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ABSTRACT: Liquid induced phase separation micromolding (LIPSµM) has been 

successfully used for manufacturing hierarchical porous polybenzimidazole (HPBI) 

microsieves (42-46% porosity, 30-40 µm thick) with specific pore architecture ( pattern of 

macropores ~ 9 µm in size perforated dispersed in a porous matrix with 50-100 nm pore 

size). Using these microsieves, proton exchange membranes were fabricated by infiltration of 

1-H-3-vinyl imidazolium bis(trifluoromethanesulfonyl)imide liquid and divinylbenzene (as 

cross-linker) followed by in-situ UV polymerization. Our approach relies on the separation of 

the ion conducting function from the structural support function. Thus, the polymeric ionic 

liquid (PIL) moiety plays the role as proton conductor, while the HPBI microsieve ensures 

the mechanical resistance of the system. The influence of the porous support architecture on 

both proton transport performance and mechanical strength has been specifically investigated 

by means of comparison with straight macro-porous (36% porosity) and randomly nano-

porous (68% porosity) PBI counterparts. The most attractive results were obtained with 

poly[1-(3H-imidazolium)ethylene]bis(trifluoromethanesulfonyl)imide polymeric ionic liquid 

(PIL) cross-linked with 1 % divinylbenzene supported on HPBI membranes with 21 µm thick 

skin layer, achieving conductivity values up to 85 mS∙cm-1 at 200 °C under anhydrous 

conditions and in the absence of mineral acids.  
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1. INTRODUCTION 

High temperature proton exchange membranes (HTPEM) are receiving increasing attention 

in PEM fuel cells (PEMFC) field because of higher reaction kinetics, enhanced CO-tolerance 

and generally improved overall performance1-3. Since the first successful application of 

polybenzimidazole (PBI) membranes as electrolytes4, PBIs have been often reported as 

promising materials for PEMs due to their excellent thermal stability and outstanding 

mechanical properties5-11. In parallel, ionic liquids (ILs) are non-volatile, non-flammable, and 

exhibit good chemical and thermal stability, as well as high ionic conductivity. All these 

properties are clearly beneficial for HTPEM applications. Hence, ILs based PEMs have 

recently led to promising results in emerging research studies2, 12,9-10, 13-18. 

In this work, a novel asymmetric PBI matrix has been designed and used as a skeleton for the 

IL- based electrolyte membrane. The use of highly porous PBI membranes has been already 

described for PEMFC applications7-8, 10. Owing to their high specific surface area for either 

acid doping or conducting phase embedding, the overall electrolyte performance was notably 

increased. Jheng et al8. proposed highly porous (83.1 vol.%) asymmetric PBI supports 

through a soft-templating method using 1-ethyl-3-methylimidazolium 

bis(trifluoromethanesulfonyl)imide, [EMIm][TFSI], as porogen agent. Proton conductivity 

values above 60 mS∙cm-1 at 160 °C were reported upon phosphoric acid doping (23.6 as 

doping level). Van de Ven et al10. described the fabrication of macrovoid-free randomly 

porous PBI membranes (65.6 vol.%) impregnated with H-3-methylimidazolium 

bis(trifluoromethanesulfonyl) imide, [HMIm][TFSI], ionic liquid. The proton conductivity 

and power density of such PBI/IL membranes were 1.86 mS∙cm-1 at 190 °C and 0.039 W∙cm-

2 at 150 °C, respectively. However, ILs tend to drain out from the membranes after long-time 

operation19. In this respect, polymerization of ILs emerges as an attractive option for ILs 

based PEMs in terms of safety, stability and mechanical properties. Polymeric ionic liquids 
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(PILs)17, 20-24 are likely to provide a continuous route with ionic character, and at the same 

time retain some of the unique properties of ILs.  

Very recently, our group7 has investigated the in-situ UV polymerization of 1-H-3-

vinylimidazolium bis(trifluoromethanesulfonyl)imide [HVIm][TFSI] onto a highly random 

porous PBI sponge-like support (above 75 vol%) achieving conductivity values above 300 

mS cm-1 at 200 °C under anhydrous conditions. Unfortunately, the excellent conduction 

performance was hampered by the brittleness of the membranes. This finding was in line with 

previously reported studies confirming that high porosity leads to a decrease of both storage 

modulus and tensile strength8, 25-26. Similar drawbacks are commonly alleviated by using of 

supports with optimized pore architecture. In particular, better PIL filling and enhanced 

conduction would be expected with a pattern of perforated macropores having straight well 

defined geometries, as the effective pathways become shorter compared to porous supports 

with random pores shapes, sizes and locations. An attractive option relies on the application 

of microsieves. These porous materials were introduced over a decade ago27, and since then, 

the span of  their applications has been growing steadily28-30. The main features of 

microsieves rely on the presence of straight-through, high density, uniform and well-ordered 

pores between 0.5 and 10 µm in diameter31-32.  

Over the last decade Wessling group33-35 has extensively developed phase separation 

micromolding (PSµM) techniques. In PSµM, the phase separation of a polymer solution is 

combined with replication of structures on a micro-to submicrometer scale. Compared to the 

thermally induced PSµM process progressed by Vogelaar et al36, in liquid induced phase 

separation micromolding (LIPSµM), the phase separation proceeds mainly through an 

exchange of solvent and non-solvent taking place between the polymer solution and 

coagulation bath31, 36. In a step further, the manufacturing of membranes with a variety of 
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pore sizes (down to 0.2 µm) from single mold has been fully investigated by using a solvent-

shrinkage approach37.  

