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Resumen

El objetivo de esta tesis es el estudio de la entropia de entrelazamiento de Rényi en los
estados estacionarios de cadenas de fermiones sin spin descritas por un Hamiltoniano
cuadratico general con invariancia translacional y posibles acoplos a larga distancia.

Nuestra investigacion se basa en la relacién que existe entre la matriz densidad de los
estados estacionarios y la correspondiente matriz de correlaciones entre dos puntos. Esta
propiedad reduce la complejidad de calcular numéricamente la entropia de entrelazamiento
y permite expresar esta magnitud en términos del determinante del resolvente de la matriz
de correlaciones.

Dado que la cadena es invariante translacional, la matriz de correlaciones es una ma-
triz block Toeplitz. En vista de este hecho, la filosofia que seguimos en esta tesis es la
de aprovecharnos de las propiedades asintoticas de este tipo de determinantes para in-
vestigar la entropia de entrelazamiento de Rényi en el limite termodinamico. Un aspecto
interesante es que los resultados conocidos sobre el comportamiento asintético de los de-
terminantes block Toeplitz no son validos para algunas de las matrices de correlaciones
que consideraremos. Intentando llenar esta laguna, obtenemos algunos resultados origi-
nales sobre el comportamiento asintotico de los determinantes de matrices de Toeplitz y
block Toeplitz.

Estos nuevos resultados combinados con los ya previamente conocidos nos permiten
obtener analiticamente el término dominante en la expansién de la entropia de entrelaza-
miento, tanto para un unico intervalo de puntos o sites contiguos de la cadena como para
subsistemas formados por varios intervalos disjuntos. En particular, descubrimos que los
acoplos de largo alcance dan lugar a nuevas propiedades del comportamiento asintético
de la entropia tales como la apariciéon de un término logaritmico no universal fuera de los
puntos criticos cuando los términos de pairing decaen siguiendo una ley de potencias o
un crecimiento sublogaritmico cuando dichos acoplos decaen logaritmicamente.

El estudio de la entropia de entrelazamiento a través de los determinantes block
Toeplitz también nos ha llevado a descubrir una nueva simetria de la entropia de entrelaza-
miento bajo transformaciones de Mobius que pueden verse como transformaciones de los
acoplos de la teoria. En particular, encontramos que para teorias criticas esta simetria pre-
senta un intrigante paralelismo con las transformaciones conformes en el espacio-tiempo.

La tesis esta organizada de la siguiente manera:

e En el Capitulo [l introducimos el concepto de entrelazamiento, revisando breve-
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mente algunos aspectos historicos asi como su relevancia en diferentes areas de la
Fisica. También definimos la entropia de entrelazamiento de Rényi, examinando sus
propiedades més importantes y sus aplicaciones.

En el Capitulo [2] presentamos los sistemas objeto de nuestra investigacién: cadenas
fermiénicas cuadraticas y homogéneas. Los resolvemos, obteniendo el espectro y los
autoestados del Hamiltoniano. Derivamos la relacion entre la entropia de entrelaza-
miento de Rényi y la matriz de correlaciones entre dos puntos. También calculamos
esta ultima para los estados estacionarios de la cadena.

El Capitulo [3| se centra en cadenas que no tienen acoplos de pairing y, por tanto,
el nimero de particulas en el estado esta bien definido. En este caso, la matriz de
correlaciones es Toeplitz. Aplicamos la conjetura de Fisher-Hartwig para obtener
la expansion asintotica de la entropia de entrelazamiento para un intervalo de la
cadena en un estado estacionario cualquiera. Generalizamos este resultado para
calcular la entropia de entrelazamiento de un fragmento de una escalera fermionica.

En el Capitulo |4 consideramos el caso mas general, en el que la cadena contiene
términos de pairing, y estamos obligados a lidiar con determinantes block Toeplitz.
Tras revisar los principales resultados conocidos sobre el comportamiento asintético
de este tipo de determinantes, estudiamos el caso de simbolos con discontinuidades
de salto, deduciendo su contribucién dominante en el determinante. Aplicamos
estos resultados al calculo de la entropia de entrelazamiento para un intervalo en
el estado fundamental de la cadena. Como ejemplos particulares, realizamos un
analisis detallado de la entropia de entrelazamiento en la cadena de spines XY con
acoplo de Dzyaloshinski-Moriya y en una cadena de Kitaev con acoplos de pairing
de largo alcance.

En el Capitulo 5| estudiamos la simetria de Mobius de la entropia de entrelazamiento
para un unico intervalo. Demostramos que para teorias no criticas con acoplos de
alcance finito la entropia de entrelazamiento de Rényi del estado fundamental es
asintoticamente invariante bajo estas transformaciones. En teorias criticas, encon-
tramos que la entropia no es invariante pero su ley de transformacién puede rela-
cionarse con la de un producto de campos homogéneos insertados en los ceros de
la relacion de dispersion del Hamiltoniano. También extendemos estos resultados a
teorias con acoplos de alcance infinito. Finalmente, aplicamos la simetria de Mobius
en la cadena de spines XY, descubriendo el origen geométrico de algunas dualidades
y relaciones de la entropia de entrelazamiento en este modelo y obteniendo algunas
nuevas.

El Capitulo [] estd dedicado al andlisis de la entropfa de entrelazamiento para sub-
sistemas de varios intervalos de sites disjuntos. Repasamos los resultados que la
Teoria de Campos Conforme predice en este caso. A partir de ellos, conjeturamos
una expresion asintotica para el determinante de una submatriz principal de una
matriz block Toeplitz. Aplicando esta conjetura encontramos la expansién de la en-
tropia de entrelazamiento para varios intervalos disjuntos en un estado estacionario
cualquiera. También extendemos la simetria de Mobius al caso de varios intervalos
y la comparamos con las transformaciones conformes globales en el espacio real.

En el Capitulo [7] exploramos la posibilidad de que la entropia de entrelazamiento
muestre un crecimiento sublogaritmico con la longitud del intervalo en una cadena de
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Kitaev con términos de pairing que decaen logaritmicamente. Para ello, estudiamos
el comportamiento asintotico de determinantes de Toeplitz cuyo simbolo es un caso
intermedio entre aquellos que dan lugar a un limite finito y aquellos que inducen
un crecimiento lineal con el logaritmo de la dimensién. Para este tipo de simbolos
conjeturamos un nuevo comportamiento en el que el logaritmo del determinante
diverge a un ritmo inferior que el logaritmo de la dimension.

e En el Capitulo [8 reunimos y resumimos los principales resultados de la tesis.

También incluimos varios apéndices. En particular, en el Apéndice [A] damos los detalles
sobre los calculos numéricos que hemos realizado para comprobar las conjeturas analiticas
propuestas. El resto de los apéndices tratan sobre algunos puntos que requieren una
discusion mas técnica que no es necesaria para seguir el texto principal.
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Summary

This dissertation is devoted to the study of the Rényi entanglement entropy in the sta-
tionary states of chains of spinless fermions described by general, quadratic, translational
invariant Hamiltonians with possible long-range couplings.

Our investigation is based on the relation that exists between the density matrix of
the stationary states and the two-point correlation matrix. This property reduces the
complexity of computing numerically the entanglement entropy and allows to express it
in terms of the determinant of the resolvent of the correlation matrix.

Due to the translational invariance of the chain, the correlation matrix is a block
Toeplitz matrix. In the light of this fact, the philosophy of the thesis is to take advan-
tage of the asymptotic properties of this kind of determinants to investigate the Rényi
entanglement entropy in the thermodynamic limit. An interesting point is that the known
results about the asymptotic behaviour of block Toeplitz determinants are not valid for
some of the correlation matrices under consideration. We try to fill this gap, obtaining
several original results on the asymptotics of Toeplitz and block Toeplitz determinants.

These new results combined with those previously known allow us to determine ana-
lytically the leading term in the expansion of the entanglement entropy, both for a single
interval of contiguous sites of the chain and for subsystems with disjoint intervals. In
particular, we discover that the long-range interactions give rise to some new properties
for the asymptotic behaviour of the entropy such as the appearance of a non universal
logarithmic term outside the critical points when the pairing couplings decay with a power
law or a sublogarithmic growth when they decay logarithmically.

The study of the entanglement entropy in terms of block Toeplitz determinants also
leads us to discover a new symmetry of the entanglement entropy under Mobius trans-
formations, that can be viewed as transformations in the couplings of the theory. In
particular, we find that, for critical chains, this symmetry shows an intriguing parallelism
with conformal transformations in space-time.

The thesis is organized as follows:

e In Chapter [I, we introduce the notion of entanglement, reviewing briefly some his-
torical aspects as well as its relevance in different areas. We also define the Rényi
entanglement entropy, examining its main properties and applications.

e In Chapter [2] we present the systems that will be the object of our investigation:
quadratic, homogeneous fermionic chains. We solve them, obtaining the spectrum

XV
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and the eigenstates of the Hamiltonian. We derive the relation between the Rényi
entanglement entropy and the two-point correlation matrix. We also calculate the
latter for the stationary states of the chain.

In Chapter [3| we focus on chains that do not have pairing couplings and, therefore,
the number of particles in the state is well-defined. For them, the correlation ma-
trix is Toeplitz. We apply the Fisher-Hartwig conjecture to obtain the asymptotic
expansion of the Rényi entanglement entropy for an interval of the chain in any
stationary state. We generalize this result to compute the entanglement entropy for
a fragment of a fermionic ladder.

In Chapter 4l we consider the full general situation in which the chain contains
pairing couplings and one is forced to deal with block Toeplitz determinants. After
reviewing the main known results on the asymptotics of this kind of determinants,
we study the case of symbols with jump discontinuities, deriving their leading con-
tribution to the determinant. We apply these results to the computation of the
ground state entanglement entropy for an interval. As particular examples, we per-
form an exhaustive analysis of the entanglement entropy in the XY spin chain with
a Dzyaloshinski-Moriya coupling and in a Kitaev chain with long-range pairing.

In Chapter 5] we study the M&bius symmetry of the entanglement entropy for a
single interval. We show that for non critical chains with finite-range coupling the
ground state Rényi entanglement entropy is asymptotically invariant under these
transformations. For critical theories, we find that the entropy is not invariant but
its transformation law can be related to that of a product of homogeneous fields
inserted at the zeros of the dispersion relation of the Hamiltonian. We extend these
results to theories with infinite-range couplings. We apply the Mobius symmetry in
the XY spin chain, uncovering the geometrical origin of some dualities and relations
for the entanglement entropy in this model and obtaining new ones.

Chapter [0] is dedicated to the analysis of the entanglement entropy for subsystems
made up of several disjoint intervals. We recall the results that Conformal Field
Theory predicts in this case. Using them, we conjecture an asymptotic expression
for the determinant of a principal submatrix of a block Toeplitz matrix. We apply
it to obtain the expansion of the entanglement entropy for several disjoint intervals
in any stationary state of the chain. We extend the Mobius symmetry to several
disjoint intervals, comparing it with global conformal transformations in real space.

In Chapter [7, we explore the possibility that the entanglement entropy displays a
sublogarithmic growth with the length of the interval in a Kitaev chain with logarith-
mic decaying pairing. For this purpose, we study the asymptotics of Toeplitz deter-
minants whose symbol is intermediate between those that provide a finite asymptotic
limit and those that induce a linear growth with the logarithm of the dimension. We
conjecture that a new behaviour emerges in which the logarithm of the determinant
diverges at a rate smaller than the logarithm of the dimension.

e In Chapter [§] we collect and summarize the main results of the thesis.

We also include several appendices. In particular, in Appendix [A] we describe the details
about the numerical calculations performed to give support to our analytical conjectures.
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The rest of appendices refer to some points that require a more technical discussion that
is not necessary to follow the main text.
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Chapter 1

Introduction

Quantum Mechanics describes Nature at the most fundamental level. It was born a
century ago to account for some experimental results that Classical Physics could not
explain. So far it has had an outstanding success, from the Standard Model to the tran-
sistor, representing the theoretical paradigm for Physics at small scales. The development
of Quantum Mechanics implied a radical change. It modified completely our way of un-
derstanding and explaining the natural phenomena with respect to the vision given by
Classical Physics, introducing notions that defy our intuition.

The crucial property that makes the quantum world different from the classical one
is entanglement. As Schrodinger already recognized in [I], 2], entanglement is not one
but rather the characteristic trait of Quantum Mechanics, the one that enforces its entire
departure from the classical lines of thought. 1t is Schrodinger himself who introduced in
the mentioned works the German term Verschrinkung (entanglement) to account for the
apparently paradoxical fact that in Quantum Mechanics the best possible knowledge of a
whole does not necessarily include the best possible knowledge of its parts.

We can see this property considering two different particles X and Y of spin 1/2.
Regarding their spin, the space of states of each particle is C?>. Then the space of states of
the full system is the tensor product of the space for each particle, C? ® C2. Let |1) i 1) j
be respectively the states of the particle j, with j = X, Y, for which the third component
of the spin is +1/2 and —1/2 (in units of h).

A possible state of the total system is

Mx @y

Here we know that the spin third component of the particle X is +1/2 while that of the
particle Y is —1/2. This is a non entangled or separable state. It is the product of the
state up for the first spin and the state down for the second one. In this case we have a
full knowledge of the whole and also of the parts.

But, since the space of states admits the superposition principle, the full system can
also be described by

= (Mx @y + W ®1Dy), (1)

1



which means that, in spite of a complete knowledge of the state for the whole system, we
have not the slightest idea of the state for the parts. This is an example of an entangled
state which cannot be expressed as the product of a state for the particle X and a state
for the particle Y.

A striking feature of entangled states is the following: if we measure the spin third
component of the particle X in a system described by the state in (1.1]), the possible
outcomes after the measurement are

Mx @y, o x®My,

and the result is completely random, each one with a 50% probability. But observe that
there is a correlation between the result of measuring the spin third component of X and
that of Y. In fact, whenever we obtain +1/2 for the spin of X, the result of the eventual
measurement of the spin of Y will be necessarily —1/2 and viceversa. Therefore, the
value obtained when we measure the spin of X determines instantaneously the value that
we will obtain for the spin of the particle Y. To add more mystery to the theory (and
make events in Nature causally related), it can be shown [3] that this instantaneous effect
cannot be employed to transmit any information.

A qubit of History

Schrédinger introduced the term entanglement in a response to the famous paper [4] by
Einstein, Podolski and Rosen. The correlation that entanglement establishes between
particles that can be separated even by a space-like interval bothered Einstein, for whom
this was a spooky action at a distance in his own words. In the article with Podolski
and Rosen, they employed these correlations to argue that Quantum Mechanics gives an
incomplete description of physical reality, defending the necessity of a theory that removes
the intrinsic indeterminism of the quantum theory.

This work motivated the development of the so called hidden-variable theories. These
theories try to get rid of quantum indeterminism adding some extra parameters (hidden
variables). Then the randomness of the result after a measurement would arise because
these extra parameters are actually ignored by the experimentalist. Therefore, according
to these theories, quantum probabilities should be treated as a statistical ensemble, like
in classical statistical mechanics.

The study of entanglement was relegated to this kind of works on the foundations
of quantum theory during most of the XXth century. A milestone was the paper [5]
that Bell published in 1964. He found that in the theories with local hidden variables the
correlations between observables must satisfy some inequalities (Bell inequalities) that are
violated by entangled states. This result enforced entanglement as the distinctive feature
of quantum theory as Schrodinger stated, and opened the way for an experimental test of
its fundamental principles. A measurement of the violation of the Bell inequalities with
entangled states would discard the local hidden-variable theories in favour of Quantum
Mechanics.

In 1972 Freedman and Clauser [6] gave the first strong experimental evidence against
local hidden-variable theories measuring the linear polarization correlation between the en-
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tangled photons emitted in an atomic cascade of calcium. During the subsequent decade,
the group of Aspect [7] improved the experimental set-up, obtaining convincing results
on the violation of Bell inequalities. Later, more complex and refined experiments have
arrived at the same conclusions. However, one could pose arguments (loopholes) about
the experimental set-up or the design of the experiment that would affect the validity of
the results, opening a window to maintain the hidden variables. In 2015, three indepen-
dent experiments [, [0 T0] claimed to be loophole-free, imposing strong restrictions to a
possible hidden-variable theory. The sophistication reached by this kind of experiments
is such that, last year, a Chinese group led by Pan performed a successful Bell test [11]
between entangled photons sent from a satellite to two stations separated 1200 km.

The importance of entanglement

Since the 90s, entanglement is not a mere issue on the foundations of the theory but it
has become one of the main characters of the Physics scene. The inflection point was to
recognise that entanglement is a fundamental physical resource as real as energy [12]. It is
the essential ingredient to perform tasks that are classically impossible or very inefficient.
For instance the simulation of quantum systems. As Feynman pointed out in 1982 [13],
Nature is not classical, and if you want to make a simulation of Nature, you would better
make it quantum mechanical, rather than with a classical computer.

A prominent research field in this direction is Quantum Information and Computation
[14]. It studies the transmission and processing of information using the laws of Quantum
Mechanics. Entanglement is precisely the property that makes the quantum computa-
tion to overtake the classical one. It provides the computational speed-up in quantum
algorithms as compared to algorithms based on the processes of Classical Physics [15]. It
is also present in processes like quantum teleportation, quantum cryptography, quantum
error correction, or superdense coding to cite some of them [12 [16]. As a sample of the
rapid development of this area we can mention the experiment [I7] of Zeilinger’s group
in 2012 in which they were able to teleportate a state between two entangled photons
separated 143 km.

The relevance of entanglement as well as the methods to deal with it have spread
from quantum information to other areas of Physics such as quantum optics, condensed
matter or high energy physics. It has been recognised as a crucial concept in many fields.
Specially in the arena of strongly correlated quantum many-body systems. See for instance
the reviews [I8, [19] and the special issue [20] of Journal of Physics A on this topic. The
ground state of these systems is often highly entangled. The presence of entanglement
gives rise to complex correlations between the parts of the system. The form of these
correlations leads to different phases and collective phenomena such as topological order,
quantum spin liquids, superconductivity, quantum Hall effect, disordered systems, etc.
Some of these phases, for instance the topological ones, cannot be distinguished by any
local order parameter. As Kitaev and Preskill showed for topological order in Ref. [21],
the study of entanglement provides appropriate tools that can detect the global features
that distinguish one phase from another.

In addition, quantum many-body systems may undergo a quantum phase transition in



which the ground state of the system qualitatively changes. These transitions are induced
by the variation of a parameter of the Hamiltonian at zero temperature. While classical
phase transitions are governed by thermal fluctuations, quantum phase transitions are
driven by fluctuations of quantum nature. At the quantum critical point the correlation
length of the system may diverge. As the pioneer works [22] 23] 24] found, the increasing
of the entanglement in the ground state is a signal of long-range correlations at criticality.
Subsequent works have shown that entanglement can be used as a suitable order parameter
for quantum phase transitions that allows to extract some universal parameters.

From a more practical point of view, as it was predicted by Feynman, the presence of
entanglement makes difficult to deal with quantum many-body systems using a classical
computer. For example, the Density Matrix Renormalization Group (DMRG) algorithm
[25] works well in non critical one dimensional systems, but it becomes very inefficient
when we approach a quantum critical point. In this case the growth of the entanglement
originates long-range correlations that increase the complexity of simulating the system.
Therefore, it is necessary to construct algorithms that implement the entanglement in
a proper way. This is the case of the Multiscale Entanglement Renormalization Ansatz
(MERA) [26] or the Projected Entangled Pair States (PEPS) method [27], designed with
entanglement in mind. These methods are based on tensor network techniques [28] that
try to capture the essential properties of the state’s entanglement.

Those theoretical studies have been stimulated by a spectacular development of exper-
iments with cold ion traps [29] or polar molecules [30] that reproduce these models in the
laboratory (quantum simulators). For example, the group of Monroe has recently been
able to trap and control a chain of 53 Yb* ions and simulate a quantum phase transition
in a quantum Ising model with long-range interactions [31].

Ion traps are in fact one of the most promising physical supports for the design of a
universal scalable quantum computer [32], 29]. From this perspective, one has to take into
account that, at the end of the day, a quantum computer is no more than a quantum
many-body system that can be controlled and manipulated. In particular, the ability of
controlling parts or subsystems of a quantum system is crucial in the development of a
quantum computer. Such ability presupposes the control of local operations on parts of
the system and its effects due to the entanglement with the rest.

The above points make clear the necessity of a profound comprehension of the entan-
glement in quantum many-body systems. This task is far from being complete, in spite
of the great effort done in the last two decades.

That is the main motivation for the research carried out in this thesis. To be precise,
we shall study the entanglement in a particular kind of quantum many-body systems:
translational invariant quadratic fermionic chains. The analysis of the entanglement in
these systems has received a lot of attention in the last years. Nonetheless, as we shall
see, there are still several issues that we do not understand. In spite of their apparent
simplicity, in these solvable models the entanglement shows many non-trivial properties
and leads to a very rich and sophisticated mathematical structure.

In order to characterize it we have to choose an appropriate quantity that gives the
degree of entanglement between the different parts of the system. Any entanglement mea-
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sure must be a real function of the state that vanishes when it is separable. Moreover, it
should not grow on average under operations that do not increase the degree of entangle-
ment (the so called LOCC, local unitary transformations and classical communications,
e.g. to call by phone or to send a mail). There are many proposed measures, each one is
adequate under different circumstances. A nice introduction to entanglement measures is
Ref. [33].

In this thesis we shall consider a fermionic chain in a stationary state and divide it in
two subsystems, i.e. a bipartite system in a pure state. For this situation, the canonical
quantity that gives the degree of entanglement between the two subsystems is the Rényi
entanglement entropy. We shall introduce it in the following section.

1.1 Rényi entanglement entropy

As we just said, in the following chapters we shall consider bipartite quantum systems.
That is, quantum systems that can be divided into two parts X and Y such that the
Hilbert space of states H of the full system is written as the tensor product of the two
subsystems,

H=Hx®Hy,

that we shall take finite dimensional.

Figure 1.1: A bipartite quantum system can be divided into two parts X and Y such that the Hilbert
space of states H of the full system X UY is factorized as H = Hx @ Hy .

When we consider this bipartition, every normalized vector |¥) € H, that represents
a pure state of the full system, can be written according to the Schmidt decomposition

) =) Vealn)x @)y, (1.2)

where {|n),} and {|n), } are respectively an orthonormal basis of Hx and Hy. The
coefficients ¢, are real numbers lying on the interval (0, 1] and satisfy

r

ch: 1.

n=1
The upper limit 7 in the sum is called the Schmidt rank of |¥) and it satisfies r <

d = min{dim#H x,dimHy }. The Schmidt decomposition of |¥) is unique except for the
possible degeneracy of the coefficients.
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We say that the state |¥) is separable if r = 1 and, therefore, it can be expressed as
a product

|‘I’> = |px) ® |<PY> )

with |¢x) and |py) two vectors in Hx and Hy respectively. Otherwise, if r > 1, the state
|W) is entangled and

0) # |ox) @ loy) .

Therefore, the Schmidt rank provides a first quantifier for the degree of entanglement of
a pure state. The problem is that it is too rough. For example, suppose two states |¥(1)
and |¥®) with an equal Schmidt rank = 2 but different decomposition. For [T(M) we

have cgl) = 0.99 and cgl) = 0.01 while for [U®), c§2) = 0.50 and céQ) = 0.50. It is clear
that the state |[¥(1)) is closer to a separable state and, in a sense, less entangled than the
state |[U®), while both share the same Schmidt rank.

As we anticipated before, a more accurate way to quantify the degree of entanglement
in this case is using the Rényi entanglement entropy. In order to define it, we should
introduce the density matrix of the full state p = |¥) (¥|.

In the bipartite system, the state of the subsystems X and Y is described respectively
by the reduced density matrices

pPx = Tr?‘ly (p)7 Py = TI"HX (p)7

that are obtained by taking the partial trace of p in the corresponding complementary
subsystem.

Employing the Schmidt decomposition (1.2]) of |¥), the density matrix p = |U) (V|
can be written as i
p=>_ Vemeallm)y Im)y)(x(nl y(nl). (1.3)
m,n=1
If we take now the partial trace in the space Hy, we find

r

px = Truy (p) = 3 ca ) (n]. (1.4)

n=1

Notice that when r = 1, |¥) is separable, and the reduced density matrix px corresponds
to a pure state, px = [¢x) (x|

On the contrary, if » > 1, |U) is entangled, and px corresponds to a mixed state, a
statistical ensemble of the pure states {|n)} with probabilities {c,}.

In Physics, the standard quantity that measures the lack of knowledge of a system in
a mixed state is the entropy. Let us introduce the Rényi entropy of px

Sax = log Tr(p%) (1.5)

11—«

where o > 1. The limit o« — 1,

.0 N
Six = — ilinl 9o log Tr(p% ),
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gives the von Neumann entropy of px

SI,X = —TI'(pX long) (16)

If we now substitute px by (1.4) in the definition of the Rényi entropy ([1.5]), we find

1 ~ .
Sa.x = T log (Z cn> : (1.7)

In information theory the latter corresponds to the entropy that Rényi introduced in [34]
for a discrete probability distribution, defined in this case by the Schmidt coefficients

{en}

We can do the same for the von Neumann entropy ((1.6)), expressing px as in (|[1.4]) we
have

Six = —ch log ¢,. (1.8)
n=1
This is, in information theory, the Shannon entropy of the discrete probability distribution
defined by the Schmidt coefficients {c;,}.

Notice that if we take in (1.3|) the partial trace in Hx, instead of Hy as above, we

obtain )

oy = Trny (p) = 3 ca )y (n].

n=1

If we compute the Rényi entropy of py we arrive at

n=1

1 o 1 ~
Say = T o log Tr(p§) = T4 log (Z cn) = Sax-

That is, Say = Sa,x provided the full system is in a pure state |¥). The same happens
with the von Neumann entropy. This is in general not true if the full system is in a mixed
state, for example when it is at a certain temperature.

Observe now that from and one can conclude that, due to the properties
of the Schmidt coefficients ¢, S, x = 0 if an only if the state |¥) is separable, while
Sa.x > 0if it is entangled. Notice that in any case the entropy of the full system is zero
since it is in a pure state.

The highest value for S, x is attained when all the Schmidt coefficients are equal,

¢ = ¢y =--+=cq=1/d. In this situation, px corresponds to the most mixed state,
1
Px = a]d7

where I is the identity matrix of dimension d. In this case, the state |¥) is maximally
entangled. Thus the entropy S, x satisfies the bounds

0<S,x <logd,

and it only vanishes when the state is separable.
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In conclusion, S, x provides an accurate measure for the entanglement of a bipartite
system in a pure state. This was first noted by Bennett, Bernstein, Popescu and Schu-
macher in Ref. [35]. In the following, we shall denominate S, x the Rényi entanglement
entropy or simply the entanglement entropy.

We could only consider the von Neumann entanglement entropy, but it is worth study-
ing the Rényi entropy. If we know S, x for any a we can reconstruct the spectrum of
the reduced density matrix px. This determines px up to a unitary transformation. The
spectrum of px is known in the literature as entanglement spectrum, term coined by Li
and Haldane in [36]. In recent times the entanglement spectrum has attracted much
attention because it allows to extract more information about the system than the von
Neumann entanglement entropy, see for instance Refs. [37], 38, [39, 40l 41, 42 143, [44].

As we emphasized at the beginning, the notion of entanglement accounts for the fact
that the knowledge of the parts may be non complete even if we perfectly know the state
of the whole quantum system. Here we have seen this for a general bipartite system in
a pure state. We have found that if it is entangled then the parts are described by a
statistical mixture. Thus, since the entropy measures the degree of ignorance about a
system, the presence of entanglement implies that the entropy of the parts is larger than
the entropy of the full system (that it is actually zero since it is in a pure state),

Sa,X > Sa,XUY = 07
where the equality is satisfied when the state of the full system is separable.

Schrodinger claimed that entanglement is the characteristic trait of Quantum Mechan-
ics. In fact, let us repeat the previous discussion but considering a classical statistical
system made up of two parts X UY. In this case, there is a lack of knowledge about
the system because several microscopically different configurations may correspond to the
same values for the macroscopic state variables. Therefore, if Px and Py are respectively
the space of configurations of the subsystems X and Y, the full system is characterized
by the set

{pij |1 €Px, j€ Py},
where p; ; is the probability that X is in the configuration ¢ and Y in the configuration j.

Then the probability for the subsystem X of being in the configuration ¢ € Py is
JE€PyY

Now we can use the entropy to measure the degree of knowledge that we have about the
system and its parts. The classical analogue of the von Neumann entropy is the Gibbs
entropy. The Gibbs entropy of the full system X UY is

S%oy = — Zpi,j log pi ;.
i7j

and the Gibbs entropy of subsystem X is

S¢ == pilogp:.

1€Px
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If in the latter entropy we replace p; by (1.9), it is clear that we have

SE=-> pijlog (Z pm") <= pijlogpi; =SSy
i Iz

0]

since the logarithm is a monotone increasing function and, therefore,

log Z pijy = logpi ;.

J'€Py
In conclusion,
S% < SSuy
This implies that classically the knowledge of the subsystem X is always better (or equal)
than the knowledge of the whole, X UY. Just the contrary of what we have obtained
above for a quantum system: while the entropy of the full quantum system in a pure state
vanishes, the entropy of the parts is non-zero when there is entanglement.

1.2 Applications of the Rényi entanglement entropy

The Rényi entanglement entropy is a really powerful tool. It provides useful informa-
tion about the state under consideration. Moreover, it establishes very suggestive and
unexpected connections between ideas from different fields.

In order to calculate the entanglement entropy we need to divide the quantum system
into two parts, X and Y. When we are dealing with a many-body system, such as the
lattice of Fig. [1.2] a central question is to study how the entanglement entropy depends
on the size of the chosen division. Indeed this will be one of the main objectives in our
analysis of the entanglement entropy for fermionic chains.

S G S S S S— -

—@® ® ® ® ® o —
—@® L 4 ® ® o —
—@® L 4 ® @ L o —

B S S S S o

Figure 1.2: Quantum many-body system made of a bidimensional lattice. On each site n of the lattice
we define a system (as a spin, a fermion or bosons) with a space of states H,,. Then the Hilbert space of
the full system is H = ),, H». The links represent the interactions between the systems defined on the
sites. In this case there are only nearest neighbour interactions. To compute the entanglement entropy
we have to divide the lattice into two subsystems X (coloured) and Y such that H = Hx ® Hy. The
entanglement entropy of the ground state often verifies an area law: it grows with the number of bonds
broken (in green) when we separate X and Y.
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In Thermodynamics we learn that the usual thermal entropy is an extensive quantity.
It is proportional to the volume of the subsystem. Such a behaviour is commonly referred
to as a volume law. However, it turns out that the entanglement entropy often follows an
area law. That is, it is proportional to the border that separates the two subsystems X
and Y, as it is illustrated in Fig. [1.2]

The first example of an entropy that satisfies an area law was the Bekenstein-Hawking
entropy for a black hole. In 1973 Bekenstein suggested [45], and shortly later Hawking
proved [46], that the entropy of a black hole is proportional to the area of its event horizon.

