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Abstract: This article examines the suitability of water supply installations in residential buildings
for the pressure conditions of the main water network, and evaluates the energy saving possibilities
associated with pumping water into homes. It assesses the situation and the options for renovation
in a sample of 151 buildings in the city of Zaragoza (Spain), estimating the savings in electric
power and the possible financial returns that could be obtained. The results show that in half the
buildings, the installations are inadequate and lead to inefficient energy use, which could be avoided
by renovation. However, they also show that in many cases, this type of retrofitting would not be
profitable for the building owners, meaning that technically viable solutions may not necessarily be
financially viable. To mitigate or avoid the energy inefficiency in question, the public sector could
step in by informing and financing support for building owners and regulating in the areas of town
planning and construction.
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1. Introduction

The so-called “water-energy nexus” refers to the interdependency between water and energy,
the world’s two most critical resources. In recent years, this issue has received more and more attention
in the buildings field [1–3]. At a basic level, treating and transporting water requires energy, primarily
electricity, and in many cases, generating energy requires large amounts of water [4]. Given that water
and energy are strategic resources, planning them together is vital to ensure future economic, social,
and political stability, and to avoid unwanted unsustainable scenarios [5]. Energy efficiency is the
most profitable way for society to ensure energy supply and reduce greenhouse gas emissions and
other pollutants, with existing buildings offering the greatest potential for improved efficiency [6,7].
According to the International Energy Agency (IEA), buildings currently account for more than 40% of
primary energy consumption and, if no action is taken to improve energy efficiency, energy demand is
expected to rise by 50% by 2050. Buildings are also responsible for approximately one-third of global
carbon emissions [8,9]. For all these reasons, various institutions, including the IEA itself, the European
Union (EU), and the United Nations have made energy efficiency in buildings a priority on their
political agendas [10–12]. The EU [13] encourages energy building renovations and asks member states
to promote them.

Water supply systems to provide drinking water consume a lot of energy, since it is needed at
each stage of the process during water collection, treatment, and especially transport and distribution
to consumers. Therefore, saving water will certainly result in saving energy. A number of works have
been devoted to analyzing specific issues related to this topic, such as where storage tanks should be
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located [14], energy savings when altering system properties [15], and energy savings linked to water
loss [16,17].

The energy intensity of residential end use is very high relative to other parts of the water supply
cycle [18]. The literature focuses its attention on energy consumption for HVAC (Heating, Ventilation,
and Air Conditioning) because in percentage terms, this consumes the most energy, and renovations
to improve home insulation can produce significant savings [11,19–25]. Other studies analyze how
much energy consumption can be reduced by decreasing household water consumption, whether
this is thanks to water-saving mechanisms, alternative water sources, or changing consumption
patterns [26–29]. A third line of research, less explored than those above, examines the energy used to
treat water for human consumption and to transport it to urban users, and its subsequent treatment
as wastewater [30–32]. Our work on the energy consumption required to raise the level of water in
blocks of residential buildings forms part of this area of research.

Buildings have their own installations to supply water to households. These installations normally
include a connection to the municipal distribution network, the stop tap, different input pipes, various
meters, the internal network of pipes, and often a pressurization system which includes a pump unit
and water tank [33]. The pump unit provides sufficient pressure to every point of use inside the
building, using one or more pumps in series or parallel, which need electricity to work.

Most pressurization systems in buildings are originally installed by the owners to ensure adequate
pressure for the water supply because they are not confident that the municipal network can provide
this unassisted. The problem arises in those cases where the pressure in the municipal network is
enough to supply water to all the households in a building, but the pressurization system is still
working, leading to unnecessary use of power. This is also the case when the pressurization system
is needed only to supply water to the upper floors but is used to pump water to all the homes in the
building. The extent of the problem is not known because there are no statistics or reports about this
situation, either at the national or at the local level.