Herein, we propose an innovative HTPEM concept consisting of hierarchically structured PIL 

channels embedded in a HPBI microsieve. Although at first sight, the intrinsic porosity of the 

HPBI support may seem useless or even unwanted, the inner surface created by the intrinsic 

porosity enable for ionic liquid confinement and offers additional pathways for proton 

transport through the PIL network. Furthermore, such intrinsic porosity might offer a solution 

for problems derived from both the fluidity and poor mechanical strength of PILs. To the best 

of our knowledge, the combination of HPBI microsieves, prepared by LIPSµM, and in-situ 

polymerization of ionic liquid moieties for HTPEM applications is attempted for the first 

time in this work. Such PIL-HPBI electrolyte membranes are expected to retain the 

advantageous features (fast infiltration process and high network connectivity) of both 

perforated straight pores and intrinsic random pores of the HPBI microsieves. Compared to 

sponge-like supports or dense PBI microsieves, an outperforming performance is expected 

for such PIL-HPBI systems as higher and well-connected PIL loadings are achievable 

without sacrificing the mechanical resistance. Thus, a comprehensive physicochemical and 

electrochemical characterization of these proton conducting membranes before and after 

cross-linking has been accomplished up to 200 °C under anhydrous conditions. Particular 

emphasis is devoted to the analysis of the skin layer effect and to the influence of PBI pore 

architecture on the exhibited conduction performance. 

2. EXPERIMENTAL SECTION 

2.1 Materials 

All chemical reagents and solvents listed hereafter were used as received: poly[2,2-(m-

phenylene)-5,5-bibenzimidazole] (PBI Fumion APH Ionomer, Mw 59,000-62,000, 
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Fumatech), LiCl (99 wt%, Sigma-Aldrich), poly(vinylpyrrolidone) (PVP) K30 (Mw = 40000, 

Fluka),  PVP K90 (Mw = 360000, Fluka), 1-H-3-vinylimidazoliumbis(trifluoromethane 

sulfonyl)imide (98 wt%, SOLVIONIC), divinylbenzene (80 wt%, Sigma-Aldrich), 2-

hydroxy-2-methylpropiophenone (97 wt%, Sigma-Aldrich), N-methyl-2-pyrrolidone (NMP 

anhydrous, 99.5 wt%, Sigma-Aldrich). 

2.2 Structured mold 

The structured Si mold was prepared by photolithographic techniques and cryogenic deep 

reactive ion etching (DRIE) on the Si wafer according to method published elsewhere37. It 

comprised uniform pyramid shaped pillars (mold named as “type P”) with base diameter ~ 8 

µm, height ~ 20 µm, located every 15 µm with center to center periodicity.  

2.3 PBI solution preparation 

PBI was used as a polymer for membrane fabrication. Polymer solutions were prepared 

according to a protocol published in the literature7, by mixing 4.5 g of PBI powder, 1 g of 

LiCl, 1 g of PVP K30, 1 g of PVP K90 and 42.5 g of NMP at 175 °C for 24 h to obtain 

polymer solutions 15% wt. of solids . Polymer solutions were then outgassed for 2 h in order 

to remove all air bubbles. Addition of PVP controls macrovoid formation upon phase 

separation process while LiCl stabilizes the PBI solution. 

2.4 PBI microsieves preparation  

PBI microsieves were prepared by liquid induced phase separation micromolding (LIPSµM) 

method, as schematically shown in Figure 1. Polymer solution composed of PBI, PVP, LiCl 

and NMP was poured onto the structured silicon mold (Figure.1A) and cast with a custom-

made casting device. 
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The casting device with an adjustable casting knife is shown in supporting information 

(Figure S1). Distances between the casting knife and the mold were adjusted within 1 µm 

accuracy with micrometric screws. Casting distances (cd) were altered between 3 and 25 µm 

above pillar level. After casting, the mold with polymer solution was immersed for 30 min at 

room temperature (RT) into the coagulation bath (Fig. 1B) containing a NMP/water solution 

(50/50 wt%). Then, it was transferred into a non-solvent bath (pure water) at RT for 30 

minutes in order to wash out NMP traces (Fig. 1C). 

The solidified PBI membrane, peeled off from the mold, was first immersed in ethanol for 30 

min (Fig. 1D)., and then in hexane for another 30 min in order to ensure complete water 

removal. Finally, in order to remove all volatile compounds, the as-formed membranes were 

sandwiched between two glass plates and placed in an oven at 150 °C. After the casting 

procedure, molds were cleaned by NMP and rinsed with acetone. 
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Figure 1. Schematic representation of liquid induced phase separation micromolding 

(LIPµM): (A) solution casting on structured mold, (B) system immersion in a NMP/H2O 

solution (50/50 wt.%), (C)&(D) system immersion in pure water and  ethanol, respectively.

  

Different types of hierarchically structured PBI (HPBI) microsieve supports were fabricated 

by adjusting the casting distance (see Table 1). In fact, the nomenclature adopted for 

microsieves description includes the casting distance value. 
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Table 1. Casting parameters used for the fabrication of HPBI microsieve supports with a P-

type mold. 

HPBI microsieve code Casting distance cd (µm) 

P-3µm 3± 1 

P-5µm 5± 1 

P-15µm 15±1 

P-25µm 25±1 

 

2.5 Polymer electrolyte membranes preparation  

Polymer electrolyte membranes (PEMs) were prepared by infiltration of PBI with monomeric 

ionic liquid (MIL) 1-H-3-vinylimidazolium bis(trifluoromethane sulfonyl)imide (H-VIM 

TFSI) as previously published by our research group7 (see Supporting information for the 

procedure, Figure S2). Monomeric ionic liquid (MIL) was first melted at 50 °C and then 

placed in contact with HPBI microsieve support previously dried under vacuum at 120 °C 

and 100 mbar. Subsequently, the system was placed under vacuum for 1 h to remove any air 

bubbles and thus ensure complete infiltration of the MIL into the HPBI microsieve support. 

