖f(k, u(k))− f(k, v(k))‖

≤ ‖Sα‖∞
n−2∑
k=0

L‖u(k)− v(k)‖ ≤ ‖Sα‖∞L‖u− v‖h
n−2∑
k=0

h(k),

where we have used the assumption (L). Therefore

‖Gu(n)−Gv(n)‖
h(n)

≤ ‖Sα‖∞L‖u− v‖h
1

h(n)

n−2∑
k=0

h(k),

and consequently
‖Gu−Gv‖h ≤ ‖Sα‖∞HL‖u− v‖h,

with ‖Sα‖∞HL < 1. Then, G has a unique fixed point in `∞h (N0;X), by the Banach fixed8

point theorem. �9

The next Lemma provide a necessary tool for the use of the Schauder’s fixed point theorem,10

needed in the second main result on existence and uniqueness of solutions to (4.1).11

Lemma 4.5. Let h be an admissible weight and U ⊂ `∞h (N0;X) such that:12

(a) The set Hn(U) =
{
u(n)
h(n) : u ∈ U

}
is relatively compact in X, for all n ∈ N0.13
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(b) lim
n→∞

1

h(n)
sup
u∈U
‖u(n)‖ = 0, that is, for each ε > 0, there are N > 0 such that1

‖u(n)‖
h(n)

< ε, for each n ≥ N and for all u ∈ U .2

Then U is relatively compact in `∞h (N0;X).3

Proof. Let {um}m be a sequence in U , then by (a) for n ∈ N0 there is a convergent subse-

quence {umj}j ⊂ {um}m such that lim
j→∞

umj (n)

h(n)
= a(n), that is, for each ε > 0 there exists

N(n, ε) > 0 such that ‖umj (n)

h(n) − a(n)‖ < ε for all j ≥ N(n, ε). Let ε > 0 and N the value of

the assumption (b). If we consider N∗ := min
0≤n<N

N(n, ε), then for j, k ≥ N∗ we have

sup
0≤n<N

‖umj (n)− umk(n)‖
h(n)

≤ sup
0≤n<N

‖
umj (n)

h(n)
−a(n)‖+ sup

0≤n<N
‖umk(n)

h(n)
−a(n)‖ < ε/2+ε/2 = ε,

and also

sup
n≥N

‖umj (n)− umk(n)‖
h(n)

≤ sup
n≥N

‖umj (n)‖
h(n)

+ sup
n≥N

‖umk(n)‖
h(n)

< ε/2 + ε/2 = ε.

Consequently,

‖umj − umk‖h = sup
n∈N0

‖umj (n)− umk(n)‖
h(n)

< ε,

therefore {umj}j is a Cauchy subsequence in `∞h (N0;X) which finishes the proof. �4

For f : N0 ×X → X we recall that the Nemytskii operator Nf : `∞h (N0;X)→ `∞h (N0;X)
is defined by

Nf (u)(n) := f(n, u(n)), n ∈ N0.

The next theorem is the second main result for this section. It gives one useful criteria for5

the existence of solutions without use of Lipchitz type conditions.6

Theorem 4.6. Let h be an admissible weight function. Let A be the generator of a bounded7

discrete α-resolvent family {Sα(n)}n∈N0 on a Banach space X for some 1 < α ≤ 2, and8

f : N0 ×X → X. Suppose that the condition (F) and following conditions are satisfied:9

(i) The Nemytskii operator is continuous in `∞h (N0;X), that is, for each ε > 0, there is10

δ > 0 such that for all u, v ∈ `∞h (N0;X), ‖u−v‖h < δ implies that ‖Nf (u)−Nf (v)‖h <11

ε.12

(ii) For all a ∈ N0 and σ > 0, the set {Sα(n)f(k, x) : 0 ≤ k ≤ a, ‖x‖ ≤ σ} is relatively13

compact in X for all n ∈ N0.14

Then the problem (4.1) has an unique solution in `∞h (N;X).15

Proof. Let us define the operator G : `∞h (N0;X)→ `∞h (N0;X) given by

Gu(n) =

n−2∑
k=0

Sα(n− 2− k)f(k, u(k)), n ≥ 2.

To prove that G has a fixed point in `∞h (N0), we will use Leray-Schauder alternative theorem.16

We verify that the conditions of the theorem are satisfied:17

18

• G is well defined: It follows from condition (F) and was proved in the first part of19

the proof of Theorem 4.4.20
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• G is continuous: Let ε > 0 and u, v ∈ `∞h (N0). Then, for each n ∈ N0,1

‖Gu(n)−Gv(n)‖ ≤
n−2∑
k=0

‖Sα(n− 2− k)‖‖f(k, u(k))− f(k, v(k))‖

≤ ‖Sα‖∞
n−2∑
k=0

‖f(k, u(k))− f(k, v(k))‖

≤ ‖Sα‖∞‖Nf (u)−Nf (v)‖h
n−2∑
k=0

h(k).