The purpose of this paper is to establish how widespread this problem is and to try to explain
why the owners continue to run unnecessary installations and pay higher electricity bills. The goal
is to draw useful conclusions for drafting policies which will change this behavior and encourage
the retrofitting of these installations. The most plausible explanations include, in some cases, a lack
of information on the pressure guaranteed by the municipal network, and in others, the high costs
which owners will have to pay to retrofit the installations in their buildings. Thus, in conditions of
perfect information, the decision of whether to retrofit these installations depends on how profitable
the required investment will be. Therefore, energy savings in themselves are a necessary condition,
but not enough in themselves to drive the owner to retrofit.

This article analyzes: (i) the energy-saving potential which would be realized by retrofitting water
supply installations in buildings according to efficiency criteria, and (ii) the financial obstacles to
retrofitting. More specifically, it evaluates the situation of the water supply installations in residential
buildings in the city of Zaragoza (Spain) and the energy-related and financial consequences of
retrofitting them, to make better use of the existing pressure in the city’s general distribution network.
To our current knowledge, there has so far been no analysis of this type in the literature, not even
in exhaustive reviews regarding ways to improve efficiency in water supply systems [34]. Our final
purpose is to provide conclusions which can be useful for the design of public policies intended to
reduce energy consumption in residential buildings.

The rest of the article is organized as follows. Section 2 presents the case study; Sections 3 and 4
show the date and methodology used to calculate the potential energy savings, costs, and benefits
of retrofitting, and how profitable this would be; Section 5 presents the results obtained; and the last
section presents the conclusions of the study and their implications for policy design.
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2. Case Study

Zaragoza is the fifth largest city in Spain by number of inhabitants (661,108 in 2016), with a gross
disposable income per capita of approximately 17,000 euros, an economy specializing in the service
sector, and a large industrial sector [35]. The dominant housing type in Zaragoza, as in other large
towns and cities in Spain, is blocks of flats, usually three to twelve stories high. To ensure the supply
of water at adequate pressure to all floors, many buildings have a pump unit, usually associated with
a storage tank located between the municipal network and the pump unit itself. This tank is usually
atmospheric. That means that the water loses the pressure of the municipal network in the tank and
must be pumped to supply the upper floors. Occasionally, there are pressurized tanks which maintain
the pressure of the mains network, and therefore use less energy to raise the water.

In recent years, efficient water management to ensure sustainable development has been one of
the priority goals of Zaragoza City Council. It has developed regulations to ensure access to services
relating to the total water cycle in its municipality with criteria relating to quality, efficiency, savings,
and environment-friendliness [36]. It has also executed various plans to improve the municipal water
infrastructure and has encouraged lower consumption of potable water in public awareness-raising
campaigns. Concerned that unnecessary pressurization systems and atmospheric tanks could lead to
lower-quality water supplied to homes, losses from leaks, and wasted energy, the City Council has
established new technical characteristics required of water supply systems in new buildings and has
proposed eliminating existing atmospheric tanks. This was the context for the design and execution of
the research project on which this article is based.

3. Data

The research was based on a sample of residential buildings obtained by random sampling,
stratified by area, with proportional allocation. The strata were defined according to the location of
the buildings, establishing 14 different strata depending on the characteristics of town planning and
construction. The samples were extracted from the City Council’s census of buildings, with information
being supplied by the 2012 municipal census, which counted 42,957 buildings. After filtering this
census to eliminate units outside the scope of study—including ruined or empty buildings; industrial,
commercial, and administrative premises; cultural and sports facilities; and buildings outside the
consolidated city—19,371 buildings met the conditions established for study, from which a sample of
151 was extracted. For each building in the main sample, two substitutes were extracted in case of
difficulties in accessing or inspecting the installations.

The inspections to collect all the necessary information related to the characteristics of the
buildings and their installations were performed by technicians of the company Aquagest (the company
that gives services to the City Council of Zaragoza in the integral cycle of the water) over the first
quarter of 2013. Half of the buildings in the sample had operating pump units (50.3%), and 39.1%
had no pump units. The remaining 10.6% had pump units, but they were not in use. Over half the
buildings in the sample (58.3%) did not have water tanks. Among buildings with water tanks, 31.8%
had atmospheric tanks in use, 8.6% had atmospheric tanks not being used, and 1.3% had pressurized
tanks in use. In most of the buildings with water tanks (91.1%), the tank was in a basement. The
distribution of the buildings in the sample by number of floors (not including basements) is shown in
Figure 1.
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Figure 1. Distribution by the height of the buildings in the sample.