This process was conducted by pouring the MIL on the HPBI surface at 100 °C under 

vacuum (160 mbar). The membrane was then removed out from the filter holder and the 

excess of ionic liquid on the membrane surface was wiped off with a tissue. Finally, 2-

hydroxy-2-methylpropiophenone was added on the membrane top surface to initiate the 

photopolymerization process. For the polymerization, the composite membrane surface was 

exposed to UV lamp irradiation (Vilber Lourmat, with an intensity of 2.4 mW cm-2 and 

wavelength ~365 nm) for 2 hours on each side. Three types of cross-linked PIL-HPBI 
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membranes were prepared by varying the amount of cross-linking agent divinylbenzene: 

from 0.2 to 1.0 mol % (referred to the MIL). After polymerization, the composite membranes 

were gently wiped from any residuals with lab paper and acetone. The amount of PIL in the 

membranes was determined by weight measurements. 

2.6 Characterization methods  

2.6.1 Porosity 

The porosity  of the as-prepared HPBI microsieve supports was evaluated by immersion in n-

butanol for 2h according to the protocol published elsewhere38. The porosity (ε) was 

calculated using following equation: 

ε (%) =
𝒘𝒘𝑩𝑩/𝝆𝝆𝑩𝑩  

𝒘𝒘𝑴𝑴/𝝆𝝆𝑴𝑴   +  𝒘𝒘𝑩𝑩/𝝆𝝆𝑩𝑩   
 × 𝟏𝟏𝟏𝟏𝟏𝟏 

where wB is the amount of absorbed n-butanol, 𝝆𝝆B the density of n-butanol, wM the weight of 

HPBI microsieve support and 𝝆𝝆M its density. 

2.6.2 Scanning Electron Microscopy (SEM)   

The morphology and thickness of as-prepared HPBI microsieves and derived PIL-HPBI 

membranes were investigated by Scanning Electron Microscopy (SEM, JSM 6010LA 

operating at 5kV). The reported thickness values correspond to average values measured on 3 

different samples at least. SEM samples were dried under vacuum at 60 °C for 15 h and 

coated with a thin gold layer (Balzer Union SCD 040 sputtering at 210 V and 13 mA, during 

180 s in 10 mbar Ar atmosphere). Both pore diameters and their periodicity were measured 

by using SemAfore software.  

2.6.3 Atomic Force Microscopy (AFM) 
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AFM measurements have been carried out in tapping mode using a NSG30 ND-MDT tip 

(Multimode 8 system, Veeco/Bruker) with force constant around 22-100 N/m. 

2.6.4 Transmission Electron Microscopy (TEM) 

Membranes were embedded in epoxy resin, and ultrathin slices (~ 50 nm thick) were cut with 

an ultramicrotome (Leica EM UC7) at room temperature. The as-prepared slices were placed 

on TEM copper grids with carbon film, and analysed by Transmission Electron Microscopy 

(Tecnai T20 - FEI Company) at a working voltage of 200kV. TEM Bright Field Images were 

acquired with a side-mounted Veleta CCD Camera. 

2.6.5 Infrared Spectroscopy (FTIR) 

ATR-FTIR analyses (Bruker VERTEX 70 with Golden Gate ATR from 4000 to 600 cm-1, 

256 scans, and resolution of 4 cm-1) were performed at room temperature to monitor the 

photo-polymerization reaction and to investigate any possible changes on: i) protonation site 

of the poly-cationic backbone, i.e. poly[1-(3H-imidazolium)ethylene]; ii) vibrational 

spectrum of trifluoromethane sulfonyl)imide anion originating from ionic interactions, and 

iii) hydrogen bonding interactions between the benzimidazole groups in PBI and the poly[1-

(3H-imidazolium)ethylene]bis(trifluoromethanesulfonyl)imide. 

2.6.6 Thermogravimetric analyses (TGA) 

Thermogravimetric analyses (Q500 IR TA instrument) were used to evaluate the composition 

and thermal behaviour of PIL-HPBI membranes with or without any cross-linker. Studies 

were conducted with 4-5 mg samples, in the temperature range from 25 °C to 900 °C with a 

heating rate of 2°C/min under N2 atmosphere. 

2.6.7 Mechanical properties 
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The Young’s modulus and tensile strength of the PIL-HPBI (P1-9-25µm) membranes were 

analyzed by extensional rheology (Anton Paar rheometer MCR 301 equipped with Universal 

Extensional Fixture UXF12). The temperature was controlled at 25 oC (CTD180 Peltier 

system). The tested samples (4x1 cm2) were cut in different areas of the membranes. For a 

given membrane composition (cross–linker amount), the reported values of mechanical 

parameters correspond to average values 3 different samples at least. 

2.6.8 Impedance spectroscopy 

Proton conductivity of membranes prepared with and without any cross-linker was measured 

by electrochemical impedance spectroscopy (ESI- Agilent 4294A precision impedance 

analyzer in the range 40 Hz- 110 MHz). Membranes were sandwiched between two gold 

electrodes and resistance through the plane was measured in anhydrous conditions, using 

high purity N2 (> 99.998%) as a sweep gas (100 cm3 STP/min). Measurements were 

performed every 10°C from 70 °C to 200 °C in a closed home-made stainless-steel 

conductivity cell PTFE lined inside provided with annular gold electrodes (11 mm outlet and 

6.5 mm inlet diameter), as described in our previous works18, 39. Proton conductivity (σ in 

mS∙cm-1) was calculated from measured resistance values (R in Ohms) using the equation σ = 

z/RA where z is the membrane thickness in cm, and A is the electrodes surface area in cm2. 

