
electronics

Article

A Multichannel FRA-Based Impedance
Spectrometry Analyzer Based on a Low-Cost
Multicore Microcontroller

Arturo Sanchez-Gonzalez, Nicolas Medrano * , Belen Calvo and Pedro A. Martinez

Group of Electronic Design, Aragon Institute for Engineering Research, University of Zaragoza, 50009 Zaragoza,
Spain; asgonzalez@unizar.es (A.S.-G.); becalvo@unizar.es (B.C.); pemar2@unizar.es (P.A.M.)
* Correspondence: nmedrano@unizar.es; Tel.: +34-876-553-358

Received: 9 November 2018; Accepted: 21 December 2018; Published: 1 January 2019
����������
�������

Abstract: Impedance spectrometry (IS) is a characterization technique in which a voltage or current
signal is applied to a sample under test to measure its electrical behavior over a determined frequency
range, obtaining its complex characteristic impedance. Frequency Response Analyzer (FRA) is an
IS technique based on Phase Sensitive Detection (PSD) to extract the real and imaginary response
of the sample at each input signal, which presents advantages compared to FFT-based (Fast Fourier
Transform) algorithms in terms of complexity and speed. Parallelization of this technique has
proven pivotal in multi-sample characterization, reducing the instrumentation size and speeding
up analysis processes in, e.g., biotechnological or chemical applications. This work presents a
multichannel FRA-based IS system developed on a low-cost multicore microcontroller platform
which both generates the required excitation signals and acquires and processes the output sensor
data with a minimum number of external passive components, providing accurate impedance
measurements. With a suitable configuration, the use of this multicore solution allows characterizing
several impedance samples in parallel, reducing the measurement time. In addition, the proposed
architecture is easily scalable.

Keywords: electrochemical impedance spectroscopy; FRA; multichannel acquisition; impedance
spectrometry; microcontroller

1. Introduction

Electrochemical impedance spectroscopy (EIS), in which a sinusoidal signal is applied to a sample
under test to evaluate in a determined frequency range its complex impedance—typically modeled
as a Randles cell [1]—is a powerful sensing technique that has experienced significant development
over the last years due to its broad range of applications. These span from the biotechnological field
(rapid detection of foodborne pathogenic bacteria, detection and enumeration of E. coli bacteria in
milk samples, real-time detection of milk adulteration, food control, antibiotic susceptibility testing
of E. coli and characterization of cellular dielectric properties for cell health evaluation [2–7]), to the
characterization of materials (microstructures, dielectric materials, corrosion evaluation, [8–11]), as well
as electrical circuit testing and characterization of electrical systems, batteries, and photovoltaic
cells [8,12,13]. Unlike other electrochemical techniques, such as potentiometric and amperometric
sensing (based on DC voltage and current excitation, respectively [14]), the characterization of a
sample by its impedance changes over frequency requires a small stimulus signal, reducing the risk of
sample damaging, which is a key point in biological measurement and characterization applications.
Information can be then recovered using different readout techniques, being the Fast Fourier Transform
(FFT) and the Frequency Response Analyzer (FRA) the two most commonly used. The latter one is
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based on synchronous demodulation, that is, it relies on phase sensitive detection (PSD) or quadrature
modulators to extract the real and imaginary response of the sensor at each input signal fin while noise
signals at other frequencies are rejected (Figure 1), presenting advantages compared to FFT algorithms
in terms of complexity and speed [15,16]. Thus, the FRA-EIS is a more suitable choice to accomplish
an autonomous low-cost real-time multichannel impedance spectroscopy analyzer.
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system block diagram.

In this attempt, while electrochemical transducers take advantage of Complementary
Metal-Oxide-Semiconductor (CMOS) processes to implement the required Micro-Electro-Mechanical
Systems (MEMS [17]), the rest of components that conform the data acquisition chain (signal
stimuli generators, conditioning, pre-processing and digitization electronics) are still bulky benchtop
instruments, making EIS almost exclusively a measurement technique for biochemical, biological, or
quality control laboratories, but hindering its use closer to the sampling sources, as milk farms, in food
production chains or portable laboratories for on-site tests.