In 1986, trying to understand better the Bekenstein-Hawking entropy, Bombelli, Lee,
Koul and Sorkin considered in [47] a real scalar field and computed the von Neumann
entropy of the reduced density matrix obtained by tracing out a region of the space.
They found that this entropy verifies an area law too. Their result not only revealed that
entanglement may play a role in the black hole physics, but also showed that the area law
does not restrict to the black hole entropy.

In fact, in 2007, Hastings established in [48] that, for the ground state of one di-
mensional Hamiltonians with mass gap and finite-range interactions, the entanglement
entropy follows an area law. In a unidimensional system, like that in Fig. [.3] the area
law translates into the saturation of the entanglement entropy for large subsystems to a
constant value that depends on the correlation length. Later it was set in [49, [50] that
any state in one dimension with an exponential decay of the correlations, as the ground
state of theories with mass gap and finite-range interactions, must satisfy an area law.

Figure 1.3: In this chain the boundary between the subsystems X and Y (green bonds) is independent
from their sizes. This means that the entanglement entropy follows an area law if it tends to a constant
value when the length of the intervals is large enough.

On the other hand, if the mass gap becomes zero, the correlation length diverges and
the ground state correlation functions decay algebraically. A symmetry of these systems is
conformal invariance. This symmetry has been extensively studied in the context of 1+1
dimensional quantum field theory since Belavin, Polyakov, and Zamalodchikov recognised
it as a powerful tool to determine the correlation functions of non trivial massless theories
[51]. The techniques of Conformal Field Theory (CFT) have been extensively applied to
the study of the entanglement entropy. In particular, in the pioneer works of Holzhey,
Larsen and Wilczek [52] and Calabrese and Cardy [53] it is found that, for the ground state
of gapless local Hamiltonians in one dimension, the area law is corrected by a logarithmic
term. In the thermodynamic limit they obtain

+1
a
where |X| is the length of the subsystem X, like that of Fig. [I.3] and c is the central

charge of the underlying CFT. The central charge is a characteristic parameter of the
theory related to the number of massless particles.

Sax ~ clog | X|, (1.10)
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Observe that for the systems above the ground state entanglement entropy can be
employed as an order parameter that detects the quantum critical points. Moreover, the
central charge ¢ can be used to characterise the different universality classes of critical
theories. In this thesis we shall develop a systematic method to study when the area law
is violated in fermionic chains and to determine the central charge in those cases in which
the entanglement entropy satisfies the form predicted by CFT.

In our approach we shall also cover fermionic chains with long-range interactions. In
spite of some attempts [54], there is not a general understanding about the behaviour of the
entanglement entropy when there are long-range interactions. Their presence modifies the
picture previously described for systems with only finite-range interactions [55], 56, [57]. As
it is discussed in several recent works, the ground state correlations can display algebraic
decay even with non-zero mass gap [58, [59]. This implies that the entanglement entropy
may violate the area law while the system is non critical as we shall see for fermionic
chains.

With respect to higher dimensions, to our knowledge, there are no rigorous and general
proofs for the area law as it happens in one dimension. It is known that for non-critical,
local systems of free fermions the entanglement entropy of the ground state fulfils an area
law. The same occurs if we consider bosons instead of fermions. On the other hand, for
critical fermions with a finite, non-zero Fermi surface, the entanglement entropy of the
ground state presents logarithmic corrections to the area law. For a comprehensive review
of area laws in entanglement entropy we recommend Ref. [60].

The knowledge of the dependence of the entanglement entropy on the size of the sub-
system can also serve to design efficient numerical methods. As we have said before, the
numerical simulation with a classical computer of a quantum system may become inef-
ficient as the degree of entanglement of the state increases. The entanglement entropy
can be interpreted as the minimum amount of information needed to describe the sub-
system X. In this sense, the entanglement entropy gives the computational complexity
of simulating the system. This can be used to interpret for instance the efficiency of the
DMRG algorithm mentioned above. Outside criticality it works well because the entan-
glement entropy follows an area law that bounds the information needed to describe a
subsystem. On the contrary, it fails at criticality because the area law is violated and the
entanglement entropy diverges with the size of the subsystem.

The entanglement entropy has also revealed to be an attractive guide to unravel some
aspects of quantum gravity by means of the Holographic Principle [61, 62]. Inspired by the
black hole entropy, this principle claims that given a region of the space-time the number
of degrees of freedom that it may contain is proportional to the area of its boundary. One
realisation of the Holographic Principle is the AdS/CFT correspondence, that argues
that a theory of quantum gravity in an Anti-de Sitter (AdS) space is equivalent to a
CFT defined on the boundary of the former [63]. In this framework, Ryu and Takanayagi
found the way to compute the entanglement entropy in the CFT from the holographic
dual theory [64]. This leads to the connection of entanglement with space-time geometry
and gravity [65].

In the rest of the thesis we will have the opportunity to investigate some of the prop-
erties of the entanglement entropy mentioned above, specially those concerning the area
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law and the logarithmic correction predicted by CFT. Therefore, it will be important to
bear in mind the general results stated here. But before entering fully into the study
of the entanglement entropy we must introduce the kind of physical systems we will be
dealing with. This will be the first goal of the next Chapter.



Chapter 2

Fermionic and Spin Chains

In the previous Chapter we have seen that there are very interesting reasons that motivate
the study of the entanglement entropy in quantum many-body systems: to investigate
their critical properties, to explore new phases of matter, to analyse the computational
complexity of simulating the system, to advance in the development of quantum comput-
ers, or even to unravel the origin of space-time.

In this thesis we shall analyse the entanglement entropy in the stationary states of
fermionic chains described by a quadratic, homogeneous Hamiltonian that may present
long-range couplings. These systems are very appropriate to gain understanding about the
entanglement entropy. They are solvable and, therefore, we completely know the state
under investigation. They can be related to spin chains employing the Jordan-Wigner
transformation. We can apply efficient numerical methods and analytical techniques and
the entanglement entropy displays several non trivial properties.

In this Chapter we shall introduce and solve this kind of chains, obtaining the spectrum
and the eigenstates of the Hamiltonian. We shall also review some general properties of
these systems that will be relevant in the study of the entanglement entropy as well as
their connection with spin chains.

Then we shall move on to the problem of computing the entanglement entropy of a
subsystem of the chain. Following the works of Peschel [66] and Vidal, Latorre, Rico,
and Kitaev [24], we shall find that, for the stationary states, the entanglement entropy
can be expressed in terms of the two-point correlation functions. This relation happens
to be incredibly powerful. It will actually be the basis of the research done in the rest
of the thesis. On the one hand, it reduces exponentially the complexity of computing
numerically the entanglement entropy. On the other hand, it opens the possibility of
applying several analytical tools based on the properties of block Toeplitz determinants
that we shall develop in the subsequent chapters. We shall finish the Chapter calculating
and studying some properties of the two-point correlation matrix for the stationary states.

13



14 2.1. Homogeneous quadratic fermionic chains

2.1 Homogeneous quadratic fermionic chains

A fermionic chain consists of a unidimensional lattice of N sites with spinless fermions.
The space of states of each site is C?. Then the space of states for the whole chain is the

tensor product
H=CoC’® - -®C*=(C)".

We define in each site n = 1, ..., N the fermionic creation and annihilation operators a] ,
a, that respectively create and annihilate a spinless fermion. These operators follow the
canonical anticommutation relations

{al am} = 6pm, {al,al} ={an,am} =0, n,m=1,..., N, (2.1)
where §,,,, denotes the Kronecker delta.

The dynamics of the fermionic chain is described by a quadratic, homogeneous (trans-
lational invariant) Hamiltonian with finite-range couplings (L < N/2),

N L

1 —
H = 3 Z Z <2Azalan+l + BlaLaLl — BlananH) . (2.2)
n=1l=-L
We shall assume along all the thesis periodic boundary conditions, i.e. a4y = ay.

The couplings A;, B; will be in general complex numbers. Observe that in order that the
Hamiltonian H be Hermitian, the hopping couplings must satisfy A_; = A; while, without
loss of generality, we may take B_; = — B, for the pairing couplings.

We can express the Hamiltonian H in terms of uncoupled fermions. First, since it is
translational invariant, let us introduce the Fourier modes

b —Lie—”k"a L keZ (2.3)
k \/anl ) k Na . .

Notice that, by construction, they also satisfy periodic boundary conditions, b,y = bg.
In terms of them the Hamiltonian H reads

1=~ b
k
H=¢+; > (b, b_) Ry ( b ) : (2.4)

k=0

where £ is a constant shift in the energy levels,

=
£€=35> Fi
k=0
and

([ F Gy
ne (B9, o

L L
Fk = Z Alew’“l, Gk = Z Bleiekl. (26)

l=— l=—

with
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Since A_; = A; and B_; = —B,, F}, is real while Gy, is an odd function, i.e. G_; = —Gy.

Observe that if we have pairing couplings B;, the Hamiltonian is not diagonalised
after the Fourier transformation because the k and —k modes are still coupled. We can
decouple them by performing a Bogoliubov transformation.

The matrix R; is Hermitian and satisfies

e (U)R( )

where R}, is the complex conjugate matrix of Ry,. Therefore, its diagonal form will be

UkRkU£=<°gk X ) (2.8)

where Uy is a unitary matrix and wy will be the dispersion relation of the uncoupled
modes. The latter satisfies periodic boundary conditions, i.e. wiiy = wg. The ambiguity
in the order of the eigenvalues can be removed by imposing that w;,” = (wy +w_x)/2 > 0.
Thus the dispersion relation is defined univocally.

The unitary transformation Uy corresponds to performing a Bogoliubov transformation
from the Fourier modes b, to the new set of modes

( d‘i_’fk ) — U ( b’;_kk ) . (2.9)

In terms of the Bogoliubov modes d; the Hamiltonian H is diagonal,
N—-1 1
H:5+;wk (d;dk—i) .

From (2.8) and using the invariance of the trace and the determinant of a matrix under
a unitary transformation, we deduce that

o wp—wo k=

w, = 5 = 5 =FI,
and
wi =/ ()2 +Gy? > 0,
with o
F,j = —k—; —*

Therefore, we get that the dispersion relation of the Bogoliubov modes is

wr =/ (FH)2+ |G+ F, . (2.10)

An eigenstate of H is determined by a subset of occupied Bogoliubov modes K C
{0,...,N — 1}. Let us denote by |0) the vacuum for these new modes. This is the
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state that satisfies dj |0) = 0 for all k. Then to the configuration K it corresponds the
stationary state

K) =[] di10).

keK
with energy
1 1
EK:5+§ZWk_§ZWk~
keK kgK

In particular, the ground state \K> is obtained by filling those modes with negative energy
(the Dirac sea),
K) =[] di0).
wE<0

Its energy is

—1
1
Ekzg—ﬁl;w.

Notice that if
|Fy | <o/ (F)2+ |Gl

for all k =0,..., N — 1, the dispersion relation ([2.10)) is always positive and the ground
state of H is the vacuum |0). In this case, there is an energy (mass) gap between the
ground state and the first excited state. Therefore, the correlation length of the system is
finite and the theory is non critical. An example of this case is illustrated in Fig. [2.1] a.

On the other hand, if there are momenta for which
[Fi | > /(B2 +1Gxl?,

i.e. with negative energy, a Dirac sea develops and the ground state corresponds to the
configuration in which all the modes with negative energy are occupied. This occurs in
Fig. b. In this situation the mass gap is zero, the correlation length diverges and,
therefore, the system is critical. The modes at which the dispersion relation changes its
sign are the Fermi points.

There is a third possibility, represented in Fig. [2.1] ¢, in which the ground state is the
vacuum |0) but for certain modes the dispersion relation vanishes. Thus the mass gap is
zero and the system is also critical.

2.1.1 Discrete symmetries

The discrete transformations of parity (P) and charge conjugation (C') will be relevant
in our study of the entanglement entropy. These transformations preserve the Fock space
vacuum |0,) of the fermions in real space, i.e. a, |0,) = 0 for all n,

P|0a> - |0a>7 C|Oa> - |Oa>>
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w(6)

\ |
\/ﬂ'

Figure 2.1: Dispersion relation w(f) in the thermodynamic limit N — oo, 0 — 6 € [—m,7), for three
representative Hamiltonians of the form . The parity symmetry is broken in all of them. In the
case a the theory has a mass gap, hence its ground state is |0), which preserves parity. The dispersion
relation in b is negative for a set of modes (shadowed interval). Therefore, the theory is gapless and the
ground state is obtained by filling these modes (Dirac sea). In this case the ground state breaks the
parity symmetry. In the panel ¢, w is non-negative but it has zeros. Then the model is gapless and the

ground state is |0) that is invariant under parity.

and its action on the creation and annihilation operators is given by
Pa, P! =ian_,, Ca,C'= ail.
Applying this to the Fourier modes we obtain
Po Pt =ib_, Ch.CP=0b",.

Then the Hamiltonian (2.4]) transformed under parity reads

N-1
PHP ' — &4 > (b, —b_r) R b
245 TR =l )

(2.11)

Therefore, the Hamiltonian is parity invariant (PHP~! = H) when F_, = . That is,
when the antisymmetric part F)~ of Fj, (2.6) vanishes. Given that A_; = A;, this occurs

if all the hopping couplings A; are real.
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Interestingly, if in the transformed Hamiltonian we apply the Bogoliubov transforma-
tion (2.9)) given by the unitary matrix Uy, we obtain

Upo.R_wo Ul = ( “’6’“ _?dk ) . (2.12)

Observe that there is actually an ambiguity in the Bogoliubov transformation,

v 0 wp 0 e 0\ [(w O
0 e ¥ 0 —w_p 0 ¥ ) 0 —wy /)’

that can be fixed by taking
U,kO'z = O'ZUk. (213)

Hence when we perform the P transformation on the Bogoliubov operators ([2.9)),
dy, ) 1. b
P ( P 1 iU, kO 5 ( s
d, it
and apply (2.13)), we have

r )t ()= ()
P P =ioU_ - . 2.14
(d*_k F\ o id! (2.14)

On the other hand, under PC' the Hamiltonian (2.4)) transforms as

N-1
1 T
PCH(PC)™ = €+ =S (b bR [ "4 ). (2.15)
2 — —by,
Then PC is a symmetry of the theory provided Gj, = —Gj. That is, if G}, is purely

imaginary. This is fulfilled when the pairing couplings B; are real. Observe that in this
case, PC takes H — £ into £ — H.

(EC_Z: ) :Uk< ET—bz ) (2.16)

be the Bogoliubov transformation that diagonalises the PC-transformed Hamiltonian

B19),
UkR_kUL:<wO’“ 0 )

Let

Taking into account (2.12)) we have that
Uy = Upo.. (2.17)

The charge conjugation C acts on the Bogoliubov operators as

dk -1 bk -1 bik
o(i,)er-ue(if, Jer-n ()

Applying now ([2.16)) and (2.17)) we finally find

C ( d‘f_’“k )0‘1 = ( %ﬂ ) : (2.18)
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Summarising, the action of P and C' on the Fourier and Bogoliubov modes is

Pl —ib_y, C:bgrbl,,

Pidysidy, C:dyrsd .

Observe that the Bogoliubov modes transform covariantly under parity even if the Hamil-
tonian is not invariant, while they are covariant under charge conjugation only if the
Hamiltonian is PC' symmetric.

Notice that if the Hamiltonian violates parity this does not imply that its ground
state breaks this symmetry too. As we have seen, the ground state, |K> = [1., <0 dL |0),
is obtained by filling the Bogoliubov modes with negative energy. When the mass gap
is non-zero, the dispersion relation wy, is positive for all k. Then the ground state is the
Bogoliubov vacuum |0). The latter is invariant under P, irrespective of the symmetries of
the Hamiltonian. Therefore, if the Hamiltonian is non critical, the ground state is always
P invariant, even if the Hamiltonian breaks this symmetry, as it happens in Fig. a.
This is just opposite to spontaneous symmetry breaking in which the ground state is not
invariant under a symmetry of the Hamiltonian.

On the other hand, if the dispersion relation wy attains negative values, the mass gap
is zero and the ground state is given by the occupation of the modes in the Dirac sea.
Then this state is not parity invariant. This is the situation represented in Fig. b.

Finally, if the dispersion relation is non negative and it vanishes for some k, as in Fig.
¢, the theory is critical but the ground state is the Bogoliubov vacuum |0). Therefore,
as it occurs in non critical theories, the ground state is parity invariant regardless the
Hamiltonian breaks this symmetry.

These three scenarios will be relevant in the analysis of the entanglement entropy since
this quantity will display different behaviour in each of these situations.

2.1.2 The Jordan-Wigner transformation: spin chains

The fermionic chain defined in the previous section can be related to a spin chain applying
the Jordan-Wigner transformation.

A spin chain is again a unidimensional lattice in which the space of states for each site
is C? and the total Hilbert space (C?)Y. But instead of a spinless fermion as it happens
in the fermionic chain, in each site n there is a spin 1/2 particle described by the Pauli
operators of, with = x,y, z.

The Pauli operators satisfy the commutation algebra
[0, 0% ] = 2i0pmoz, mym=1,..., N,
and all the cyclic permutations in z, y, z. They also obey the anticommutation rules

{0-7,’[,1‘7 0’7’;} = 6“”7 M? V= x? y? Z.
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We can construct a transformation that relates the Pauli operators ¥ to the fermionic
creation and annihilation operators al, a,. For this purpose, consider the spin ladder
operators
1
o = 5(02 +i0Y).
They fulfil the following anticommutation algebra

{0370;}:17 {0:701—1’-}:{0570_;}:07

which is similar to that satisfied in (2.1)) by the fermionic operators a,,, a/, in the same
site n. However, the fermionic anticommutation rules (2.1]) involve in general operators
that act on different sites of the chain. For spin ladder operators in different sites n,m,
we have

{o on} =200, {0y, 00} = 20,0y,

while the commutation relations,

(o o] = Lo, 03] =0,

are like those of bosonic creation and annihilation operators.

Hence we cannot directly identify the spin ladder operators o;", o~ with the fermionic

operators al, a,. However, if we introduce a non local factor we can define the set of
operators

n—1 n—1
a, = H(—aj)a;, al = H(—O';)O':, (2.19)
j=1 j=1

that actually satisfy the rules ({2.1).

This map between Pauli spin operators and fermionic operators is the so-called Jordan-
Wigner transformation [67].

Note that taking into account [0, 0, ] = 07, we have
o? =2ala, — 1.
This implies
a:gan = 0?{ o, .

Therefore, the Jordan-Wigner transformation preserves locally the number of excitations:
the number of fermions in the chain is equal to the number of spins whose z-component
is +1/2.

The Jordan-Wigner transformation allows to map any spin chain into a chain of spin-
less fermions and viceversa. Then many properties of one of these systems may be ex-
tended to the other one.

If we apply the Jordan-Wigner transformation (2.19)) to the Hamiltonian (2.2)), the
long-range terms give rise to non-local products of o7 operators (cluster terms),

n+i—1

y7s _ R v —
Un H ( O-j)o-n-H? M?V - 1'7%
j=n+1
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in the corresponding spin chain. Spin chains with cluster terms have been attracted
the attention because of their capabilities for quantum computation and in the study of
quantum phase transitions [68], [69] [70].

When we apply the Jordan-Wigner transformation one should pay special attention
to the boundary terms. Consider, for example, periodic (or antiperiodic) boundary con-
ditions in the spin chain, that is

oq |¥) = doyy [¥),

for all |¥) € (C?)V*! and § = 1 (—1) for periodic (antiperiodic) boundary conditions.
Then the corresponding relations for the fermionic operators are

ab [U) = —8al,e™Enm1 e (W) g | W) = —Baye’™ Znm en | |

Hence we must separate the space of states into two independent sectors depending on
the number of fermions that contain.

For the states with an even number of particles we have

ag = —SaR,, ap = —day.

This means that the periodic (antiperiodic) boundary conditions for the spin operators
translate into antiperiodic (periodic) boundary conditions for the fermionic operators.

On the contrary, for the sector with an odd number of particles,
a(T) = 6a}L\,, ap = day.

Therefore, in this case the periodic (antiperiodic) boundary conditions of the spin opera-
tors lead to periodic (antiperiodic) boundary conditions for the fermionic operators.

Nevertheless, in this thesis we shall be interested in the thermodynamic limit and the
boundary effects play no role. Therefore, the previous considerations can be neglected.
Quantities like the energy spectrum or the entanglement entropy of connected subsystems
that we shall obtain for a fermionic chain will be the same for the corresponding spin chain.

2.2 Examples

Let us now discuss several relevant examples of theories of the form (2.2)) that will be
used in the next chapters.

2.2.1 Kitaev chain/XY spin chain

Among the systems described by a Hamiltonian of the form (2.2]) the simplest one corre-
sponds to the case with only nearest-neighbour couplings, i.e. L =1,

N
Nh
Hxy = Z [tCLILCLn-i-l + tailanq + V(aLaLH — Uplpyy) — haLan} + R (2.20)

n=1
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where the couplings ¢, v, h are assumed to be real and non negative. Hence this Hamil-

tonian is invariant under the parity and charge conjugation transformations defined in
(2.11]).

This Hamiltonian can describe, for example, a quantum wire that lies on the surface
of a superconductor. After the seminal work [71] where Kitaev showed that this theory
may contain unpaired Majorana modes at the boundaries (if we take open boundary
conditions), it is known by many authors as Kitaev chain.

The Jordan-Wigner transformation (2.19)) allows to write this Hamiltonian in terms
of 1/2-spin operators. The corresponding Hamiltonian is that of a XY spin chain with a
transverse magnetic field,

N

1 v z

Hyy = 5 S t+ oo+ (t—)olol,, — hoy) . (2.21)
n=1

Here h is the intensity of the magnetic field in the z direction while ¢ and v give the

coupling between the x and y components of contiguous spins. In particular, v plays the

role of an anisotropy parameter between the x and y directions.

The case v = 0,
N
Nh
Hxx = ;[taL(an_l + 1) — hafan] + o

corresponds to the Tight Binding Model or, in terms of the spin operators, to the XX spin

chain,
N

Hxx = %Z [tonon +toyoy ., — hat],

n=1
for which the coupling in the x and y components of the spins is the same.
Notice that if we start from the XY spin chain (2.21]) with periodic boundary condi-

tions, the Jordan-Wigner transformation does not map it exactly into (2.20)). In fact, if
we write the spin operators in terms of fermionic operators using ([2.19)), we obtain

~ N
Nh
Hxy = 5 + [fy (aILaLH - anan+1) +t(afani — anaiwrl)} - Z hal,a,
— n=1
: i
— ™ Lz o [’Y(ajvai —anar) + t(a}r\,al - aNaD] - (2.22)

Observe the last term of this Hamiltonian, it is the boundary term. The boundary con-
ditions of the resulting fermionic chain are periodic or antiperiodic depending on the
number of fermions that the state contains, as we already pointed out in Section [2.1.2]
If we want to be careful, we should treat separately the states with an odd number of
fermions (for which the fermionic chain is periodic) from those with an even number of
fermions (for which we have to take antiperiodic boundary conditions). Nevertheless, the
difference between considering periodic or antiperiodic boundary conditions are terms of
the order of 1/N in the observables. They can be neglected for large N, as it will be
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our case. Then we can assume periodic boundary conditions in both sectors. That is,

consider the Hamiltonian ([2.20]) instead of (2.22)).

The XY spin chain without an external magnetic field A was introduced and solved by
Lieb, Mattis and Schultz in [72]. They precisely applied the Jordan-Wigner transformation
in order to map into (2.22). Then they diagonalised the latter Hamiltonian
by performing a Bogoliubov transformation just exactly as we have done here in the
general case.

This system has been employed as a paradigmatic model to understand the properties
of quantum many-body systems [72, [73] [74, [75]. In the last years the interest in the
XY spin chain has been renewed due to its application in the study of quantum phase
transitions and in quantum computation [I8, 22, 24] [76]. In addition, it is possible to
simulate it in the laboratory. Some experiments with cold ions traps have implemented
successfully this Hamiltonian [29] BT, [77, [78, [79)].

In this case, Fy and Gy (2.6) are
F, = F = —h+2tcosby, G = 2iysinb.

Therefore, if we take the thermodynamic limit N — oo, 6, — 0 € [—7, ), and the general
dispersion relation (2.10) particularises to

wxy(8) = \/(h — 2t cos 0)? + 492 sin? 6. (2.23)

Observe that since the model has parity symmetry the antisymmetric parts ;. and wy ()
are absent.

In the following we shall fix the scale of the coupling constants by taking ¢t = 1. For
this choice, the case v = 1 corresponds to the so called quantum Ising chain.

wey(0) Wy (0)

- -0, 0, 7 - s

v=0,h<?2 h=2

Figure 2.2: Dispersion relation of the XY spin chain at two representative critical points. The
dispersion relation on the left corresponds to a Hamiltonian with v = 0 (XX spin chain) and h < 2. Then
it vanishes at 6; = arccos(h/2) and —6;. The dispersion relation on the right corresponds to a theory
with h = 2. Hence it is zero at § = 0.
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Inspecting (2.23)) one can deduce that the mass gap of Hxy is zero for y =0 and h < 2
or when h = 2. In fact, if v = 0 the dispersion relation reduces to

wxx(0) = |h — 2cos b,

that vanishes for h < 2 at the modes 0, = arccos(h/2) and 0y = —6,. This is represented
in the left plot of Fig. 2.2] For the line h = 2, the dispersion relation only vanishes at the
point # = 0. An example of this situation is depicted on the right-hand side of Fig. [2.2]

2.2.2 XY spin chain with a Dzyaloshinski-Moriya coupling

We can break parity symmetry in the previous model by adding an antisymmetric ex-
change term or Dzyaloshinski-Moriya (DM) coupling [80, 81] to the Hamiltonian of the

XY spin chain (2.21)),

N

1
Hpy = B Z [(1 + 7)0202+1 +(1— 'Y)UZUZH + S(Uﬁafwﬂ - 0£+10Z) - h@ﬂ .

n=1
The new coupling constant s is taken real.

After the Jordan-Wigner transformation (2.19) we have

N
: : Nh
Hpy = Z [(1 +1i8)al any + (1 —is)al ap_y + v(aLaILH — QpGpi1) — halay,| + 5

n=1

This Hamiltonian is similar to that of a Kitaev chain (2.20) but with complex hopping
couplings that violate parity symmetry.

Thus, according to (2.6, F has now a non-zero antisymmetric part, while its sym-
metric part F; and Gy remain unchanged with respect to those of the XY spin chain,

Ff = —h+2cosby, F, =2ssinb,

G}, = 2iysin 6.
Therefore, applying (2.10)), the dispersion relation in the thermodynamic limit is

wpm(0) = wihy(0) + 2ssin 6, (2.24)

with

wing(6) = wxy (6) = \/(h — 2c0s 0)? + 42 sin? .

The DM coupling modifies the conditions under which the system is critical. Intro-
ducing A = s* — 42, if A > 0 and (h/2)? — A < 1 the dispersion relation changes its sign
at the Fermi momenta 0;, j = 1,2,

—h/2£ /(s> = 9°)(s* = * + 1 = (h/2)?)
2 —v24+1

cosf; = ) (2.25)
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with 6; € (—m,0] for s > 0. In the ground state of these theories all the modes with
negative energy, i.e. those between ¢; and 6, are occupied. Since 6; € (—,0] the ground
state has a negative total momentum, and it breaks parity symmetry. This is the case of

the dispersion relation plotted on the left-hand side of Fig. 2.3

w

0) Wy (0)

DM(

\ / 9

- 9\_/92 s 0

A>0, (h/2?-A<1 A<0,h=2

Figure 2.3: Archetypical dispersion relations of the XY spin chain with a DM coupling at the
critical points. When A = 52 — 42 > 0 and (h/2)? — A < 1, as in the case represented on the left, the
dispersion relation is negative in the interval 6 € (01, 05). The points §; and 6, are the Fermi momenta.
They can be obtained from (2.25). In these theories there is a Dirac sea (coloured). When A < 0 and
h = 2 the dispersion relation vanishes at § = 0, as it happens in the plot on the right. Here there is no
Dirac sea.

The theories for which A < 0 and h = 2 are also critical. Their dispersion relation
vanishes at # = 0 but it does not change the sign. Hence the ground state in this case
is the Bogoliubov vacuum |0). The dispersion relation at one of these critical points is
represented in the right panel of Fig.

2.2.3 The Long-Range Kitaev chain

We can also consider models in which the couplings extend throughout the whole chain.
In particular we shall study the Long-Range Kitaev chain. It is a unidimensional homoge-
neous fermionic chain with nearest-neighbour hoppings and power-like decaying pairings,

al NN Nh
Hirx = Z (aizan+1 + ailﬂan + haiﬂn) + Z Z W|_5_1 (a;rza;rwrl - anan+l> DR
n=1 n=1 l:—N/Q

(2.26)
where the exponent ¢ > 0 characterises the dumping of the pairing with distance. As we
will see its value is crucial for the properties of the ground state entanglement.

This model was first considered by Ercolessi and collaborators in the 2014 paper [58].
Since then it has been the object of an intense study. It is very useful to analyse the
effects of long-range interactions. Here we shall restrict to the entanglement entropy but
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different authors have investigated the form of the correlations [58, 59, [82], the breaking
of conformal symmetry [83], the propagation of information [84], the behaviour out of
equilibrium [85] or the occurrence and structure of topological phases [86] [87, [88], 89, @0,
91].

In this case, after taking the thermodynamic limit, Fj and Gy, in (2.6 become

F() = F*(0) = h +2cosb,

Z 0l —101 = Lis (eie) — Lis (e—iG),

=1

where Lis stands for the polylogarithm of order § [92],

L15 i

This is a multivalued function, analytic outside the real interval [1, 00). It has a finite limit
at z =1 for 6 > 1 while it diverges at this point for 6 < 1. For 6 = 1 the polylogarithm
function reduces to the logarithm Li;(z) = —log(1 — z). We shall take as its branch cut
the real interval [1,00), thus G1(0) is discontinuous at 6 = 0.

%lN

Observe that the model has parity symmetry and, therefore, the antisymmetric part
of F' is zero. According to ([2.10]), the dispersion relation of this model reads

wirk (0) = v/ (h + 2cos0)2 + |Gs()2.

It vanishes, and the system is critical, at § = —x for h = 2, and at § = 0 for h = —2
and 0 > 1. Since the dispersion relation is non negative, the ground state of the chain is
always the Bogoliubov vacuum |0).

2.3 Entanglement entropy and correlation matrix

The main purpose of this thesis is the analysis of the Rényi entanglement entropy for the
eigenstates |K) = [ [,k dl |0 of the Hamiltonian 1’ created by the action of certain
Bogoliubov modes on the Fock space vacuum |0), as it is explained in Section .