The City Council provided information on the pressure of the municipal network in the location
of each building in the sample. This information was used to calculate, for each building, the number
of floors that could have sufficient water pressure from a direct connection to the municipal network,
shown in Figure 2. All the buildings in the sample could use the network pressure for at least some
floors, and in nearly half of them, the pressure could supply the sixth floor or higher.
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Combining the characteristics of installations in the buildings and the network pressure allowed
us to establish building types and to associate them with proposed retrofits designed to minimize
energy consumption, as shown in Table 1. The goal was to establish which buildings could eliminate
the pump unit, which should add a pressurized tank and an adapted pump unit to supply the upper
floors only, and finally, to identify buildings where the current situation would not be improved
by retrofits.
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Table 1. Building types according to the characteristics of their water supply installations and
retrofit options.

Building
Type

Characteristics of the Type
Proposed Retrofit % BuildingsNetwork

Pressure Installations

Type 1
Sufficient

pressure for all
floors

No pump unit
or tank No scope for improvement 39.1

Type 2
Sufficient

pressure for all
floors

Pump unit and
tank not in use No scope for improvement 10.6

Type 3
Sufficient

pressure for all
floors

Pump unit with
or without tank

Eliminate the pump unit and connect
directly to the mains network 15.2

Type 4
Sufficient

pressure for the
lower floors

Pump unit
without tank

Connect lower floors directly to the
network, and retrofit the pump unit to
work with a pressurized tank for the

upper floors

10.6

Type 5
Sufficient

pressure for the
lower floors

Pump unit with
tank

Disconnect the atmospheric tank, connect
lower floors directly to the network, and

retrofit the pump unit to work with a
pressurized tank for the upper floors

24.5

The percentage of buildings in the sample by type is shown in the last column of Table 1 above.
In half of the sample (50.3%), changes could be made which would lower energy consumption. These
buildings are: 15.2% type 3; 10.6% type 4; and 24.5% type 5. There is some relationship between
building type and building age, as can be seen in Table 2.

Table 2. Building distribution by age and type (%).

Building Type < 1960 1961–1970 1971–1980 1981–1990 1991–2000 > 2000

1 71.9 50.0 31.6 15.4 9.5 25.0
2 6.3 4.8 0.0 15.4 19.0 16.7
3 6.3 7.1 15.8 15.4 19.0 37.5
4 12.5 23.8 15.8 0.0 4.8 0.0
5 3.1 14.3 36.8 53.8 47.6 20.8

Total 100 100 100 100 100 100

No. of buildings 32 42 19 13 21 24

Among the oldest buildings (before 1970), type 1 prevails; between 1970 and 2000, it is more
common to find type 5. From then on, almost half of the buildings are type 1 or 2 (they do not need
retrofit); type 5 has decreased, but more than a third are type 3. In short, the percentage of buildings
that require retrofit (type 3 to 5) increased over time until 2000. Since then, the tendency has changed,
but more than half of the buildings still require retrofitting.

4. Methodology

4.1. Calculating Potential Energy Savings

To estimate the energy savings associated with pumping water which could be obtained by
retrofitting the installations in the buildings, the first step is to calculate, for each building, the current
energy consumption in kWh/m3. This depends on the average height the water is raised to in the
building and the operational design of its pump unit. The second step is to multiply this unitary
energy consumption by the building’s water consumption in 2012—information provided by Zaragoza
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City Council from the water meters in homes and businesses—in order to obtain the annual pre-retrofit
energy consumption values. To simplify the calculation, a constant and identical performance of
the present and the alternative pump units was assumed. With this approach, energy savings are
obtained only if the retrofit means reducing the need for pumping water; in other words, if all or
some of the households (on the lower floors) will now be supplied directly from the mains network
rather than via the pump unit. Thus, energy savings after the retrofit are estimated as a percentage
of the previous energy consumption determined by the number of floors which will no longer be
supplied by pumping. If the pump unit is eliminated and the building switches to the mains supply
on all floors, this percentage will be 100%, with the savings obtained equal to the estimated pre-retrofit
energy consumption.