Recent publications in the scientific and technical literature are reporting EIS systems partially
implemented using CMOS technologies by addressing specific low-power low-size design techniques
to take advantage of the features that miniaturization can provide to the system in terms of portability
and high parallelism in the measurement processes [18–20]. These cases succeed in the integration of
competitive read-out channels, but the generated real/imaginary analog data must be finally digitized
to be processed by a digital processing unit (a microcontroller, a digital signal processor or an external
computer), while the generation of the required excitation and control signals are usually assigned
either to external resources (commercial waveform generators that provide flexibility in exchange of
large size and high power consumption, not being compatible with portability), or small size custom
integrated oscillators [21], with exhibit frequency tuning and linearity limitations, especially at high
frequencies. Hence, although being fundamental components, both the generation and digitization
blocks are not usually considered in the power consumption estimation of the EIS system, thus giving
partial information of the real energy required by a complete measurement unit.

In order to reduce electronics complexity, alternative EIS approaches are based on the direct
transform of impedance to digital values using impedance-to-digital or dual-slope multiplying ADC
(DS-MADC) techniques, achieving accuracies below 10 bits [22,23]. With the goal of further reduce
electronics complexity, in order to attain a self-contained low-cost measurement system that renders
a true portability while preserving high recovery performance, this paper proposes the complete
digitalization of the EIS system through a microcontroller-based FRA implementation, applied to
impedance spectroscopy for frequencies in the range of cellular characterization, from 1.1 mHz
to 10 kHz. The proposed system uses the internal resources of a Propeller processor core from
Parallax [24], to both generate the excitation and control signals required in the process, and to map
the read-out and recovery algorithms for the sensed analog signals, so that with minimum additional
passive components, it can recover an impedance value with 12-bit accuracy. In addition, the use
of this low-cost multicore processor allows for parallelization of the actuation and signal recovery,
implementing a multi-channel compact IS instrument on a single microcontroller, able to perform up
to 7 real-time in-situ parallel impedance measurements if driven by the same signal generator, or up 4
completely independent parallel impedance measurements; these values can be further extended by
accordingly extending the number of cores to allow further parallelization.
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This paper is structured as follows: Section 2 describes the proposed FRA-based impedance
analyzer, detailing the implementation and the experimental characterization of both the actuation
and the signal acquisition blocks. Section 3 validates the recovery performance of the proposed IES
system applied to an impedance modeling a bilayer lipid membrane. Finally, Section 4 discusses the
proposed approach.

2. Proposed EIS System

The proposed EIS system relies on the use of a single Parallax Propeller microcontroller,
characterized by working at up to 80 MHz clock frequency. It presents 8 independent cores plus
an additional hub, in charge of controlling the access of each core to the common microcontroller
resources (32 kB Main RAM or 32 kB Main ROM), applying a Round Robin schedule. Each core
features a video generator, a local 2 kB RAM, and two Counter Modules with Phase-Locked Loops
(PLLs) and 32 operation modes (Figure 2). From a software point of view, the microcontroller can
be programmed in C, in its own high-level programming language SPIN, or in low-level Propeller
Assembly Language (PASM). In order to achieve a suitable implementation of a FRA-based EIS system,
optimizing the hardware resources and their access at the rate needed to generate and recover signals
of a reasonable frequency, an integral programming in PASM has been adopted.
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Figure 2. Propeller microcontroller block diagram.

2.1. Signal Generation: Hardware Implementation and Control

Figure 3 shows the block diagram of the signal generator hardware implementation. It is based
on the D modulation technique to achieve an accurate full range (0 V to 3.3 V) quadrature signal
generation needing the minimum number of external passive elements. The first quarter cycle of the
two signals to be generated (sine and cosine, from 0 degree to 89.98 degrees) is stored in the shared
main RAM memory of the processor. Signal points are stored using a 16-bit representation, with a
maximum resolution of 4096 points per quarter. Because the main RAM memory in the processor is
composed of 32-bits length registers, each memory position stores the corresponding sine (16 most
significant bits—MSB of the memory position) and cosine (16 less significant bits—LSB) values, saving
with this choice access time to the global memory and therefore speeding the quadrature signal
generation task.