—o—90 0 o0 0o o o {000

X Y

Figure 2.4: In order to compute the Rényi entanglement entropy we have to divide the fermionic chain
into two subsystems X and Y. In this case X and Y are two intervals of contiguous sites.

In Section [1.1], we examined the main properties of the Rényi entanglement entropy.
As we explained there, in order to calculate this quantity we have to divide the fermionic
chain into two parts X and Y. For instance in Fig. we have separated the chain into
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two intervals of contiguous sites. Thus the total space of states of the chain H = (C*)V
factorises in the tensor product of the space of states for X and Y,

H=Hx XHy,

with
HX _ ((C2)|X|’ HY _ (CQ)N—\X|7

and | X| the number of sites that the subsystem X contains.

We need now the reduced density matrix of X when the state of the chain is |K),

px = Try, (|K) (K),

that is obtained by computing the partial trace in the space Hy .

Finally the Rényi entanglement entropy is defined as

Sax = log Tr(p%),

1—a
where o > 1. Remember that the value o = 1 corresponds to the von Neumann entan-
glement entropy

Sl,X = — Tl"(pX 10g ,OX)‘

We shall be particularly interested in the behaviour of the entanglement entropy for large
|X|. As we discussed in Section [I.2] this question is relevant for several reasons. The
dependence of S, x on |X| will be useful to study, for example, the properties of the
critical chains.

The computation of S, x from the reduced density matrix py is a difficult task when
| X| is large enough, even numerically. Observe that the dimension of the space Hy is
21X1 Tt grows exponentially with |X|. For instance if |X| = 80 the dimension of Hy is
approximately twice the Avogadro number. We would need a Yottabyte of memory to
store a vector of this space in a computer.

Fortunately, we can bypass this problem expressing the Rényi entanglement entropy
in terms of the two-point correlation functions. Let us obtain this relation following the
works of Peschel [66] and Vidal, Latorre, Rico, and Kitaev [24].

The crucial property is that the eigenstates |K) of the general Hamiltonian are
Slater determinants and, therefore, they satisfy the Wick decomposition theorem. The
Wick theorem implies that the correlation function of 2J points can be decomposed into
the two-point correlation functions of the different pairings of points. More specifically,
a state described by the density matrix p satisfies the Wick theorem if the correlation of
an odd number of points is zero and for every J we have

Tr(pay ... as5) = T Z H D) T (pag (2 -1)Go(2))) (2.27)
€S, ; =1
where

#j(n)an +1;(n)af

&
I
M=

n=1
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is any linear combination of the creation and annihilation operators in the real space,
2 ={0€82]0(2j —1) <0(2j), j=1,....J}

is the set of permutations that preserve the order in every pair and |o| is the signature of
the permutation o. It is important to note that if the total density matrix p of the system
satisfies this property, the reduced density matrix px also fulfils this decomposition.

First, let us determine the form of p assuming that it satisfies the Wick decomposition.
In general, p will break the fermionic number conservation, hence we have to take into
account both C,,,, = Tr(pala,,) and F,,, = Tr(pa,a,,). Observe that, if p preserves the
fermionic number, F,,,, = 0.

Therefore, consider the matrix W with entries

Wy = Tr {p( Z?; ) (ain,am)} (2.28)

n

m Cnm )7 n,m:].,...,N.

This is a 2N x 2N Hermitian matrix with eigenvalues lying on the real interval [0, 1]. Let
us perform the Bogoliubov transformation

N
an = Z(%zcz +uc), n=1,... N,

=1

to the basis of fermionic modes ¢; where W is diagonal. The coefficients ,;, ¥, are real,
and they must satisfy the relations

P +vP =1, oY+’ =0,
where ¢ = () and Y = (V).

Expressing W,,,,, in terms of the new fermionic modes we have that

Wm = lilQZ(n) < %l ] _OM ) Q(m),

where {€Q,...,Qx} is an orthonormal basis with elements

Pni wnl
Q(n) = :
l(n) ( wnl Pnl )
and ;= Tr(pcle;) while Tr(peyey) = Tr(pejel) = 0.

It is useful to distinguish three different subsets of ¢; modes: FE; that contains the
modes with y; = 0, F5 that is made by the modes for which p; = 1, and E3 that denotes
the subset of modes with eigenvalue 1y € (0,1). For I € E; we have that Tr(pcj¢;) = 0
and, if P is the orthogonal projector into the image of ¢;, we can factorize the density
matrix as p = QP,. Analogously, if [ € E, then Tr(pcj¢;) = 1 and p = Q'(I — P). The
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operators ) and @’ account in each case for the rest of the eigenspaces. Finally, recalling
that the Gaussian states satisfy the Wick decomposition, we may conjecture that the
density matrix p should be of the form

p=Ke" [ B []U-P), (2.29)

pEE] qEE?

h = Z elc;rcl,

lEFESs

and K is the normalization constant. Observe that (2.29)) satisfies the Wick decomposition
and matches the eigenspaces of eigenvalues 0 and 1. We will show that with an adequate
choice of h it also accounts for the rest of the eigenvalues.

with

Using the fact that Tr(p) = 1 we can determine the normalization constant

1
K=]] —
ek, 1+e«
Computing
Tr(pcle,) = o for | € Es,

we can relate the eigenvalues of the correlation matrix W to those of h and, finally, we
obtain the desired expression for the coefficients ¢,

6 = log — Hl7 for 0 <y < 1. (2.30)
Hi

As it was noted by Peschel in [66], the above discussion gives a way to obtain the state
p from the two-point correlation matrix W. Just a month earlier the same idea was also
published by Vidal, Latorre, Rico, and Kitaev in [24] who applied it to the numerical
computation of the entanglement entropy for the ground state of the XY spin chain.

In fact, we can express the Rényi entropy of p,

1
Se = T log Tr(p®),

as a function of the correlation matrix W. Applying the relation (2.30) between the
eigenvalues of p and W that belong to the subset F3 we have

1+ e 2@ N

(") = [ emaye = [TIO = )"+ i)

1 e &)
leFEs _I_ ) =1

where in the last equality the product can be extended to all the eigenvalues of W without
any change in the final expression. Therefore, we arrive at an expression for the Rényi
entropy of p in terms of the spectrum of the two-point correlation matrix W,

N

! > log[(1— pu)* + ']

T 1-a

Sa
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In matrix form, the latter reads

Se = ﬁ Trlog[(I — W)* + W*. (2.31)

For the von Neumann entropy, that is the limit o — 1, the previous formulae lead to

N

5= 310 plos( — ) + ulog
=1

or

Sy = —%Tr[([ —W)log(I — W)+ Wlog W1.

Taking in the above expressions the restriction of the correlation matrix W to the sites
of the chain that belong to the subsystem X, we obtain the entropy S, x of the reduced
density matrix pyx.

Observe that the dimension of the density matrix p is 2V while the correlation matrix
W has dimension 2N. The relation found between them implies a drastic reduction of
the computational complexity, from an exponential to a polynomial dependence on the
size of the system. We shall exploit this fact in the numerical calculations in order to
go to larger sizes of X without exhausting the computational capabilities. Of course,
this simplification of the problem is valid provided the density matrix satisfies the Wick
decomposition and, therefore, all the information about the state is encoded in the two-
point correlation functions.

For the stationary states |K) of the Hamiltonian E; corresponds to the set of
occupied modes, E; = K, while Es is the set of empty modes, Fy = {0,...,N — 1} \ K.
Hence E3 = (). Of course, according to our previous discussion, the reduced density matrix
px obtained from |K) has also the Wick property and the results of this section can be
applied to the study of the entanglement entropy in these states.

In the theory of entanglement, the operator h corresponding to px is denominated
entanglement Hamiltonian and its eigenvalues {¢;} give the entanglement spectrum. The
entanglement Hamiltonian has been the subject of several recent works [42, 03, 04 93],
96, [97]. Observe that, in principle, if we know the expression of the Rényi entropy S, for
every a, we can compute all the momenta Tr(p®) of the Gaussian operator Ke " and,
therefore, determine all the spectral invariants of A.

It will be convenient to redefine the correlation matrix as V' = 2W — I. In the rest
of the thesis we shall always work with V' instead of W. Therefore, in the following, the
term correlation matrix will refer to V. Given the form of W, see (2.28]), the entries of V
are

View = 2Tr {p( Z’; ) (ajn,am)} — S, mym=1,... N. (2.32)

Replacing the matrix W by V in (2.31]) we have

5=t (1Y) 4 (157] -
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Since the eigenvalues of W, 1, belong to the interval [0, 1], those of V', v, = 2, — 1,
lie on the real interval [—1,1]. Introducing the function

fad) =1 i ~log K%)a + (?)a] , (2.34)

the entropy can be written in terms of the eigenvalues of V' as

Sa =Y _ falw). (2.35)

If we now apply the Cauchy’s residue theorem, we can express S, as the contour integral

47l e—1+

L m 7( Fu(Me) 5 Tog Dy(A)A, (2.36)

where % is a contour that surrounds the eigenvalues v; and Dy () is the determinant of
M-V,

,’:]2

Dy(\) = det(M — V) =

l:1

In Fig. we depict the integration contour € and the poles and the branch cuts of the
integrand.

Figure 2.5: Contour of integration, cuts and poles for the computation of S, in (2.36). The contour
surrounds the eigenvalues v; of V, all of them lying on the real interval [—1,1]. The branch cuts for the
function f, extend to Foco.

The contour integral (2.36])) was first obtained by Jin and Korepin in Ref. [98] for the
ground state of the XX spin chain. As we have seen here, their result can be extended to
any eigenstate |K) of the Hamiltonian ({2.2)).

In this way, the entropy S, is derived from the determinant of the resolvent \I — V'
of the two-point correlation matrix. Our problem, therefore, reduces to the computation
of the latter. In the following section, we shall take the first step in this direction by
computing the correlation matrix V for the stationary states |K).
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2.4 Correlation matrix for the stationary states

Notice that the entries (2.32)) of the correlation matrix V' for the states |K) can be calcu-

lated from
G
Vnm = 2<K‘( aTn ) (a]:nvam)

First, let us express them in the Fourier basis (2.3)),

K>—5nml, n,m=1,...,N. (2.37)

leiek(”‘m)7 (2.38)

MZ

1
Vnm:_
N

B
Il

0

where Gy, is the 2 x 2 matrix

gk:2<K‘( b?’“k ) (bl b_s) K> — I

In terms of the Bogoliubov modes (2.9)), Gy, is of the form

6. =20l (x|( ) k| k)it
—k

Since |[K) = [,k dL |0), the expectation values in the matrix above are

<K‘( i Jubaaj) = (TR Sy ),

where x4 (k) is the characteristic function of the set of occupied Bogoliubov modes K,

1, keK,
wh={ g bk

Therefore,

_ st 1_2XK<k) 0
g’“_Uk( 0 142 (N—k) )Uk'

Considering the different possibilities we finally arrive at

—M, ifke Kand N —k € K,
_ —1I, f ke Kand N -k ¢ K,
G = My, if kg Kand N —k € K, (2.39)

I, ifkgKand N —k € K,

1 0
Mk:U,j(O _1)Uk.

where
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The matrix M, depends on the couplings A;, B; of the Hamiltonian. In fact, if in the
identity ([2.8) we split the dispersion relation wy, into its symmetric and antisymmetric
parts, w; and w; , we have

1
Up R U = Wit ( 0 _01 ) +wil.

Therefore,

1 1
Mk:Ug( 01>Uk:—+(Rk—wk‘]),

0 — wy

and, finally, using (2.5 we obtain

—— )
VIEDPHIGE N\ Gr =k,

Observe that the form of G; at k not only depends on the occupation of this mode
but also on that of the mode N — k.

We shall be particularly interested in computing the entanglement entropy for the
ground state. This state corresponds to the configuration K = {k |w, < 0}. Taking into
account that wy = w;” + Fy, and wi = wy_,, Fy = —Fy_,, the general expression of Gy
in (2.39) particularises for the ground state |K) as

) -1, if —wf > F,
gk = Mk, if - w,j < Fk_ < w,j, (240)
I, it Fy > wy.

Since we imposed that w,:r > 0, w, and wy_ cannot be both negative. This implies that
the first case in (2.39) never happens in the ground state.

Some transformation properties of the correlation matrix result in the invariance of
the corresponding Rényi entropy ([2.33):

1. Translational invariance in the real space (a-fermions). Due to the homogeneity
of the Hamiltonian, the entries of V,,,, only depend on the distance between sites
n—m.

2. Translational invariance in the momentum space (d-fermions). Consider a particular
configuration K. Let KA be another one with the same number of occupied modes
and their momentum displaced a constant A, i.e. Ka = {k+ A|k € K}. The
correlation matrix of KA has entries

1 N-1
VA — = Z glﬁewk/(n—m)
nm N )
k'=0

where G& is given by (2.39) taking the displaced configuration Ka instead of K.
Changing the variable of the sum, k = k' — A, we find
27iAn _ 27iAm

A
Vnm =e ~v Vypme N

That is, V2 results from a unitary transformation of V. Therefore, they have the
same spectrum and the corresponding entropies (2.33)) are equal.
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3. PC' invariance. If we apply the PC' transformation, and , to a con-
figuration K we obtain the complementary configuration K¢, that is, K U Kt is
the configuration in which all the Bogoliubov modes are occupied. Given the form
of the matrix G, for K, see , it is straightforward that for K this matrix is
Q,E = —@Gj. Hence, under the PC transformation, the correlation matrix changes its
sign,

| A v

The entropy ([2.33)) is invariant under the change of the sign of the correlation matrix.
In conclusion, the entropies of K and KC are equal.

In the thermodynamic limit N — oo, all the N-tuples that we have introduced, such
as wg, Fi, G, M} and the others, become 27-periodic functions w(6), F(0), G(0), M(6)...
determined by the relation w(fy) = wy. Then the entries (2.38)) of the correlation matrix
V' become

1 [" ;
Viem = 2—/ G(0)e®"™dh, n,m=1,...,N, (2.41)
™ —T
with the matrix G(0) defined by
1 [" 1 3=
o BRICCOLETS DOLTEREE

where the equality should be valid for any continuous scalar function W.

A matrix with entries like those of is a block Toeplitz matriz with symbol the
2 x 2 matrix G(#). That is, the entry V,,, is given by the (n — m)-Fourier coefficient
of the entries in G(A). Therefore, V' is a block matrix in which the elements V,,, of
every subdiagonal parallel to the main one are equal. A sketch of this kind of matrices is
represented in Fig. [2.6]

Figure 2.6: By the diagonal bars we represent the defining property of a block Toeplitz matrix: the
entries along any subdiagonal parallel to the principal one are equal.

In order to compute the entanglement entropy S, x using we have to take
the restriction of the correlation matrix to the sites that belong to X, that we
denote Vx. In the following chapters we shall take advantage of the properties of block
Toeplitz matrices to obtain the asymptotic behaviour for the determinant of A\l — Vi
and, employing , the dependence of the entanglement entropy on the size of the
subsystem.



Chapter 3
Hopping chains

In this Chapter we shall study the asymptotic behaviour of the entanglement entropy
for an interval of contiguous sites in the stationary states of a particular subset of the
fermionic chains introduced previously.

We shall consider those models described by a Hamiltonian of the form ([2.2)) in which
all the pairings B; are zero. That is, it only has hopping terms,

N L
H= Z Z AlaLanH, (31)

n=11=—L
so it commutes with the number operator N = SV alqa
p - n=1"n"n"

This symmetry simplifies enormously the problem. In Section [2.3] generalising the
work [98] of Jin and Korepin, we obtained that the Rényi entanglement entropy for the
stationary states can be derived from the determinant of the resolvent of the two-point
correlation matrix. We shall see here that for chains without pairing terms this matrix is
a Toeplitz matrix.

Therefore, the problem of analysing the asymptotic behaviour of the entanglement
entropy reduces to computing the determinant of a Toeplitz matrix. It turns out that
there exist asymptotic formulas for these determinants. In particular, using the Fisher-
Hartwig conjecture (actually a theorem as it has been proven in our case) we shall be
able to obtain the asymptotic expansion of the entanglement entropy. We shall check
numerically the validity of this expression for different states. Finally we shall give a
physical interpretation of the results. For this purpose, we shall introduce local fermionic
ladders as a generalisation of the fermionic chains.

3.1 Correlation matrix

In order to solve the Hamiltonian ({3.1)), observe that it is diagonalized by the Fourier
modes

35
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b 1 i e~ i0kn o= F ey
= = An, = a7 .
k \/N £ k N

Hence we do not have to perform a Bogoliubov transformation as in the general case. In
fact, in terms of the operators above, the Hamiltonian (3.1)) reads

N/2—-1
H = Z wkblbk,
k=—N/2
with dispersion relation
L
W = Fk = Z Aleiekl. (32)
I=—L
For convenience, we have taken k = —N/2,...,N/2 — 1. Remember that we are always

considering periodic boundary conditions, a,n = a,, and, therefore, by, ny = by.

Thus the eigenstates of (3.1)) are characterised by the subset of occupied Fourier modes
Kc{-N/2,...,N/2 -1},

K) =[] ol 0), (3.3)

keK

where |0) denotes the vacuum of the b-operators, that is b; [0) = 0 for all k. In particular,
the ground state |K) is obtained by filling the Fourier modes with negative energy

K) =[] vl 0.
w <0

Remark: in the previous Chapter we demand that (wr + w_x)/2 > 0 in order to remove
the ambiguities. Here it will be more convenient to fix the Bogoliubov transformation to
the identity. As a consequence of this choice the symmetric part of w;, may take negative
values.

For the eigenstates |K), the entries of the correlation matrix V, introduced in Section

B3, are
o = oo Yt

In the Fourier basis, they can be expressed as

K>—(5nm[, n,m=1,...,N. (3.4)

N/2—1

_ 1 0 (n—m)
Vnm — N Z gke F 5

k=—Ny/2
be \

Ok =2<K‘( bt ) (bps 0—k) K> —I.
—k

Taking into account that |K) = ],k bl |0), we compute the expectation values in Gy,

obtaining "
g’“‘( 0 —1+2XK(N—I<:))’

where
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where x, (k) is the characteristic function of the set K of occupied Fourier modes, that
it is 1 or 0 according to whether &£ belongs to K or not.

Therefore, we have

—0,, iftke Kand N —k €K,
B , fkeKand N -k ¢ K,
Gr = o,, fkgKand N—k¢K,

I, ifkZKand N —k e K.

In this case the matrix G, is diagonal. Then there is a similarity transformation that
rearranges the rows and columns of V

Ve 0
-1 _
VI = ( 0 _(VS)t > )

and maps the 2N x 2N matrix V to the direct sum of a N x N matrix V' and its opposite
and transpose. The entries of V* are

1 . )
(Vs)nm — N (Z elak(n—m) _ Z ele(n—m)> , n,m= 1, . ,N' (35)

keK kgK

Observe that the states (3.3) preserve the fermionic number. Hence the correlations
Fom = (K|ana,, |K) vanish, and we only have to consider those of the form C,,, =
(K| alan, |K). If we express Cp, in the Fourier basis, we have

.. = % Z ei@;c(nfm).

keK

Comparing with (3.5) we conclude that V¥ =2C — I.

Consider now the relation found in between the entropy and the correlation
matrix. For the states |K), the entropy of a subsystem X can be computed from the
restriction of the correlation matrix to the indices that belong to X, that we denote
V. Hence, the entanglement entropy reads

1 [+VIN" | (1-V&\*
= Trl .
Sa.x T, Trlog [( 5 > —i—( 5 , (3.6)

or, in terms of the contour integral (2.36)),

Sa.x = =— lim %fa Ae)— T logDX()\)dA (3.7)

27r1 e—1+

where D% (\) = det(M — V¢). The integration contour ¢ and the branch cuts of f, are
those depicted in Fig. [2.5]

In the thermodynamic limit N — oo, we can replace the sum in (3.5) by the integral

— _/ 19(n m) 97 (38)
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where g(f) is a periodic function that takes values in the interval [—1, 1] and defined by

1 ™
2 J_,

U(0)g(0)do = Nli_rgo% DUl =D V(6|

keK kZK

where the equality should be valid for any continuous function V.

The function ¢(f) represents the occupation density of the set of occupied Fourier
modes in the configuration K. Observe that g(f) = 1 means that the modes with momenta
around N6/(2m) are all occupied while g(6) = —1 if all of them are empty. An intermediate
value corresponds to the occupation of a fraction of the Fourier modes with momenta near
NO/(2m).

In order to determine g(#) it is useful to describe the configuration K by a sequence
of 1 and -1 where every digit represents the occupation (1) or not (-1) of the mode of the
corresponding momentum k.

Let us illustrate this with several particular examples.

State 0: the Fock space vacuum |K©®) = |0). It corresponds to the configuration in
which all the Fourier modes are empty, K(©) = (). This can be represented by the sequence
(-1-1... -1). Therefore, the density of occupied modes is

g 9) = —1.

State 1: half of the Fourier modes, corresponding to the lowest absolute value of the
momenta, are occupied, while the others are empty. Therefore, the set of occupied modes
is K& = {—N/4+1,...,N/4 —1}. This corresponds to the sequence (-1 ...-11 ... 1
1... 1-1...-1). The occupation density is

-1, 0€[-m—7/2JU[r/2,7),

g (0) =
1, 0e(—n/2,7/2).

State 2: the state
N/2

K®) = [T 5 (0~ alons) 10 (39)

corresponds to alternatively occupied and empty Fourier modes, K?) = {—N/2+1, —N/2+
3,—N/2+5,...,1,3,5,...,N/2—1}. Thatis, (-1 1-11... 1-11). Therefore,

g?(0) = 0.

State 3: as a mixture of the two previous cases, let us consider that the Fourier modes
with momenta |k| > N/4 are empty while those with |k| < N/4 are occupied alternatively.
That is, K® = {~N/4 +1,—-N/4+3,...,1,3,5,...,N/4 — 1}. This corresponds to the
sequence (-1-1...-11-11-1...-11-1-1... -1). Therefore, the occupation density is

—1, @€ [-m —7/2]U[r/2,7),

g9(0) =
0, e (—7/2,7/2).
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State 4: all the Fourier modes with |k| > N/4 are empty, while for smaller momenta
three out of four modes are occupied. That is, K = {-N/4 + 1, —~N/4 +2, —N/4 +
3,—N/4+5—-N/4+6,-N/4+7,...,1,2,3,...,N/4—3,N/4—2 N/4—1}. Hence we
have the sequence (-1-1...-1-1111-1111...-1...-1). Then the occupation density
is

-1, 0e[-mn/2]U[r/2,7),
g(0) =
1/2, 6 € (—n/2,7/2).

In general, we shall be interested in piecewise constant occupation densities, such as the
previous ones,

g(@) =t,_1, 0,1 <0< QT, (310)

where 60, 05, ..., 0r are the discontinuity points and 6y = 0z — 27.

Observe that the entries of V*° only depend on the difference n — m. This is
a consequence of the translational invariance of the theory. If the subsystem X is a
single interval of contiguous sites, all the entries in V¢ of each subdiagonal parallel to the
principal one are equal and correspond to one of the Fourier coefficients of the occupation
density ¢g(#). A matrix with this property is called Toeplitz. In this case, we shall say that
V¢ is a Toeplitz matrix generated by the symbol g(#). Therefore, using the analysis
of the entanglement entropy of an interval reduces to the study of the determinant of a
Toeplitz matrix.

The asymptotic behaviour of Toeplitz determinants has been heavily investigated dur-
ing the last century. This study was stimulated by the large variety of problems in Physics
that can be formulated using this kind of determinants, from random walk to the descrip-
tion of the adsorption of dimeric molecules on a crystalline surface. In the 1949 paper
[99] Kaufman and Onsager found that the spin-spin correlation functions for the classical
Ising model in two dimensions may be expressed in terms of a Toeplitz determinant. This
discovery led to an intense effort of physicists and mathematicians towards the under-
standing of these determinants. The whole story about the relevance of the Ising model

in the development of the theory of Toeplitz determinants can be found in the nice review
[100].

The study of the correlations in the Ising model gave rise to the two main results
concerning the asymptotic behaviour of Toeplitz determinants: the Strong Szegd theo-
rem [101] and the Fisher-Hartwig conjecture [102]. The first one gives the asymptotic
behaviour for Toeplitz matrices with a continuous (smooth enough), non-zero symbol.
The Fisher-Hartwig conjecture generalises the Strong Szeg6 theorem to piecewise sym-
bols with discontinuities, as it is our case, and/or zeros. Of course, there is a plethora of
other results on the properties of Toeplitz determinants. Many of them can be found, for
example, in the mentioned review [100] or in the book by Béttcher and Silbermann [103].

In 2003 Jin and Korepin found another application of Toeplitz determinants in Physics:
entanglement entropy. In Ref. [98] they arrived at the expression for the ground state
of the XX spin chain. Then they employed the Fisher-Hartwig conjecture to determine
the asymptotic behaviour of the entanglement entropy of an interval. We shall generalise
here their result to any stationary state of the Hamiltonian with occupation density
like . This will be the objective of the next section.
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3.2 Asymptotic behaviour of the entanglement en-
tropy

In this Section we shall obtain the asymptotic behaviour of the entanglement entropy
of an interval X of length |X| in the stationary states . As we have just seen, the
correlation matrix of this subsystem, V¥, is a Toeplitz matrix of dimension |X| x |X|
and symbol the density of occupied modes ¢g(f). Hence using the expression (3.7) we
can determine the entropy of the interval from the determinant D% (\) of the Toeplitz
matrix Al — V. The asymptotic behaviour of this determinant can be computed using
the Fisher-Hartwig conjecture, that for symbols like is actually a theorem proved
by Basor in [104].

The Fisher-Hartwig conjecture states that if g(6) is a piecewise constant function
with jump discontinuities at 61, ..., 0g, like (3.10]), then the Toeplitz determinant D% (\)
generated by A — g(#) has the following asymptotic behaviour

R
log D (A) = s(A)|X| = > B log | X| +log E + o(1), (3.11)
r=1
where | g
s = 5 [ 1ol ~ g(6)100
2 ) .

the coefficient (3, accounts for the value of the symbol A — ¢(#) at each side of the discon-

tinuity point 6,,
1 A—t
r = 'r/\ :_1 — )
Br = Br(A) = 5 og<A_tr_1)

with t,_; and ¢, given by (3.10)). The constant term reads

E=E[{s}.{0.}=[[ca+p)G0-8) J[ - 0o

1<r#r'<R

Here G(z) denotes the Barnes G-function [92]. Observe that the factor s(\), the zero mode
of log[A—g(0)], contributes to log D% (\) with a term proportional to the size of the interval
|X|. On the other hand, the discontinuities give rise to a term that grows with log | X|
as well as to a constant term independent from |X|. When the symbol is continuous
(R = 0) the expansion (3.11]) reduces to that predicted by the Strong Szegé theorem
[101]. In particular, if the occupation density is constant, g(6) = ¢ for —m < 6 < 7, the
determinant Dx(A) behaves as

log Dx () = | X|log(A —t) + o(1).

In the next Chapter we shall enunciate the Strong Szeg6 theorem and the Fisher-Hartwig
conjecture for more general symbols, not only piecewise constant functions.

If we now insert the expression (3.11)) given by the Fisher-Hartwig conjecture into the
contour integral (3.7) for S, x, we conclude that the Rényi entanglement entropy behaves
like

Sa,x = Aa| X| + By log | X |+ C, + o(1). (3.12)
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Let us compute now the coefficients of this expansion.

The coefficient A, of the linear term reads

271 e—1+

= — lim j{ fa )\/5 (A)dA (3.13)

Taking into account the form (3.10]) of ¢(0) ,

1 R 07« " Or—0r_1
=5 Z/ log(A — t,—1)df =log [J(A = t,1) " = .
r=1Y0r—1 r=1

Then if we compute the derivative of s()) in (3.13),

Aazmgﬁ]{fa Ae) Z /\—t

Employing now the Cauchy’s residue theorem and taking the limit, we finally find

R

Ay = % > (00— 0,21) faltim). (3.14)

r=1

In the case R = 0, that is when the occupation density is continuous and ¢(#) = ¢ for
—m < 0 < m, the coefficient of the linear term is

Ao = fa(t). (3.15)

For the coefficient B,,, we have

B, =——— lim 7{ fa(X/e) dﬂf

27r1 a—>1+

In Fig. [3.1) we represent the branch points and cuts for the integrand of the r-term of the
above sum.

Figure 3.1: Contour of integration, branch points and cuts for the computation of B,

There are different ways of dealing with this integral. One strategy, employed for
example in [98], is to decompose the contour % into different pieces where the integrals
diverge. After a tedious computation, one can see that the divergences cancel and the
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final result is finite. An alternative strategy that leads directly to the finite result is to
perform an integration by parts

R

1 ) dfa(Ne)
B, =— 1 —————=p7d\. 3.16
omi Tlaffi}é o (3.16)
For each r-term, we can deform the integration contour % into a curve that only encloses
the cut between the points t,_; and ¢,. Taking now into account the change in the branch
1 o dfa(N) A—t,
By, = —= log | ———
8701 ; /tT_l EE N ANl

of B, when we go around ¢,_; and t,,
2 2
A—t
i — (log | -—"| —1 dA.
+ 17r> ( og ’ R 17T> ]
After simplifying we arrive at

b dfa )\_tr
B, WZ/ ’A—tr_l dA. (3.17)

In the next sections, we shall consider some particular cases in which B, can be obtained
analytically. In general, however, for non integer « this integral can only be computed
numerically.

R

For integer @ > 1, we can give an explicit expression for B,. In order to find it, we
should come back to (3.16|), after integrating by parts. Let us take the r-term
1 . dfa(A/e)

ar =5 1 T2 B2,
Bar = 27l e+ w dA b

The derivative
dfa(d) o (1+XN)*T—(1-X)"
Ay l—a (14+N)o+ 1=\
is a meromorphic function for integer & > 1 with poles along the imaginary axis located
at

20 —1 1
)\l:itang, l=1,---,a, l#a—i_
200

Since 32 is holomorphic outside the integration contour ¢ we can send this curve to
infinity and reduce the integral in B, , to the computation of the corresponding residues

of the integrand at \;,
= - Z Res< fo g2 )\).

l¢a+1
The residues of the poles of df,/d\ are

dfs 1 N—t \’
N) = (log )
Res(dA ) 12 (a— 1) (Og )\l—tr_1>

After some simplifications we arrive at

«

1 1 (2 — 1) cos® 20T 4 9
i = ——— = | 1og = _ 2| 1
B R 47T2(]_ _ O{) Z 4 ( 0g ( _ 1) COS2 (2l 1) i 1 @1 (3 8)

2
=1 tr—l
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where

(t, — t,1) tan E5 1T
¢ = arctan =2y € (—7/2,7/2).
tit,_1 + tan? EDT /2

Hence the coefficient B, will be the sum of all these terms,

Bo=> Ba,, (3.19)

provided o > 1 is an integer.