In summary, to achieve any savings, the installations in the buildings must be retrofitted, removing
the atmospheric tank and the pump unit in buildings where all the floors can be supplied using the
existing pressure in the mains network, replacing the atmospheric tank with a pressurized tank and
redesigning the pump unit when only the lower floors can be supplied without pumping.

4.2. Calculating Costs and Benefits

The starting point for financial analysis is identifying and quantifying the private costs and
benefits arising from the retrofits, following the usual cost–benefit analysis methods for investment
projects [37,38]. The calculation of the cost of the reforms is based on the data provided by two
pilot studies carried out for each type (1 to 5) of the building. These pilot studies were made by
technicians and engineers from the company Alfredo Sanjuan, specializing in the design, execution,
and maintenance of water supply installations. These pilot studies provided information on the hours
of work required, the type and amount of plumbing materials needed, and their respective market
prices as of the first quarter of 2013. This information was used to calculate costs per building according
to the building type and the type of retrofit. Table 3 summarizes these costs.

Table 3. Costs per building arising from retrofitting water supply installations by type of building (in
2013 euros).

Building Type Labour Materials

Type 1 - -
Type 2 - -
Type 3 1212.9 801.7
Type 4 12,129.0 13,380.5
Type 5 13,948.4 15,107.7

Returns on retrofitting come from savings on the electricity needed to pump water to the points
of use in each building, and savings on maintenance and repair of pump units in buildings where they
can be eliminated. The energy saved is priced according to the price of electricity and the energy used
to run the pressurized systems. The price of electricity is established by the Ministry of Industry as the
“Rate of Last Resort” (Directorate General for Energy Policy and Mining Resolution of 27 December
2012, establishing the cost of production of electricity and the rates of last resort to be applied from
1 January 2013). The corresponding taxes were added to this price: electricity tax (effectively 5.113%)
plus general value-added tax (VAT) at 21%.

The savings arising from eliminating the need for maintenance and repair of the pump unit, if
removed, were calculated based on the information supplied by companies in the sector on the average
prices of maintenance (once a year) and repairs (every five years). This cost does not depend on the
number of floors of the building. The estimated prices for calculating the returns of retrofitting were,
for electricity, 0.1920 euros/kWh; for repairs, 133.1 euros/year; and for maintenance, 363 euros/year.



Sustainability 2019, 11, 295 7 of 12

4.3. Calculating Profitability

The period during which the investment generates returns is taken to be 20 years, corresponding
to the average lifespan of this type of installation, according to the consulted companies in the sector.
All investment costs are assumed to be produced in the first year. The benefits arising from energy
savings, and from eliminating the need for maintenance and repair on pump units when removed, are
assumed to be obtained annually from the first year and to remain constant in real terms.

Profitability is calculated using the two indicators most commonly found in investment project
valuations: The Net Present Value (NPV) and the Rate of Return (RR). To homogenize the values of the
annual flows for aggregation in the calculated NPV, a 5% discount rate was adopted, as recommended
by the European Commission for countries not receiving Cohesion Funds [38]. The results obtained
for the sample, in terms of energy saved and NPV, were extrapolated to the entire city of Zaragoza
for an approximation of the size of the problem. Extrapolation was done separately for each of the
14 strata into which the city’s buildings were divided to obtain the sample. The extrapolation factor
used was the ratio between the number of buildings in the population and the number of buildings in
the sample in each stratum (this value varies between 111.2–140.1).

5. Results

5.1. Energy Saving

Table 4 shows the energy savings obtained for the buildings in the sample, grouped according
to the building types established above. It also presents the total energy savings for Zaragoza after
extrapolating the results of the sample to the whole city.