Therefore

‖Gu(n)−Gv(n)‖
h(n)

≤ ‖Sα‖∞‖Nf (u)−Nf (v)‖h
1

h(n)

n−2∑
k=0

h(k).

Hence, by the assumption (ii) and admissibility of h we obtain ‖Gu−Gv‖h < ε.2

• G is compact: For R > 0 given, let BR(`∞h (N0;X)) := {w ∈ `∞h (N0;X) : ‖w‖h < R}.3

To prove that V := G(BR(`∞h (N0;X))) is relatively compact, we will use Lemma 4.5.4

We check that the conditions in such Lemma are satisfied:5

(a) Let u ∈ BR(`∞h (N0;X)) and v = Gu. We have

v(n) = Gu(n) =

n−2∑
k=0

Sα(n− 2− k)f(k, u(k)) =

n−2∑
k=0

Sα(k)f(n− 2− k, u(n− 2− k)),

and then,

v(n)

h(n)
=
n− 1

h(n)

(
1

n− 1

n−2∑
k=0

Sα(k)f(n− 2− k, u(n− 2− k))

)
.

Therefore v(n)
h(n) ∈

n−1
h(n)co(Kn), where co(Kn) denotes the convex hull of Kn for

the set

Kn =
n−2⋃
k=0

{Sα(k)f(ξ, x) : ξ ∈ {0, 1, 2, . . . , n− 2}, ‖x‖ ≤ R}, n ∈ N0.

Note that each set Kn is relatively compact by the assumption (ii). From the6

inclusions Hn(V ) =
{
v(n)
h(n) : v ∈ V

}
⊆ n−1

h(n)co(Kn) ⊆ n−1
h(n)co(Kn), we conclude7

that the set Hn(V ) is relatively compact in X, for all n ∈ N0.8

9

(b) Let u ∈ BR(`∞h (N0;X)) and v = Gu. Using condition (F), for each n ∈ {2, 3, ...}10

we have11

For each n ∈ N0, we have12

‖v(n)‖
h(n)

≤ 1

h(n)

n−2∑
k=0

‖Sα(n− 2− k)‖‖f(k, u(k))‖

≤ c‖Sα‖∞‖a‖∞‖u‖h
1

h(n)

n−2∑
k=0

h(k) +
1

h(n)
b‖Sα‖∞‖a‖1
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≤ c‖Sα‖∞‖a‖∞R
1

h(n)

n−2∑
k=0

h(k) +
1

h(n)
b‖Sα‖∞‖a‖1,

then the admissibility of h implies lim
n→∞

‖v(n)‖
h(n)

= 0 independently of u ∈ BR(`∞h (N0;X)).1

Therefore, V = G(BR(`∞h (N0;X))) is relatively compact in `∞h (N0;X) by Lemma 4.52

and we conclude that G is a compact operator.3

• The set U := {u ∈ `∞h (N0;X) : u = γGu, γ ∈ (0, 1)} is bounded: In fact, let us
consider u ∈ `∞h (N0;X) such that u = γGu, γ ∈ (0, 1). Again by condition (F),

‖u(n)‖ = ‖γGu(n)‖ ≤
n−2∑
k=0

‖Sα(n− 2− k)‖‖f(k, u(k))‖

≤ c‖Sα‖∞‖a‖∞‖u‖h
n−2∑
k=0

h(k) + b‖S∞‖‖a‖1

Then for each n ∈ {2, 3, ...} we have

‖u(n)‖
h(n)

≤ c‖Sα‖∞‖a‖∞‖u‖h
1

h(n)

n−2∑
k=0

h(k) +
b

h(n)
‖S∞‖‖a‖1.

Since h is admissible, we deduce that U is a bounded set in `∞h (N0;X).4

Finally, by using the Leray-Schauder alternative theorem, we conclude that G has a fixed5

point u ∈ `∞h (N0;X). �6

5. The Poisson transformation of fractional difference operators7

For each n ∈ N0, the Poisson distribution is defined by8

(5.1) pn(t) := e−t
tn

n!
, t ≥ 0.

The Poisson distribution arises in connection with classical Poisson processes and semigroups9

of functions; note that it is also called fractional integral semigroup in [31, Theorem 2.6].10

In this section we study in detail this sequence of functions (Proposition 5.1), the Poisson11

transformation (considered deeply in Theorem 5.2) and give their connection with fractional12

difference and differential operators in Theorem 5.5.13

Proposition 5.1. Let n ∈ N0 and (pn)n≥0 given by (5.1). Then14

(i) For t ≥ 0, the inequality pn(t) ≥ 0 holds,
∫∞

0 pn(t)dt = 1, and∫ ∞
0

pn(t)pm(t)dt =
1

2n+m+1

(n+m)!

n!m!
, n,m ∈ N0.