Finally, the constant term C,,

Co = 3= lim § (0/2) [ S IoglG(1L+ B)G(1 - 5] +

; d
+ Z log(l—el(erfgr’))a(ﬁrﬁr')

1<r#r’'<R

has two integrals that can be treated as the previous one. Let us take the first one

() = 55 Jim 7{ falV )32 10gIG(1 + B)G(1 = 5]
and perform an integration by parts,
Ia(r) = —i hm M log[G(l + ﬂr‘)G<1 - ﬂT)]d)\

2mie—1+ Joo dA

The branch points and cuts of the integrand are again those of Fig. 3.1} Analogously
to what we have done for the r-terms of B,, the integration over % reduces to integrate
along the cut between t._; and t, taking into account the change in the branch of j,.

Hence
1t AR, [GA+BGA - B
Ia(r)—z—m/ o8 {G(lJrﬁﬁ) (1—5”}&

where 3 are the two different branches of 3, involved in the integration,

tr—1

A—1,
)\_tr—l .

r

1 1
BE =iw,(\) £ 3 w,(\) = —log‘

Observe that 5 = 8- 4+ 1. Therefore, applying the property of the Barnes G-function
G(z +1) =T'(2)G(2), where I is the Gamma function, we finally arrive at

1 [ dfa(N) ['(1/2 —iw,(A))
]a(r):%/ = 1og {F(I/%mm)}dx (3.20)

tr—1

We proceed as before with the second integral,

Jo(r,r") = —=— lim }{fa Ae) 51”67")
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We integrate by parts,
1 dfa(A\/e)

Jo(r, ") = — lim —_
( ) 271 e—1+ ¢ dA

avoiding the divergences that directly cancel with this strategy, There are now two dif-
ferent cuts inside the integration contour. One from ¢,_; to ¢, and another one from ¢,,_;

to t,,. We can decompose the integral in the following way,

Jo(r,r') = L lim jl{g Mﬁrﬁwd)H- L lim é Mﬁm@r’dA;

Tl es1t dA 271 e—1+ dA

Brﬂr"d)\a

where €, (%,/) is a contour that only encloses the cut with endpoints ¢,_; (¢,,_1) and ¢,
(t,/). Since we will only meet logarithmic singularities, we integrate each term along the
corresponding cut taking into account the change in the branch of 5, or 8, when we go
around their branch points. Then we arrive at

Jo(r,r") = Ko(r,r") + Ku(r' 1),

with b df) \
1 " — Ty
Ky(r,r") = — | “ldA. 3.21
e (3.21)
Finally, putting all together we have
R
Ca=> Ia(r)— > log[2—2cos(d, — 6,)] Ka(r,r). (3.22)
r=1 1<r#r'<R

To our knowledge, such an explicit expression of the asymptotic behaviour of the Rényi
entanglement entropy was obtained for the first time by the author jointly with Esteve,
Falceto and Sanchez-Burillo in [I05]. Keating and Mezzadri generalised in [106, [107] the
original result of Jin and Korepin to any state with occupation density g(6) = +1 and
a finite number of discontinuities. In [I08], Alba, Fagotti and Calabrese already studied
some aspects of the entanglement entropy for the states with g(f) # 41 applying the
Fisher-Hartwig conjecture too. Several authors have employed this approach to study
the entanglement entropy in different fermionic chains, see for instance [109], 110, 111]
112 113]. In [114] Calabrese and Essler proposed a generalisation of the Fisher-Hartwig
expansion that accounts for the o(1) terms in the Rényi entanglement entropy for
the ground state of the XX spin chain. They found that these corrections oscillate with
| X|.

Note that, by its definition (2.34), f.(£1) = 0. Hence if g(f) = %1 the coefficient
of the linear term A, vanishes. The logarithmic and the finite terms arise from the
discontinuities of g(6). In fact, if g(#) is continuous then B, and C, are zero. Therefore, if
the state has g(f) = +1 with a finite number of discontinuities, the entropy of the interval
grows with log |X|. On the other hand, if there are intervals with g(#) # £1 the entropy
exhibits both linear and logarithmic contributions.

3.2.1 Examples

Using the previous results, let us compute the entanglement entropy (3.12)) for the par-
ticular states considered in Section [B.1]
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State 0: since g(¥)(f) = —1, we do not have linear term. The symbol does not present
discontinuities and, therefore, the coefficients of the logarithmic and constant terms, B
and Céo), vanish too. Hence the entanglement entropy is zero. This result can be obtained
directly by noticing that the vacuum of the Fourier modes |0) is separable.

State 1: the coefficient of the linear term, A&l), is zero because g™ () = +1. Since
g is discontinuous, the entanglement entropy grows with log | X |. We can compute the
coefficient of this term applying (3.17). In this case it reads

Lofhdf.(N) ., 1—2
)= = S| dA.
Ba w2/_1 PR D)

Here we have taken into account that g™ has two jumps (R = 2) from —1 to 1. Therefore,
they give an equal contribution to BY.

The integral above can be computed analytically for any «. In fact, after integrating
by parts and changing the variable to t = (1 4+ \)/(1 — X) we have

1 o dt > dt
B(l):—/l e /1 rrnd)
0= e | e+ 0~ [Choste 1)

Performing now the change of variable ¢t* = " in the first integral and ¢ = e" in the
second one, we arrive at

a—+1

1 4+ 1)du = . 3.23
| st nau = 2 (3.23)

2(1 + «)
T2

B =

There is also a constant CS in the entropy. We can use to compute it. Notice that
this term not only depends on the value of g™ (6) at each side of the discontinuities but
also on their location. In this case they are located at ¢, = —7/2 and 6y = 7/2. Then
the expression in particularises to

e =10(1) + IP2) — [KD(1,2) + KD(2.1)] 2log 2.

According to ([3.20)), since the value of g () changes from —1 to 1 at both discontinuity
points, [él)(l) = Iél)(Q) =7T,, with

L hdfa(N) ['(1/2 —iB(\)) 1 1—A
Yo = — 1 A\, B\ = —log — 2. 3.24
o /_1 8 {F(l/Q—Hﬁ(A)) BN = 5-log 7 (3.24)
Taking into account ((3.21)) we have
(1) _xO _ B

Therefore, the constant term is

C(l)ZQTa+a+1

[0}

log 2.

In conclusion, the entanglement entropy of an interval in this state is

a+1
(6167

1
Sex

log | X |+ C + o(1). (3.25)
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State 2: since ¢g'® () = 0 for all 8, the entanglement entropy grows linearly with | X]|.
The proportionality constant can be obtained from (3.15)),

2) = foz(o) = log 2.

The coefficients 8&2), c? of the logarithmic and the constant terms are zero because the
symbol is continuous. Therefore,

S& = |X|log2 + o(1). (3.26)

The entanglement entropy for this state can be exactly computed by taking the partial

trace of
N/2

H\/‘( B n+N/2> |0>

In particular, for any interval of length |X| < N/2, the reduced density matrix is
Px = 27|X‘I7

which leads to the same result (3.26 - ) that we have obtained employing the Fisher-Hartwig
expansion, which is exact for | X | < N/2. Observe that 5 o.x 18 independent from the Rényi
parameter « and it is the largest possible entropy of a mixed state in a Hilbert space of
dimension 2!

State 3: the entanglement entropy for this state combines the features of the two
previous ones. It presents a linear term since g©®) () is zero in the interval between

01 = —7m/2 and 6, = w/2. We calculate the coefficient of this term using ({3.14])

AP =27 0) =

log 2

5 (3.27)

This symbol is discontinuous and, therefore, the entropy has also logarithmic and constant
terms. Since it has two jumps from —1 to 0, the coefficient of the logarithmic term

obtained applying (3.17)) is

Y N Y Y 1 1 [log2\”
@_ L [ ] AA=-—- (2% 2
Bt =g | leeraloe 8 2\ x ) (3:28)

for a = 1.

For integer o« > 2 we can use (3.18)). In this case it gives

«

1 1 2l — 1)1\ 2
B® - 4T 3 <log sin u) . (3.29)

2400 2m*(a - 1) = 2

When « is not an integer this coefficient and the constant term c? (for any «) have to
be computed numerically from the expressions (3.17) and (3.22) respectively.

Hence the entropy of an interval for this state is

log 2

S = 1X| + B® log [ X|+CP® + o(1). (3.30)



Chapter 3. Hopping chains 47

State 4: as in the previous state, the entanglement entropy presents the three terms.
The coefficient of the linear term is non-zero because ¢ () = 1/2 in the interval between

0, = —m/2 and 6y = 7/2. Hence employing (3.14]) we find

w_ =0 _ fa(1/2)
A = 2 (1)) = T

2
For a = 1, the latter particularises to
4
4
AW = log S50 (3.31)
while for any a > 1,
1 3*+1
@ = 1 : 3.32
A = oa oy %8 T (3:32)

The occupation density ¢ has two discontinuities with lateral limits —1 and 1/2. Thus,
considering (3.17)), the coefficient of the logarithmic term for a = 1 is

1 (Y2 1) 1/2—)\
BYW = _— log / d\ =

1 1 [/log2 2 3 .. (3
o |, BT A e T é_ﬁ( . ) +472L12(z)’ (3:33)

where Liy(z) stands for the dilogarithm function [92].

We can obtain an explicit expression of B for integer a > 1 using 1} For this
state we have

@ (2l 1)7r

1 3tan 1 3sin? &7 4
&1 A —— tan? — ~log? 2a . 3.34
g 2 \ e et g (3.34)

In conclusion the entropy of an interval for this configuration behaves as

1/2
S = Jal / )|X|+B4>1ogyx|+c<4>+o(1>

«,

The coefficient 8&4), for non-integer «, and the constant c{Y should be calculated numer-

ically using respectively (3.17) and ([3.22]).

Let us check these results numerically. For this purpose we can employ the expression
(3.6) of the entanglement entropy in terms of the correlation matrix V. This formula has
the advantage that reduces the complexity of the numerical computation of the entropy
with respect to the definition of S, x through the reduced density matrix px. In fact, while
the dimension of px is 21X, the size of V¢ is | X|. Hence we can go to large enough values
of | X]|, for which the Fisher-Hartwig expansion is a good approximation, without the
necessity of special numerical techniques or high performance computing resources. Since
we are interested in the thermodynamic limit, we only have to compute the entries of the
correlation matrix V¥ using , diagonalise it and calculate the entanglement entropy
employing . Here we have performed the numerical diagonalisation employing the
corresponding routine for Hermitian matrices included in the GNU Scientific Library for
C' [115]. We refer the interested reader to Appendix |A| where we discuss the details about
the numerical calculations that we have performed in the thesis.



48 3.2.  Asymptotic behaviour of the entanglement entropy

In Figs. 3.2 and [3.4] we plot the numerical entanglement entropy obtained for the
states 1, 3, and 4 varying the size | X| of the interval from 10 to 1000. The solid lines
represent the analytical expansion that we have just obtained for these states using the
Fisher-Hartwig conjecture. The analytical prediction is a very good approximation even
for the smaller sizes of the interval.

0 200 400 600 800 1000

0 200 400 600 800 1000
|X]

Figure 3.2: Entanglement entropy with a = 1 (upper panel) and o = 2 (lower panel) for a single interval
of length |X| when we take the state 1. The dots are the numerical values and the continuous line
represents the asymptotic expansion (3.25) predicted by the Fisher-Hartwig conjecture for this state.
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Figure 3.3: Entanglement entropy with o = 1 (upper panel) and « = 2 (lower panel) for a single interval
of length |X| when we take the state 3. The dots are the numerical values and the continuous line
represents the asymptotic expansion with the coefficient AS’) that we have obtained in ,
while 8&3) is for a = 1 and that given by for « = 2 . The constant term C((f’) is computed
numerically using . In the insets we plot the entropy subtracting the linear contribution to reveal
the logarithmic term.
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Figure 3.4: Entanglement entropy with o = 1 (upper panel) and « = 2 (lower panel) for a single interval
of length |X| when we take the state 4. The dots are the numerical values and the continuous line
corresponds to the asymptotic expansion (3.12)) obtained applying the Fisher-Hartwig conjecture. The

coefficient of the expansion AS;‘) is 1D for a = 1 while for a = 2 is given by |D The coefficient 8&4)
ey

is 1' for « = 1 and that obtained from l] for v = 2. The constant term C5” has been computed
numerically using (3.22). In the insets we plot the entropy subtracting the linear contribution to reveal
the logarithmic term.

Discussion of the results

In Ref. [I08] Alba, Fagotti and Calabrese showed that the configurations for which the
density of occupied states is g(#) = 1, whose entanglement entropy grows logarithmically
or it is zero, are the ground state of a Hamiltonian with finite-range couplings. On the
other hand, as we have seen, if g(f) # +1 the leading term of the entropy is linear in | X|.
They proposed that these configurations correspond to the ground state of a Hamiltonian
with long-range couplings. This can be shown to hold in the particular states studied
above. The general discussion will be postponed to the next section.
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State 1: is the ground state of the Tight Binding Model described by the critical
Hamiltonian

N
H==> al(an1+ anp). (3.35)
n=1
Its dispersion relation (3.2)) is
Wy = —2cos by

In this case wy, is negative for [k| < N/4. In the upper plot of Fig. [3.5 we represent this
dispersion relation in the thermodynamic limit 6, — 6 € [—7, 7). In the ground state
all the modes with negative energy are occupied. The plot in the lower half of Fig. |3.5
corresponds to the density of occupied modes in this configuration. It is precisely that of
the state 1.

w(0)

[\
ol
3

-1

Figure 3.5: At the top, dispersion relation of the Hamiltonian (3.35)) in the thermodynamic limit. The
mass gap is zero and the theory is critical. In the ground state all the modes with negative energy are
occupied. At the bottom, the density of occupied modes in the ground state.

State 2: is the ground state of the long-range Hamiltonian

N
H = Z(Aoailan + Aval apyy + AN/QaILan+N/2) + h.c. (3.36)

n=1

with the adequate choice of coupling constants.
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The dispersion relation (3.2)) is in this case

21k 2rk N
wy = Ag + 244 cos <%) + 2Ap/2 cos <% . 5) . (3.37)

Observe that it splits into two bands for even and odd k. If £ = 0 (mod 2) we have
wr = Ag + 2AN/2 + 2A; cos Oy,

while if £ = 1 (mod 2),
Wg = Ag — 2AN/2 + 2A1 COS Hk

Hence when
A07AN/2 > 0, A< 0, Ay — 24, < 2AN/2

all the modes with even momentum have positive energy, while it is negative for those
with odd momentum. In the upper plot of Fig. we represent the two bands in
the thermodynamic limit. Therefore, in the ground state all the modes with odd k are
occupied while those with even k are empty. Thus the occupation density is ¢®(6) = 0.
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Figure 3.6: In the upper panel, bands of the dispersion relation of the long-range Hamiltonian
when the couplings satisfy the condition Ag, Ay > 0, A1 <0, and Ag — 24; < 2Ay/5. Then the band
for even modes, wp(0), is positive while that for odd modes, wq(6), is negative. Therefore, in the ground
state only the odd modes are occupied, and the occupation density, depicted in the lower panel, is 0.

State 3: is the ground state of the previous long-range Hamiltonian (3.36)) when

AO = QAN/Q > 0, Al < 0, QAN/Q > —Al.
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For these couplings, the two bands of the dispersion relation (3.37)) are
wy = 4AN/2 + 24, cos by, if k=0(mod?2),

and
wr = 245 cos0y, if k=1 (mod2).

The modes with even momentum have positive energy. The band of the modes with odd
momentum is negative for |k| < N/4. In the upper half of Fig. we represent them
in the thermodynamic limit. Therefore, in the ground state the modes with odd k& and
|k| < N/4 are occupied. This is is the state 3 studied before. In the lower half of Fig. (3.7
we plot the corresponding occupation density.
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Figure 3.7: The upper plot represents the bands of the dispersion relation of the long-range Hamiltonian
when Ag = 2Ayn/, > 0, Ay < 0, and 24/, > —A;. The band wy(f), corresponding to the
modes with even momentum, is positive, while that for the odd modes, wy(6), is negative in the interval
0 € (—mw/2,7/2). Hence all the modes with odd momentum lying in this interval are occupied in the
ground state. In the plot of the lower half we represent the occupation density in this configuration.

State 4: is the ground state of the long-range Hamiltonian

N
H = Z (AoaLan + Aval apy + AN/4aILan+N/4 + AN/QaILan+N/2) + h.c. (3.38)

n=1

provided
2AN/2 = AO > 0, AN/4 = AQ, and 2A0 > —Al.
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For this system, the dispersion relation (3.2)) reads

2k 2k N 2tk N
wi = A + 24, cos (T) + 2AN/2 CoS (T . 3> + 2AN/4 cos (T . Z) )

Simplifying
27k k
W = AO —+ 2A1 COS (%) + 2AN/2 COS (7T]€) + QAN/4 COS <%> .

Therefore, taking into account the conditions for the couplings, it splits into

4AN/s + 2A1 cos b, k= 0(mod4),
W =

24, cos O, k # 0 (mod 4)

In Fig. |3.8| (top) we represent these bands in the thermodynamic limit. Note that three
of the bands coincide, w1 = ws = w3 = w*. In this case the modes with k& # 0 (mod 4)
have negative energy when |k| < N/4. In the ground state they are occupied. Since three
out of four modes with momentum |k| < N/4 are occupied, the occupation density is 1/2
in the interval 0 € (—m/2,7/2). We have plotted it in Fig. |3.8| (bottom).
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Figure 3.8: In the upper plot, we depict the bands of the dispersion relation of the long-range Hamiltonian
for the set of couplings 24/ = Ag > 0, Ay/s = Ag and 249 > —A;. We call wy(f) the band
corresponding to the modes with k¥ = 0 (mod4). The bands for the modes with & # 0 (mod4) coincide
and are denoted by w*(). They are negative for § € (—mw/2,7/2). Thus in the ground state three out of
four modes lying in this interval are occupied. In the lower plot we represent the occupation density in
this state.
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As a further matter, in Section [1.2] we discussed that the entanglement entropy of the
ground state often satisfies an area law: it grows with the area of the boundary between
the two subsystems in which we have divided the system. In the case of the chains that we
are studying the boundary between the interval X and the rest of the chain is independent
from the number of sites | X| in the interval. Therefore, if the entropy satisfies an area
law, it should be a constant in the large |X| limit. However, the entropies for the states
investigated above seem to violate the area law.

In the state 1 we have obtained that the entropy presents a logarithmic term .
Nevertheless, we have seen that it is the ground state of a critical theory with only
nearest-neighbour couplings . As we mentioned in Section , when a system with
finite-range interactions is critical the area law is corrected by a logarithmic term if the
model can be described by a conformal field theory. In fact, the logarithmic term in the

entropy of the state 1 (3.25]) is of the form predicted by CEFT (1.10]),

a+1
o

1
S =

a,

clog |X|+ ¢ +o(1)

with central charge ¢ = 1. The logarithmic term actually arises from the discontinuities
of the occupation density that have their origin in the absence of mass gap, see Fig. [3.5

AN/Z
AN/Z
A 0 A 0
A]
AN/2 AN/2
A]
0 0

Figure 3.9: Representation of the fermionic chain described by the long-range Hamiltonian of ,
upper half, as a ladder, lower half. The upper row of the ladder contains the sites from 1 to N/2 and the
lower one those from N/2 4+ 1 to N, both from left to right. The ends of the ladder are joined with an
inversion as it is indicated by the arrows, forming, therefore, a Mobius strip.

On the other hand, in the states 2, 3 and 4, the entanglement entropy presents a
linear term with the length of the interval. Then one may conclude that in these states
the entanglement entropy follows a volume law, since the dominant term is extensive,
proportional to the size of the subsystem. However, these configurations are the ground
state of chains with long-range couplings like that depicted in the upper plot of Fig. [3.9]
As it is described in the figure, this chain can also be seen as the ladder of the lower half.
From the perspective of the ladder, it is clear that these entropies satisfy an area law.
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nd

N C— c—

Figure 3.10: In the ladder of Fig. the interval of contiguous sites X that we are considering to
compute the entropy is located at one of the rails. Then the area of the border that separates X from the
rest of the ladder grows with the number of sites in X. Therefore, the linear growth of the entanglement
entropy in the ground state of this ladder can be interpreted as an area law.

In fact, as we can see in Fig. [3.10] in the ladder the area of the boundary between
an interval X and the rest of the system is the number of bonds that we break when we
isolate the interval. Observe that the number of bonds broken depends linearly on the
size of the interval. This explains the presence of a linear term in the expansion of the
entanglement entropy, and gives the correct interpretation of the area law for these states.

3.3 Local chains and ladders

In this section we shall try to gain physical insights from the previous results and extend
them to more general states, connecting with the idea of Alba, Fagotti and Calabrese
[108]. We shall discuss two kinds of Hamiltonians that correspond to local chains and
local ladders.

A local chain is characterized by interactions of finite range, i.e.
A =0, VI>L.

Therefore, in the thermodynamic limit N — oo the dispersion relation,

L
w(f) = Z A’

l=—L

is a smooth function that generically has a finite (even) number R of zeros where w(f)
changes its sign. A typical example with R = 4 is depicted in the upper half of Fig. [3.11]

In the ground state all the modes with negative energy, i.e. w(f) < 0, are occupied.
Therefore, its occupation density will be given by

B 1, if w(f) <0,
9(0) _{ ~1, if w(®) > 0. (3:39)
We represent in the lower half of Fig. the occupation density for the particular
dispersion relation plotted above it. Notice that, as Alba, Fagotti and Calabrese showed
in [I08], any configuration described by an occupation density like with a finite
number of discontinuities is the ground state of a local chain whose dispersion relation
changes its sign at the discontinuity points.
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Figure 3.11: The upper plot represents the dispersion relation for a local chain, while the occupation
density for its ground state is plotted below.

Another example with an occupation density of this type is the state 1 studied in the
previous section, see Fig. . Generalising the result obtained for it, we have that
the entanglement entropy of an interval in the ground state with the occupation density
behaves like

1R
ot Elog|X| +Co + 0(1), (3.40)

Sa,X -

where the constant term C,, that it is given by (3.22), depends on the precise location
01,..., O of the discontinuities of g(6),

a—+1
12«

Co=RY,+ Z log[2 — 2 cos(6, — 6,4)], (3.41)

1<r#r’'<R
with T, the integral that has already appeared at ((3.24)).

Observe that the coefficient of the logarithmic term is universal in the sense that, in
general, it is invariant under small modifications of the couplings. It only depends on the
number of changes of sign of w(#) and not on their position. However, the constant term
C, is not universal as it varies under small changes of the couplings.

In particular, the coefficient of the logarithmic term counts the number of massless
excitations in the thermodynamic limit of the Hamiltonian, i.e. the zeros of the dispersion
relation w(#). This result is consistent with the CFT interpretation, where the central
charge of a free field theory also counts the number of massless particles. On the other
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hand, if the Hamiltonian has a mass gap then w(f) does not change its sign, the occu-
pation density of the ground state does not have jumps (is —1 for all #), and the
entanglement entropy exactly vanishes (in fact, the ground state is the Fock space vacuum
|0) which is separable).

As we have seen, the states 2, 3, and 4 of the previous section can be viewed as the
ground state of a second type of Hamiltonians. They describe prismatic ladders with ¢
rails and local interactions,

N q¢—1 L
N
H=) > > Apaltpnen +he, L< % (3.42)
n=1 p=0 (=0

An example with ¢ = 3 and L = 1 is represented in Fig. [3.12

b

a
C

b

Figure 3.12: Representation of a triangular ladder described by the Hamiltonian of . The rails are
joined at the end after a twist, forming therefore a twisted ring. For the sake of clarity, next to nearest
neighbours interactions are represented (with thin lines) only in the lower lateral face of the ladder, but
they are present in all three faces. Subsystems are represented by dark sites: the black ones represent
the interval while black and grey ones represent the fragment.

The dispersion relation of (3.42) is

qg—1 L
W = Z Z Ap7lei9k(pN/q+l) + c.c.,

p=0 [=0

that splits into ¢ bands. In fact, taking & = s (mod ¢), we have

qg—1 L
W = E e27rlsp/q E Ap7le27r1kl/N +c.c.
p=0 =0

In the thermodynamic limit we can replace 27k /N by the continuous variable 6, obtaining
a different dispersion relation (band)

L q—1
ws(0) = Z (Z Ap,le%is”/q) e +c.c.

=0 p=0

for each value of s =0,...,¢— 1. Given the conditions for the couplings A,;, every band
is a continuous, smooth, periodic function. A generic case for ¢ = 3 is depicted in the
upper half of Fig. [3.13] If none of the bands vanishes, the ladder has a mass gap and
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it is non critical. On the contrary, if one or more bands change of sign, the mass gap
is zero and the ladder is critical. As we did for local chains, to every change of sign we
associate a massless excitation. For example, the dispersion relation depicted in the Fig.
3.13| corresponds to a critical ladder with four massless excitations.

W8(9>
s=0
- 0 7’r(9
s =2
g9(0)
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3
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— |1
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Figure 3.13: In the upper half, the bands for the dispersion relation of a local ladder with 3 rails and
below the occupation density of its ground state.

The ground state of the ladder is obtained by filling all the modes with negative energy.
We can define an occupation density for each band

att)={ ;050 (3.4

Then the occupation density of the ground state of the ladder is

that represents the excess of bands with negative energy over those with positive energy for
momentum 6 divided by the number of bands g. The plot in the lower panel of Fig. [3.13|is
the occupation density of the ground state for the dispersion relation represented over it.
The occupation density will be a piecewise constant function like (3.10) with ¢,
acquiring rational values. Note that every occupation density with these characteristics
represents the ground state of certain local ladder Hamiltonian, as Alba, Fagotti and
Calabrese proposed in [10§].



60 3.8. Local chains and ladders

Since is in general different from =£1, the entanglement entropy of the ground
state described by it will present a linear term in |X|. The presence of this term is
understood by the correct interpretation of the area law for ladders that we stated in the
previous section. In the ladder, the area of the boundary between an interval of contiguous
sites X and the rest of the system is proportional to the number of bonds connecting the
subsystems, that grows with the number of sites | X| in the interval.

Since the logarithmic term is due to the discontinuities of g(#), it is zero if none of
the bands have a change of sign and, therefore, the ladder has a mass gap. On the other
hand, when one or more bands cross the zero value, the occupation density is in general
discontinuous and the coefficient of the logarithmic term is non-vanishing (an exception
occurs in the case in which two bands cross the zero value at the same point in opposite
directions). The discontinuities of the occupation density also give rise to the constant
term.

The logarithmic term is always universal since it only depends on the value of the
occupation density at the sides of each discontinuity and this is not affected by small
variations in the Hamiltonian. The linear term is not universal if the ladder is critical. In
this situation, it depends on the location of the discontinuities of g(f) and, consequently,
on the zeros of the dispersion relation. On the contrary, if the theory has a mass gap,
since ¢(f) is constant, it is not affected by small changes in the Hamiltonian, and the
linear term is universal.

The physical interpretation of the coefficient of the logarithmic term is more involved
now than for local chains, where it is proportional to the number of massless excitations
of the theory. For ladders, the logarithmic coefficient depends not only on the number
of discontinuities (massless particles) but also on the value of g(6) at both sides of each
discontinuity. They are now rational values instead of 1, and the relation between such
values and the contribution to the logarithmic term is highly non trivial and hard
to interpret.

However, the origin of these difficulties is the same that in the interpretation of the
linear term: the choice of the subsystem X as an interval of contiguous sites in one of
the rails of the ladder (the black dots in Fig. [3.12)). Somehow, it is more natural to take
as subsystem a fragment of the ladder: ¢ intervals, one in every rail and placed opposite
to each other as it is represented in Fig. by black and grey sites. More formally,
calling X, = {1+ pN/q,...,|X|+ pN/q} a single interval of | X| contiguous sites on the
rail p=0,...,¢ — 1, a fragment X of length |X]| is the subsystem

q—1
X=JXx,
p=0
Observe that interpreting the ladder as a chain with non-local interactions the fragment

X corresponds to ¢ disjoint intervals of size | X| separated by a distance N/q — | X].

Let us see that for the fragment X the entanglement entropy has a clear physical
meaning, compatible with the interpretation of the logarithmic contribution in terms of
massless excitations.

Let us proceed by introducing a correlation matrix for each band of the dispersion
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relation

(‘/;)nm:% Z elfr(n=m) _ Z eltn=m) f s —0,...,¢g—1, n,meX.

keK kZK
k=s (mod q) k=s (mod q)

Then the correlation matrix Vi can be written as a sum of them,

The correlation matrices of the bands are quasiperiodic (actually following a quasiperi-
odicity very similar to that of Bloch functions in a periodic crystal lattice)

27riS(pfp/)/q(V)

(‘/s)n—&—pN/q,m—l-p’N/q =¢€ s)nm-

This implies that if we introduce the matrices

(Ts)ppl = e27Ti(p—p’)/q7 pap, = 07 R 17

we have
q—1
1

VE = EZM)XO ®T.,
s=0

where (V5)x, denotes the restriction of Vi to one of the intervals that compose X.

The matrices T, commute and are diagonalised simultaneously by

1

_ 27ipp’ /q
Uppy = S

Vi

such that
(UTSU_1>pp’ = q0s,p0s -

Finally, taking all together we arrive at

(VO)XO 0 0

0 (Vl)XO 0

TU)WVLIoU™) =
.6. .6. - (L@:;)XO

From this result, the entanglement entropy of the whole fragment X of the ladder is

q—1
Sa,X = § Sa,Xo,s>
s=0

where S, x,.s is the Rényi entanglement entropy for the single interval X, in the state
with correlation matrix V;. In the thermodynamic limit,
1 " if(n—m)
(Ve)um = 5= gs(0)e de,

" or _W
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with g5 the occupation density (3.43)) for the band wg(6).

Now we can calculate S, x using the results obtained for the local chains. Taking into
account ([3.40)), if Ry represents the number of discontinuities in gs(#), i.e. the number of
changes of sign in the band w,(#), we have

1 R,
ot 2 10g | X + Cas + (1),

Sa,Xo,s =

where the expression for the finite term C, s is the same as in (3.41)) particularised to the
occupation density gs.

In consequence, the asymptotic behaviour of the entropy of the fragment is

a+1 (&L i
Sax = 2 (szo R$> log | X| + ;ch,s + o(1). (3.45)

Since g5(0) = 41, the linear term cancels in agreement with the prediction of the area
law. Observe that the coefficient of the logarithmic term coincides with that obtained
from CFT and it is proportional to the number of massless excitations of the theory
which is equal to the total number of changes of sign of the ¢ bands for the dispersion
relation.

In order to illustrate the previous discussion, let us compute the ground state entropy
of the fragment X = XoUX] in the ladder of Fig. [3.14] It is described by the Hamiltonian

N
H = Z(Aoa;gan + Alailanﬂ + AN/QCLIL(In+N/2) + h.c., (3.46)

n=1

with
AO = 2AN/2 > 07 Al < 0, 2AN/2 > —Al.