Each core sequentially accesses these data in the main memory at the microcontroller HUB by
a Round Robin process schedule, which respectively feeds its two independent hardware Counter
Modules, consisting of configurable state machines [25] working up to the maximum 80 MHz clock
frequency. Each counter has an adder and an accumulator, which will be employed to implement the
D modulator based on pulse density modulation (PDM) using the carry bit of the adder as modulated
output. By properly configuring the operation of both counters in the core, the two sinusoidal signals
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with 90◦ phase shift required for an EIS channel can be generated with a single core. An external
passive integrator converts the resultant modulated pulses into a sinusoidal signal.
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More in detail (Figure 3), the PDM sine signal generation is performed by a core in the following
manner: First, the 32-bit values representing the value of the two quadrature signals at each moment
are read consecutively from the main RAM and transferred to the local memory in the selected kernel.
Then, the 16 MSB bits (representing the sine value) are extracted and stored in the access register,
which is in the adder, and then are added to the accumulator. When the adder overflows, the carry
bit changes to 1. The density of 1’s in this output depends on the values that are being added: the
higher the values accumulated, the faster the carry overflows. Thus, the density increases in the range
of the maximum values of the sine function, while it decreases in the minimum values. Finally, the
resulting modulated pulse train is converted into an analog signal by means of a passive second order
low-pass filter (LPF) (Figure 3) consisting of two cascaded RC circuits (R = 2.2 kW, C = 330 pF) with
the same constant time and a factor of 10 in the consecutive R’s and C’s values to reduce the loading
effect. The integration time is selected to keep distortion bounded below 0.75% as design specification,
as will be shown next.

This process is iterated until all the values in the table are traversed. Next, the process is repeated
using the LSB values. These data represent the cosine values in the first quarter of the cycle and,
therefore, the sine values in the second, giving therefore signal continuity. To conclude a complete
sinusoidal cycle, this process is repeated but changing the sign of the data in RAM to represent the
negative half cycle. The cosine generation is performed in a similar manner.

The frequency of the sine/cosine output signal is determined by two different working frequencies:
(i) The frequency of the modulated signal, which corresponds to the frequency of the square signal
whose density varies. In this work, this signal matches the microcontroller clock frequency, which is
set to its maximum value, 80 MHz; (ii) The data generation sampling frequency, that is, the frequency
at which the system picks a sine/cosine value from the Main RAM to be sent to the Adder to provide
a new output signal value. This frequency, in turn, mainly depends on the microcontroller clock
frequency and the number of clock cycles required to load a value into the Adder register from the
RAM, being thus more restrictive. An additional control of the output signal frequency can be achieved
by selecting not all the samples, but one of every n values at the RAM memory, thus reducing the
number of signal points for the generation and therefore reducing the time to generate a signal period.

Taking into account all the aforementioned, the frequency of the sine/cosine output signals fout

can be expressed as

fout = fclk
(A + 1)

214(S + D)
= fsampling

(A + 1)
214 (1)
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being the maximum number of samples per signal period equal to 214 (212 samples/quarter × 4), A is
the number of samples not read between two consecutive readings from the memory, S is the number
of clock cycles required to load a sample to the Adder register, and D is an additional delay that can be
added in each reading memory cycle and that serves to achieve a fine tuning in the value of the output
signal frequency.

2.2. Signal Generation: Experimental Characterization

By using the degrees of freedom shown in Equation (1), with fclk = 80 MHz, S = 65, Arranging
from 1 to 2000 and D ranging from 0 to 232, the frequency can be adjusted to range from 1.1 mHz to
150 kHz in 75 Hz coarse steps (given by parameter A), and fine steps given by D.