(ii) The semigroup property pn ∗ pm = pn+m holds for n,m ∈ N0.15

(iii) Given t ≥ 0, then

(p(·))(t) ∗ p(·)(t))(n) = 2ne−tpn(t), n ∈ N0.

(iv) For m,n ∈ N0, we have ∆mpn = (−1)mp
(m)
n+m.16

(v) The Z-transform and the Laplace transform are given by17

p̃(·)(t)(z) = e−t(1−
1
z

), z 6= 0, t > 0;

p̂n(λ) =
1

(λ+ 1)n+1
, <λ > −1, n ∈ N0.
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Proof. The proof of (i) and (ii) is straightforward, and also may be found in [31, Theorem
2.6]. To show (iii), note that

(p(·))(t) ∗ p(·)(t))(n) = e−2t t
n

n!

n∑
j=0

n!

j!(n− j)!
= 2ne−tpn(t),

for n ∈ N0 and t ≥ 0. Now we get that

(pn+1)′(t) = −e−t tn+1

(n+ 1)!
+ e−t

tn

n!
= −∆pn(t),

and we iterate to obtain the equality ∆mpn = (−1)mp
(m)
n+m for m,n ∈ N0. Finally the Z-1

transform and the Laplace transform of (pn)n≥0 are easily obtained. �2

Now we introduce an integral transform using the Poisson distribution as integral kernel.3

Some of their properties are inspired in results included in [24, Section 3] in particular a4

remarkable connection between the vector-valued Z-transform and the vector-valued Laplace5

transform, Theorem 5.2 (ii).6

Theorem 5.2. Let ψ ∈ L1(R+;X) and we define (Pψ) ∈ s(N0;X) by7

(5.2) (Pψ)(n) :=

∫ ∞
0

pn(t)ψ(t)dt, n ∈ N0.

Then the following properties hold.8

(i) The map P defines a bounded linear operator from L1(R+;X) to `1(N0;X) and ‖P‖ =9

1.10

(ii) For ψ ∈ L1(R+;X), we have that

P(ψ)(n) =
(−1)n

n!

[
ψ̂(λ)

](n)
|λ=1, n ∈ N0.

In particular the map P is inyective.11

(iii) We have that (̃Pψ)(z) = ψ̂(1− 1/z), for |z| > 1.12

(iv) For a ∈ L1(R+) and ψ ∈ L1(R+;X) then P(a ∗ ψ) = P(a) ∗ P(ψ).13

(v) If there are constants M > 0 and ω ≥ 0 such that ‖ψ(t)‖ ≤Me−ωt for a.e. t ≥ 0 then14

‖P(ψ)(n)‖ ≤ M

(1 + ω)n+1
for all n ∈ N0. In particular if ψ is bounded then {P(ψ)(n)15

for n ∈ N0 is well-defined by (5.2) and {P(ψ)(n)}n∈N0 is bounded.16

(vi) Let X be a Banach lattice and ψ(t) ≥ 0 for a.e. t ≥ 0, then P(ψ)(n) ≥ 0 for n ∈ N0.17

(vii) Suppose that {S(t)}t≥0 ⊂ B(X) is a uniformly bounded family of operators. If18

{S(t)}t≥0 is compact then {P(S)(n)}n∈N0 is compact.19

20

Proof. To prove (i) is enough to observe that

‖Pψ‖1 ≤
∞∑
n=0

∫ ∞
0

pn(t)‖ψ(t)‖dt =

∫ ∞
0

∞∑
n=0

tn

n!
e−t‖ψ(t)‖dt =

∫ ∞
0
‖ψ(t)‖dt = ‖ψ‖1,

for ψ ∈ L1(R+;X). Take 0 6= x ∈ X and define (eλ ⊗ x)(t) := e−λtx for t, λ > 0. Note that
eλ ⊗ x ∈ L1(R+;X) and ‖eλ ⊗ x‖1 = 1

λ‖x‖ for λ > 0. It is straightforward to check that

P(eλ ⊗ x)(n) =
1

(1 + λ)n+1
x, λ > 0, n ∈ N0,

and ‖P(eλ ⊗ x)‖1 = 1
λ‖x‖ for λ > 0. We conclude that ‖P‖ = 1.21
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By properties of Laplace transform, see for example [7, Theorem 1.5.1], we have that

P(ψ)(n) =
(−1)n

n!

[
ψ̂(λ)

](n)
|λ=1, ψ ∈ L1(R+;X).