X=XUX,
® ® ® (S

Xo
X

Figure 3.14: Fragment X of the ladder described by the Hamiltonian (3.46). The fragment is the union
of two intervals of contiguous sites, Xg and X7, placed in front of each other in different rails.

Remember that in Section |3.2.1| we already studied the ground state of this ladder and
computed the entanglement entropy for an interval (see state 3).

Since the ladder has two rails, ¢ = 2, and the dispersion relation,

21k 2rk N
wy = Ag + 2A; cos <%) + 2Ap/2 cos <% . ?) , (3.47)
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splits into two bands corresponding to modes with even and odd £, as we already noted
in Section [3.2.1] In the thermodynamic limit, they read

wo(0) = 4AN/o + 2A; cos b,

and
wy(6) = 2A; cosb,

for the set of couplings considered. We plotted these bands in the upper half of Fig. [3.7]
The occupation density associated to each band is
Gol0) =1, 8€[-mm),
for wy(#) since it is positive, and

1, Ge(—n/2,7/2),
91(0) = { -1, O€|—mn/2|U[r/2,7),

for wy(0), that is negative for 6 € (—7/2,7/2).
Now according to (3.45)) the entropy of the fragment X is

+1
Sux = a12a (Ro + R1)10g |X| 4 Cao + Car + 0(1),

where Ry and R; are respectively the number of discontinuities of gy and g;. Hence Ry = 0
and R, = 2.

The constant C, vanishes since gy is continuous and C,; is given by (3.41)), that
particularises for the occupation density ¢; to

a—+1

Coc,l = 2Ta + 10g 2.

In conclusion, the entropy of a fragment of this ladder in the ground state is

a—+1
ba

Sax = log [ X| + Ca1 + o(1).

The coefficient of the logarithmic term coincides with the prediction of CFT (1.10]) for
central charge ¢ = 1, half of the total number of change of signs (massless excitations) in
the two bands.
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Chapter 4

Chains with pairing terms

In the previous Chapter we obtained the asymptotic behaviour of the entanglement en-
tropy for a single interval in the stationary states of a chain with only hopping couplings
A;. Now we shall move to the general case where we have both hopping A; and
pairing B; couplings. We shall focus on the ground state. As it happened for the hopping
chains, its entanglement entropy will contain valuable information about the system.

The ground state of a chain that has only hopping couplings has the particularity
that the correlation matrix Vx can be reduced to a Toeplitz matrix since the symbol
G , see , becomes diagonal. This has simplified the problem because we can apply
the Fisher-Hartwig conjecture that allowed us to derive the asymptotic expansion of the
entanglement entropy of an interval. Unfortunately, in the general case, when there
are pairing couplings B; different from zero, the symbol G is not diagonal anymore, the
correlation matrix cannot be reduced to a Toeplitz one, and one is forced to consider
full-fledged block Toeplitz determinants.

In this Chapter we shall accomplish this goal. Since our symbol G can be discontinuous
we shall be particularly interested in calculating the contribution of the discontinuities to
the determinant. For block Toeplitz matrices there is not a result like the Fisher-Hartwig
conjecture that gives the asymptotic expansion of the determinant when the symbol is
discontinuous. We shall try to solve here this issue. Later we shall apply the obtained
results to study the ground state entanglement entropy.

4.1 Asymptotic behaviour of block Toeplitz determi-
nants

Let us consider an arbitrary d x d dimensional matrix valued function J defined on the
unit circle S and with entries in L'(S'). We shall denote by Tx[J] the corresponding
| X| - d block Toeplitz matrix with entries

1 [" .
(Tx [T rm = Jnem = J(0)emds, nom=1,...,]X|.

= o 3

65
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In this section we want to study the asymptotic behaviour of its determinant that we
shall call Dx[J], so that Dx[J] = det Tx[J].

For this purpose, it will be useful to recap some results for Toeplitz determinants, i.e.
when d = 1. If g is a real and positive scalar symbol that generates a |X| x | X| Toeplitz
matrix T'x[g] = (gn-m), the (First) Szeg6 theorem [I16] establishes that the dominant
term of its determinant Dx[g] should be

log Dx[g] |/ log g(#)dé + o(| X|). (4.1)

If the symbol g is smooth enough |I| such that

D gl + D Ikllgl < o0,

k=—o00 k=—o00

the Strong Szeg6é Theorem [101], [I17] states that the next term in (4.1)) is finite in the
limit | X| — oo,

tox Dxlg) = 21 [ togg(6)a8 + Elg] + (1), (42)

—Tr

where the constant term reads -
= Z kSkS,k
k=1

and the s;’s are the Fourier modes of log g(0),

1 [ .
se=5- | 1ogg(9)e19kd9.

The above series diverges when, for example, the symbol g has a jump discontinuity.
In this case the Fisher-Hartwig conjecture [102] [104], that we applied in Section
3.2] precisely gives the next terms in o(|X|). If the symbol g presents discontinuities at
01, ...,0g, the next term in the expansion is logarithmic,

log Dx|g] |/ 0)do + Og|X|Z< 1)2+0(1), (4.3)

where gF are the lateral limits of g at the discontinuity point 6,,

= lim g(f) and g, = lim g(0).

0—0F 0—05

Gyires [I18] found a generalisation of the Szegd theorem for the determinant of
block Toeplitz matrices that later Hirschman [119] and Widom [120] extended to a wider
variety of symbols. According to them, the leading term in the asymptotic expansion of
log Dx|[J] should be also linear

log Dx[J] = |/ log det J(0)dd + o(| X]), (4.4)

! This is the case if the symbol is C'*€, i.e. its derivative is Holder continuous with exponent € > 0.



Chapter 4. Chains with pairing terms 67

provided det J(f) # 0 and the argument of det J(#) is continuous and periodic for 6 €
[—7, 7] (zero winding number).

We can apply this result to compute the entanglement entropy using ([2.36]),

Sa,x = — lim 7{ fa(N/e) _IOgDX[g)\}

471 en1t

where the contour % is represented in Fig. , and Gy = Al — G. The symbol G of the
correlation matrix for the ground state was obtained in (2.40). In the thermodynamic
limit it is of the form

-1, if —wt () > F(0),
go)=q¢ M@®), if —wt(O) < F (0 < wt(h), (4.5)
I, if F(0) > w0

Then we have
) A+ 1) it —wt(@) > F(0),
det G\(0) = A2 —1, if —wt(0) < F(0) < w(h),
(A —1)2, if F~(60) > w™(0).

We now insert this into and then into the previous contour integral. Applying the
Cauchy residue theorem and taking into account that, by its definition , fa(£1) =0,
one can immediately see that the linear, dominant contribution to the entanglement
entropy vanishes in this case. Therefore, in order to determine its asymptotic behaviour
one is forced to compute the subdominant terms that are hidden in o(]|X]).

Analogously to the scalar case, if the symbol J(#) is smooth enough such that

2
D0+ D R < oo,
k=—o00 k=—o00
where ||-]| is the Hilbert-Schmidt norm of the d x d matrices, the Widom theorem
[120, 121], 122] states that the next contribution in the expansion (4.4) should be finite
when | X| — oo,

log Dy [J] = 2 / log det J(8)d0 + E[J] + o(1). (4.6)

If we call T'[J] the semi-infinite matrix obtained from T'x[J] when | X| — oo, the constant
term E[J] reads

E[J] = logdet T[J|T[J . (4.7)
The Widom theorem reduces to the Strong Szegé theorem (4.2) when the symbol is a
scalar function, i.e. d = 1.

In spite of its simplicity, it is hard to apply the expression (4.7)) for the constant E[J]
in particular cases. A more practical way to determine it is the following.

Suppose that the symbol depends on a parameter A, Jy, as it is our case. Let J,(z) be
the analytical continuation of J5(#) from the unit circle y = {2 : [z = 1} to the Riemann
sphere C = C U {oo}.

Consider now that there exist two pairs of d X d matrices uy(z) and vy (z) that solve
the following Wiener-Hopf factorisation problem:
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L Ih(2) = up(2)u(2) = v(2)v4(2),
2. ut!(2), vE!(2) are analytic outside the unit disk and wf'(2), v'(z) are analytic

inside it.

The Wiener-Hopf factorisation is one particular example of a Riemann-Hilbert problem
[123].

If the previous factorisation problem can be solved then the constant term FE[Jy] in
the Widom theorem ({4.6)) verifies

aBA_ L j{ Tt [<u;<z>u;l<z> T O LA B A i L P R

This result was first obtained by Widom in [120] as an intermediate step in the search of
the general expression for E[J]. It was rediscovered in [124] employing the connection
between the determinants of Toeplitz and Fredholm operators by Its, Jin and Korepin,
who applied it to obtain the ground state entanglement entropy of the non critical XY
spin chain. As we shall see in the next section, this result can be employed to derive the
entanglement entropy in the ground state of non critical fermionic chains with finite range
couplings.

On the contrary, if the chain is critical the symbol G is discontinuous, as it is clear
from , and the Widom theorem does not apply. To our knowledge, the case of a
symbol with discontinuities has not been considered in the literature. In the papers [125]
and [126] by the author and Esteve, Falceto and de Queiroz, we have tried to fill this gap.

4.1.1 Discontinuous symbols

Observe that, in the scalar case, the Fisher-Hartwig conjecture states that the dis-
continuities of the symbol contribute with a logarithmic term log |X|. The contribution
of each discontinuity to the coefficient is independent from the rest and it only depends
on the value of the lateral limits g=.

This can be explained as a consequence of the localisation theorem found by Basor
in [104]. If we consider two d x d symbols J;(6), J5(#) such that their block Toeplitz ma-
trices Tx[J1] and Tx[Jo] are invertible for | X| large enough and the semi-infinite matrices
T[J1Jo| = T[N]|T[Js], T|J2J1) — T[Jo]T[J1] are trace-class then

lim XUl (4.9)
1X|—oo Dx[J1]Dx[Ja]

The operator T[Jy Jo] —T[J1|T[J5] is trace-class if there exists a smooth partition of the
unit { f1(0), f2(6)} such that the derivatives of .J; f; and J, fo are Holder continuous with an
exponent greater than 1/2. Or, in more informally words, the operator T'[.Jy Jo| =T [J1|T[J2]
is trace-class provided J; and J; are not bad (non smooth) at the same point.

The localisation theorem implies that if the symbol J(6) has several discontinuities
at 61, ..., Og, the divergent contribution in the large |X| limit of each one to Dx[J] is
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independent from the rest and they can be studied separately. In addition, the divergent
contribution of the discontinuity at 6, will only depend on the lateral limits

J. = lim J(§), and Jf = lim J(6).

005 0—0F

First, let us suppose that these lateral limits commute and are diagonalisable. Hence they
are diagonal in the same basis. Let us call ,ufm with j = 1,...,d, the eigenvalues of J=.

Observe that, in this case, we can always construct a d x d smooth enough, periodic
matrix valued symbol U(6) that diagonalises all the lateral limits, i.e.

Nil 0O --- 0
:l: DY
U0,)JFU(0,) " = 0 "‘f’? 0 , o=1,...,R (4.10)
0 0 - N;t,d

Let us consider the block Toeplitz determinant with symbol the product UJU L. Since
U is smooth we can apply the localisation theorem (4.9)). In this case, it leads to

lim Dx[UJUY
1X|=o00 Dx[U]Dx[J]Dx [U~Y]

< oQ.

That is,
log Dx[J] = log Dx[UJU | —log Dx[U] — log Dx[U '] + O(1). (4.11)

Given the properties of U and U~!, we can apply the Widom theorem to determine
log Dx[U] and log Dx[U~']. According to this theorem, their linear terms in |X| have
opposite sign and, therefore, they cancel in (4.11)). The rest of terms in log Dx[U] and
log Dx[U™] are finite in the limit |X| — oo. Thus the expression (4.11)) implies that the
divergent contribution of the discontinuities of J is the same as those of UJU .

Notice that J and UJU ! are discontinuous at the same 6,, 0 = 1,..., R. The lateral
limits of UJU ™! at the discontinuity points are . Since they are diagonal we can
study the jump in each entry separately from the rest. This means that the discontinuity
of an eigenvalue of J(0) at 6, can be treated as that of a scalar symbol with lateral limits
u; i» My ;- We can now make use of the Fisher-Hartwig conjecture to determine the
divergent contribution of the discontinuity of each eigenvalue. It is logarithmic,

2
1 0 .
—(log%) log|X|, 7=1,...,d.

2
4 o]

Therefore, the divergent contribution to log Dx[UJU '] of the discontinuity in UJU(6)
at 0, is
B log | X|

1< jy ’
602472 (10%‘;{) . (4.12)

Jj=1

with

According to (4.11)), this is also the divergent contribution to log Dx[J] in the large | X|
limit of the discontinuity at 6,, provided the lateral limits J* commute.



70 4.1.  Asymptotic behaviour of block Toeplitz determinants

The expression of the coefficient §, can be written in a more compact and meaningful
form as

8, = # Trflog J- (). (4.13)

Let us show that the same expression is also valid when the two lateral limits J= do not
commute. In this case, there is not a basis in which JF are both diagonal.

Nevertheless, we can invoke a useful result by Widom [122] that, in the particular case
that concerns us, can be stated in the following form: for any d x d constant matrix C
and any symbol J(6) as before we have

Tx[JC] = Tx[J]Tx[C].

Actually T'x [C] = I)x|®C from which the previous relation immediately follows. In terms
of the determinant,
log Dx[JC] = log Dx[J] + log Dx|[C].

Since C'is constant we can apply the Widom theorem (4.6)) to determine log Dx[C]. Then
we obtain

log Dx[JC] =log Dx[J] + | X|logdet C. (4.14)

If we now apply this identity choosing the constant matrix C' = (J})~!, we have

log Dx[J] = log Dx[J(J})™'] + | X|log det J}. (4.15)

Observe that the symbol J(J;7)~! has also a discontinuity at 6, but with lateral limits
J7(JF)™! and I which, of course, always commute. Therefore, we can apply the result
that we have just obtained for commuting lateral limits. Combining it with , we can
conclude that the discontinuity of J at 6, contributes to log Dx[.J] with a term £, log | X|
being the coefficient (3, equal to (4.13]).

Finally, in virtue of the localisation theorem, the total divergent contribution of the
discontinuities of J(6) will be the sum of the divergent contribution 5, log|X| of each dis-
continuity considered separately. Then, taking into account , the previous reasoning
leads to formulate the following result.

Conjecture: let J be a piecewise d x d matrix valued symbol such that det J(0) # 0,
and zero winding number. If J has discontinuities at 61, ..., 0g, the determinant Dx[J]
of its block Toeplitz matrix behaves as

X m
log Dx[J] :%/ log det J(0)dd + 1

log | X| - - 172
p ;Tr[long(Jj) 24+ 0(1), (4.16)

where J= are the lateral limits of J(6) at 6,,.

Observe that this result is a generalisation for matrix symbols of that in (4.3)) predicted
by the Fisher-Hartwig conjecture for scalar ones.

Notice the apparent non unicity of the coefficient that we have obtained for the log-
arithmic term. In fact, when we have expressed the coefficient 5, in (4.12)) in the ma-
trix form (4.13)), we can also consider for instance log[(J})™'J ], log[(J; )~ J] or even
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log[(J})~Y2J(JF)~1/?], and they can be generalised to non commutative lateral limits
applying the identity (4.14]). Nevertheless, one can show that, at the end of the day, all
the possibilities give the same value for the coefficient.

In the following sections of this chapter we shall apply the above general results to
compute the asymptotic behaviour of the ground state entanglement entropy of an interval
in any quadratic fermionic chain described by ([2.2)).

4.2 Non critical chains

We start by considering the case of non critical fermionic chains with finite range couplings
A; and By, where | = —L,—L+1,...,L and L < N/2. For these systems, the mass gap
is non-zero, and the dispersion relation ([2.10)),

= /F+(0)2 +|G(9)]2 + F(8), (4.17)

is positive. Therefore, the symbol of the ground state correlation matrix (2.40) can be

written
60) =30 = 5 () ety ) (4.18)

since the existence of a mass gap implies

|F~(0)] <w™(0) = VF*(0) +|G(6)[?
for all 6.

In this case M(6) is smooth. Therefore, according to the discussion of the previous
section, the determinant Dx (), or Dx[G,] in the notation employed therein, with symbol
G\ = M — M satisfies the asymptotic expansion 1' and the constant term E[G,| verifies

i)

Thus we have to solve the Wiener-Hopf factorisation of the analytical continuation
of G\ in order to obtain E[G,]. In general, this is a difficult problem. There is not
a general method to obtain the Wiener-Hopf factorisation of a given symbol. It may
require applying different sophisticated techniques depending on its particular form. In
[124] Tts, Jin and Korepin found the solution for the symbol of the non critical XY spin
chain (L = 1) inspired by methods of algebraic geometry previously applied to deal with
asymptotic problems of random matrices and integrable statistical models [127]. In [128§]
Its, Mezzadri and Mo extended the solution to arbitrary range L < N/2 provided the
couplings A; and B; take real values, that is for theories with parity and charge conjugation
symmetries. Let us present here their results recasting them in a very convenient way. In
Appendix [B] we describe in detail the Wiener-Hopf factorisation of these symbols.

In order to define the analytical continuation of (4.18)), let us introduce the Laurent

polynomials
L L
=Y AZ, E()= ) B, (4.19)

l=—L I=—L
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that map meromorphically the Riemann sphere C into itself. Due to the properties of the
coupling constants, A_; = A; and B_; = —B;, we have that

Notice also that F(f) = ®(e?) and G(0) = Z(e).

Then, if A; and B; take complex values, the analytical continuation of M(6) to the
Riemann sphere reads

EIED ) | (120)

where

As we show in Appendix the crucial point to solve the Wiener-Hopf problem is
to understand the analytical structure of M(z). Observe that M(z) is bivalued in the
Riemann sphere C, but it is a single valued meromorphic function in the compact Riemann
surface determined by the complex curve

w? = P(z) = 22501 (2)? — 2(2)2(2)). (4.21)

By its definition P(z) is a polynomial of degree 4L on C. Hence w? = P(z) describes
a hyperelliptic curve. It defines a double covering of the Riemann sphere with branch
points at the roots of P(z). Its genus g is given by the range L of the couplings of the
Hamiltonian such that g = 2L — 1. The properties of ® and = imply that P(z) has real
coefficients and verifies 2*LP(z~!) = P(z). Therefore, the roots of P(z) come in quartets
related by inversion and complex conjugation, except for the real ones that come in pairs
related by inversion.

The criticality of the theory can be characterised in terms of the roots of P(z). In
fact, consider the relation

(w(B) + w(—0))2 = 4| P(e?)]. (4.22)

If the theory is non critical, w(d) > 0 for all #. Then, according to , P(e?) # 0
and there are no roots lying on the unit circle. On the other hand, if P(z) has roots at
the unit circle, they necessarily have multiplicity different from one, and the dispersion
relation vanishes at some points. Observe that using the dispersion relation (4.17])

can be expressed as
w(f) =/ |P(e9)| 4+ F~(0).

Consider now that z; = ') with 6; # 0, —7, is a root of P(z). Then w(6,) = F~(6,).
Since the roots of P(z) are related by inversion, z; ' = 7 is also root, P(e71) = 0.
Thus w(—60,) = F~(—6,) = —F~(01), due to the antisymmetry of F'~. Hence we conclude
that w(6;) = —w(—6;). Therefore, w(f) is zero at 6; or, since it is a continuous function,
there is at least a point in the interval (—6;,6;) where w(f) changes its sign. In the case
6, = 0, that is when z; = 1 is a root of P, we have w(0) = 0 since F~(0) = 0 (the case
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Figure 4.1: Possible arrangement of the branch points and cuts of w = 1/ P(z) for genus g = 3 (L = 2).
Note that we must have z; = 23", 20 = 27 ', 23 = Z4 = Z; * = 25 '. The blue branch points « are zeros
of g(z) (¢; = 1) while those in red e are poles (e; = —1). The oriented curves as and bs are two of the
basic cycles.

01 = —m is analogous). In all these situations, since the dispersion relation vanishes at
some points, the mass gap is zero and the theory is critical.

Let us restrict from this point to Hamiltonians that are PC' invariant (the couplings B,
are real). For them, =(%Z) = =(z), and the analytical continuation M(z) can be expressed
in the antidiagonal form

ME :u( g?z)l %(Z) )ul’

where il is the unitary matrix

u:%(_ll }) (4.23)

Dt (2) +E(2)
S OEEE)

In this case the polynomial P(z) factorises such that

and

w? = P(z) = 2251 (2) + 2(2))(®1(2) — E(2)).

Then the roots of P(z), z;, are either zeros or poles of the rational function g(z). According
to this we assign an index €; to every root, which is +1 if z; is a zero of g(z) and —1
if it is a pole. Moreover, since g(z) = g(z) = 1/g(z71), if z; is a zero (pole) of g(z), its
complex conjugate Z; is also a zero (pole) while its inverse zj_l is a pole (zero). Note that

indi i — . — 51 =, iy =
the indices must satisfy €; = —e; whenever z; = z," and €; = e if z; = Zj.

We must fix an order in the roots with the only requirement that the first half of
them is inside the unit disk and the other half outside it, i.e. |2;] <1, j=1,...,2L and
|zj| > 1, 2L +1,...,4L. Let us consider that all roots are simple. The branch cuts of



74 4.2. Non critical chains

w = \/P(z) are chosen to be the 2L non-intersecting curves ¥,, p = 0,...,g that join
Z9p+1 and zg,40. Notice that it is always possible to choose them such that they do not
cross the unit circle.

Associated to these cuts we have a canonical homology basis of cycles in the Riemann
surface: a,, b., r = 1,...,g. The cycle a, surrounds >, anticlockwise in the upper
Riemann sheet. The dual cycle b, encloses the branch points 29, 23, ..., 29,11 clockwise.
In Fig. we depict a possible arrangement of the branch points and cuts for g = 3
(L = 2) as well as the cycles a3 and bs.

The canonical basis of holomorphic forms

¢r(2)
P(z)

dn, = dz, r=1,...,g,

with ¢,(2) a polynomial of degree smaller than g, is chosen such that

]{ dne = 0ppr, 1T,7'=1,..., 8.

The integration of the elements of the basis of holomorphic forms along the dual cycles

by,
Hrr’ = % dnr’ 3
by

gives the entries of the g x g symmetric matrix of periods II = (II,).

Associated with this matrix of periods we can now introduce the Riemann theta func-
tion with characteristics p, ¢ € R8,

U

defined by
19[2:] () = ﬁ[ﬂ (3]11) = Z oM (AP (747 +2mi (347 (i+5) (4.24)
Aeze

It will be useful to introduce its normalized version

e e 9| 21 (5]1)
ﬁ[g] (3) 519[2.] (5]10) = %

Finally, after solving the Wiener-Hopf problem for A\ — M (see Appendix |Bf) and applying
(4.6) and (4.8), one has the following expression for the asymptotic expansion of the

determinant

log Dx(\) = | X|log(A2 — 1) + log (5[
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(4.25)

In the argument of the theta function we have

1 A+1
o
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and € € Z#& whose first L — 1 entries are 0 and the last L are 1. The characteristics of the
theta function are half integer vectors fi, ¥ € (Z/2)# that depend on the branch points of
w = 4/ P(z) as zeros or poles of g(z),

Wr = €or41 + €2r42),

1
e
2r+1

v, = _ZEJ’ =1,...,g (4.26)

In order to write an explicit expression of the determinant Dx(\) we have used the rule
that we previously established for choosing the order of the roots of P(z). Of course, for
consistency, should not depend on the chosen order. In Appendix [C| we show that
the expansion of the determinant (in the thermodynamic limit) is in fact invariant under
the transposition of two roots provided they sit at the same side of the unit circle. As we
discuss in Appendix [C] a transposition in the order of the roots corresponds to performing
a modular transformation in the homology basis of the Riemann surface.

When the theory breaks the PC' symmetry the symbol M (6) does not become anti-
diagonal after a global unitary transformation as in the symmetric case. Now the branch
points are not the zeros or poles of a rational function like g(z). This makes difficult
to find the asymptotic expansion of Dx(A). Actually, for this case, the Wiener-Hopf
factorisation problem has not been solved yet and we do not have a general expression
for the constant term of the entanglement entropy.

However, the asymptotic expansion (4.25) for systems with PC symmetry can be
straightforwardly extended to theories with complex pairings provided

W = _ein(9)7

where 1) is a global phase. This, together with =(27') = —Z(z), implies

/[ﬂ
&
I
(D._..

<
/[H
ol

Therefore, the corresponding compact Riemann surface is described by
w? = P(2) = 2*H[®7(2) + ew/QE(z)][(I)Jr(z) — ew/QE(z)].

Of course, we can get ride of the global phase i by performing a redefinition of the
annihilation and creation operators a,,, al. In fact, by introducing a/, = €¥/%a,,, the new
meromorphic functions are ® = ® and Z’ = ¢*/2Z. Hence

(2),

and the global phase is absent. Then the expression (4.25)) is also valid in these particular
theories that break the PC' symmetry.

[1]

=(z) =

Once we have obtained Dx(A) we can determine the entanglement entropy. We must
introduce the asymptotic expansion (4.25)) for Dx(A) into the contour integral (2.36)),

Sax = — lim ]{fa ey log Dx(\)d,

47Tl e—1t
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where the curve % is that depicted in Fig.

As we have seen in Section [4.1] the contribution of the linear term to Dx (\) vanishes
when we insert it in this contour integral. This is in agreement with the general discussion
of Section in the ground state of a non critical theory with finite range coupling the
entanglement entropy should satisfy an area law and it tends to a constant value in the
limit |X| — oco. In this case, this constant is precisely

Sa.x = hm —f fa(Ne) ]d/\—i-o(l), (4.27)

where
E[G:] = log (9] 2] (BE)I[ 2] (—B(NE) )

We can express ([£.27) in a simpler form. As we did in Section [3.2] if we integrate by
parts,

B 1 [ dfa(Ne) s
Sux __Elil+4_m£ = S EG]dN + o(1), (4.28)

we can circumvent the presence of divergences that finally cancel out. This renders the
integrals finite and makes the computations simpler.

Let us evaluate the latter integral for « = 1 and integer a > 1. For a = 1, notice that

dfi(Me) 11 1—M\/e

P 2 BTN e

has branch points at A = ¢, with £ > 1. We take as the branch cuts the intervals in the
real line (—oo, —¢] and [e,00). The rest of the integrand E[G,], which contains the theta
functions, is analytic outside the interval [—1,1].

> I~
— S

Figure 4.2: Contour of integration ¢ for the computation of the von Neumann entanglement entropy in
(4.29). The contour extends to infinity and surrounds the branch cuts of the function df;(\/e)/d\ that
correspond to the intervals (—oo, —¢] and [, 00).

Then, using the Cauchy integral theorem we can deform the integration contour from
% to €', that tends to infinity as we illustrate in Fig. [4.2]

L[ ARV s
Six=— Jim ]{ %E[g@u +o(1). (4.29)
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The only non-vanishing contributions to the integral above come from the change in the
phase of df;(A\/e)/d\ when we are integrating along its branch cuts and we go around
the branch points +¢. Thus, after taking the limit in ¢,

1 -1 A+1 . -1 A+1 A
_ /Oo (log Arl m) E[G,]dA + /Oo (log AvL, m) E[g}]dx] +o(1).

Simplifying this expression, and taking into account that f,(\) and F [Q ] are even func-
tions, we arrive at the integral

Six = %/loo log (ﬁ[g} (BO)E)I[ 7] (-5(»5)) X+ o(1), (4.30)

which can be evaluated numerically.

For integer o > 1, we can follow similar steps than those performed in Section [3.2]in
order to compute, in the hopping chains, the coefficient of the logarithmic term when «
takes these values. In fact, £[G,] is analytic outside the region enclosed by ¢ and

dfa(N) o (I+N)— (1=t
d\ 1—a (14+Na+(1-N)e

is a meromorphic function with poles along the imaginary axis located at

20 —1 1
)\l:itanu, [=1,2,...,«, with l%oﬁL )
2c 2

Then we can send the integration contour % in (4.28) to infinity and reduce the integral
to the computation of the corresponding residues of the integrand at the poles A;. In this
way we get an integrated expression of S, x for integer o > 1,

1 u s Nl .
Sex = 30wy ;bg (F[E1BOEI[E](-BOWE)) +o(1).  (431)

In particular, for « = 2,3 the sum in the previous expression reduces to

1(5) 7 (=5) |+,
()5

In Section [4.4] we shall apply these results to the non critical XY spin chain in which
there are only nearest-neighbour couplings, i.e. L = 1, and the corresponding compact
Riemann surface is a torus.

IR
RIEL

Se x = —log [5[

IR
IR

1 ~
537)( = —Elog |:’l9[
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4.2.1 Degeneration of branch points

At the beginning of this section, we have seen that the theory is critical when there are
roots of P(z) lying on the unit circle. Since the roots are related by inversion and complex
conjugation, this happens when pairs of simple roots degenerate in a single double root at
the unit circle. Let us analyse the asymptotic expansion for Dx () when pairs of
single roots approach each other. The degeneration of a pair of roots produces a pinching
of the complex curve w? = P(z) and the divergence of some of the entries of the period
matrix [I. We shall show that the resulting entanglement entropy is finite when the roots
degenerate in a point that does not belong to the unit circle so the theory is not critical.
On the contrary, if the degeneration takes place at the unit circle the entropy diverges

logarithmically at the critical point. Let us treat these two situations separately.

Degeneration outside the unit circle

The study of a pinching of the hyperelliptic curve w? = P(z) requires the choice of a
homology basis (a,b) that allows to extract easily the divergent entries of the period
matrix II. This will be conveniently chosen such that each pair of colliding branch points
is surrounded by one of the a cycles. An example is the basis given previously for writing
the asymptotic expansion of Dx(A). It is determined by fixing an order in the
branch points such that the first half of them are inside the unit disk and the rest outside
it. Let us focus on the situation in which two branch points lying in the same side of the
unit circle, let say z; and z;41, with j = 27 + 1, approach each other. In this case, the
cycle a; is enclosing them. Notice that this cannot be done if the two branch points were
in opposite sides of the unit circle.

When z; — 2,41 the only entry of the period matrix that diverges is
II i log | |
ipo~ ——log |z — 21|
T T g 7 7+1

The rest of the entries of the matrix, Il;,, with [, m # 7, remain finite in this limit. They
define a new (g—1) x (g—1) period matrix that we denote by II,. This new period matrix
is associated to the Riemann surface resulting from the removal of the two merging branch
points. Let us also define with the entries 11z, with [ # 7, a g — 1 dimensional vector A..
Then we can rewrite the theta function in the following form

gl

RUEL

}(g) _ Z ol (et p7) *Ups+27i(ns+p7) (s7tv7)
NsEZL
X Z eﬂi(ﬁo“rﬁo)no‘(ﬁo‘f‘ﬁo)+27ri(ﬁ°+ﬁo){(§°+ﬁo)+(nf‘+'uf‘)50] <432)

ocZ8—1

where 7., [io, V> and S, stand for the g — 1 dimensional vectors obtained by removing the
r-entry from 7, (i, U and S respectively.