Electrolyte resistance was derived from the real impedance-axis intercept of the Nyquist plot 

(see Figure S3 of the supporting information). The activation energy for ionic conduction was 

calculated assuming Arrhenius-type dependence.  
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3. RESULTS AND DISCUSSION 

3.1 Fabrication of Hierarchical PBI microsieves (HPBI) by LIPSµM 

The main characteristics of the prepared microsieves are presented in Table 2. Both 

macropores height and total thickness of the asymmetric HPBI microsieve mainly depend on 

the casting distance (cd). Accordingly, the cd was altered between 3 and 25 µm above pillar 

level. The skin layer thickness increases with increasing cd and the nominal macropore height 

(~19.5 µm) could be obtained when cd exceeds 15 µm. 

Table 2. Main characteristics of the HPBI microsieves fabricated by LIPSµM for this work 

Microsieve 

code 

Macropore 

dimensions (µm) Periodicity 

(µm) 

Thickness 

z (µm) 

Porosity ε 

(%) 

Diameter* Height Total Skin 

layer 

Total Intrins

ic# 

Intrinsic/M

acro 

P-3µm 9.1±0.1 12.1±0.1 14.9±0.1 12.4±1 - 61.2 53.8 7.2 

P-5µm 8.7±0.1 15.5±0.1 15.4±0.1 15.8±1 0.3±0.2 57.1 49.7 6.7 

P-15µm 8.9±0.1 19.5±0.1 15.5±0.1 30.6±1 11.1±02 46.1 38.7 5.2 

P-25µm 8.9±0.1 19.5±0.1 15.5±0.1 40.2±1 21.1±02 42.5 35.1 4.7 

*mold side; #evaluated by subtracting the nominal macro porosity, i.e.7.4%, from total ε.  

 

Moreover it has been found out that the obtained porosity depends on the skin layer thickness 

(Table 2) and it decreases for thicker skin layers. The highest porosity (~ 60%) was obtained 

for membranes with almost no skin layer (P-3µm and P-5µm). However, these membranes 
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have not been used further due to handling constraints. In comparison, mechanically more 

stable membranes, i.e. P-15µm and P-25 µm, exhibit the porosity of 46.1%, 42.5 %, 

respectively. 

 

Figure 2. Pyramidal type pillar structured Si-mold used for the fabrication of HPBI. SEM 

images of P-5µm type microsieves: mold side, air side and cross-section. 

Pyramidal type pillar structured Si-mold and SEM images of the as-prepared HPBI 

microsieves (air side, mold side and cross-section with intrinsic pores of 50-100 nm) are 

displayed in Figure 2. It must be noted that the straight-through macropores are generated by 

pillar perforation of the Si-mold, while the small (intrinsic) pores result from phase inversion 

process35, 37. SEM observations (see Figure 3) clearly confirm that the cast polymer adapts the 

structure of the structured mold. as published in the literature in LIPSµM 31, 33, 37, two types of 

shrinkages have to be considered for the polymer film on the mold: in-plane/lateral and 

thickness/perpendicular shrinkage. Thickness shrinkage occurs at a greater level than lateral 
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shrinkage. It permits film perforation and results in completely open microstructure. On the 

other hand, lateral shrinkage is responsible for film loosening from the mold, thus facilitating 

its release.  

 

Figure 3. SEM images of HPBI microsieve with different skin layer thicknesses: A) P-25µm 

surface mold side; B) P-25µm surface air side; C) P-3µm cross-section; D) P-5µm cross- 

section; E) P-15µm cross-section; F) P-25µm cross-section. 
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These shrinkages yielded microsieves with perforated macropores of slightly different size 

compared to the pillars diameters of the mold34. Figure 3C-F reveal that skin layer thickness 

decreased with decreasing cd and the pillars did perforate through the whole film thickness 

(Figure 3C and 3D) at the minimum applied cd, i.e. 3 and 5 µm, respectively. SEM 

observations of both P-15µm and P-25µm microsieves (Figure 3E and F) evidenced 

perforated macropores with similar dimensions (height ~19 µm and periodicity ~15 µm) for 

both samples with a skin layer thickness of ~11 and ~21 µm, respectively. 

3.2 Pore filling –PIL uptake 

Due to its  high proton conductivity, low water uptake values and high thermal stability7, the 

monomeric ionic liquid (MIL) 1-H-3-vinylimidazolium bis(trifluoromethanesulfonyl)imide 

has been selected as a precursor for the preparation of PIL-HPBI composite membranes. 

Reported contact angle value for PBI films40 (26° ± 0.13) makes the MIL an appropriate 

wetting liquid for efficient pore filling. The MIL viscosity was 14.3 mPa at 50 °C and 8.6 

mPa at 100 °C40. Therefore, the infiltration process was conducted at 100 °C for ensuring 

complete pore filling.  

Table 3 summarizes the list of prepared PIL-HPBI polymer electrolyte membranes (PEMs) 

with and without any cross-linker (CL). The nomenclature adopted for the electrolyte 

membrane description includes both the HPBI microsieve code and the CL percentage in the 

MIL solution. Thus, P-25µm-0%CL and P-15µm-0%CL membranes were prepared by 

introduction of MIL into P-25µm and P-15µm microsieves respectively without any cross-

linker. On the other hand, P-25µm-0.2%CL, P-15µm-0.2%CL and  P-25µm-0.5%CL, P-

15µm-0.5%CL and P-25µm-1%CL, P-15µm-1%CL membranes were based on MIL with 0.2, 

0.5 and 1.0 mol % CL respectively. In order to evaluate the influence  PBI pore architecture 

on PIL uptake and conduction properties, PIL samples supported on randomly porous PBI 
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(PIL/RPBI-1%CL) membranes and on dense PBI microsieve (PIL/SPBI-1%CL) were 

separately prepared according to our previous works7, 40.  