The Type 4 and Type 5 buildings in the sample have the greatest potential energy savings, which
can be explained by their greater height, allowing them to make full use of the pressure of the mains
network despite needing to keep the pump unit to supply the top floors. The least energy savings
obtained are in Type 3 buildings because the height which can be supplied with the mains network
pressure is greater than the height of the building, so not all the pressure can be used. The average
energy saving per retrofitted building is 695 kWh/year. In most of the buildings, the savings range
from 100 to 600 kWh/year, although there are cases where over 1000 or even 2000 kWh/year can be
saved, as shown in Figure 3.

Table 4. Energy savings from retrofitting water supply installations in buildings.

Building Type
Sample * City of Zaragoza

kWh/Building/Year kWh/Year TOE **/Year

Type 3 400.9 (228.8) 1,180,406.8 101.5
Type 4 768.0 (627.9) 1,576,976.3 135.6
Type 5 846.2 (516.3) 4,015,976.3 345.3
Total 6,773,337.5 582.4

* Standard deviation in brackets. ** TOE: Tonnes of Oil Equivalent.
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5.2. Financial Profitability

The financial analysis seeks to show the monetary profitability for building owners of retrofitting
water supply installations. Table 5 shows the average NPV obtained for the buildings in the sample,
grouped by type. It also shows the total NPV for Zaragoza as a whole, obtained by extrapolation of
the above results. The NPV is positive in Type 3 buildings and negative in Types 4 and 5 (69.7% of
the buildings which obtain energy savings). The profitability of Type 3 buildings is explained by the
easy retrofit, which simply removes the pumping system. Finally, the lack of profitability in Types 4
and 5 is explained by the high cost of adapting the installations, and because the costs of pump unit
maintenance and repair still apply. The NPV distribution function per building can be seen in Figure 4,
which clearly shows the difference between the results for Type 3 buildings with positive profitability
and the rest.

Table 5. Net Present Value (NPV) of retrofitting water supply installations in buildings (in 2013 euros).

Building Type Sample * City of Zaragoza

Type 3 6819.6 (777.2) 20,079,575.7
Type 4 −6204.2 (4884.9) −12,739,245.2
Type 5 −6275.3 (4218.7) −29,781,914.9
Total −22,441,914.9

* Standard deviation in brackets.Sustainability 2019, 11, 295 8 of 12 
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In discount rate sensitivity analysis, the sign of the results did not change (even when the discount
rate was zero). The calculation of the RR (see Table 6) confirms the stability of the sign of the results,
given that the rate of return on investments in retrofitting installations in Type 3 buildings is positive
and extraordinarily high, while the rate of return on Types 4 and 5 is undeniably negative.

Table 6. The Rate of Return (RR) of retrofitting water supply installations in buildings (%).

Building Type Sample *

Type 3 114.0 (53.0)
Type 4 −9.1 (2.7)
Type 5 −8.3 (2.9)

* Standard deviation in brackets.

6. Conclusions and Policy Implications

This article shows, through analysis of a sample of buildings in the city of Zaragoza (Spain), that
there is a serious problem of water supply installations in residential buildings which do not make
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the best use of the pressure conditions in the municipal network. The main consequence of this is the
unnecessary consumption of electricity to pump water into homes.

Avoiding this waste of energy, estimated at 6,773,337 kWh/year for the city of Zaragoza, would
benefit both the owners of the buildings and society as a whole. However, executing the necessary
retrofits would require owners to invest in the buildings and bear an initial cost, which is not always
profitable for them. The data indicate that 50.3% of the buildings in Zaragoza have inadequate water
installations and therefore consume more energy than necessary. Also, according to the calculations,
retrofitting these installations provides positive returns in some buildings (15.2% of the total) where
the pressure in the municipal network is enough to raise the water to every floor. In buildings where
the network pressure is not enough to reach the upper floors (35.1%), modifying the installation
would save energy, but it would not be financially profitable. In the buildings with positive financial
profitability, the retrofit is extraordinarily profitable (114% RR) and the entire cost of investment can be
recouped in the first year. Despite this, owners are not opting for this type of retrofit.