We find two different cases for the resulting theta function after the coalescence limit.
One of them is when the indices of z; and 2,4, are different, i.e. €; # €;41. This means
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that one is a zero and the other is a pole of g(z). This implies that the corresponding
r-entry in the characteristics /i is

1
pi = —(€2p41 + €2742) = 0.

4
Taking into account this and the divergent behaviour of II;;, after the limit z; — z;1; the
only surviving terms in the theta function (4.32)) are those with n; = 0. Hence we have
_lim 9[E](51) = 0[] (5. 1) (.33
that is, a theta function associated to the Riemann surface of genus g — 1 obtained after
the removal of the two merging branch points z;, 2.

It is important to bear in mind that the branch points of w? = P(z) are related
by inversion and complex conjugation. This means that if a pair of real branch points
degenerates there will be another merging pair related by inversion to the former. In the
complex case there will be three other merging pairs, related by inversion and complex
conjugation. In both situations, the pairs are composed of branch points of different
index. Therefore, by successive application of the degeneration limit , the resulting
theta function corresponds to a Riemann surface of genus either g — 2 for real branch
points or g — 4 for complex ones, obtained by the removal of all the pairs of branch points
that degenerate.

The limit implies that the resulting entanglement entropy after the coalescence
of the branch points is equal to that of a theory with range of couplings either L — 1
for the real case or L — 2 for the complex one, obtained by removing all the pairs of
degenerating branch points. It is important to remark that although these theories with
different range of couplings have the same ground state entanglement spectrum their
respective Hamiltonians are not related by any unitary transformation.

The other possibility that we can find is that the two merging branch points z; and z;44
have the same index, i.e. €; = €;41. Therefore, y1; = £1/2. Thus, the divergence of Il;;
kills now all the terms in and in the coalescence limit 19[*;] vanishes. However, for
the study of the entanglement entropy we are interested in the normalised theta function
19[‘;] which does not vanish in this limit. We can compute its limit from

lim O[2](3]I)e /4 = emilrtv) 9[2o](5, + A, /2|IL,)

Zj—rZj41

+ efﬂ'i(s,ri"/f«) 9 [ l;s :| (5’0 _ AO/Q‘HO)’ (434)

that results from the non vanishing terms in (4.32)), i.e. those corresponding to n; =
O, —2[172

Again when we apply this scenario to the curve w? = P(z) either two pairs of branch
points, when they are real, or four, if they are complex, merge simultaneously. The
resulting theta functions after the successive application of correspond to Riemann
surfaces of genus g — 2, for the real case, and g — 4, for the complex one. However, in
contrast to the case of merging roots with opposite index, now the resulting entanglement,
as it is clear from the form of , is no longer equal to that of a theory with a smaller
range of couplings.
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Degeneration at the unit circle: approaching criticality

Equipped with the previous results, let us study now the behaviour of the entanglement
entropy when the pairs of branch points come together at the unit circle and the system
approaches a critical theory. In this case the degenerating points have different indices.
Therefore, according to the previous analysis, the entanglement entropy would coincide
with that of a theory of smaller range in which the merging branch points have been
removed.

However, there is a problem because the limiting procedure was carried out assuming
that one of the a cycles encircles the pair of merging points. On the other hand, the
asymptotic expansion for Dx () is valid provided no a cycle intersects the unit
circle. In the case of branch points degenerating at the unit circle, these two prescriptions
are not compatible.

The way to overcome this difficulty is by performing a modular transformation from
one basis where is true to a new one (a’, b') where some a cycles cross the unit circle
and enclose the pairs of degenerating branch points. We shall initially order the branch
points so that zo;, degenerates with 25719 = 75, Ll at the unit circle. If these branch points
are real we do not have to impose other conditions to the ordering. If they are not real we
shall take zo5, 1 = Zop and 295,11 = Zor40 that also degenerate at the unit circle. In this
ordering, where the first branch points are inside the unit disk and the last ones outside,

the transposition of 257, and 2971 induces the desired transformation of the basic cycles,
as we illustrate in Fig. [4.3|

’
ZZL+] N ZZL

a, —

.y
A
2L o\ 2L+1)
/l //l ,
Zor+2 Zor+2

Figure 4.3: Representation of the change of homology basis used to extract the divergent behaviour under
a pinching. On the left, the usual homology basis taken to compute the determinant Dx (), in which the
a cycles do not cross the unit circle, is depicted. On the right, we represent the alternative homology basis
in which a’ cycles enclose pairs of approaching branch points. This modular transformation is equivalent
to a permutation in the labelling of the branch points: zor, = 25, and zp141 = 2.

In Appendix [C] we describe in detail how Riemann theta functions transform under a
modular transformation. For our particular modular transformation we have the following
relation between the original ¥ function and the new one

—

T[] (BT = PN (M gy 1Ty =210, =) T

v

/

T

J (BN IT), (4.35)

<y
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where II" is the period matrix for the new basic cycles, e, = e, — (II},, — 1T} _, ) and s
differs from i only in the L — 1 and L entries:

Wp y=pr1t+vp—vpa+1/2, pr=pp—vp+vp+1/2. (4.36)

The advantage of using this basis of cycles is that the divergences of II" are very simple to
analyse. In fact, for the real pinching (when zo7, and 251,19 degenerate) only I17 | diverges,
so that

i
17, ~ p log |z21.42 — 221, (4.37)
while the rest of the entries of II' have a finite limit. In the complex pinching (when

also zor 1 = Zop and 29141 = Zaryo degenerate) both I}, and H’L7L have divergent
behaviour,

21
T I~ - log |22 42 — 21| (4.38)

The study of the coalescence limit of ¥ [21(8 (A\)é |TT') in (4.35) follows similar lines than
in the case of merging points outside the unit circle that have different index. Since

2oL +2 = EQ_LI, €91, = —€ar+9. This implies that p; = 0. In the complex case we also have
to regard that z97,_; = EQ_LIH and €71 = —€ar41, so that ), = p) = 0. Therefore,
adapting the limit (4.33)), we have

9|2 ] (BOVE ) — J] 2o [ (B ). (4.39)

Again the resulting U function is associated to a genus g — 1 Riemann surface in the real
pinching or ¢ — 2 in the complex one. The period matrix II/ is obtained in the real case
by removing from II’ the L row and column. For the complex case, we remove the L — 1
and L rows and columns. Likewise, ;Z’O, U, and e_;o stand for the vectors resulting after
the removal of the L component for the real case or both the L — 1 and L ones in the
complex pinching.

Since 9 [5‘;} (B(\)é |IT') gives a finite value and IT), . and eventually I, 4,4, diverges
logarithmically like - ) the asymptotic behaviour of (4 in the limit zo7, — 29740 is

~ . c A+1)?
log W[ Z](B(NE(I) = 52 (10?; m) log |22, — zap42| + -+, (4.40)

where ¢ = 1/2 for the real pinching, ¢ = 1 for the complex one, and the dots refer to the
contributions which are finite in this limit.

Plugging now this result into (4.27) and employing the integral identity

lim —]{fa Ao (b@“) poroetl (4.41)

e—1+ 4 A 6 «

that we found in the previous chapter, see (3.23]), we conclude that when the system
approaches criticality the entanglement entropy behaves like

a—+1

Sa,x ~ —C log |22, — z2142]-
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The previous reasoning can be straightforwardly extended to situations where different

couples of branch points degenerate at the unit circle. For instance sz,Ej_vl — u, = e
with wu, # ., for v # o', In this case,
R
a+1 —1
Sax = — 20 Ugl log |z, — zZ; |4+, (4.42)

where the dots represent the contributions that remain finite in the limit z;, — wu,,
v =1,...,R. According to this expression, the entropy should diverge at the critical
point, i.e. when z; = Ej_vl. The reason for this is that we have taken the asymptotic limit
| X| = 0o. The entanglement entropy follows an area law when the theory is non critical.
Hence the large size limit renders a finite entropy. However, as we shall see in the next
section, this is no longer true when the chain is critical. The area law will be corrected by
a term that grows logarithmically with the length |X|. Therefore, we may have a finite
entropy in the critical theory by restoring the finite size of the interval X.

4.3 Critical chains

Now, let us move on to discuss the case of critical theories. In the generic situation, the
mass gap is zero when for some open intervals of § € [—m, )

[F=(0)] > w™(0) = VF*(0)? +G(O)2,

and the dispersion relation (2.10) becomes negative. The symbol of the ground state
correlation matrix (2.40)) is now discontinuous at the boundaries of these intervals, i.e. at
the Fermi points,

A I, if F(0) < —w(6),
GO) =4 M), if |[F~(0)] < w*(0), (4.43)
I, if F~(0) > wt(6).

Observe that if G(0) has a discontinuity at @ it has also another at —f. Therefore, the
discontinuities come in pairs 6, —6 except those at 6 = 0 or —.

Employing the general result that we have obtained in Section for discon-
tinuous symbols, we shall now analyse the different types of discontinuities that we can
find when the mass gap is zero and their contribution to the logarithmic term of the
entanglement entropy.

The first possibility is when the two lateral limits are M (#) and +1. Obviously, the
two limits commute and we can study its contribution analysing the discontinuity in the
eigenvalues of the lateral limits. Since det M(0) = —1 and Tr M (6) = 0, the eigenvalues
of M(0) are uf = —1, and pg = 1. Hence only one of the eigenvalues of M (#) is different
from those of &1, u; = p, = +1. Employing (4.12), this discontinuity in the symbol
g,\ =\ — Q contributes to the coeflicient of the logarlthmlc term of log Dx () with

2
| .
Burd) = MZ(IOgA—Z]*>
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The second kind of discontinuity that we can have is when the lateral limits are I and
—1. In this case both eigenvalues are different at each side, u¥ = pi = 1, and we get

twice the contribution of the previous kind of discontinuity,
Brr = 28m1-

Finally, it is also possible that the matrix M (0) itself is discontinuous. This may happen
when F'*(0) and G(6) vanish for some values of 6 and at least one of them goes linearly
to zero. In this case the two lateral limits have opposite sign and the contribution to the

coefficient of the logarithmic term is also
Brnr = 2Bui-

With all these ingredients we can compute the asymptotic behaviour of the determinant
for the four archetypical situations sketched in Fig. [4.4]

w w ,
b ~ ! 1
\ / I ,
\ 1 ,
N l' : \ '
\ , \ ”
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\ ! ' \ 1
\ ! \ 1
1
\ \
\ ! \ 1
\ ]
\ U \ ’
\ 1 N 7
N SN
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a b
w™ w™
M M M M M
c d

Figure 4.4: Four archetypical discontinuities for the symbol G (0) of the ground state correlation matrix.
In a and b the dispersion relation w(#) is represented by the solid curve while the dashed curve depicts
w(—0). In the plots ¢ and d the solid curve stands for w™(#). The lines with arrows, right below the

plots, mark the angle 6 where the discontinuities happen.

In panel a of Fig. we represent a double change of sign of the dispersion relation
for negative values of . From the form ‘D of the symbol G one can deduce that in
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this case it presents four discontinuities of the kind M, as it is indicated by the arrows
below the plot. In this case the coefficient of the logarithmic term in log Dx (\) is

Ba = 4BMI

In Fig. b we consider the case in which w(#) changes its sign at § = 0 (the case § = —7
is analogous). The symbol has now two discontinuities of the type M and one II. They
give a total contribution

By = 28n1 + Brr = 4Bumr-

In the case ¢ of Fig. [£.4] we exemplify the situation in which the symmetric part of
the dispersion relation w™(#) vanishes at two symmetric modes (different from 0 or —7).
This produces two discontinuities of the type M M that give rise to a logarithmic term in
log Dx (\) with coefficient

Be = 2Bmm = 4Bumr.
It may also happen as in Fig. d that w*(0) vanishes at § = 0 or —7. Here we have

only a discontinuity of the type MM that contributes to log Dx(\) with a logarithmic
term with coefficient

Ba = 2Bm1-

Considering simultaneously all the above situations, we conclude that the asymptotic

expansion (4.16]) of log Dx () is of the form
log Dx () = |X| log(X* — 1) + By log | X| + O(1),
with
Br = 2(2nq + 21y + 2n. + na) Baur = NrBur

where n;, i = a,...,d, is the number of discontinuities of i-type (see Fig. [4.4]).

Introducing this result into the contour integral (2.36) for S, x and applying the
identity (4.41)) we finally find that the asymptotic behaviour of the ground state Rényi
entanglement entropy is

1
CF D og |X| + O(1), (4.44)

S.x =N
X T 9240

The coefficient of the logarithmic term is similar to that predicted by Conformal Field
Theory (1.10) with a central charge ¢ = Nr/4. Notice that the appearance of these
discontinuities in the symbol is actually a consequence of the vanishing of the mass gap.

It is interesting to discuss how the discrete symmetries of parity P and charge conju-
gation C' affect the behaviour of the ground state entanglement entropy from the results
that we have obtained. Recall that PC' is a symmetry when the couplings B; are real and,
therefore, G(0) is purely imaginary, something that does not play any role in the analysis
of the discontinuities. Therefore, while the PC symmetry is crucial for the computation of
the entanglement entropy when there is a mass gap (we do not actually have the solution
of the Wiener-Hopf factorisation when PC' is broken), it is irrelevant in the critical case.

With the symmetry under parity the situation is reversed. If the theory has a mass
gap the vacuum is always parity invariant and this symmetry is irrelevant in the analysis
of the entanglement entropy. On the contrary, it is crucial in the case of critical chains.
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Figure 4.5: In the left panels we represent the dispersion relation (solid line) and its symmetric part
(dashed line) of two critical theories whose ground state is the Fock space vacuum |0). As we indicate
by the arrows, at the zeros of the dispersion relation the symbol M (6) is discontinuous. These critical
theories can be reached as the limit of a non critical one. On the right, we represent the disposition of
the branch points of the curve w? = P(z) in each case. The upper dispersion relation corresponds to a
complex pinching of two pairs of branch points related by inversion and complex conjugation. The lower
dispersion relation can be reached from a non critical ones by merging two real branch points related by
inversion. Notice that the discontinuities of M (6) are located at the angles 6,, in which the pinchings sit

at the unit circle, u, = ',

If the Hamiltonian is P invariant then the antisymmetric part of w(f) vanishes, and we
are restricted to the situations described in Figs. ¢ and d.

In Section 4.2.1], we studied the behaviour of the entanglement entropy of a non critical
chain as we approach a critical point. Let us connect the result obtained there with the
analysis of the discontinuities performed here.

We investigated the limit to the critical point in terms of the compact Riemann surface

described by the curve w? = P(z) introduced in Section We saw that the theory

becomes critical when one or more pairs of roots of P(2), z;,, Ej_vl, v=1,..., R, merge

at the unit circle, z;, — u, = el% with wu, # u, for v # v’. We found that in this limit
the entropy diverges logarithmically as (4.42)),

a+1 al —1
20 Zlog |25, = Z;0 |+, (4.45)
v=1

Soz,X - -

We arrived at this formula considering |X| — oo. When the theory is non critical,
the symbol of the correlation matrix is smooth and, therefore, the entropy tends to a
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constant when | X| is large enough. However, we have seen in this section that the symbol
is discontinuous at the critical point, when z;, = Ej_vl, and the discontinuities give rise to
a logarithmic growth of the entropy with |X|. This explains the divergence of (4.45) at

the critical point.

In fact, taking the expression (4.22)), we have
w(0)* = FH(0)* +|G(O)] = |P(e”)].

Since u, = €% is a root of P(z), then F'* () and G(f) vanish at the pinching angles ,,.
Therefore, given the form of M(6), there is a global change of sign in this matrix at
the points €,. This means that to each pinching u,, of the Riemann surface it corresponds
a discontinuity of the type MM in the symbol M (0) at 6, as it is illustrated in Fig. ﬁ

According to our previous analysis, a discontinuity of the type M M contributes to the
entanglement entropy with a logarithmic term

a—+1
12«

log | X|.

Therefore, if R pairs of roots of P(z) degenerate at the unit circle then M () has R
discontinuities M M. In this case, the entanglement entropy behaves as

a+1
Sox =R
X 120

log | X| + O(1). (4.46)

It is very suggestive the correspondence between this behaviour and that in (4.45)). One

sees that, up to constant terms, (4.46) is obtained from (4.45)) by simply replacing |z;, —
—1 . —1
zZ. | with | X|~.

Ju

In the following sections we shall apply the previous general results to several particular
fermionic chains.

4.4 Kitaev chain/XY spin chain

We first consider the simplest case of range L = 1 with P and C' invariance; that corre-
sponds to the Kitaev chain or XY spin chain for spin systems. Therefore, we only have
nearest-neighbour real couplings: Ay = —h, A1 = 1 and B; = ~, with A and + non
negative. We already introduced this model in Section [2.2.1} The dispersion relation is

wxy (0) = \/(h — 2c0s6)? + 492 sin’ .

Then the ground state is the Fock space vacuum, |K> = |0). The symbol of its correlation
matrix is

5 1 (—h+2cos(9) 2i7y sin @ )

G(0) = M(0) = wxy (0) —2iysin6 h —2cosf

We obtained that the theory is critical when

(4.47)

v=0 and h <2, (4.48)
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or
h=2. (4.49)

Observe that in the case (4.48) the dispersion relation is zero at
h
0, = arccos B) and 0, = —0,. (4.50)

The symbol G (0) has two discontinuities of the kind M M at these points like in Fig. .
Therefore, according to (4.44)), the entanglement entropy of the ground state behaves with
| X| as
a+1
Sax = ; log | X |+ O(1). (4.51)

(0%

On the other hand, in the line h = 2 the dispersion relation vanishes at 6§ = 0 and the
symbol has a single discontinuity at this mode of the type M M similar to that plotted in
Fig. [4.4d. Therefore, the entanglement entropy is

; a—+1
Slsmg _
X 120

log | X |+ O(1).

Comparing these results with the expression for the entanglement entropy given by CEF'T
we conclude that the critical line in v = 0 corresponds to central charge ¢ = 1 while
in the line & = 2 the central charge is ¢ = 1/2. It is usual to say that a critical theory with
central charge ¢ = 1 belongs to the XX universality class while a theory where ¢ = 1/2 is
in the quantum Ising universality class. This agrees with the numerical studies performed
by Vidal, Latorre, Rico and Kitaev in [24] [129].

The line 7 = 0 corresponds to the XX spin chain/Tight Binding Model for which
the correlation matrix (4.47) is a scalar Toeplitz matrix and we can apply the formulae
of the previous Chapter. In particular, since it is a local chain, we can compute its
entanglement entropy using the expression in . In this case the correlation matrix
has two discontinuities at the points determined in (4.50). Then reduces to

1 1
S§§=a+ log|X|+2“I‘a+OhL

- 2a log[2 — 2 cos(6; — 0:)] + o(1).

Taking into account (4.50)), we have 2 — 2 cos(#; — 0y) = 4 — h?, and

1 1
§§:%log\X|+2Ta+a+

where Y, is the integral that we introduced in (3.24). This is the result that Jin and
Korepin found in their pioneer work [98]. Observe that we obtain the same logarithmic
term as in (4.51) as well as the constant term hidden in O(1).

log(4 — h?) + o(1), (4.52)

12«

In the line h = 2 an interesting point is v = 1. For these couplings the Hamiltonian
of the XY spin chain (2.21) is Kramers-Wannier self-dual [I30]. The Kramers-Wannier
transformation maps the 1/2 spin operators of, (¢ = z,y,2) to the new set of 1/2 spin
operators (see e.g. [131])
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If the Hamiltonian of the spin chain is invariant under this transformation it is said to
be Kramers-Wannier self-dual. As it was noted in Ref. [109] by Kddar and Zimborés,
the ground state correlation matrix reduces to a scalar Toeplitz matrix when the chain
is self-dual. Hence employing the Fisher-Hartwig conjecture one can obtain not only the
logarithmic contribution but also the constant term. Kadar and Zimboras applied this
fact in the self-dual point v = 1, h = 2. Adapting their result for any «, the entanglement
entropy at this point reads

a—+1
12«

Sux = S0 log(4]X]) + To + 0(1).

The same result was obtained by Cardy, Castro-Alvaredo and Doyon using field theory
methods in [132]. In Section of the next Chapter we shall arrive at the same result
establishing a relation between the entanglement entropy at this point and that at v = 0,
h = 0. Observe that the logarithmic term matches the one obtained by applying our
general method.

With respect to the points (v, h) outside the critical lines the dispersion relation is
strictly positive for any 6. Therefore, the symbol is smooth and we are in the case
described in Section . Since the pairing v is real, we can apply the expression (4.25)
for Dx(\) that was actually obtained for this system by Its, Jin and Korepin in [124].

The meromorphic functions ®(z) and =(z), see ({.19), are in this case
P(2) =0 (2)=z—h+2z" E()=q(z-2". (4.53)
Hence the associated compact Riemann surface is described by the elliptic curve
w'=P(z)=[(1+7)2"—hz+1—7] [1—7)2" —hz+1+17]
that defines a torus of genus g = 1. The branch points of w? = P(z) are

h/24\/(h/2)? +~2 -1
+ = 1+~

(4.54)

and their inverses z;'. The branch points zy are the zeros of the rational function
g(2) = (®(2) + Z(2))/(®(2) — Z(2)) while 2z are their poles.

In this case the Riemann theta function in g complex variables reduces to the Jacobi
theta function with characteristics in one variable ¥[#|(s|7) and with the matrix of periods
IT replaced by the modulus 7,

T = j{ dn.
b

The holomorphic form dn is in this case

¢odz
P(z)

where ¢q is a constant that can be fixed using the normalisation condition

j{dnzl.
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Following the prescription described in Section [4.2] we should take an appropriate order
21, %2, 23, 24 for the branch points, with z; and 25 lying inside the unit disk and z3 and z4
outside it. Then the a cycle is chosen to surround anticlockwise the branch points z3 and
z4 in the upper Riemann sheet while the b cycle encloses 25 and 23 clockwise. According

to these considerations,
24 d
fdn:u:n/ bodz _
a z3 P(z)

and the modulus 7 can be expressed as the quotient
fZB dz
?2 \/P(2)
_fZ4 dz
Legendre showed that the above integrals, with the square root of a quartic polynomial
in the denominator, can be reduced to the complete elliptic integral of the first kind

! dt
1= [ =

In fact, performing the change of variables

T(z) =

that maps the branch points of w? = P(z) to

(4.55)

T =

az+b
cz+d’

ad — bc =1, (4.56)

T(z1) =—-1/r, T(z)=-1, T(z)=1 T(z)=1/k,
the integral in the numerator of (4.55)) is reduced to

= dz ! k2dt
/22 NZEN [, NI R
On the other hand, for the integral in the denominator we obtain
/Z4 Y r2dt

5 VPG =BT ee)

Doing in the latter integral the change of variables t = [1 — (1 — x2)u?]~'/2 we arrive at
o dz ! du
A v s o

Then the modulus of the torus is the quotient of the complete elliptic integrals of the first
kind

21(k)
I(V1—K2)
The relation between x and the couplings v and h can be obtained using the invariance

of the cross-ratio of the four branch points under the transformation (4.56). We define
the cross-ratio of four points (z1, 22; 23, 24) as

T=1

(21 — 23)(22 — 24)
(21— 24) (22 — 23)

(4.57)

(21722;23,24) =
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Then ]
2 = (21,205 23,24) = (—1/kr, —1;1,1/K). (4.58)

Therefore,
1—+/1—x2
K= —_—=
1+ /1 —x2

Applying the Landen transformations of the elliptic integrals [92],

I <M) — (14 y)I(y), and I (ﬂ> - T,

1+y 1+y 2
we have
of (VX
_ 14+4/1-x2 B
7 (20020 I(V1=x%)
1+\/1—x2

Let us introduce the particular cross-ratio

T=1

1 (h/2)?

) (4.59)

€= (Z+7 Z—; ZIIJZ:I)

We can distinguish three non-critical regions in the (y, h) plane depending on the position
of the branch points with respect to the unit circle and on their real or complex character.
In regions la, 0 < z < 1, and 1b, z > 1, the branch points that are the zeros of g(z), z4,
are inside the unit disk while the poles are outside it. In region la all the branch points
are real while in region 1b all of them are complex. In region 2, x < 0, we have one of the
poles, z;l, and one of the zeros, z_, inside the unit disk and both are real. In Fig. we
summarise the disposition of the branch points in each of these regions. Let us take the
branch points in the order

Za—y Zats Za__,:, za__l, for region 1la,

Zbts Zb—s zbjrl, z, !, for region 1b,
29—, 22]&, Zoy, 25", for region 2.

Observe that the chosen order fulfils in all cases the requirement that the first two branch
points are inside the unit disk and the last two outside. Consequently, the assignment of
indices ¢; is (+1,+1, —1, —1) for the regions la, 1b and (+1, 1,41, —1) for the region
2. Hence the characteristics are p, = u, = —1/2, v, = v, = 0 for the regions la and 1b
and ps = 0, 5 = 0 in the region 2.

Since the order of the branch points is different, according to (4.58)), x will be different

in each region:

e Region la

(21, 22; 23, 24) = (2_, 24; z;l, Y =2t (4.60)

e Region 1b
(21,22 23, 24) = (24,225 27, 22 1) = .
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Figure 4.6: Disposition of the branch points of the curve w? = P(z) for the XY spin chain in the (v, h)
plane. In the regions la, 1b and 2, the model is non-critical and the branch points are not degenerated.
In regions la and 1b, the branch points « that are the zeros of the rational function g(z) are inside the
unit disk while their poles e are outside. In region la the branch points are real while in region 1b are
complex. In region 2 one zero and one pole of g(z) are inside the unit disk and they are real. In the
critical lines the branch points degenerate at the unit circle producing the discontinuities in the symbol
of the correlation matrix. In the critical XX spin chain (that corresponds to central charge ¢ = 1), the
two pairs of complex branch points degenerate (complex pinching). In the critical Ising line (for which
¢ = 1/2) only one pair of real roots merges (real pinching).

e Region 2

(21, 22; 23, 24) = (2, 27 24, 22 ) = 1 — a7l

In conclusion, the modulus 7 is

o 1)
I(v/1=x%)
where
Vi, 0 <z <1, region la,
X = x o >1, region 1b,
\/1_;?, x <0, region 2.

Using the above results one can compute the entanglement entropy for the non critical
regions employing the expression (4.30]) for the von Neumann entropy or (4.31)) for integer
a> 1.

We can explicitly express the entanglement entropy in terms of the cross-ratio x. Let
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us start from the contour integral (4.27)). Particularising it for genus one, we have

Sax = Jim = ¢ fu(v/e) 3510w (TENBDTEN=BON) ) dA+o(1)

17 47T1
VIVIBA)
= lim — a(N )=
5 O G)
where the prime denotes derivative. The Jacobi theta function with characteristics has

simple zeros at the points of the complex plane (v+1/24+m)+ (u+1/2+n)1, m,n € Z.
Therefore the integrand of the latter contour integral has poles at the points

B'(A)dA + o(1),

1
An = tanh [<n+u+§) 7T|7'|:| , nez.

All of them lie on the real interval between 41. Therefore, they are enclosed by the
contour €. Since the residue of the poles of the logarithmic derivative of J[4](z) is the

unity, we have
Sax =Y fa(An) + o(1). (4.61)

nel

Comparing this expression with (2.35]), one may deduce that the \,’s are precisely the
eigenvalues of the correlation matrix in the large | X| limit.

In [I33] Peschel obtained this series for @ = 1 and was able to sum it in regions la
and 2. He arrived at by realising that the von Neumann entanglement entropy of
the XY spin chain is connected with the corner transfer matrices of the triangular Ising
model. In [124] Its, Jin and Korepin extended the result for the region 1b and, with
Franchini [134)], they summed the series for any «. In particular for the von Neumann
entropy, a = 1, it is found that

e Region la:

Six = é {log (1 - x) L 20 x)I(M)I(\/E)} +1log 2. (4.62)

(e

Six = é {log (1 - fl) L 20 x_l)](\/l — x—l)](\/x_l)] +1log2.  (4.63)

™

e Region 2:

Sy x = 1—12 {log (162 -z —27Y) + Wé(f;f_:l)f (\/11_—1) <W2l

(4.64)

Observe that the entanglement entropy only depends on x. This fact was firstly noticed
in Ref. [I35]. Therefore, the ground states of two theories with the same = have identical
entanglement entropy in the large | X| limit. Since

1—(h/2)?

r = P)/Z
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the curves of constant z in the (v, h)-plane are ellipses in the regions la and 1b (z > 0)
and hyperbolas in the region 2 (z < 0). In Fig. [4.7| we represent some of them. All these
conics intersect at the critical point v = 0, h = 2, where the entanglement entropy does
not have a well-defined limit. For this reason it is called essential critical point in Ref.
[135]. In the next chapter we shall find the origin of these conics of constant entanglement
entropy and we shall study them in more detail and generality.

The curve z = 1 corresponds to the Barouch-McCoy circle [74], (h/2)? +~* = 1,
that separates regions la and 1b. The branch points of the elliptic curve w? = P(z) are
complex inside this circle (region 1b) and real outside it (region 1a). As it is shown in [75],
at the Barouch-McCoy circle the ground state of the XY spin chain is doubly degenerated
in two product states. As we know, the entanglement entropy of a product state always
vanishes. But according to the above formulae, the von Neumman entanglement entropy
along this curve is log 2. The same happens with the Rényi entanglement entropy for any
a [134]. The reason is that the ground state of the Kitaev fermionic chain for which we
are computing the entanglement entropy is a linear superposition of the two ground states
of the XY spin chain. Then log2 comes from the degeneration. This could also explain
the log 2 additive term that appears in the expressions for the von Neumann (and Rényi)
entanglement entropy of these regions. The ground state of the XY spin chain is actually
doubly degenerated when h < 2; that is, in regions la and 1b. On the other hand, it is
unique for h > 2, in region 2, for which the log2 term does not appear in the expression
of the entanglement entropy.

Finally, let us analyse how the entropy behaves when we approach the critical lines,
which in the language of the associated Riemann surface means that the torus is pinched,
see Fig. 4.6 The XX critical line is reached from the region 1b, where the branch points
are complex, when z; — z4 — 0, 2z — z3 — 0 (that is a complex pinching). In this limit
x — 00. The Ising critical line can be reached from either region la or 2 when 2o — 23 — 0.
In both regions the branch points are real, so it is a real pinching, and z — 0. In both
limiting situations the cross-ratio y tends to zero, x — 0.