Now take ψ ∈ L1(R+;X) such that P(ψ)(n) = 0 for all n ∈ N0. Then we also get that1 [
ψ̂(λ)

](n)
|λ=1 = 0 for n ∈ N0. Since ψ̂ is an holomorphic function, we conclude that ψ̂ = 02

and then ψ = 0 where we apply that the Laplace transform is injective, see for example [7,3

Theorem 1.7.3].4

Part (iii) is proved following similar ideas than in [24, Theorem 3.1]. For (iv) note that5

because a ∈ L1(R+) and ψ ∈ L1(R+;X) we have a ∗ ψ ∈ L1(R+;X) and6

P(a ∗ ψ)(n) =

∫ ∞
0

tn

n!
e−t
∫ t

0
a(s)ψ(t− s)dsdt =

∫ ∞
0

a(s)e−s
∫ ∞

0

(s+ u)n

n!
e−uψ(u)duds

=
∞∑
j=0

∫ ∞
0

a(s)e−s
sj

j!
ds

∫ ∞
0

un−j

(n− j)!
e−uψ(u)du = (P(a) ∗ P(ψ)) (n),

for n ∈ N0. Assertion (v) and (vi) are easily checked and assertion (vii) is obtained from [33,7

Corollary 2.3]. �8

We check Poisson transforms of some known functions in the next example. Note that,
in fact, the Poisson transform can be extended to other sets than L1(R+;X), for example,
P(f)(n) is well-defined for measurable functions f such that

ess supt≥0‖eωtf(t)‖ <∞.

Also the identity given in Theorem 5.2 (iii) holds for the Dirac distribution δt for t > 0, see9

Proposition 5.1 (v).10

Definition 5.3. The map P : L1(R+;X)→ `1(N0;X) defined by (5.2) is called the Poisson11

transformation.12

Example 5.4. (i) Note that P(eλ)(n) =
1

(λ+ 1)n+1
for n ∈ N0 , where eλ(t) := e−λt for13

t > 0.14

(ii) By Proposition 5.1(i),

P(pm)(n) =
1

2n+m+1

(n+m)!

n!m!
=

1

2n+m+1
km+1(n), n,m ∈ N0,

where the kernel kα is defined in (2.2).15

(iii) For α > 0, define

gα(t) :=


tα−1

Γ(α)
, t > 0;

0, t = 0.

Then the identity P(gα) = kα holds, see more details in [24, Example 3.3].16

(iv) The Mittag-Leffler function is an entire function defined by

Eα,β(z) :=

∞∑
k=0

zk

Γ(αk + β)
, α, β > 0, z ∈ C,
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see for example [14, Section 1.3]. Now take λ ∈ C such that |λ| < 1 and sα,β(t) :=

tβ−1Eα,β(λtα), for t > 0. Then

P(sα,β)(n) =
∞∑
k=0

λk

n!Γ(αk + β)

∫ ∞
0

tn+αk+β−1e−tdt =
∞∑
k=0

λkΓ(n+ αk + β)

n!Γ(αk + β)
, n ∈ N0,

which extends the result [24, Theorem 4.7] proved for β = 1. In the particular case β = α,
we get that

P(sα,α)(n) =
∞∑
j=0

λjΓ(n+ α(j + 1))

n!Γ(α(j + 1))
=
∞∑
j=0

λjkα(j+1)(n), n ∈ N0.

Now we are interested to establish a notable relation between the discrete and continuous
fractional concepts in the sense of Riemann-Liouville. In order to give our next result, we
recall that the Riemann-Liouville fractional integral of order α > 0, of a locally integrable
function u : [0,∞)→ X is given by:

Iαt u(t) := (gα ∗ u)(t) :=

∫ t

0
gα(t− s)u(s)ds, t > 0.

The Riemann-Liouville fractional derivative of order α, for m−1 < α < m, m ∈ N, is defined1

by2

(5.3) Dα
t u(t) :=

dm

dtm

∫ t

0
gm−α(t− s)u(s)ds =

dm

dtm
(gm−α ∗ u)(t), t > 0,

for u ∈ C(m)(R+;X), see for example [14, Section 1.2] and [13, Section 1.3]. Compare these3

definitions with Definitions 2.1 and 2.2.4

Theorem 5.5. Let m ∈ N and m − 1 < α ≤ m. Take u ∈ C(m)(R+;X) such that e−ωu
(m)

is integrable for some 0 < ω < 1. Then we have

P(Dα
t u)(n+m) =

∫ ∞
0

pn+m(t)Dα
t u(t)dt = ∆αP(u)(n), n ∈ N0.