Figure 4 shows the PDM signal (carry bit adder pin) provided by the system, when configured
to generate fout = 5 kHz and fout = 150 kHz sinusoidal output, measured by using a Tektronix®

DPO4104 oscilloscope. Figure 5 shows the frequency spectrum for the 150 kHz PDM signal
(S = 65, D = 0). The detail box shows the performance closer to the signal of interest, being the
1.080 MHz peak, corresponding to the ( fsampling − fout) frequency, (fsampling = fclk/(S+D) = 1.23 MHz,
Equation (1)), the most relevant interference source. For signals generated at frequencies below 150
kHz, this

(
fsampling − fout

)
interference peak is kept far away enough to be irrelevant. Therefore,

by properly selecting the cutoff frequency of the output LPF (Figure 3), the following sinusoidal signal
is set to comply with a maximum distortion (THD and SFDR) below 0.75% over all the frequency
range (Figure 6).

Figure 7 shows the generated sine signals within the operating frequency range, for 1 mHz
(Figure 7a) and 5 kHz (Figure 7b). Figure 8 shows their corresponding spectra.

Figure 9 shows the two quadrature signals (sine—yellow and cosine—magenta) after the LPF for
the upper and lower limit frequencies of the proposed generator (150 kHz, Figure 9a and 100 mHz,
Figure 9b). Note that since the counters provide both the carry signal and its negated value, a single
core will give two pairs of quadrature signals, that can be used to characterize in parallel two different
impedance systems, at the same frequency (signals blue and green in Figure 9a). Figure 10 shows the
frequency spectrum for the 150 kHz sine; in this case THD = −42.8 dB, SFDR = 44.6 dB, constituting
the worst case distortion.
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(b) 150 kHz sinusoidal outputs. The 80 MHz pulse density is maximum for the rising and falling slopes
of the sinusoidal signal and it is minimum for the maximum and minimum sinusoidal signal amplitude.
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Digital-to-Analog Converter (DAC) using the same LPF, for (a) 150 kHz, and (b) 100 mHz. Because the
adder provides both the carry and its negated value, a core can provide two quadrature signal pairs
in parallel.
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2.3. Signal Acquisition: Hardware Implementation and Control

The purpose of the signal acquisition stage is to recover the sensor signal to next perform the
synchronous mixer operation rendering the corresponding quadrature outputs. The average of these
values corresponds to the real and imaginary components or, equivalently, the magnitude and phase of
the impedance under test. Note that since the average value of a signal is independent of its frequency,
in all this process the signal sampling rate can be relaxed without loss of information. That is why a
sigma–delta analog to digital conversion (Σ∆-ADC) algorithm has been selected in spite of its low
conversion rate to accomplish a more accurate conversion. In addition, the Σ∆-ADC main building
blocks can be implemented using the internal resources of a single core, requiring minimum additional
external components.

2.3.1. Digitization

Figure 9 shows the block diagram of the Σ∆-ADC. It consists on a Σ∆ modulator (composed by
the integrator, the quantizer and 1-bit Digital-to-Analog Converter DAC blocks) plus a counter module
working as a digital decimation filter [26]. Both the quantizer and the decimation filter have been
implemented using the registers of the two counters available in a core. The qualitative operation
of this system is as follows [27]: the analog input (Figure 11, sensor output signal), through an RC
circuit formed by resistor R1 and capacitor C, provides a voltage value which drives the input of a
D flip-flop. While the voltage level in the capacitor is higher than the bi-stable threshold (assuming
the threshold voltage in the bi-stable is half the digital bias voltage, VDD/2), its output Q remains
′1′ (and Q = ′1′). This Output Q enables the accumulator operation, increasing the value in this
register for each new clock cycle. On the other hand, the output Q conforms a negative feedback
loop to the input capacitor through resistor R f that reduces the voltage at the integrating capacitor.
Once the voltage at input D gets under the threshold value, outputs Q and Q flip their values at the
next clock cycle. The accumulator stops increasing its value, providing a binary value related to the
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number of cycles that the voltage value at the analog input remains greater than the threshold value.
The resolution in which the analog value is represented by the Serial Digital Out depends on the
selected integration time.