Table 3. Main characteristics of the PEMS prepared for this work 

PEM code  
Thickness z 

(µm) 

CL content 

(mol %) 

PIL content 

(wt %) 

   
Theoretical1  Exp2 TGA 

P-25µm-PA 45.1±1 - - 3103  

P-25µm-0%CL 45.6±1 0 42.7 63.3 65 

P-25µm-0.2%CL 43.5±1 0.2 45.0 59.4 65 

P-25µm-0.5%CL 44.1± 1 0.5 45.2 54.6 46 

P-25µm-1%CL 45.1±1 1.0 47.5 49.5 43 

P-15µm-0%CL 32.5±1 0 43.8 67.4 - 

P-15µm-0.2%CL 33.1±1 0.2 43.4 59.6 - 

P-15µm-0.5%CL 34.2±1 0.5 47.5 49.7 - 

P-15µm-1%CL 34.0±1 1.0 47.2 46.2 - 

PIL/SPBI-1%CL4 24.0±1 1.0 55.4 58.5 59.3 

PIL/RPBI-1%CL5 120.0±3 1.0 82.5 86.5 78.6 

1theoretical value based on PIL density and membrane porosity; ²experimental value based 
on gravimetry measurements; ³PA content in wt.% of PA, equivalent to a 9.5 doping level; 
4Data from 40; 5Data from 7. 
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Finally, in order to assess the electrochemical performance of PIL-PBI PEMs, a phosphoric 

acid (PA) doped P-25µm membrane (denoted as P-25µm-PA) was prepared by HPBI 

immersion in 11 M phosphoric acid solution for 24h at 80 °C, and was also studied. Table 3 

shows that the PIL uptake of PEMs seems to depend on the PBI support architecture for 

values in the range 46 - 87 %.  When considering P-15µm and P-25µm microsieves, the 

experimental PIL content values (based on gravimetry and TGA measurements-if applicable) 

were always higher than theoretical values with the exception of 1%CL samples.  

This phenomenon was probably caused by difficulty in wiping the excess PIL from the 

membrane surface. It has been confirmed that the amount of PIL uptake into the HPBI 

microsieves after the crosslinking procedure is lower than in the absence of any CL. This 

effect is mainly attributed to the restriction of relatively high viscous MIL+CL mixture 

during its infiltration into the intrinsic porosity of the HPBI supports. In fact, this intrinsic 

porosity of the support is 4.7-5.2 folds higher than its nominal macroporosity, i.e. 7.4 vol% 

(see Table 2).  

SEM analysis of PIL-HPBI PEMs is displayed in Figure 4. The key factor for PEMs 

performance relies on both uniform and complete filling of HPBI pores with PIL. The SEM 

images of PIL-HPBI PEMs prepared with and without any CL are shown in Figures 4A and 

4B, respectively. In particular, the indistinguishable boundary layer between the PIL and the 

walls of the perforated porous HPBI microsieve has been observed. Although an excess of 

the PIL is noticed on the surface (P-25µm-0%CL, Figure 4A), it correlates well with the PIL 

loadings listed in Table 3. The entire and uniform filling of HPBI pores with PIL without any 

detactable cracks or defects is clearly evidenced in Figure 4C. 

ATR-FTIR spectra have been used to corroborate the successful polymerization of MIL into 

the support and to explore any possible interaction between the PIL and the PBI microsieves. 
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Accordingly, the spectra of pure MIL, PIL, HPBI, and PIL-HPBI have been recorded (Figure 

5). The presence of vinyl group in the MIL was observed in the region 1665-1630 cm-1 

assigned to the stretching vibration of in-plane CH=CH2 bending (Figure 5A). The absence of 

the characteristic peaks these vinyl monomers in PIL and PIL-HPBI confirms successful 

polymerization. The degree of MIL conversion to PIL was above 97% after 2 h of UV light 

exposure in good agreement with our previous studies40. 
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Figure 4. SEM images of HPBI microsieves after pore filling: A) P-25µm-0%CL; B) P-

25µm-1%CL at high magnification (500x); and C) P-25µm-0%CL at low magnification 

(100x). 

The intense peaks between 1400 and 1000 cm-1 (Figure 5A), characteristics for O=S=O and 

S-N-S vibration modes in bis( trifluoromethanesulfonyl)imide [TFSI] anion40-41, remain 

unaltered for both PIL and PIL-HPBI samples. On the contrary, the broad band centred at 

1608 cm-1 corresponding to aromatic C=C and C=N stretching modes, and the peak at 1539 

cm-1, resulting from in-plane ring vibrations of substituted benzimidazole (Figure 5A), are 

clearly diminished for the PIL-HPBI composite. The very broad band in the region 3700-

2400 cm-1 is attributed to the free N-H stretching and to N-H…H, and H2O...H hydrogen bonds 

interactions (see Figure 5B). These distinctive features, although notably less intense due to 

the hydrophobic nature of the PIL, are also depicted on the PIL-HPBI spectrum. The peak 

centered at 3059 cm−1, assigned to the stretching modes of aromatics CH groups and clearly 

observed for HPBI sample, is notably suppressed for PIL-HPBI. These observations provide 

evidence on the interactions between the benzimidazole rings of PBI and the poly-cationic 

chains. 
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Figure 5. ATR-FTIR of PIL-HPBI composite membranes versus MIL, PIL and PBI 

counterparts: (A) 1800 - 1000 cm-1 region; (B) 4000 - 2000 cm-1 region. 