Proof. Set n ∈ N0, m ∈ N and u ∈ C(m)(R+;X) such that e−ωu
(m) is integrable for some5

0 < ω < 1. We integrate by parts m-times to get6

P(Dm
t u)(n+m) =

∫ ∞
0

pn+m(t)Dm
t u(t)dt = · · · = (−1)m

∫ ∞
0

p
(m)
n+m(t)u(t)dt

=

∫ ∞
0

∆mpn(t)u(t)dt = ∆mP(u)(n)

where we have applied Proposition 5.1 (iv).7

Now consider m−1 < α < m. By the definition of Riemann-Liouville fractional derivative,8

see formula (5.3), we have that9

P(Dα
t u)(n+m) =

∫ ∞
0

pn+m(t)Dα
t u(t)dt =

∫ ∞
0

pn+m(t)
dm

dtm
(gm−α ∗ u)(t)dt

= ∆mP(gm−α ∗ u)(n) = ∆m
(
km−α ∗ P(u)

)
(n)

= ∆m
(

∆−(m−α)P(u)
)

(n) = ∆αP(u)(n),

where we have applied Theorem 5.2 (iv), Example 5.4 (iii) and Definition 2.1. �10
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6. Discrete α-resolvent families via Poisson subordination1

We recall the following concept (see [4, 23] and references therein).2

Definition 6.1. Let A be a closed linear operator with domain D(A) defined on a Banach3

space X and α > 0. We call A the generator of an α-resolvent family if there exists ω ≥ 04

and a strongly continuous function Sα : [0,∞)→ B(X) (respectively Sα : (0,∞)→ B(X) in5

case 0 < α < 1) such that {λα : Re(λ) > ω} ⊂ ρ(A), the resolvent set of A, and6

(λα −A)−1x =

∫ ∞
0

e−λtSα(t)xdt, Re(λ) > ω, x ∈ X.

In this case, Sα(t) is called the α-resolvent family generated by A.7

By the uniqueness theorem for the Laplace transform, a 1-resolvent family is the same as8

a C0-semigroup, while a 2-resolvent family corresponds to a strongly continuous sine family.9

See for example [7] and the references therein for an overview on these concepts. Some10

properties of (Sα(t))t>0 are included in the following Lemma. For a proof, see for example11

[23].12

Lemma 6.2. Let α > 0. The following properties hold:13

(i) lim
t→0+

Sα(t)x

gα(t)
= x for all x ∈ X.14

(ii) Sα(t)D(A) ⊂ D(A) and ASα(t)x = Sα(t)Ax for all x ∈ D(A), t > 0.15

(iii) For all x ∈ D(A) : Sα(t)x = gα(t)x+

∫ t

0
gα(t− s)ASα(s)xds, t > 0.16

(iv) For all x ∈ X : (gα ∗ Sα)(t)x ∈ D(A) and17

Sα(t)x = gα(t)x+A

∫ t

0
gα(t− s)Sα(s)xds, t > 0.

The next theorem is the main result of this section.18

Theorem 6.3. Suppose that A is the generator of an α-resolvent family (Sα(t))t>0 on a
Banach space X, of exponential bound less than 1. Then A is the generator of a discrete
α-resolvent family (Sα(n))n∈N0 defined by

Sα(n) := P(Sα)(n), n ∈ N0.

Proof. Take x ∈ D(A). Since (A,D(A)) is a closed operator and the condition in Lemma
6.2(ii) we have that

Sα(n)Ax =

∫ ∞
0

pn(t)S(t)Axdt =

∫ ∞
0

pn(t)AS(t)xdt = ASα(n)x.

From the identity

Sα(t)x = gα(t)x+A

∫ t

0
gα(t− s)Sα(s)xds, t > 0,

valid for all x ∈ X, we obtain

Sα(n)x = P(Sα)(n)x = P(gα)(n) +AP(gα ∗ Sα)(n)x = kα(n) +A (kα ∗ Sα) (n)x,

where we have applied Example 5.4(iii) and Theorem 5.2 (iv) and the second condition in19

Definition 3.1. The theorem is proved. �20
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Example 6.4. Consider the Mittag-Leffler function Eα,β studied in Example 5.4 (iv). Sup-
pose that A is a bounded operator on the Banach space X. It follows from Definition 6.1
that

Sα(t) = tα−1Eα,α(Atα), t > 0, α > 0

is the α-resolvent family generated by A. If ‖A‖ < 1, then

Sα(n)x :=

∫ ∞
0

e−t
tn

n!
tα−1Eα,α(Atα)xdt =

∞∑
k=0

Γ(α(k + 1) + n)

Γ(α(k + 1))Γ(n+ 1)
Akx, n ∈ N0,

for x ∈ X. Compare with Proposition 3.2.1

Example 6.5. Suppose that A is the generator of a bounded sine family (S(t))t>0 on X.
Then A is the generator of a bounded α-resolvent family (Sα(t))t>0 on X for 1 < α < 2 given
by