In fact, the application of the circuit shown in Figure 11 to time-dependent signals presents some
constrains related to the cutoff frequency of the input low-pass filter, the frequency of the input signal
and the conversion frequency to guarantee a suitable estimation of the input sample. For the sake of
simplicity, let us suppose the sigma-delta modulator works in linear mode (that is, the clock frequency
is much higher than input signal frequency, therefore considering its operation mode as continuous).
Then, the block diagram of the Σ∆ modulator in the S domain is given by the scheme in Figure 12 [26].
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Where vin(s) is the input voltage and vout(s) is the output Q in Figure 11, while N(s) represents
the effect of quantization in the transfer function, which is negligible if linear operation is assumed.
The Σ∆ modulator transfer function is

vout(s)
vin(s)

=
1

1 + s
(2)

and accordingly, the output voltage can be expressed as

vout =
R f

R1

1
1 + 2sR1C

vin + K (3)

where K is proportional to the D flip-flop threshold voltage, VDD/2. Therefore, the output voltage
depends on the fR1C passive filter cutoff frequency and the input signal frequency fin. Thus, an input
signal with a frequency higher than fR1C may result in a loss of accuracy. Besides, the conversion
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frequency fconv must be fast enough to avoid that the capacitor discharge process affects the digitized
value, which would reduce the resolution in bits of the ADC. That is, on the overall it must be satisfied

fin ≤ fR1C ≤ fconv ≈
fclk
2N (4)

being necessary to appropriately select the passive components in the modulator stage as well as the
conversion rate in order to perform a suitable signal digitization in N bits.

To manage the hardware resources to reliably perform the required operations while minimizing
the execution time, a specific code using the microcontroller assembler has been developed. Figure 13
shows the simplified control flowchart describing the signal digitization and data acquisition.
After configuring the corresponding input and output pins and the counter register, first a calibration
process is carried out. This task, which is performed at the system start up, allows determine both the
offset at 0 V in the accumulator and the integration time required to properly acquire the maximum
allowable input voltage, therefore maximizing the dynamic range. For completing the calibration step,
the Analog Input (Figure 11) is connected to 0 V. After the integration time, the value stored in the
accumulator, which ideally should be equal to zero, is the excess offset reading that must be subtracted
from the system readings in normal operation mode. The integration time is adjusted by applying
the maximum voltage to be digitized in the Analog Input. After the integration time, the accumulator
should be filled to the maximum value (2N), keeping the overflow flag equal to zero. Otherwise,
the integration time must be increased/decreased up to reach this condition for a given number N
of bits.
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Figure 13. Σ∆-ADC control flowchart.

Once calibrated, the system temporally saves the value stored in the counter accumulator in a
variable, waits the integration time and reads again the value in the register. The difference between
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both data represents the value of the sensor output signal at this time, which is stored in a memory
address so that data from consecutive instants of time use consecutive memory positions.

2.3.2. Mixing and Averaging

In a Propeller microcontroller, the hardware resources allow digitizing up to two different signals
in parallel per core. To accurately synchronize the mixers operation, the system makes use of a
dedicated core for each impedance measurement according to the following process: one of the
counters is dedicated to digitize the signal arriving from the impedance under study, while the other
counter synchronously digitizes the original sinusoidal excitation signal. The product of these two data
corresponds to the real mixer output. The real component of the impedance under test is then calculated
by averaging the products provided by this branch over a minimum n = 5 periods of the excitation
signal to obtain reliable results over all the operating frequency range. In a single-channel measurement
approach, the quadrature signal, which does not excite the impedance under study (cosine) is
directly read from the hub memory, feeding the corresponding mixer (Imaginary) before its averaging,
thus making unnecessary its digitization, which saves both hardware as computing resources.