 
3.3 Thermal and mechanical stability of PIL-HPBI membranes 

An important design criterion for HT- PEMs is their thermal stability. Figure 6 shows the 

TGA and DTG thermograms of both pure PIL and composite PIL-HPBI membranes. The 

first weight loss, registered at temperatures below 200 °C corresponds to both residual water 

and traces of the photoinitiator7 (4.5 to 8.9 wt %). The pure PIL decomposition is centred at 

around 405 °C (weight loss between 315 to 450 °C). On the other hand, the decomposition of 

PIL inside the porous HPBI matrix takes place within a wider temperature range, i.e. 320 - 

540 °C. It can be observed that the onset temperature for decomposition is also shifted to 

higher values for cross-linked membranes (particularly with 0.5 and 1%CL). In addition, a 

distinctive shoulder at temperatures above 440 °C, and up to 510 °C is observed for all 
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composite samples, whatever the CL content. This behaviour is attributed to hydrogen 

bonding interactions between PIL and the confining PBI matrix, already evidenced by FTIR 

(Figure 5). In general, the obtained thermograms are in good agreement with those described 

in the literature for PEMs containing PBI and IL/PIL7, 9-10, 42. All the composite PIL-HPBI 

membranes are stable up to 300 °C, which is far above the operating temperature for HT 

PEMFCs.  

 

 

Figure 6. A) TGA and B) DTG thermograms of PIL based membranes (pure PIL behaviour 

also represented for comparison purposes). 

The mechanical properties of the composite PIL-HPBI membranes were measured at room 

conditions, i.e. ambient RH and 25 °C (see Table 4). As essential requirements for practical 

operation of PEM rely on their mechanical stability, both high storage modulus and low 

swelling values are pursued43. Thus, the present work aims to improve the dimensional 

stability issues related to PIL-based membranes by using HPBI microsieves as structural 

supports. The pristine HPBI microsieve, i.e P-25µm sample, appears quite rigid with Young’s 

modulus and tensile stress about 0.2 ±0.021 GPa and 0.9±0.7 MPa, respectively. However, 

both parameters are notably improved upon in situ polymerization of ionic liquid moieties. 

Thus, the evaluated Young’s modulus of P-25µm-0%CL was 0.9 ± 0.04 GPa, which is about 
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more than 4 folds higher than the reported values for pure PIL7, 17. Furthermore, the 

mechanical strength of composite PIL-HPBI membranes increased moderately (77% in 

Young modulus and 112% in tensile stress) when cross-linking the polycationic network. The 

strain-stress curves, see Figure S4 of the supporting information, show that all the PIL−SPBI 

membranes exhibited a glassy nature.  

Among the tested samples, P-25µm-1%CL membrane presented the maximum Young 

modulus and tensile stress values (1.6 ± 0.02 GPa and 5.3 ± 0.5 MPa, respectively). These 

values are 8 times higher in Young modulus and more than 4 times higher in tensile stress 

than those for PIL supported on randomly porous PBI (85% in porosity) 7, denoted as 

PIL/RPBI-1%CL. These values are also clearly superior to the characteristic values for acid-

doped PBI42 and Nafion11544 membranes. Above all, the mechanical behaviour of P-25µm-

1%CL sample was clearly outstanding during handling and assembly of the electrochemical 

cell. 

 

 

 

 

 

 

 

 

Table 4. Mechanical properties of the PEMs prepared for this work 
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PEM code 
Young Modulus Tensile Stress 

(GPa) (MPa) 

P-25µm-0%CL 0.9 ± 0.04 2.5 ± 0.5 

P-25µm-0.2%CL 1.2 ±0.01 3.4  ± 0.3 

P-25µm-0.5%CL 1.4 ± 0.07 4.1 ± 0.8 

P-25µm-1%CL 1.6 ± 0.02 5.3 ± 0.5 

PIL/RPBI-1%CL 0.19±0.09 1.21±0.03 

PIL* 0.21±0.03 - 

Dense PBI** 0.081 9.4 

P-25µm*** 0.2 ±0.02 0.9±0.7 

*Data from7; **Data from dense PBI membrane after H3PO4 doping42;  
*** Pristine HPBI microsieve as reference. 
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3.4 Electrochemical performance of PIL-HPBI electrolytes 

3.4.1 Crosslinking effect 

The proton conductivity measured for all the composite PIL-HPBI membranes as a function 

of temperature is presented in Figure 7A. Measurements performed for the pristine HPBI 

microsieve under anhydrous conditions confirmed its negligible conductivity, i.e. 0.73 

mS∙cm-1 at 150 °C. As can be seen, the proton conductivity increases with temperature. This 

phenomenon is associated with the viscosity reduction of the poly cation (poly[1-(3H-

imidazolium)ethylene)9, 45. The proton conductivity of P-25µm-0%CL membranes increases 

from 22.2 mS∙cm-1 to 69.6 mS∙cm-1 when temperature increases from of 70 °C to 150 °C, 

respectively. These values are 5-6 times higher than those registered for phosphoric acid 

doped HPBI membrane (σ = 4.3 mS∙cm-1 to 13.2 mS∙cm-1 in the same temperature range). In 

addition, it has been reported that phosphoric acid-doping diminishes the mechanical strength 

of PBI46-49. Hence, prefilling HPBI supports with MIL followed by its in-situ polymerization 

enables the synthesis of proton conducting phosphoric acid-free electrolyte membrane 

operating at 150 °C under anhydrous conditions.  

An increased amount of CL initiates a significant decrease in the proton conductivity. For the 

P-25µm-0.2%CL membrane, the maximum proton conductivity at 150 °C was 61.9 mS∙cm-1; 

whereas at the same temperature, P-25µm-0.5%CL and P-25µm-1%CL membranes exhibited 

proton conductivities values limited at 54.7 mS∙cm-1 and 47.3 mS∙cm-1, respectively. These 

results could be explained by the effect of more a pronounced cross-linking which results in 

restrict chain mobility and thus lower PEM proton-conduction performance7, 50-51. Moreover, 

the cross-linker applied, i.e. divinylbenzene, is weak electrochemical in nature. 