Sα(t)x =

∫ ∞
0

ψα/2,0(t, s)S(s)xds, t > 0, x ∈ X,

where ψα/2,0(t, s) is the stable Lévy process, see [4, Corollary 14]. Then, by [4, Theorem 3
(vi)]

‖Sα(t)‖ ≤M
∫ ∞

0
ψα/2,0(t, s)ds = Mgα/2(t), t > 0,

and since Sα(0) = 0, 1
2 < α

2 < 1 and (Sα(t))t>0 is strongly continuous we conclude that2

(Sα(t))t>0 is bounded. Hence, by Theorem 6.3, we obtain a bounded discrete α-resolvent3

family {Sα(n)}n∈N0 ⊂ B(X).4

Our next result imposes a natural and useful condition of compactness on a given family5

of operators in order to obtain existence and uniqueness of solutions.6

Theorem 6.6. Suppose that A is the generator of a bounded sine family (S(t))t>0 on X such7

that (λ−A)−1 is a compact operator for some λ large enough. Let f : N0×X → X be given8

and suppose that the condition (F) and the following conditions are satisfied:9

(N) The Nemytskii operator Nf is continuous in `∞h (N0;X).10

Then, for each 1 < α ≤ 2, the problem (4.1) has an unique solution in `∞h (N0;X).11

Proof. To prove this result we only have to check that the assumption (ii) in Theorem 4.6 is12

satisfied. Indeed, by hypothesis we have that (λα − A)−1 is compact for all λα ∈ ρ(A) and13

all 1 < α ≤ 2. By Example 6.5 we obtain that A is the generator of a bounded α-resolvent14

family (Sα(t))t>0, which is moreover compact by [33, Corollary 2.3]. From Theorem 5.215

(vii) it follows that {Sα(n)}n∈N0 is compact. Also, for all a ∈ N0 and σ > 0, the set16

{f(k, x) : 0 ≤ k ≤ a, ‖x‖ ≤ σ} is bounded because ‖f(k, x)‖ ≤ ‖a‖∞(c‖x‖+b) ≤ ‖a‖∞(cσ+b)17

for all 0 ≤ k ≤ a and ‖x‖ ≤ σ. Consequently, the set {Sα(n)f(k, x) : 0 ≤ k ≤ a, ‖x‖ ≤ σ} is18

relatively compact in X for all n ∈ N0. �19

7. Examples, applications and final comments20

In this section, we provide several concrete examples and applications of the abstract21

results developed in the previous sections. Finally we present some related problems with22

problem (1.4) for α = 2.23

Example 7.1. Let m : [a, b]→ (0, 1) be a continuous function. Let A be the multiplication
operator given by Af(x) = m(x)f(x) defined on L2(a, b). We known that A is a bounded
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operator [21, Proposition 4.10, Chapter I]. Since (λ2−A)−1 = 1
λ2−m(x)

for λ sufficiently large,

we have by Definition 6.1 that A generates a sine family (S(t))t>0 on L2(a, b), given by

S(t)f(x) =
1

2
√
m(x)

(
e
√
m(x)t − e−

√
m(x)t

)
f(x), t > 0.

Since 0 < m(x) < 1 we obtain by subordination1

S(n)f(x) =

∫ ∞
0

pn(t)S(t)f(x)dt

=

∫ ∞
0

e−t
tn

n!

1

2
√
m(x)

(
e
√
m(x)t − e−

√
m(x)t

)
f(x)dt

=
1

n!2
√
m(x)

(∫ ∞
0

tne−(1−
√
m(x))tf(x)dt−

∫ ∞
0

tne−(1+
√
m(x))tf(x)dt

)

=
1

2
√
m(x)

(
1

(1−
√
m(x))n+1

− 1

(1 +
√
m(x))n+1

)
f(x),

for n ∈ n ∈ N0. By Theorem 3.5 and Theorem 6.3, we conclude that the fractional difference
equation

∆2u(n) = Au(n+ 2), n ∈ N0,

with initial conditions u(0) = u0 and u(1) = u1, admits the explicit solution2

u(n) = (S(n)(I −A)− 2S(n− 1))u0 + S(n− 1)(I −A)u1

=
√
A−1

(
I −A

2
(1−

√
A)−(n+1) − I −A

2
(1 +

√
A)−(n+1)

)
u0

−
√
A−1

(
(1−

√
A)−n − (1 +

√
A)−n

)
u0

+
1

2

√
A−1

(
(1−

√
A)−n − (1 +

√
A)−n

)
(I −A)u1, n ∈ N0.