Remember that we have taken the a cycle surrounding z3 and z; while the b cycle en-
circles z5 and z3. As we did in Section |4.2.1] it is convenient to study the pinching choosing
a homology basis (a’,V’) in which @’ surrounds one of the pairs of merging branch points.
This can be achieved by exchanging the a and b cycles, i.e. (a/,0') = (b, —a), where the
— sign means reversing the orientation of the cycle. Under this modular transformation
the modulus changes to, see Appendix [C]

and the normalised Jacobi theta function to
IENBNIT) = ™G (=BT |T). (4.65)
Since [92]
1(0) = g, [(\/1—7X2) ~ log%, when y — 0,
the modulus 7" of the torus diverges as

: 2
/ 1 X

~ ——log =.

T s ©8 16
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Figure 4.7: Phase diagram of the XY spin chain in the (v, h) plane. The model is critical when v = 0
and h < 2 (critical XX model) and when h = 2 (critical Ising line). In these lines the entanglement
entropy grows logarithmically with the length of the interval X. The central charge in the critical XX
chain is ¢ = 1 while in the Ising line is ¢ = 1/2. In regions la, 1b and 2, the system is non critical and in
the large |X| limit the entanglement entropy saturates to a constant value. The dashed curves in these
regions represent some of the conics (h/2)? + 272 = 1 of constant entanglement entropy. All of them

intersect, as well as the critical lines, at v = 0, h = 2 (essential critical point). The curve for = 1 is the
Barouch-McCoy circle that separates regions la and 1b.

Putting this together with (4.65) in the contour integral (4.27) of S, x and applying
the identity (4.41)) we have that the asymptotic entanglement entropy in the non-critical
regions can be expressed in the convenient form

1. 43z — —
SaX:CH_ log |Zl 2’3||Z2 24‘

’ 12« |21 — 24|22 — 23]

T (4.66)
where the dots represent terms that vanish when (21 — 2z4)(22 — 23) — 0.

In the XX critical line, 2 = 24 = u; = €% and 2y = 23 = uy = €7 where 6, is the
zero of the dispersion relation, ; = arccos(h/2). Then replacing in the above expression
|21 — 23|22 — 24| by |uy — uz|* = 4 — h?, we have
a+1 a+1 a+1

_ 1 _ _ log 2
oa 108121 — aallze — 2[4+ o= log 24+ =

If we now substitute in this expression the divergent terms — log |z — z4| and — log |29 — 23|
by

Sa,X =

log(4 — h?).

12« 1

T, — —log?, 467
a+1 308 (4.67)

we precisely obtain (4.52)), the asymptotic entanglement entropy of the critical XX spin
chain, including the finite term. The above replacement is universal in the sense that it

log | X| +
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is independent from the coupling constants of the theory encoded in the pinchings u; and
Ua.

Something similar happens for the Ising critical line. In the limit h = 2 we have that

l—7
— -1 = —. 468
TTA T (4.68)
Replacing this into (4.66|) we obtain
a+1 a+1 1
Sax = — 1 — log 43 e 4.69
X o Og|22 23|+ 190 og 43~y + ( )

With the tools developed in this chapter we can only deduce the logarithmic term of the
entanglement in the line A = 2. In the next chapter we shall be able to obtain the finite
term too. Anticipating the result, we shall find that

_a+l o

= log | X|+ 7T
SO[,X 12a Og | | + o +

+1
2o log(4v) + o(1),

that can be obtained from (4.69)) replacing — log |z — 23| by

120 4
Y.+ - log2, 470
ar1etgles (4.70)

log | X| +

which is also universal but differs by a constant from the replacement for the XX chain.

4.5 XY spin chain with a Dzyaloshinski-Moriya cou-
pling

The XY spin chain has parity symmetry. As we discussed in section[2.2.2] this symmetry is
broken by adding a Dzyaloshinski-Moriya (DM) coupling. In the corresponding fermionic
chain this introduces an imaginary part s in the hopping term, A; = 1 + is, while the
pairing, B; = <, and the chemical potential, Ay = —h, do not change. Hence in the
dispersion relation there is now an antisymmetric part,

wpm = wihy(0) + 2ssin 6, (4.71)

while the symmetric part wi)y, coincides with the dispersion relation of the XY /Kitaev
spin chain,

wpy(0) = \/(h — 2c0s )2 + 42 sin? 6.
Since the system breaks parity, the symbol of the ground state correlation matrix,
—I, if 2ssinf < —wiy(0),

GO) =< M(9), if [2ssinf] < wi,(6),
I, if 2ssinf > wiy(0)

)

with

1 —h+2cosf  2iysind
—2iysind  h —2cosf )’



96 4.5. XY spin chain with a Dzyaloshinski-Moriya coupling

may also present discontinuities like those depicted in the panels a and b of Fig. [4.4]
Introducing A = s2 — ~2, one can show that this model is gapless when
A >0, (h/2)>—-A <1, Region A

or when
A <0, h=2, Region B,

In Fig. [4.8 we represent the Regions A and B (actually a line) in the (v, h) plane for a
fixed s.

In Region A the dispersion relation becomes negative in some interval. Hence the
energy minimises when all these modes are occupied giving rise to a Dirac sea. In this
situation, if A # 2, the symbol has four discontinuities of the type M1 at the Fermi
points 01,6, € (—m,0) where the dispersion relation changes the sign, as well as at their
opposites modes —6;, and —f. This corresponds to the situation considered in Fig. [4.4]
a. For h = 2 one of the Fermi points is at # = 0. Hence we have two discontinuities of the
type MI and one of the type IT like in the case represented in the panel b of Fig. 4.4l In
both cases, we obtain applying that the entanglement entropy of the ground state
grows with the length of the interval X as

+1
Shy = O‘6a log | X| + O(1). (4.72)

In the points of Region B the dispersion relation is positive except at § = 0 where it
vanishes. Therefore, along this line the symbol is of the form G(6) = M(6) and presents
a single discontinuity of the type M M at 6 = 0. This corresponds to the case considered
in Fig. d. Then, according to (4.44), the entropy in this region is

a+1
SEx = oo log | X |+ O(1). (4.73)

In Fig. [4.9 we check numerically the validity of these results for a = 1. Observe that,
comparing with the expression obtained from CFT , in Region A the central charge
is ¢ = 1 and it lies in the XX universality class, while ¢ = 1/2 in Region B and it belongs
to the quantum Ising universality class.

In [109] Kddar and Zimboras noted that the spin Hamiltonian of this model is Kramers-
Wannier self-dual at the point v = 1, h = 2. Hence, as we mentioned before, the
correlation matrix can be reduced to a Toeplitz one. Then they obtained the complete
asymptotic behaviour of the entropy at this point applying the Fisher-Hartwig conjecture.
Adapting their result to our notation, we have

Ul log(2|X]) + St log(l — s72) +2T,, s> 1,
Sax = (4.74)

L Jog(4]X|) + Ya, s <1

Outside criticality the dispersion relation is strictly positive. Therefore, the symbol
is G(0) = M (0) and it is always continuous. Observe that M (#) does not depend on the
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Figure 4.8: Phase diagram for the XY spin chain with a DM coupling in the (v, ) plane for a fixed s.
The shaded Region A is gapless and the central charge is ¢ = 1 (XX universality class) while the dashed
line Region B has central charge ¢ = 1/2 (Ising universality class). In the unshaded area, the Hamiltonian
has a gap and there are conical curves with the same entropy. The dashed ellipses and hyperbolas depict
some of them.

coupling s and it is equal to that of the XY spin chain. Therefore, the formulae obtained
for the entanglement entropy in the non critical regions of the XY spin chain apply.

As it happens in the Ising critical line of the XY spin chain, the value of the entangle-
ment entropy diverges logarithmically in the large |X| limit as we approach the critical
Region B from la and 2, see Fig. [£.8] With respect to Region A its boundary can be
reached from inside the critical region or from outside. These two limits are completely
different. Inside the critical region the entropy grows logarithmically with |X| and the
coefficient of this term is constant throughout all the region. On the contrary, the next
term in the asymptotic expansion of entropy, which is finite in the large | X| limit, does
change inside the Region A and, as we have numerically seen, it indeed diverges with neg-
ative values when reaching the boundary of the region. On the other hand, if we approach
Region A from any of the non-critical ones (la, 1b or 2) we find that the entanglement
entropy saturates at a finite value in the limit of large | X|, which is different at any point
of the boundary but independent of the path (always inside the non-critical region) that
we follow to reach the boundary. Recall that in the non-critical regions la, 1b and 2 the
ground state is the Fock space vacuum |0) of the Bogoliubov modes; the same occurs
in the critical Region B where the dispersion relation has a zero but does not change
the sign. On the contrary, in Region A the dispersion relation changes its sign and the
ground state has the Bogoliubov modes with negative energy occupied (the Dirac sea).
The above anomalous behaviour of the entropy near the transition could be a sign of this
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Figure 4.9: Numerical von Neumann entanglement entropy (o = 1) for the ground state of the XY spin
chain with a DM coupling. The points O correspond to the theory with s = 0.75, v = 0.5 and A = 0.5,
that belongs to Region A. The points A represent the numerical entropy for s = 0.75, v = 1.5 and h = 2,
and it is in Region B. The solid lines depict our predictions and for the logarithmic term of
the entanglement entropy in each critical region. The constant term ClA  in each solid curve is obtained
by subtracting to the numerical value of the entropy at | X| = 100 the expected value of the logarithmic
term at this length, i.e. Cf’B = Sﬁi%o —¢/31log 100 with ¢ = 1 for region A and 1/2 for region B.

discontinuity in the ground state.

From a global point of view, the behaviour of the entanglement entropy in the border
of Region A can be interpreted as a blow up of the essential critical point v =0, h = 2
of the XY spin chain. The different possible values for the limit of the entropy at that
point (for s = 0) are obtained at different points of the boundary of Region A for s # 0
and the essential singularity at v = 0, h = 2 disappears in this case.

4.6 Long-Range Kitaev chain

In the previous examples there are only nearest-neighbour couplings, and the discontinu-
ities in the symbol are due to the zeros of the dispersion relation, i.e. they have their
origin in the absence of mass gap. Their logarithmic contribution to the entanglement
entropy can be actually cast in terms of an effective central charge. The presence of long-
range interactions may introduce other discontinuities in the symbol that are not related
to the mass gap. This implies that the entanglement entropy may grow logarithmically
even when the system is non-critical, with a coefficient that may be different from that
predicted by CFT.

We shall illustrate this behaviour with the Long-Range Kitaev Chain. As it was defined
in Section [2.2.3] it only presents first-neighbour hoppings A; = 1 while the pairings decay
with the distance B; = [|I]~°~! with a dumping exponent § > 0. It also includes a chemical
potential term Ag = h. We showed there that in the thermodynamic limit the dispersion



Chapter 4. Chains with pairing terms 99

relation can be expressed in terms of the polylogarithm function Lis,
wirk (0) = v/ (h + 2cos0)2 + |Gs()2,
where G5(6) = Zs(e?) and

E5(z) = Z(zl — 27179 = Lig(2) — Lig(z71).

=1

Since wirk has not antisymmetric part, it is non-negative, and the symbol of the ground
state correlation matrix is of the form

N 1 h + 2cosf Gs(0)
G(0)=M(0) = wrri(0) ( ~G5(0) —h —520089 ) '

As we have done several times in this dissertation, in order to discuss the asymptotic
behaviour of the entanglement entropy we should analyse the discontinuities of the symbol.
Of course, one source of discontinuities are the zeros of the dispersion relation. In this
model the latter only vanishes at § = 0 for h = —2 and at § = —7 for h = 2. The lateral
limits of M (6) at these discontinuities are +o,,. Both discontinuities are of the type MM
and match with the situation represented by the panel d of Fig. [4.4 Therefore, according
to both contribute to the logarithmic term of the entropy with

a+1
12«

Note that this contribution has its origin in the absence of mass gap.

log | X|.

The other possible source of discontinuities are the divergences and the discontinuities
of Gs(0), which encodes the long-range pairings. Taking into account that Lis(z) diverges
for 0 < 1 at z =1, Gs() also diverges at § = 0 for § < 1 and any value of h. Then
the symbol M (#) is discontinuous at this point. Since the lateral limits are 4o, this
discontinuity also contributes to the logarithmic term of the entropy with

a+1
log | X|.
o 081X
If h = 2 this contribution must be added to the one coming from the zero of the disper-
sion relation at 6 = —w. When h = —2 such an addition does not happen as the two

discontinuities are actually the same.

When 6 > 1 the polylogarithm function converges in the whole unit circle, and the
symbol is continuous for any h except at the critical lines h = +2.

Summing up all these considerations, we have that for § # 1, the ground state entan-
glement entropy behaves as

a—+1
Sax = = clog | X |+ O(1),

with an effective central charge c,

0, 6>1andh # £2,
c=¢ 1/2, §>land h==+2o0rd <1andh # 2,
1, 0d<1andh=2.
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These results are very much compatible with the numerical study performed in Ref. [58] by
Ercolessi and collaborators, where the regions with different effective central charge that
we determine here appear smeared somehow. We interpret this fact as the consequence
of the finite-size corrections to the thermodynamic limit that we are considering here.

A more intriguing behaviour for the entropy is observed when § = 1. In spite of
its physical interest, as it may be experimentally implemented with chains of magnetic
impurities on an s-wave superconductor [I136], this case had not been considered in the
literature until our work [126].

For § = 1, Lij(z) = —log(1l — 2). If we take as the branch cut of the logarithm the
real interval [1, 00) then Z5-;(z) has a branch cut along [0, c0) and, for any h,

Gsor(0) = i(n —6), 6 €[0,2n)

has a discontinuity at # = 0. Then the symbol Gy(6) = AI — G(0) has a discontinuity at
the same point with lateral limits

QAij = A —cos§ o, £sin§ oy,
where
h+2 ) s
, siné = .
(h+2)? + 72 (h+2)? + 72
For £ # 7/2 the lateral limits do not commute. Now we must employ the expression

(4.13). According to it, the discontinuity contributes to the coefficient of the logarithmic
term of log Dx(\) with

cosé =

1 A A~
Bo(A) = A2 Tr[log g,\7,0<gx+,0>71]2-

We have that
1

QAZO(QA;:O)_I = w1 (A* = cos28)I — 2Asiné o, —isiné ;).

The eigenvalues p (\) of this matrix can be written in the form

LE) = <\/A_2 _\/(%i sin§> | @75)

Notice also that we have
b ) = iy () (4.76)

Therefore,

From this we compute the coefficient B, o of the contribution of this discontinuity to the
logarithmic term of the entanglement entropy. For this purpose we plug Sy(\) into the
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contour integral (2.36]) of S, x,

dﬁo )

BOC’O - sligl‘*'ll_mffa >\/
11% dfa(Ne) < /A% — cos? & ~|—sm§> (4.77)
G

dX VN =1

Here, as usual, we have performed an integration by parts. The branch cuts of the different
multivalued functions involved in the latter integral are depicted in Fig. [4.10]

—&

—cos¢

Figure 4.10: Contour of integration and cuts of the integrand in (4.77) for the computation of B, . The
cuts from e to the infinity correspond to df,(A/e)/d\ while the cuts inside the contour, [—1, — cos¢]
and [cos&, 1], are due to the other factor of the integrand.

Observe that the integral over the contour € can be divided into two integrals along
curves enclosing respectively the cuts [—1, —cos¢] and [cos&, 1]. Now, we perform the
integration along the cuts taking into account the change in the phase of the logarithm of
the integrand when we go around the branch points + cos& and 1. Since f, is an even
function, the complex integral can be reduced to the following real one

Baoz3 1 df“( >1 vi- ¥ (4.78)

) 2 N2 — cos? €
™ cos& — COS2 —|— smf

where we take positive square roots.

Note that for integer o > 1 we can get an integrated expression for B, following the
same strategy as for other integrals that have appeared before (see Sections and .
Exploiting again the fact that, for integer a > 1, df,,/d\ is a meromorphic function with
poles located at the points of the imaginary axis

(20 — )m o) + 1

AN =itan—— [=1...,a, [#
2a

(4.79)

and that the another factor of the integrand is analytic in the whole region outside the
contour %, we can send this contour to infinity and reduce the calculation of B, to the
computation of the corresponding residues. In this way, we obtain the explicit expression
(valid only for integer a > 1)

BaO

2
1 - sin &
= — arctan .
’ 7T2(Oé—1)2< \/603254—])\1]2)
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In particular, for o = 2, 3, the above expression simplifies to

2
2 sin &
Bsoy = — [ arctan ——— | , 4.80
o= 2 (oo 28 ) (a0

2
1 sin &
Bso=— t . 4.81
80 = (arc an ol 1/3> ( )

For h # 2 this is the only discontinuity of M () in the line 6 = 1 and the entanglement
entropy is

Sa,x = Baolog | X| + O(1).

However, at h = 2 we have to add the contribution of the discontinuity due to the zero

of the dispersion relation at # = —7. Hence for 6 = 1 and h = 2 we have
a+1
wx = | Ba log | X 1).
St = (Baa+ 21 ) g X1 + O

In Fig. [£.11] we check numerically these results for different values of h, including h =
2. There is a remarkable agreement between the numerical points and our analytical
prediction.

100 200 300 400 500 600 700 800 900 1000
X

Figure 4.11: Numerical check of the asymptotic scaling of the von Neumann entanglement entropy (o = 1)
with the length of the interval | X| in the ground state of the Long-Range Kitaev chain for 6 =1
and different values of h. The dots represent the numerical computation while the solid lines correspond
to the curve By log | X |+ constant where By = By g for h # 2 and By = By o +1/6 if h = 2, with By o given
by . The constant is determined by subtracting to the numerical value of the entropy for | X| = 100
the expected value for the logarithmic term at this length, B; log 100.

In Fig. 4.12| we summarize our results for the coefficient B, of the logarithmic term
of the entanglement entropy. We have coloured the parameter space (h,d) according to
the value of B,. The model is critical only in the lines h = +2. However, we have found
that the entanglement entropy grows logarithmically with | X| for 6 < 1 and any h, even
outside criticality.
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As it is discussed in Refs. [58,59], in the non-critical regions where the entropy grows
logarithmically the correlation functions may actually show an algebraic decay with the
distance similar to that of the critical ones. This radically differs from systems with finite-
range interactions where, outside criticality, the correlation functions decay exponentially
and the entanglement satisfies an area law.

050 10
2L 0670
i |

4 -2 0 2 4
h

Figure 4.12: Plot of the different regions in the (h,d) plane of the Long-Range Kitaev chain
according to the coefficient By of the logarithmic term in the entanglement entropy. The colouring stands
for the value of 4B5: from white for Bs = 0 to black when 4B, = 1. The intermediate dark blue that
corresponds to the point h = 2, § = 1 represents 485 = % arctan? ﬁ + % ~ 0.67.

Another striking feature is that in the line 6 = 1, the logarithmic term originated by
the non commutative discontinuity shows a different dependence on the Rényi exponent
« from that given by CFT,

a+1
B, = c, 4.82
t (4.82)
and we cannot associate to it an effective central charge c as it happens with the commu-

tative discontinuities. In fact, observe that (4.82)) implies

Byzg&. (4.83)

As it is clear from (4.80)) and (4.81)) this relation is violated by B,., except at the point
h = —2, where £ = /2 and we have

1 1
Boog=—. Bag=-— 4.84
20 = g 30 = g (4.84)
which fulfil (4.82)) with ¢ = 1/2. The reason for this disagreement could be that the
couplings of the theory have infinite range and therefore it cannot be related to any local
field theory. However, as we have seen, outside 0 = 1 all the discontinuities of the symbol
are commutative and the relation (4.82) holds, although the theory is still non local.

As a further check of the results that we have obtained, let us consider a variant of
the Long-Range Kitaev chain where the discontinuity due to long-range pairings at 6 = 0
splits into two, located at # = +¢. The new discontinuities in the symbol can be obtained
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by adding to the Long-Range Kitaev chain (2.26)) an oscillatory factor in the pairing,

N

lcos(lo) Nh
Hizx = Z alaniy +al a, + hala, + Z W(alahl — Apanyy) | — 5
n=1 [l|<N/2
(4.85)

with ¢ € [0, 7).

In the thermodynamic limit the dispersion relation of this model is

Whrc(8) = \/(h+ 2cos B)2 + [ Gag(O),

where

[Lig(ei(¢+9)) - Li5(ei(¢_9)) + Li5(e_i(¢_9)) - Ll5 (e_i(¢+9))} .

This function vanishes at # = 0 and —n. Taking into account the properties of the
polylogarithm, it is smooth for § > 1, diverges at § = £¢ for § < 1, and for § = 1 it reads

—1(7T + 0)7 —T < 0 S _¢7
Gl,d)(Q) = _197 _¢ < 0 < ¢7
i(m—46), o¢<6<m.

The Hamiltonian H{ i is gapless for h = £2. When h = —2 the dispersion relation
vanishes at § = 0 while if h = 2 it has a zero at § = —.

The symbol of the ground state correlation matrix is

&'(0) = 1 h+2cos  Gsu(0)
Cwigk(@) \ —Gsge(0) —h—2cosd )

For the lines h = 42 the zeros of w rk produce discontinuities in the symbol at § = 0 for
h = =2 and at 6 = —7 when h = 2. The lateral limits of both discontinuities are +o,.
They are similar to the ones obtained at these lines for ¢ = 0. Therefore, they contribute
to the logarithmic term of the entropy with

a—+1
12«

log | X|.

For 0 < 1 the discontinuities due to the divergences in Gj4(f) are located at 6 = +¢.
Both discontinuities have lateral limits +0,. Therefore, their total contribution to the
logarithmic term of the entropy is

a—+1
§%e"

log | X|.

If h # £2 this is the only contribution to the logarithmic term when ¢ < 1. In the lines
h = £2 we must also take into account the discontinuity produced by the zero of the
dispersion relation.
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In conclusion, for § # 1, the ground state entanglement entropy of the modified Long-
Range Kitaev chain behaves as

;o at
a,X T

1
clog | X|+ O(1),

(07

with and effective central charge c

0, ford > land h # +2,
1/2, ford > landh = £2,
1, ford < landh # +2,
3/2, ford < landh = £2.

For § = 1 the discontinuities of GG 4 give rise to discontinuities in the symbol C;f\ =\ -G
at # = ¢ with lateral limits

Q;\i(b =M —coséF o, —siné* gy,
and at # = —¢ with lateral limits

51+ . F . F
neg = A —cos{T o, +sinl" oy,

where
L h + 2 cos ¢ et p—m
cosd” = V(b4 2cos )2 + (¢ — )2 smé V(4 2cosd)? + (¢ — )2 (4.86)
and
cosé = ht2cos¢ siné” = ¢ (4.87)

\/(h+2608¢)2+¢2’ \/(h+2608¢)2+¢2.

We shall compute separately the contribution of each discontinuity to the coefficient of the
logarithmic term of the entanglement entropy. Since the lateral limits do not commute
we are bound to apply . The discontinuity at 8 = ¢ contributes to the coefficient of
the logarithmic term of log Dx(\) with

1 51— (A1 —
Bs(N) = 15 Trllog 01, (G5 1%

The eigenvalues of G;;(G;tb)—l are

2
N VA2 — cos?(AE/2) £ sin(AE/2)
:U’¢ (A) - 7 )
A2 —1

where A¢ = €7 — €. Note that the expression for the eigenvalues is exactly that for the
case ¢ = 0, see (4.75)), with the only change of £ by A¢/2. Therefore, the contribution
B, of this discontinuity to the coefficient of the logarithmic term in the entanglement
entropy can be written as

Ba.y =

2[4l Viexe
™ /Af o VA? = cos?(AL/2) + sin(A£/2>dA' (488)
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The corresponding integrated expression for integer o > 1 reads

L N (e
Bw—m_l)Z( t ¢cos2<A£/2>+|Az|2>

=1

The contribution of the other discontinuity point, § = —¢, can be computed along the
same lines. In fact, the only difference with respect to the previous case is that we have
to replace £ and £~ by —¢~ and —£7 respectively. Hence A¢ is unchanged and

Ba7,¢ — Ba7¢.
Therefore, for 6 = 1 and h # £2, the entanglement entropy behaves as
wx = 2Baglog | X[+ O(1),

with B, given by (4.88). For 6 = 1 and h = +2 we have to take into account the
discontinuity due to the absence of mass gap that adds an extra term to the logarithmic

coeflicient,

;L a+1
X = (ZBMH- Ton )log|X| +O(1).

In Fig. we study numerically the behaviour of the entanglement entropy in terms of
the length | X| of the interval for different values of h, including the critical point h = 2,
along the line § = 1 with « = 2 and ¢ = /4. We find again a full agreement with the
analytical result.

’

0.6

e T
0. 1 1

4 1 1 1 1 1 1 1 1
100 200 300 400 500 600 700 800 900 1000
X

Figure 4.13: Rényi entanglement entropy with aw = 2 as a function of the length |X| of the interval in the
ground state of Hj i, , for ¢ = w/4, 6 = 1 and different values of h. The dots correspond to the
numerical entropy while the solid lines are our analytical prediction Bjlog|X| + constant with B} that
obtained in the text: By = 2B r/4 + 1/8 for h = 2 and By = 2B, /4 otherwise, with By /4 given by
(4.88). The constant is the difference between the numerical value of the entropy for | X| = 100 and the
corresponding value of the logarithmic term at this length, B log 100.



Chapter 5

Symmetries of the entanglement
entropy

In the previous Chapter we saw that in the space of couplings of the XY spin chain there
are ellipses and hyperbolas along which the entanglement entropy of the ground state is
constant. This invariance is not only valid for the von Neumann entropy but also for the
Rényi entanglement entropy. This fact implies something deeper: the full spectrum of
the two-point correlation matrix remains invariant on these curves.

In the works [137] and [138], we noticed that this invariance occurs in more general
systems and we traced back its origin. We realised that the group of symmetries of the
entanglement entropy in homogeneous quadratic fermionic chains includes a realisation
of the Mobius group that acts on the coupling constants of the theory. From this point of
view, the conics of constant entropy found for the non critical XY spin chain correspond
to the flow of the Mobius group in the space of couplings.

This Chapter is devoted to the study of this new symmetry. We shall consider sepa-
rately critical and non critical theories. For non critical theories, whether they break or
not parity and/or charge conjugation symmetries, we shall show that the spectrum of the
ground state two-point correlation matrix is asymptotically invariant under Mobius trans-
formations. Therefore, there are families of non critical theories related by a subgroup of
these transformations with the same ground state entanglement spectrum. In critical the-
ories, the entanglement entropy is no longer invariant under Mdébius transformations. We
shall find that the transformation law of the exponentiated entropy is analogous to that of
a product of homogeneous fields inserted at the discontinuities of the correlation matrix.
The scaling dimension under the transformation is different depending on whether the
ground state is invariant or not under parity.

After the general discussion we shall exploit the Mobius symmetry to find some in-
teresting dualities and results for the ground state entanglement entropy of the XY spin
chain with a DM coupling. We shall also apply the results to the Long-Range Kitaev
chain.

107
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5.1 Mobius transformations in non critical chains

In this Section we consider the case of a non critical Hamiltonian with finite range of
coupling L, for which the dispersion relation ([2.10)),

= VFT(0)2 +|GO)> + F(6), (5.1)

is positive for any 6. The ground state is the Fock space vacuum |0), and the two-point
correlation matrix (2.41)) is
1 K

"2

Viem M (0)e™=mqg, (5.2)

with M (6) the continuous matrix valued symbol

V() — 1 FHO)  GO) )

JE@R 1G0T < ae) —F+(0)

The first signal of the Md6bius invariance in non critical theories comes from the fact
that, if PC' is a symmetry of the Hamiltonian, the ground state entanglement entropy is
expressed in terms of a theta function, as we saw in Section 4.2, The theta function is
defined by means of the matrix of periods of a compact Riemann surface described by a
hyperelliptic curve that only depends on the couplings A;, B; of the theory.

It is a mathematical fact that the only holomorphic one-to-one transformations of the
Riemann sphere into itself are the Mobius transformations,

, az+b (ab
z =

T d)GSMZQ- (5.3)

If we perform a Md6bius transformation in the Riemann sphere, we move the branch points
and the cuts of the hyperelliptic curve, modifying the holomorphic forms. The couplings
of the theory must also change since they determine the branch points. However, the
matrix of periods is unchanged. Therefore, the theta function does not change and the
Rényi entanglement entropy is left invariant.

We can deduce this invariance using a more general and deeper approach based on the
existence of a similarity transformation of the correlation matrix when the length of the
interval | X| — oo.

For this purpose, it will be useful to consider the partition function,

ZCY,X - Tr(p?()a

instead of the entanglement entropy;,

1
Sax = log Z, x.
1 -«
Consider the relation (2.33)) between the entanglement entropy and the restriction of the
two-point correlation matrix to the interval, Vi,

Sax = Trlog F,,(Vx),

1
2(1 —«)
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F,(\) = (%)a + (?)a (5.4)

Then, applying the identity Trlog F,,(Vx) = log det F,,(Vx), the partition function can be
expressed in terms of the correlation matrix as

where

Za,X = det Fa<VX).

Let us also consider the analytic continuation M(z) of M () from the unit circle y to the
Riemann sphere C,

where
O(z)= Y A, E(z)= ) B2 (5.5)

The matrix M(z) is meromorphic in the compact Riemann surface determined by the
hyperelliptic curve of genus g = 2L — 1

w? = P(z) = 22(®7(2)? — 2(2)2(2)). (5.6)
Following the work [124] by Its, Jin and Korepin, we introduce the integral operator

L)X
Kv(s) = v(9) - o § - ZR - My, ve e e

defined on the Hilbert space L*(y) ® C? with scalar product

Vi,V :L A Ty %
(V1,Vv2) f 1(y) 2(3/)y-

21 v

In the topology induced by this inner product, Kx is a continuous operator for any M
bounded in y and it fulfils the property

det F,(Vx) = det F,(Kx). (5.7)
In the following, we shall prove this fact.

Consider an orthonormal basis in L?(y) @ C? of the form {2"e,|n € Z,v = 1,2}, where
the vectors e, are the canonical basis in C?. Taking into account that the entries of the

two-point correlation matrix ([5.2]) can be expressed in terms of the analytic continuation
M(z) in the form
1 dz
Vim = =— ¢ 2" " M(z)—,
2 J, z

the matrix representation of Kx in this basis is

(KX>: (Vna) (Vnm) (an)
0 0 I
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The different indices are meant to run through the following ranges: a < 0, n,m =
1,...,]X|and b > |X|. Now due to the block form of Kx one has

det F,,(Kx) = det F,(1)* - det F,,(Vx).

According to the definition (5.4) of F,, we have F,(I) = I, and we finally obtain the
identity ((5.7)).

The relation between Kx and Vx can be extended to the limit |X| — co. We may
define the operator

Kv(z) = v(z) + lim — jf L= MW ay, (5.8)

u—1- 2mi nz —y

where we take the lateral limit for real values of i smaller than 1. The matrix represen-
tation of K in the basis introduced before is

o

with a < 0 and n,m > 0.