For the sake of further investigation of the proton conduction properties, activation energy 

(Ea) for proton transport was evaluated by using Arrhenius type dependence (see Figure 7.B 
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and Table S1 of the supporting information). As expected, due to the loss in long-range 

segmental motion, Ea slightly increases with the % of cross-linker ranging the values from 

17.1 kJ·mol−1 for P-25µm-0%CL up to 21.8 kJ·mol−1 for P-25µm-1%CL. These values are 

also comparable with those values reported for ionic liquid and PBI blends9, 42, 52.   

Some replica conductivity measurements were also performed for both heating (from 70 to  

150 °C) and cooling (from 150 to 70 °C) cycles in order to clarify whether any water 

adsorption influenced the conductivity of the PEMs53. It has been confirmed (see Figure S5 

of the supporting information) that conduction performance shows a thermal reversibility. 
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Figure 7. Conductivity measurements for PIL-HPBI membranes as a function of CL content 

(HPBI-PA and pure PBI are included for the comparison): A) conduction characteristics; B) 

Arrhenius type plot. 

 

 



 
  28 

A preliminary assessment on endurance was performed by keeping the PIL-HPBI membranes 

at 150°C for up to 50 hours (see Figure S6 of the supporting information). In general, all the 

composite membranes showed performance decay with time on stream; however the effect 

was more pronounced over non cross-linked samples. The maximum decline in conductivity, 

~10.5%, was registered for P-25µm-0%CL; whereas, for P-25µm-1%CL the decrease was 

only 3.4%. Similar tendency was observed at 200°C, i.e. 4.1% decay for P-25µm-1%CL. The 

authors hypothesized that such conductivity decrease is related to the rearrangement of the 

pure PIL skin layer provoked at higher temperatures. Nevertheless, the PIL-HPBI membrane 

surface revealed unaffected after the durability tests as no cracks or defects were detected 

visually (see Figure S7 of the supporting information). 

3.4.2 Influence of skin layer thickness  

For a better insight on the proton transport controlling step through PIL immobilized on 

asymmetric HPBI microsieves, the proton conductivities of PIL-HPBI obtained from P-15µm 

microsieves, with 11 µm of skin layer, were also evaluated (see Figure 8). As evidenced, 

proton conductivity increases with temperature and is also higher for membranes prepared 

without any CL.  The same trend was observed for the thicker P-25 µm derived membranes.  

As shown in Figure 8.A, for the conductivity values of PIL-HPBI membranes, for a given CL 

content, decrease when the skin layer thickness increases. At 150 °C, the proton conductivity 

of the P-15µm-0%CL membrane (73.5 mS∙cm-1) is about 4 mS∙cm-1 higher the value 

measured for the P-25µm-0%CL membranes with 21 µm thick skin layer. These 

experimental results could be correlated to the PIL content in the electrolyte membranes: 

67.4% for P-15µm-0%CL vs. 63.3% P-25µm-0%CL. 

However, it is well known that the overall performance of composite electrolytes is strongly 

affected not only by the content but also by the distribution of the proton conducting phase 
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within the membrane. Thus, for a better understanding, the activation energy for proton 

transport was also evaluated (see Figure 8.B and Table S1 of the supporting information). 

Whatever the skin layer thickness of the HPBI microsieve support, the obtained Ea values are 

rather similar. In the case of P-15µm based membranes, the Ea values are 16.8 and 20.6 

kJ/mol for P-15µm-0%CL and P-15µm-1%CL respectively; thus rather similar to those 

measured for P-25µm derived membranes (17.1 kJ/mol for P-25µm-0%CL and 21.8 kJ/mol 

for P-25µm-1%CL). 
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Figure 8. Effect of skin layer thickness on the proton conduction performance of PIL-HPBI 

membranes with 0% and 1% CL content: A) conductivity values; B) Arrhenius type plot. 

Based on the above Ea analysis and considering the membrane asymmetry (see Figure 2 and 

Figure 3), the hypothesis that the transport of protons through the skin layer is the controlling 
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step seems plausible. This assumption is also supported by the identical intrinsic porosity of 

all the HPBI microsieves listed in Table 2 (see SEM cross-section views in Figures 3.D and 

3.E). Thus, the PEM membranes prepared from P-25µm microsieves, with 21 µm thick skin 

layer, lead to slightly lower conductivity values at the expense of improved mechanical 

properties. According to the above results, the optimal PIL-HPBI formulation as trade-off 

between proton transport and mechanical resistance corresponds to P-25µm−1%CL.  

3.5 Effect of the membrane architecture: comparison with randomly and straight 

porous PBI supports  

Different approaches have been attempted by our group 7, 40 to fabricate PIL-based electrolyte 

membranes under anhydrous conditions and without any mineral acids while maintaining the 

mechanical resistance. Our rationale is mainly focused on the selection of the PBI container 

with adequate pore architecture to improve both the proton transport and the dimensional 

stability at elevated temperatures.  

In this work, the influence of PBI architecture on proton conductivity has been 

comprehensively examined for the poly[1-(3H-

imidazolium)ethylene]bis(trifluoromethanesulfonyl)imide based electrolytes with 1% CL 

content. The Nyquist plots of all the samples exhibited a compressed arc in the high-

frequency region and an inclined straight line indicating that an ion diffusion process at the 

electrode−electrolyte interface plays an important role (see Figure S8 of the supporting 

information). 

The conduction properties as a function of temperature in the range 70-200 °C, are shown in 

Figure 9.A for three different PBI supports under anhydrous conditions. These supports are 

the followings: the herein fully studied hierarchical P-25µm microsieve (HPBI), a dense PBI 

microsieve 40 (SPBI) having straight pores connecting both sides (17 μm in diameter, 24 µm 
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thick and 36% porosity), and a randomly porous PBI support (RPBI) having pores in the sub-

micrometric range (120 µm thick and 68% in porosity). The derived electrolyte membranes 

are denoted as PIL-HPBI-1%CL, PIL-SPBI-1%CL and PIL-RPBI-1%CL respectively. 