2.4. Signal Acquisition: Experimental Characterization

The structure shown in Figure 11 has been implemented for a 12-bit approach. First, the linearity of
the analog-to-digital conversion is verified by applying an incremental DC voltage in the biasing range
of the microcontroller (from 0 to 3.3 V) to the Analog Input of the Σ∆-ADC (Figure 11), and recovering
the output digital values. Figure 14 shows the results, where y axis corresponds to the analog values
represented by the digital words obtained in the conversion, assuming a full scale digitization (that is,
000h represents 0 V and FFFh represents 3.3 V in hexadecimal). It can be seen in this figure that the
ADC conversion presents high linearity, resulting in a gain or slope of 0.65, an offset below 18 mV, and
with a coefficient of determination R2

= 1.0000. The conversion slope can be modified by the feedback

loop through
R f
R1

(Equation (3)), to adjust its value according to the conversion requirements. In this
case, to allow a full sweep in the supply voltage range avoiding saturation in the digitization module
(Figure 11), we kept the output gain < 1 by selecting R f = 100 kΩ and R1 = 155 kΩ. This choice
results in a conservative 0.65 gain, exactly as obtained from the linear fit.Electronics 2018, 7, x FOR PEER REVIEW  16 of 24 
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Figure 15 shows the gain versus frequency characteristic of the proposed ADC configuration,
for 10-bit (red dots) and 12-bit (green dots) output resolution, which presents the typical sinc digital
filter shape, matching with the previous DC characterization. According to this figure, a 12-bit ADC is
selected, to enhance resolution and preserving the frequency of operation up to the 10 kHz range.
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3. Results

The EIS system schematic, considering a two-channel measurement approach, is shown in
Figure 17, and the prototype photograph is shown in Figure 18. In Figure 17, Block (a) corresponds to
the signal generation module, including the digital Counter Module in the corresponding core and
the R-C low-pass filter (R∆ = 2.2 kΩ; C∆ = 330 pF). It is followed by an impedance adapter element
(a simple voltage follower), which allows transferring the generated signal to the cell under test.
For real biological applications, this module can be replaced by voltage or current reduction modules
suited for the target application. The Randles cell representing the impedance sample corresponds
to Block (b). Note that each Randles cell is followed by a transimpedance amplifier (TIA) consisting
on an Operational Amplifier with a feedback resistor Rf2, that converts the current IZ provided by
the biocell into a voltage value VZ = −Rf2IZ for its digitization. Block (c) represents the implemented
Σ∆-ADC -based system that conforms the synchronously digitized impedance extraction; the passive
components values are (R f 1 = 100 kΩ; RΣ∆ = 150 kΩ; RC = 4.7 kΩ; CΣ∆ = 250 pF), where RC + RSD

corresponds to R1 in Figure 11. This configuration allows calibrate the operation of the ADC (Figure 17)
by setting the voltage value in (A) at the required values through the Σ∆ calibration pin without the
need of deactivating the operation of the cell, thus with minimum waste of time.

Application to Impedance Spectroscopy

The system operation as a frequency response analyzer applied to impedance spectroscopy
has been tested using the characteristic impedance of a biological model based on the bilayer lipid
membrane presented in [28,29] (Figure 19). The associated Randles cell is modeled using three
impedances whose values are: Rm = 434 kW, Cm = 580 nF and Cdl = 340 nF (Figure 17). The resistor Rs

represents the impedance associated to the sensing electrodes, which can vary from negligible values
up to a few MW. In this work, an intermediate value of 500 kW has been selected. The TIA active block
in Figure 17, Block (c) is a MAX4231, and resistor Rf2 = 500 kW to accommodate a full analog voltage
input range of 0 to VDD.

For a normalized amplitude excitation signal with operating frequency fin, the corresponding
output biosensor signal VZ is given by

VZ = −
R f2

|Z| sin(ωint + θ) (5)

where Z represents the cell impedance.
The digitized values of the biosensor signal are multiplied in the corresponding microcontroller

core by the respective digital sine and cosine values, and the results are averaged over an integer
number n of signal periods (with n minimum = 5 as pointed in Section 2.3.2), so that:

Re = −
R f2

2|Z|cosθ ˆ Im = −
R f2

2|Z| sinθ (6)