Example 7.2. We study the existence of solutions for the problem3

(7.1)
∆αu(n, x) = uxx(n+ 2, x) +

1

1 + n3

cos(u(n, x))

1 +
(∫ π

0
|u(n, s)|2ds

)1/2
, n ∈ N0, 0 < x < π;

u(0, x) = 0; u(1, x) = 0;
u(n, 0) = 0; u(n, π) = 0;

for 1 < α < 2. We will use Corollary 6.6.4

5

Let X = L2[0, π] and let us define the operator A =
∂2

∂x2
, on the domain

D(A) = {v ∈ L2[0, π]/v, v′ absolutely continuous, v′′ ∈ L2[0, π], v(0) = v(π) = 0}.

Observe that the operator A can be written as

Av = −
∞∑
n=1

n2(v, zn)zn, v ∈ D(A),
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where zn(s) :=
√

2/π sinns, n = 1, 2, . . . , is an orthonormal set of eigenvectors of A.
Note that A is the infinitesimal generator of a sine family (S(t))t∈R in L2[0, π], given by

S(t)v =

∞∑
n=1

sinnt

n
(v, zn)zn, v ∈ L2[0, π].

The resolvent of A is given by

R(λ;A)v =

∞∑
n=1

1

λ+ n2
(v, zn)zn, v ∈ L2[0, π],−λ 6= k2, k ∈ N.

The compactness of R(λ;A) follows from the fact that eigenvalues of R(λ;A) are λn = 1
λ+n2 ,1

n = 1, 2, . . . , and thus lim
n→∞

λn = 0, see for example [32].2

3

Let us consider the weighted space

`∞h (N0;L2[0, π]) =

{
ξ : N0 → L2[0, π]/ sup

n∈N

‖ξ(n)‖L2

nn!
<∞

}
,

where the function h(n) = nn! is an admissible weight function (see Example 4.3).4

For the function f : N0 × L2[0, π] → L2[0, π], defined by f(n, v) :=
1

1 + n3

cos(v)

1 + ‖v‖
, we5

consider the Nemystkii operator Nf associated to f. That is, Nf (u) : N0 → L2[0, π] is such6

that Nf (u)(n) := f(n, u(n)) for u : N0 → L2[0, π]. Then:7

(i) f(n, 0) 6= 0 for all n ∈ N0 and there exists a(n) = 1
1+n3 in l1(N0) and c = 1, b = 08

such that ‖f(n, v)‖ ≤ a(n)(c‖v‖+ b), for all n ∈ N0 and v ∈ L2[0, π].9

10

(ii) Is clear from the definition.11

Consequently, by Theorem 6.6, we conclude that the problem (7.1) has an unique solution
u ∈ `∞h (N0), that is, u satisfies

sup
n∈N0

‖u(n)‖L2

nn!
= sup

n∈N0

1

nn!

(∫ π

0
|u(n, x)|2dx

)1/2

<∞,

Therefore, there exist a constant K > 0 such that∫ π

0
|u(n, x)|2dx < K(nn!)2, n ∈ N.

Final comments. In some circumstances, the equation (1.4) for α = 2 may have a different12

format on the right hand side. For instance, the problem13

(7.2)

 ∆2u(n) = Bu(n+ 1) + g(n, u(n)), n ∈ N0;
u(0) = u0;
u(1) = u1.

where B is a linear operator defined on a Banach space X. In such cases, and under mild14

conditions, we can still handle this problem with our theory. That is the content of the15

following two results.16

Proposition 7.3. Let B be a linear operator defined on a Banach space X, such that −2 ∈17

ρ(B). Then, (7.2) is equivalent to the problem18

(7.3)

 ∆2u(n) = Tu(n+ 2) + Tu(n) + (I − T )g(n, u(n)), n ∈ N0;
u(0) = u0;
u(1) = u1.
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where T = I − 2(2 +B)−1.1

Proof. From the definition2

∆2u(n) = u(n+ 2)− 2u(n+ 1) + u(n),

we obtain

u(n+ 1) =
1

2
(u(n+ 2)−∆2u(n) + u(n)).

On the other hand, by (7.2) we have

u(n+ 2)− 2u(n+ 1) + u(n) = Bu(n+ 1) + g(n, u(n))

that is, for −2 ∈ ρ(B) we have

u(n+ 1) = (2 +B)−1u(n+ 2) + (2 +B)−1u(n)− (2 +B)−1g(n, u(n)).

By identifying both expressions for u(n+ 1), we achieve

(2 +B)−1u(n+ 2) + (2 +B)−1u(n)− (2 +B)−1g(n, u(n)) =
1

2
(u(n+ 2)−∆2u(n) + u(n)),

and therefore

∆2u(n) = (I − 2(2 +B)−1)u(n+ 2) + (I − 2(2 +B)−1)u(n) + 2(2 +B)−1g(n, u(n)).