From an economic viewpoint, the existence of buildings with installations using energy
inefficiently when retrofitting would be profitable for the owners indicates a market failure. The
most probable reason for this is a lack of accurate and accessible information on the characteristics
of the city’s municipal water distribution network and the options it offers for the water supply of
each building. Correcting this failure requires public intervention at the municipal level to provide the
necessary information to the owners of each building showing how many floors could be supplied
directly with the pressure of the municipal network. It would also be very useful to provide information,
based on case studies like those in this article, on the cost of unnecessary installations and the net
benefits of retrofitting. These are examples of interventions which are easy and inexpensive for
municipal governments but highly beneficial for society.

Sometimes the lack of information is exacerbated by a problem of poverty when owners cannot
access the funds required to retrofit the installations. Given the small average investment required
in the type of building where retrofitting is profitable (2014.6 euros), this problem is unlikely in this
case. However, if there should be owners whose income is below the poverty threshold, it would
be advisable to set up a public support programme to help them access funding for the investment.
Apart from such cases, there is no reason for a general public intervention in the form of subsidies to
incentivize these retrofits, given that their private profitability is positive.

In the case of buildings with inefficient installations where retrofitting would not be financially
profitable, the policy of supplying information would not be effective in the short term in convincing
owners to retrofit. In this case, there could be justification for launching a line of financial support if
the authorities consider all the potential social benefits of this type of retrofit, particularly the benefits
of reducing the negative environmental externalities caused by these installations (benefits which
would not be directly enjoyed by the owners). These benefits would include the elimination of water
loss from old, badly maintained atmospheric tanks; the risks to public health of poor maintenance
and cleaning in these tanks; and polluting gas emissions arising from the electricity consumed in
unnecessary pumping.

In any case, both information and funding are crucial when the pump units in each building
reach the end of their lifespan (which will inevitably happen at some point) and the owners have to
decide whether and how to replace them. In these circumstances, if comparing the additional cost
of retrofitting the installation (the difference between the cost of the retrofit and the cost of renewing
the installation) with the benefits, they are very likely to obtain a positive NPV and RR. But if the
information is lacking and the owners are not aware of the problem of inefficient installations or how
they might benefit from a retrofit, they are unlikely to consider this option. The same applies if the
owners cannot access the funding they need for this investment. Therefore, public intervention to
supply information will again be needed, and if applicable, support for access to funding as well.

Meanwhile, to avoid energy-wasting installations being left in place for years to come (at least
until the end of their useful lifespan) due to the high costs of retrofitting, it is vital to design them
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correctly at the construction stage, according to the pressure available in the municipal network, and
using the best technology available. This means that building regulations must establish compulsory
standards for the design of water supply installations in buildings, as Zaragoza’s municipal ordinances
have since 2011 [26]. It is also necessary for municipalities to make the necessary investments to
guarantee the stability of the mains water supply network over both the short and the long term.
Additionally, new urban developments could minimize the power used for pumping water in buildings
through town planning, which would limit the height of buildings according to the pressure of the
mains water network in each area of the city.

To summarize, the results of this case study allow us to draw conclusions of use for policy design
in any city, both for existing buildings and for future construction—in existing buildings, to minimize
inefficiency in energy use; and in new construction, to prevent this inefficiency from happening.
These policies, which fall within the typical scope of responsibility of municipal governments, include
various measures, such as providing information to building owners on the options the municipal
water supply network offers them for retrofitting their water supply systems; providing subsidies to
help pay for retrofits when justified by the positive externalities generated or the poverty of building
owners; adopting compulsory standards for the design of water supply installations in new buildings
to ensure they are suitable for the pressure available in the municipal network; and making the
necessary investments in the municipal network itself to guarantee constant pressure levels in the
water supply.

The possibility of replacing the remaining pumping units with smaller and more efficient ones
has not been considered in this work. For this purpose, the size of the new unit would have to be
calculated for building types 4 and 5. Then, the annual performance of the existing unit would have to
be compared with the annual performance of the new unit. This analysis is beyond the scope of this
project and would be suitable for future research.

Finally, in order to extrapolate the results and find out if there is some room to save energy in
other cities, it would be necessary to analyze the state of the water supply facilities in their building
stock. This is a costly task that would require public funds.
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