Note that since each digitization at the Σ∆-ADC requires a minimum of 212 clock cycles (for a
12-bit resolution), the two mixing and accumulation cycles are performed in real time by computational
resources in the same core. Thus, impedance magnitude and phase shift can be recovered as

|Z| = −
R f2

2
√

Re2 + Im2
ˆθ = tan−1

(
Im
Re

)
(7)

The impedance characterization has been performed for 18 frequency values in the 100 mHz to
10 kHz range at 12-bit resolution. Since for each of these measurements an acquisition time of at least 5
signal cycles has been guaranteed, a total time of 100 s is required for the complete characterization
over frequency. Figure 20a shows the impedance magnitude recovery performance compared to the
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ideal values, while Figure 20b presents the phase evolution. Figure 21 shows the impedance magnitude
and phase relative error achieved estimating both values.
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4. Discussion

This paper has presented a compact multi-channel FRA-IS instrument that fully relies on a low cost
Propeller multicore microcontroller, accomplishing a complete actuation-detection solution needing
minimum additional external components. The excitation signal for impedance characterization is
generated by a PDM-based generator running on a single core. This module generates up to two pairs
of quadrature signals at a single frequency, so that the number of cells to be characterized at the same
time can be highly extended by using adaptation modules (voltage followers in Figure 14) connected
to the different signal generation ports. In this way, the (bio)impedance characterization processes
can be highly parallelized, as it is demanded by current array-based applications. Signal recovery for
impedance characterization is performed using the rest of available cores in the microcontroller, being
possible to simultaneously acquire up to 7 impedance measurements, one per core. This number can
be proportionally widened by extending the number of microcontrollers where the Σ∆ algorithm is
implemented in the reading process, provided they receive the excitation and sensor output signals.

On the other hand, the proposed architecture allows impedance characterization using different
excitation frequencies for several Randles cells in parallel, just assigning a different generation core
per frequency. In fact, a more general solution could consist on assigning the cores of a Propeller
microcontroller to generate the different frequencies (implementing the corresponding PDM and LPF
per core), while using additional Propeller microcontrollers dedicated to the acquisition and impedance
measurement tasks, implementing the Σ∆-ADC in each of the processor cores.

Therefore, the proposed EIS system constitutes a fully operative flexible and modular solution,
suitable for multi-channel acquisition while complying the features of portability, and with an
enhanced trade-off between low cost and measurement performance compared to similar devices
in the literature. Reviewing the state-of-art, a direct approach relies on the use of the component
AD5933 or the newer ADuCM350, which shown satisfactory results in different applications [4,11],
but performing one measurement process at a time, and at the cost of the high computing power
required to implement the Discrete Fourier Transform (DFT) compared to the FRA technique. Similarly,
comparable alternative low-cost microcontroller-based EIS architectures [30,31] need more complex
external hardware, providing typically worst resolution while covering a similar frequency range and
for a single channel impedance measurement. Finally, Table 1 compares the implemented analyzer
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performances with those of previous multichannel implementations operating at a similar frequency
range. It can be seen that our proposal achieves better resolution over a wider frequency range.

Table 1. Comparative analysis. EIS: Electrochemical impedance spectroscopy.

Characteristic [28] [23] This Work

Technology 0.5 mm 0.13 mm COTS
Supply voltage 3.0 V 1.2 V 3.3 V

Signal Bandwidth 10 mHz to 100 Hz 100 mHz to 10 kHz 1.1 µHz to 10 kHz
Channels 100 16 7/microcontroller

Waveform Generation External R-2R DAC 2nd Order ∆-DAC by PDM

Generator Resolution N/A 8-bit tuning 14-bit coarse tuning +
32-bit fine tuning

Readout Structure Lock-in IDC DS-MADC 1st order Σ∆ADC
Conversion rate 10 kHz 10 kHz 20 kHz

Effective number of bits
(ENOB) 8 bits 9.3 bits 12 bits

THD worst case N/A −44 dB −48.5 dB
EIS max. relative error N/A 8.4% 10%

Therefore, the proposed approach succeeds in reducing instrument dimensions to allow automatic
and in-situ multichannel impedance measurements, while improving the measurement performance
using low-cost commercial components off the shelf (COTS).
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