 

 

PIL-SPBI 

 

 

 

 

PIL-HPBI 

 

 

PIL-RPBI 

Figure 9. Influence of the PBI support architecture on the conduction performance of PIL-

PBI based membranes prepared with 1% cross-linker:A) conductivity values; B) Arrhenius 

type plot. 
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Among the tested samples, PIL-RPBI-1%CL electrolyte membrane is most attractive with 

conductivity as high as 140 mS∙cm-1. This outperforming behaviour is not only attributed to 

the high pore volume of the support, providing PIL uptake values up to 86.5 wt % but also to 

the relevant connectivity of its channels formed during the phase inversion process. 

Unfortunately this architecture does not provide enough mechanical strength as required for 

practical operation. 

On the other hand, the conductivity values for PIL-HPBI-1%CL (previously referred as P-

25µm-1%CL) increased from 47 to 85 mS∙cm-1 as the temperature increased from 150 to 200 

°C. Compared to perforated dense microsieves, i.e. PIL-SPBI-1%CL with 53 mS∙cm-1 at 200 

°C, the proton transport is faster for hierarchical microsieves in spite of lower PIL amount. 

This result is attributed both to the higher surface area provided by hierarchical microsieves 

and the porous network connectivity at the straight/intrinsic bulk porosity interface (see 

graphical abstract). 

Thus, the HPBI- architecture leads to an intermediate behaviour in terms of conduction 

performance; but it is greatly superior in terms of mechanical properties. Overall, such PIL-

HPBI electrolyte membranes retain the advantageous features of both as higher and well-

connected PIL loadings are achievable without sacrificing the mechanical strength. 

The detailed analysis of the apparent Arrhenius-type activation energies for the three different 

PBI supports is presented in Figure 9.B. The Ea for proton transport via PIL moieties 

embedded in HPBI support is the highest 20.2 kJ/mol, followed by SPBI and RPBI matrix 

with 13.4 kJ/mol and 12.1 kJ/mol respectively. This finding corroborates our hypothesis 

suggesting that proton transport through the intrinsic porosity of the skin layer as controlling 

step for conduction (see section 3.4.2).  
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In order to get a further insight on pore morphology, the surface topology of HPBI supports 

was examined. AFM 3D topography of both HPBI and RPBI supports (used as reference) are 

compared in Figure 10 (see also Figure S9 of the supporting information). The evaluated 

roughness values, in the range of a few tens of nanometers, are summarized in Table 5. From 

these results, it can be concluded that HPBI and RPBI supports exhibit similar surface 

topology on their both sides. 

 

Figure 10. 3D AFM surface images of HPBI-air side (A) and RPBI air side (B). 

The microstructure of HPBI and RPBI supports were also analysed by TEM for a proper 

assessment on their pore connectivity. Images of the cross-section structures are shown in 

Figure 11 and Figure 12 respectively. As observed, liquid induced phase separation created 

small pores both at the air side and mold side surfaces; the sizes of these pores are within the 

roughness values estimated by AFM, i.e. below 50 nm. 
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Table 5. Surface topology of HPBI and RPBI supports, measured by AFM. 

Sample Average roughness (Ra) 

(nm) 

Square mean roughness 

(RMS) (nm) 

HPBI-Top (Air side) 20.3 25.7 

HPBI-Bottom (Mold side) 50.5 67.4 

RPBI-Top (Air side) 45.3 55.6 

RPBI-Bottom (Glass side) 45.8 56.5 

 

 



 
  36 

Figure 11. TEM images of the cross-section of HPBI support: (A) mold-side (bottom), (B) 

straight-intrinsic porosity interface, (C) Intrinsic porosity of the skin layer, (D) air side (top). 

 

Figure 12. TEM images of the cross-section of RPBI support: (A) glass side (bottom), (B) 

Middle part, (C) air side (top), (D) air side at higher magnification. 

TEM observations reveal that the intrinsic pores of both HPBI and RPBI polymeric matrix 

are completely different in size and morphology, supporting the measured Ea values 

previously discussed (see Figure 9.B). A highly porous structure with closed-cell intrinsic 

pores with sizes between 0.2 µm and 2.0 µm (preferentially located near the air side, see 

Figure 12 C-D) is formed during phase inversion of RPBI 7. The conduction pattern on PIL 

channels for RPBI/PIL-1%CL is almost unaffected by the substrate wall−PIL interactions. In 

Air side 
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fact, the registered Ea values resembles those previously reported for unsupported PIL-

1%CL, i.e. 12.3 kJ/mol 40. 

Particularly remarkable is the porous structure of the straight macropore wall surface in the 

HPBI support (see Figure 11. A-B). Over this area, well-connected pores at the straight 

macropore/intrinsic porosity interface are clearly distinguished. In addition, worm-shape 

pores below 0.2 µm in size are predominant along the whole thickness (see Figure 11. A-D). 

Unlike previously, the interactions of PIL molecules with the walls of the confining intrinsic 

PBI pores are not negligible. These pore-wall-fluid interactions anticipated by FTIR analyses 

(see section 3.2) slow down the proton transport dynamics and subsequently provokes an 

increase of Ea.  

4. CONCLUSIONS 

This work presents a feasible strategy to construct hierarchical PIL channels into a PBI 

matrix. Low- cost outperforming PEMs for prolonged operation at temperatures up to 200 °C 

under anhydrous conditions and in absence of mineral acids have been successfully 

developed. These results pave the way for the future development of high temperature 

flexible electrolytes for electrochemical devices. 
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