So, assuming −2 ∈ ρ(B), the original problem (7.2) is equivalent to the problem (7.3), with3

T = I − 2(2 +B)−1. �4

Observe that the operator T in the above proposition is bounded whenever B is a closed5

linear operator and −2 ∈ ρ(B). A second case of interest is the following.6

Proposition 7.4. Let B be a linear operator defined on a Banach space X, such that 1 ∈7

ρ(B). Then, the problem8

(7.4)

 ∆2u(n) = Bu(n) + g(n+ 1, u(n+ 1)), n ∈ N0;
u(0) = u0;
u(1) = u1.

is equivalent to the problem9

(7.5)

 ∆2u(n) = Tu(n+ 2)− 2Tu(n+ 1) + (I − T )g(n+ 1, u(n+ 1)), n ∈ N0;
u(0) = u0;
u(1) = u1.

where T = I − (I −B)−1.10

Proof. From the definition11

∆2u(n) = u(n+ 2)− 2u(n+ 1) + u(n),

we obtain
u(n) = ∆2u(n)− u(n+ 2) + 2u(n+ 1).

On the other hand, by (7.4) we have

u(n+ 2)− 2u(n+ 1) + u(n) = Bu(n) + g(n+ 1, u(n+ 1))

that is, for 1 ∈ ρ(B) we have

u(n) = −(I −B)−1u(n+ 2) + 2(I −B)−1u(n+ 1) + (I −B)−1g(n+ 1, u(n+ 1)).

By identifying both expressions for u(n), we achieve

(I −B)−1 (−u(n+ 2) + 2u(n+ 1) + g(n+ 1, u(n+ 1))) = ∆2u(n)− u(n+ 2) + 2u(n+ 1),
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and therefore

∆2u(n) = (I − (I −B)−1)u(n+ 2)− 2(I − (I −B)−1)u(n+ 1) + (I −B)−1g(n+ 1, u(n+ 1)).

So, assuming 1 ∈ ρ(B), the problem (7.4) is equivalent to the problem (7.5), with T =1

I − (I −B)−1. �2

For instance, let B be a linear operator defined on a Banach space X, and γ a positive3

constant. We study the existence of solutions of the problem4

(7.6)

 ∆2u(n, x) = (B + 2γ)u(n+ 1, x), n ∈ N0, x ∈ [a, b];
u(0, x) = 0; u(1, x) = 0,
u(n, a) = 0; u(n, b) = 0.

By Proposition 7.3 the solution of (7.6) coincides with the solution of the problem5

(7.7)

 ∆2u(n, x) = Tu(n+ 2, x) + Tu(n, x), n ∈ N0, x ∈ [a, b];
u(0, x) = 0; u(1, x) = 0,
u(n, a) = 0; u(n, b) = 0.

where T = I − 2(2(1 + γ) +B)−1, provided that 2 + 2γ ∈ ρ(−B).6

As an example of application to Theorem 4.4 with α = 2, let us consider X = L2(π, 2π)
and define

Bf(x) = 2
( 1

1 + x
− (1 + γ)

)
f(x), x ∈ [π, 2π].

Note that B is bounded. A computation shows that Tf(x) = −xf(x) and therefore generates
the sine family

S(t)f(x) =
sin(
√
xt)√
x

f(x), x ∈ [π, 2π]

It follows that ‖T‖ ≤ 2π and ‖S‖∞ ≤
√
π.7

Let h the admissible weight function defined by h(n) = nn!, for which we have

sup
n∈N0

1

h(n)

n−2∑
k=0

h(k) =
1

18

since
1

h(n)

n−2∑
k=0

h(k) is a decreasing sequence for n ≥ 3. Let us consider the function f :8

N0 ×X → X defined by f(n, ξ) = 1
n2Tξ + 1

1+n2 . Then the function f verifies:9

(F) f(n, 0) 6= 0 for all n ∈ N0 and there exists a(n) = 1
n2 in `1(N0) and c = ‖T‖, b = 110

such that ‖f(n, ξ)‖ ≤ a(n)(c‖ξ‖+ b) for all n ∈ N0 and ξ ∈ X.11

(L) There exists L := ‖T‖ such that

‖f(n, x)− f(n, y)‖ ≤ ‖T‖‖x− y‖,

for all x, y ∈ X. Moreover,

‖T‖‖S‖∞
1

18
<

2π
√
π

18
< 1.

Therefore, by Theorem 4.4 we conclude that the problem (7.7) has an unique solution or,12

equivalently, the problem (7.6) has an unique solution u ∈ `∞h (N0;X).13
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