If we call V' the semi-infinite matrix obtained from Vx when |X| — oo, we can imme-
diately extend the relation ([5.7]) to this limit and thus we have

det F, (V') = det F,(K).
We shall denote by Z, and S, the partition function and the entanglement entropy in
this limit, | X| — oo,

Zo = det F(K),

1
Se = log Z,.
-«

We shall proceed now in two steps. First we shall consider general Mobius transfor-
mations and check under which circumstances the determinant 7, = det F,(K) is left
invariant. In the next step, we shall ask which of these transformations are physical.
By physical we mean those transformations that can be implemented as a change in the
coupling constants A;, B; of the theory.

An arbitrary Mobius transformation ((5.3]) acts on the Laurent polynomial ® in ([5.5))
by
() = (az + b) (dz™" + ) FD(2), (5.9)

which is again a Laurent polynomial with monomials of degree between —L and L. Hence,
the Mobius transformation can be seen as a change of the couplings from A; to A4;. In
exactly the same way the Laurent polynomial = with coefficients B; is transformed to a
new =’ with coefficients Bj.

If we use the new Laurent polynomials &', =’ to get the transformed symbol M’ we
obtain

M () = M(2).
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Consequently this induces a transformation on the operator K, see (5.8)), so that

1 [ _ !/ /
K'v(Z)=v(Z)+ lim — /L(Z{)
w—ol- 2w, u2 =y

v(y)dy,

where for convenience we use primed integration variable. Let us perform the change of

variables y/(y) induced by ({5.3)),
1 I —
K'v(Z)=v(z)+ lim — M)

— T vy (y) == dy, 5.10
moon?, uZ,_y,(y)V(y (y>)ay y (5.10)

where the relation M'(y/(y)) = M(y) is used and v = {y : |¢/(y)| = 1}. The crucial
point is to notice that for any Mobius transformation

Z(z) —y'(y) = (g—i) " (%) " (z —y).

Plugging this into ((5.10) we have

S\ /2 _ N 1/2
R =+ () m gt f () g

Here we have assumed that we can safely apply the Cauchy’s integral theorem in order
to deform 7y’ into vy, which in particular demands that M(y) is analytical in a region in
which both curves are homotopic as it is illustrated in Fig. [5.1}

»»»»»»»» 'Y,

\\\\\\\\\ n_
=L

°
Sl e
) ‘:;/,,/, ’Y
,,,,,,,,, o lzl=1
Figure 5.1: The curve vy is the unit circle in the z-plane, vy = {z : |z|] = 1}, while ¥’ is the curve of

all the points in the z-plane that are mapped into the unit circle after a Mobius transformation ,
Y ={z:17(2)] = 1}. We can deform vy’ into y provided M(z) is analytic in the region in which v’ and
v are homotopic. This implies that, since M(z) is meromorphic in the Riemann surface determined by
the curve w? = P(z), the roots of P(z) cannot sit in the region between y and y'.

Finally, defining the transformation

we obtain
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Therefore, K and K’ are related by a similarity transformation and all their spectral
invariants coincide. In particular,

7! = det Fy(K') = det Fo(K) = Za.

It is important to remark that in order to be able to apply the Cauchy’s integral theorem
it is necessary not only that M(y) is analytic but also v(y'(y)) should have this property.
On the other hand, in the definition of 7" we implicitly use analytic continuation for
determining T'v(z) for z € y. This implies that we should restrict ourselves to situations
in which v and K’v are analytic in a region such that y and its Mobius transformed y’
are homotopic.

Since M(z) is meromorphic in the Riemann surface represented by the complex curve
w? = P(z), see , and P(z) is a polynomial with 4L simple roots, the analyticity
condition in M(z) can be satisfied by asking that for any root z; of P(z) inside (outside)
the unit disk its Mobius transformed 2 has to be also inside (outside).

The previous difficulties do not arise if the Mobius transformation preserves the unit
circle y. In this case, it is of the form

b
R M (5.11)

bz +a

Then T is a bounded operator and the similarity relation between K and K’ holds for
any v € L*(y) ® C2.

This is also the case of physical interest. As we shall show now the Mobius transfor-
mations associated with changes of the coupling constants of the theory do preserve the
unit circle.

In fact, the roots of P(z) satisfy certain properties. In particular, they come in quartets
related by inversion and complex conjugation. Therefore, the roots of the transformed
polynomial

P'(?) = (cz +d)~*P(2)
should come also in quartets: if 2} is a root of P’ then 1/ and Z} should be also roots. A
way of guaranteeing this is by restricting to those Mobius transformations that commute
with inversion and complex conjugation.

The commutation with conjugation restricts SL(2,C) to the transformations that
preserve the real line, SL(2,R) x {I,io,}. The first factor in this semidirect product
contains the transformations that map the upper half-plane into itself while the second
factor is related to the inversion 2’ = 1/z and maps the upper half-plane into the lower
one.

If we further impose that the admissible transformations must commute with the
inversion, we are finally left with the group generated by the discrete transformations

2=z, 2 =1/z
and the 141 Lorentz group SO(1, 1) whose elements act on the Riemann sphere by

, zcosh( + sinh ¢
z =
zsinh ¢ + cosh ¢’

¢ eR. (5.12)
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This is precisely the subgroup of Mobius transformations that preserve the unit circle y
and the real line. The connected component of the subgroup, SO(1, 1), maps the upper
half plane and the unit disk into themselves as it is clear in Fig. [5.2] where we represent
the flow of SO(1,1) in the complex plane.

The action of SO(1,1) in C has two fixed points in z = +1. Since z = —1 is unstable
and z = 1 is stable, all the flow lines of the transformation depart from the first one and
they join in the second one as we sketch in Fig [5.2

Figure 5.2: Flow of SO(1,1) in C. Note that it preserves the unit circle and the real line and maps the
unit disk and the upper/lower half plane into themselves. The points z = £1 are the fixed points of the
transformation; 1 is stable and —1 unstable.

The induced flow in the space of Hamiltonians leads to a richer picture. There exist
2L + 1 fixed points whose associated complex curves are

w=P)=(z-D%Y¥e+1)% j=0,...,2L (5.13)

The only stable one corresponds to j = 0. The rest of fixed points have a j-dimensional
unstable manifold. Since the roots are degenerated at the unit circle, all these Hamilto-
nians describe critical theories as we showed in Section .2l

The Mobius transformations act on the couplings A = (A_p,..., Ao, -+, AL)
and B= (B_p,..., By, -, Bp) like the spin L representation of SL(2,C). We show this
in detail in Appendix The subset of Mobius transformations that preserve the unit
circle and the real line is the only one that maps A, B to another set A’, B’ that fulfils

the hermiticity conditions of the Hamiltonian and the antisymmetry of =Z': ie. A", = E;
and B’, = —B,. In particular, 2 = —z corresponds to a change in the sign of the
couplings A) = —A;, Bj = —B,;. The inversion 2’ = 1/z acts on the couplings reversing

the orientation in the chain n <> N — n and, therefore, A} = A;, B} = —B.

With respect to the dynamical aspects of these transformations, we may say that
they are not a symmetry of the Hamiltonian. In the thermodynamic limit, they act as a
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rescaling of the spectrum. Actually, as the admissible Mobius transformations map the
unit circle into itself, we may view the transformation as a change in the momentum of
the modes together with a rescaling of its energy. More concretely, under SO(1,1) we
have that the dispersion relation changes as

0\ "
") = — 14
J0)= () (5.14)
where €' is the image of # under the transformation

w €% cosh( +sinh(
~ el?sinh ¢ 4 cosh ¢’

and, therefore,
00’ 1

90~ sinh2¢ cosf + cosh 2¢

Notice that under the above transformation the dispersion relation w(f) behaves as a
homogeneous field of dimension L, that is, the range of the coupling. We emphasize again
that such a transformation can be viewed as a change of the coupling constants of the
theory.

Summarising, for a non critical theory the spectral properties of the ground state
two-point correlation matrix are asymptotically invariant under the action of the Mobius
group. As a by-product of this invariance, the asymptotic behaviour of the Rényi entan-
glement entropy is unchanged, whenever it is finite. This transformation induces a change
in the coupling constants of the fermionic chain. The Md&bius transformation is physically
admissible if it preserves the unit circle and the real line in the z plane. This includes the
141 Lorentz group (5.12)). Therefore, there are families of non-critical chains related by
this group with the same ground state Rényi entanglement entropy for an interval in the
infinite size limit.

5.2 Mobius transformations in critical chains

Our next goal is to extend these results to the case of critical theories. To obtain in the
previous section the Mdbius invariance we needed to take the limit |X| — co. When the
system is non critical there is no problem because in this limit the entanglement entropy
is finite. However, when the mass gap is zero the symbol of the correlation matrix is
discontinuous. As we showed in Section these discontinuities give rise to a term in
the entropy that grows logarithmically with | X|. Therefore, the entropy is divergent in the
limit | X| — oo and the results obtained above do not apply. The spectrum of the ground
state correlation matrix will not be actually invariant under Mobius transformations.

It will be convenient to study separately the critical theories whose ground state is
invariant under parity and those with a ground state that breaks this symmetry.
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Parity invariant Ground States

Let us start by critical theories whose ground state is invariant under parity. In this case
the dispersion relation w(#) is positive except at some points where it vanishes, like that
represented in Fig. . Therefore, the symbol of the correlation matrix is G(#) = M(6)
with M (0) discontinuous at the values of 6 for which w() is zero. As we saw in Section
[4.3] this kind of critical theories can be reached as the limit of a non critical one when
pairs of branch points of the associated hyperelliptic curve w? = P(z) merge at the unit
circle. We obtained in that at the critical point the entanglement entropy has a
logarithmic term with a coefficient proportional to the number of pinchings.

w(0)

.

zl=1

M —01 M 91 M [

Figure 5.3: On the left, dispersion relation of a critical theory with a parity invariant ground state. It is
positive except at the modes +6; where it vanishes. As we illustrate on the right, in terms of the compact
Riemann surface w? = P(z) this theory can be understood as the limit of a non critical one when two
pairs of complex roots of P(z) degenerate at the points of the unit circle u; = €%t and uy = w7 = =101,
Then the Riemann surface is pinched.

The difficulty in this case is the following. The logarithmic term of the entropy is
well-known and it does not change under Mobius transformations. However, we do not
know in general how to compute the finite term that it is non-universal and depends on
the values of the coupling constants A;, B;. We shall bypass this problem and determine
how the entropy behaves under Mobius transformations following two different strategies.
On the one hand, we shall consider special cases in which we know the finite term. Then
we can easily deduce the behaviour of the entropy under Mobius transformations in these
situations. The second strategy is to study the limit to criticality starting from a non-
critical theory, for which the Mébius transformations leave the entropy invariant. From the
results obtained using these two strategies we will be able to conjecture a transformation
law for the entanglement entropy. We cannot prove this conjecture in general but the
numerical check will leave no doubt that it is correct.

As we have mentioned, in some special situations we have the complete expression for
the asymptotic behaviour of the ground state entanglement entropy. This is the case when
A; € R and B; = 0. We studied it in detail in Chapter [3| Since all the pairings B; are
zero, the function G(#) vanishes and the matrix M (6) is £o,. Therefore, the correlation
matrix can be reduced to a Toeplitz matrix and we obtained the full asymptotic behaviour
of the entropy applying the Fisher-Hartwig conjecture.
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For these systems the dispersion relation is w(f) = |®(e?)]. Therefore the disconti-
nuities of M () correspond to the roots of zL®(z) at the unit circle. We shall denote
them by u, = €%, k = 1,..., R, in anticlockwise order. Observe that due to the parity

invariance, ®(27!) = ®(z), and the roots u, come in pairs related by inversion. Let us
assume that all of them are simple roots. This implies that they are different from +1
which are precisely the fixed points of the Mobius transformations in SO(1, 1).

In Section we obtained that the asymptotic entanglement entropy for that particu-
lar symbol is given by the expression (3.40). We can rewrite it in the following convenient
way

a+1)R a+1
Sax(u) = (T g|X|— Ton

> ()" log |ug — uy| + RYq + o(1). (5.15)

1<k#v<R

Notice that in this case the entanglement entropy and, therefore, the partition function
Z, x depends solely on the set of roots u = (uq, ..., ug).

Figure 5.4: Flow of SO(1,1) in the unit circle. The pinchings u, = el’= of the compact Riemann
surface and the corresponding discontinuities 6,; of the symbol M (#) move under a Lorentz transformation
following the trajectory indicated by the arrows.

The group SO(1,1) acts on the roots u, by

,  ugcosh( +sinh(
. sinh ¢ + cosh ¢’

In Fig. we represent the trajectory that the root u, follows along the unit circle under
the action of SO(1,1).

Now applying any Mé&bius transformation in SO(1, 1)

, , ou!. oul, 1/2
u, — U, = (8u 7 ) (U — uy), (5.16)

to the entropy ({5.15)), we obtain in the asymptotic limit that

1
(W) = Sax(u) + 2 Zl

1
12« (5 7)

k=1
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We conjecture that this transformation applies for any finite-range critical Hamiltonian
with a ground state invariant under parity. To further motivate the conjecture and gain
better understanding of its origin, we shall study the limit to criticality of a symmetric
theory.

Let us consider a general finite-range non-critical Hamiltonian with PC' symmetry, i.e.
B; € R for all [. Criticality in this case is achieved when pairs of branch points of the
associated complex curve w? = P(z), say z;, and Ej;l, approach the point u, at the unit
circle. This corresponds to the pinching of some cycles in the corresponding Riemann
surface. We studied this limit in detail in Section There, we obtained that when
the branch points approach a limit point in the unit circle the asymptotic entanglement
entropy diverges logarithmically. The result that we found in can be expressed as

«

R
+1 1
S0 =g L oglas ~ T+ Kal) 4 (5.18)

where we have explicitly included the term K, (u) that is finite in the limit z;, — u,, £k =
1,..., R. Here the dots stand for contributions that vanish in the coalescence limit. We
have also assumed that u, # wu, for k # v, and we have omitted the explicit dependence
on the non degenerated branch points.

Now let us study the behaviour of K, under an admissible Mobius transformation.
We can use the invariance of S, when the theory is non critical. After performing the
transformation

1 _
S, = — 2L S og |2 — 2 KL () +

Employing now the fact that the transformations in SO(1,1) commute with complex

conjugation we have
—/
Z .
=1
2 =7 =
Ik Ik Z.
Ik

/
82]»&
32]-%

Since SO(1,1) also commutes with inversion and the points u, lie in the unit circle,

S! ——C“Lli log |2, — Z;'| + 1o Oty + Kl (u)+---
“ 12 & 1% Jr g@u,.i @ ’

Therefore, from the invariance of S,, one has

R

L a+1 ou’,
K () = Ko(u) + —5— > log ==, (5.19)

K=

On the other hand, in Section we obtained that at the critical point, when z; = Ej_:,

the entropy grows logarithmically with the size |X| of the interval with a coefficient
proportional to the number R of pairs of branch points that degenerate,

(a+1)R

Sox(u) = —

log | X| + Co(u) + o(1). (5.20)

The term C,(u) is finite in the limit |X| — oco. Its explicit expression is not known in
general.
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Observe that, up to constant terms, can be obtained from by simply
replacing log |z, — %, '| with —log|X| 4 constant. Let us assume that, as it happened in
Section [4.4] the replacement is universal in the sense that the constant does not depend
on u. Then, under Mobius transformations, one has

K&(H/) - C;(Q,) = Ko(u) — Ca(u).

Applying in the latter identity the transformation law (5.19)) of K, (u), we find that C,(u)

should change similarly,

This leads to conclude that the change of the entanglement entropy (5.20) under an
admissible Mébius transformation is identical to (5.17)), that is

1
(W) = Sax(u) + 2 Zl

(5.21)

12«

n 3n/4 /2 n/4 0
0

Figure 5.5: Numerical check of the transformation law for a critical theory with L = 2 and pinchings
at 167, as we illustrate in the inset. We have computed numerically for several sizes of X the change of
the Rényi entanglement entropy for a = 2 under SO(1,1), (5.12)). The solid line is the conjecture
expressed in terms of the pinching angle 6. The initial value of the entropy is set at 1 = 37 /4 (filled
dot). Under the action of SO(1,1) all the branch points move following the trajectories represented in
Fig. Observe that the finite size effects are relevant when 6; approaches zero. In this case, all the
roots of P(z) are close to z = 1, the stable fixed point of .

From the latter expression we have that the partition function changes under an ad-
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missible Mobius transformation like

/ / i 8“2 2B
Zixw)=11(35, Zox (1), (5.22)

where

240
Therefore Z, x transforms like a product of homogeneous fields of dimension 2A,, inserted
at the pinchings wu,.

In Fig. 5.5| we check numerically the validity of this transformation. For this purpose,
we have considered a critical theory with range of the couplings L = 2 and two pinchings
(R = 2) at the points of the unit circle u; = e and u, = W as we have depicted in
the inset. In Appendix [A] we explain the techniques applied to calculate numerically the
entanglement entropy, in particular we discuss the way to implement the branch cuts of
M(z) and the pinchings of the Riemann surface.

Ground States breaking parity symmetry

We have arrived at the previous conjecture considering that the critical theory is the limit
of a non critical one. However, there are cases in which this is not possible. Suppose a
theory with a non parity invariant ground state like the one represented in Fig. |5.6 The
dispersion relation w(f) is negative for some intervals of §. In the ground state all the
modes with negative energy are occupied and the Dirac sea breaks the parity symmetry
of the vacuum. A dispersion relation that takes negative values cannot be interpreted as
the limit of a non critical one. Therefore, we must adopt another strategy in order to
analyse the behaviour of the ground state entanglement entropy under admissible Mobius
transformations.

In the scaling dimension of the partition function under a Mobius transformation
is related to the coefficient of the logarithmic term of the entanglement entropy. This
coefficient is associated to the discontinuities of the symbol M due to the degeneration of
branch points of w? = P(z) at the unit circle. Let us examine the implications of applying
this relation with full generality.

In Section 4.3| we studied in detail the different types of discontinuities that appear
when the theory is critical as well as their contribution to the coefficient of the logarithmic
term of the entropy. We saw that the discontinuities produced by the pinchings correspond
to a global change of sign in M(6). But when the ground state breaks parity invariance
the discontinuities are of different type. In fact, remember that in this case,

A I, i F(0) < —wt(6),
G(0) =< M(0), if [F~(0)] < w*(0),
I, if F(0) > w*(0),

with wt(0) = (w(f) + w(—0))/2. In the case of Fig. the symbol changes from M (6)
to —1 at the points where w(6) changes its sign, i.e. at the Fermi momenta, 6y, 65, and
from M (0) to I at their opposite values, —6;, —0s.
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Figure 5.6: On the left, we represent the dispersion relation w(f) (solid line) and its reflection w(—6)
(dashed line) for a critical theory with a ground state that breaks parity. In the ground state all the
modes for which w(f) < 0 are occupied. The symbol G(6) changes from M to —I at the Fermi momenta
0, and A3 and from M to I at —05 and —6;. On the right, we represent the corresponding z-plane of this
theory. The dots e are the branch points of the curve w? = P(z) that in this case are not degenerated.
The points in the unit circle v; = €%, v, = €2, and their complex conjugates, v3 = Ty and vy = T,
correspond to the discontinuities of the symbol. The transformation law under SO(1,1) of Z, x
has insertions at these points.

We obtained there that a discontinuity from M to 4I gives a contribution to the
coefficient of the logarithmic term of the entropy that is half of that corresponding to
a global change of sign £M. Then, using the connection between the contribution to
the logarithmic term and the scaling dimension under admissible Mébius transformations
discussed above, we conjecture that the insertions related to the discontinuities from M
to 1 have half the dimension of the discontinuities +£M.

Let us call v, = €% 0 =1,...,Q, the points of the unit circle that correspond to the
Fermi momenta and their opposites, where the discontinuities from M to +1I take place.
According to the above discussion, if we add them to the pinchings u,, the behaviour (}5.22)
under admissible M6bius transformations of the partition function should be modified to

ﬁ (g—:j‘:j) - Za,x (u, ). (5.23)

We emphasize again that the scaling dimension A, of the insertions v, is half of the
dimension 2A, of the points u,. This property differentiates the parity invariant ground
states from those that are not.

In Fig. we check numerically the validity of this expression for a critical theory
with a dispersion relation like that represented in Fig. [5.6l
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Figure 5.7: Numerical check of the transformation for a critical theory with L = 2 and a dispersion
relation like that in Fig. 5.6l We plot the Rényi entanglement entropy with a = 2 for different lengths of
X as a function of the Fermi momentum 6s under the SO(1,1) group, (5.12). The solid lines represent
our conjectured transformation expressed in terms of 6. The initial value of the entropy is set at
0 = 3w/4 and 61 = 7/2 (filled dots). Observe that the finite size effects are relevant when 65 approaches
zero. In this case, all the roots of P(z) are close to z = 1, the stable fixed point of .

The transformation in covers the most general behaviour under admissible
Mobius transformations of the entanglement entropy for an interval in the ground state of
a quadratic, homogeneous fermionic chain with finite range couplings. We shall generalise
it to infinite-range Hamiltonians in Section [5.5| and to subsystems composed of several
disjoint intervals in the following Chapter. But before going into generalisations, we shall
illustrate the previous results with their application to some examples.

5.3 Application to the XY spin chain

First we are going to study the consequences of the Mébius symmetry in the Kitaev/XY
spin chain. In this system L = 1 and Ay = —h, A; = 1 and B; = ~ with h, 7 real and
non negative. In Section [2.2.1] we solved this model and in Section we discussed in
detail the entanglement entropy of the ground state.

Since L = 1 the corresponding compact Riemann surface (5.6)) is a torus described by
the elliptic curve
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with
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The roots of P(z) are the points

Ch)2E /()22 +4% -1
+ = 1+~

(5.24)

and their inverses z:'. The points zy are the zeros of the rational function g(z) =
(®(2) +Z(2))/(®(2) — Z(z)) while the inverses z;' are its poles.
If we now apply a transformation in SO(1,1) they change as

24 cosh ¢ + sinh ¢
24 sinh ¢ + cosh ¢’

(5.25)

2l =
and similarly for the inverses. This induces the following transformation in the couplings
v, h of the theory

(h/2) cosh 2¢ 4 sinh 2¢
(h/2)sinh 2¢ + cosh 2¢

/ ’Y h//2:

T (h/2)sinh 2¢ + cosh 2¢’ (5:26)

According to our discussion in Section [5.1] when the theory is non-critical the entangle-
ment entropy should be invariant under the above transformations. This implies that the
asymptotic expansion of the determinant Dx(\) = det(Al — V), from which we derived
the entropy using , should only depend on the branch points of w? = P(z) through
Mobius invariant functions. Since in this case we have just four branch points, any Mobius
invariant function must depend on the cross-ratio of such four points.

In fact, for the non critical XY spin chain the Riemann theta functions that appear
in the asymptotic expansion (4.25)) of Dx () particularise to Jacobi theta functions,

log Dy (A) = [ X[ log(A? = 1) + log ([ £](BON) [DILE(=BO) 7)) +o(1),  (5.27)

where 7 is the modulus of the torus. In Section [4.4] we obtained that

1
ri 100 (5.28)
I(v1—=x?)
where y is precisely given by the cross-ratio of the four branch points
1— (h/2)?
= (2p,2-327" 27" = # (5.29)
Y
such that
Ve, 0 <xz<1, region la,
X = x 1, x>1, region 1b,

\/1_;?, x <0, region 2.

provided we take the branch points in the order

Za—s Zats Za__,:, za__l, for region 1a,

Zbts Zb—s zb_j, z,*, for region 1b,

Zo_, 22]:, Zot, 25, for region 2.
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We assign an index +1 or —1 to each branch point whether it is a zero or a pole of g(z).
According to the above order, the assignment is (+1,41,—1,—1) in regions la and 1b
and (+1,—1,41, —1) in region 2. This determines the characteristics of the Jacobi theta
function. They are p, = up = —1/2, v, = v, = 0 in the regions la, 1b and s =0, 15 =0
in the region 2.

Therefore, the fact that the Rényi entanglement entropy depends solely on the param-
eter x can be derived as a consequence of the Mobius invariance that we uncover in this
Chapter.

The curves that the transformations induce in the plane (v, h) are the conics
(h/2)? + 27* = 1 of constant entanglement entropy that we found in Section by a
direct inspection of the expression of the von Neumann entropy in terms of x. Hence
we can conclude that these conics of constant entropy are the flow of the SO(1, 1) group
in the space of couplings (v,h). All these curves intersect at the essential critical point
v =0, h = 2. It corresponds to the theory in which the four branch points degenerate at
1, the stable fix point of the action of SO(1,1) on the Riemann sphere as we represent in
Figp.2

In the following, we will use the invariance under Mobius transformations to study
some dualities and other relations connecting theories in the different regions of the plane
of parameters of the XY spin chain, see Fig. [4.6]

Duality between regions la and 1b

In first place we shall explain the close connection between the expressions for the von
Neumann entanglement entropy in the regions la and 1b,

S = é [log (1 - I) + 2(1; x)I(\/H)I(\/E)} +log2 (region la),

1 1—g !t 2(1+271)
S = =11 )+ (V1= 2 )I(Va )| +log?2 ion 1b).
=5 e (1o ) + 2T V) +dog2 (egion 1)
We immediately realise that the entropy is invariant under the change of x by 1. Let us
try to understand this property in the light of the symmetries discovered in this Chapter.

Suppose that we start with a theory with couplings 7,, h, in the region la, 7> >
1 — (ha/2)® > 0. In this region the branch points are real. The zeros of the rational
function g(z), e+, are inside the unit disk while the poles, z,, are outside. We depict a
sketch of this set-up in Fig. A.

Observe that in region 1b we take the zeros 2,4+ in reverse order with respect to that
in region la. Hence we must permute them without permuting their inverses. That is,
we take now the branch points in the order

-1

—1
Za-f—) Za—7 Za+7 Za—‘

As we show in Appendix [C] the permutation between branch points on the same side of
the unit circle does not affect the entanglement entropy. However, the cross-ratio ((5.29)),

— .11
Lo = (Za+aza—7za+aza—)a
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Figure 5.8: Disposition of the branch points of the curve w? = P(z) for a non critical XY spin chain in
the region la (panel A) and its dual in 1b (panel B). The points « are the zeros of the rational function
g(z) while e are its poles. The cross ratio (5.29) and the modulus of the torus are x and 7 for the
theory in la and 2! and 7 — 1 for the dual in region 1b. Both theories have the same ground state
entanglement entropy due to its invariance under Mdbius transformations. The two theories are related
by a permutation of the zeros of g(z), that changes x and 7 to 2! and 7 — 1 and leaves the entropy
invariant, plus a Mébius transformation that maps the branch points of the theory in la to that in 1b as
it is depicted in the panel B.

is now inverted,
1

(Za—s Zats Zag 202) = 5
From the point of view of the corresponding Riemann surface, in this case a torus, this
permutation of the branch points is equivalent to cutting the torus along the a cycle,
performing a 27 rotation of one of the borders, and glueing them again. This corresponds
to the modular transformation (a,b) — (a,a + b) of the basic cycles a, b. Then the
modular parameter changes from 7 to 7 — 1. This is precisely one of the two Dehn twists
that generate the modular group SL(2,Z) of the torus.

Now it is when the Mobius symmetry enters into the game. By choosing a suitable
Mébius transformation that does not belong to SO(1,1) it is possible to transform the
two pairs 2,1, z,— into zp4, 2, with the additional property z,, = 2, as we represent in
Fig. m B. This new set of (complex) branch points corresponds to a theory in the region
1b. Considering now that the Mobius transformation leaves invariant the entanglement
entropy, we can explain the duality between the entanglement entropies in regions la and
1b. It should be noticed that the duality, that it is manifest for von Neumann, also holds
for the Rényi entropy, as it is based on the equality of the determinant Dx () for the two
theories related by the transformation.

In particular, one may take as Mcbius transformation the one for which

2o+ T Rb— . Rat+ — Ra—

L+ zp2- 14 ZayZae

The new branch points correspond to a particular choice of couplings 73, h; in the region
1b which are related to the original ones by

ho\> h
Yo = 1—(3); Eb:\/l_%%- (5.30)
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Observe that, due to the invariance under Mobius transformations of the cross-ratio
and the modulus, the new theory in region 1b has to lie on the ellipse (h/2)* 4+ z;17* = 1
and it corresponds to a torus of modulus 7—1. On the other hand, the dispersion relation
changes like , that is as a homogeneous field of dimension L = 1. Therefore, in this
case the spectrum of the Hamiltonian transforms non trivially, and the symmetry in the
correlation function of the vacuum is not translated to the dynamics.

Duality between regions la and 2

We have seen above that the exchange of the two branch points on the same side of the
unit circle leaves the Riemann surface and the characteristics invariant. Consequently,
the Rényi entanglement entropy does not change. Another transformation that preserves
the Riemann surface is the exchange of a real branch point by its inverse. This establishes
a relation between the regions la and 2.

Ya , ha Y2, h?
X T x/(x—1),t

Figure 5.9: Disposition of the branch points of the curve w? = P(z) for a non critical XY spin chain in
the region la (panel A) and its dual theory in region 2 (panel B). The points « are the zeros of g(z) while
e are the poles. They are related by the exchange of a branch point by its inverse as it is shown in the
panel B. This changes the cross-ratio from z to z/(x — 1) but leaves invariant the modulus of the torus
7. Since we are exchanging a zero and a pole of g(z) the characteristics in the theta function vary and
the entanglement entropy is different in each theory. On the contrary, the corresponding Hamiltonians
have the same spectrum.

If we start with a theory in the region la, for which the branch points are arranged
like in Fig. A, the exchange of a real branch point with its inverse corresponds to
identify e.g. 2o, = 2, j, as it is shown in Fig. |5.9| B. The resulting theory lies in region 2.
The cross ratio (5.29)) changes to

-1 Tq

(et Za=} Zats 7)) =

Tg— 1

This transformation in the cross-ratio leaves the modulus 7 of the torus invariant. How-
ever, the exchange of a zero and a pole of the function g(z) modifies the order in the
assignment of the indices from (+1,+1,—1,—1) to (+1, —1,+1, —1). Thus the character-
istics in Dy (\) vary from p, = —1/2 to pus = 0 and the entropy is modified.

Under the transformation 2o, = 2, J: the relation between the coupling constants 7,,h,
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of the starting theory in la and s, hy of the resulting one in region 2 is

ho 2 -1 42-1
2 hy’ he  hy |

(5.31)

Under this duality, the dispersion relation changes as

wo(0) = hzwa(ﬁ).

a

Thus, up to a trivial rescaling, the spectrum of the Hamiltonian is unchanged. Observe
that for the particular value v, = 1, that is the quantum Ising chain, the dual theory
is also a quantum Ising model, 72 = 1, with magnetic field hy = 4/h,. In this case the
duality coincides with the Kramers-Wannier duality [130] that we discussed in Section

£4

The duality between regions la and 2 can be generalised to Hamiltonians of higher
range L. We can exchange one real zero of g(z) by its inverse, which is a pole of g(z),
or one complex zero of g(z) and its complex conjugate by their inverses, which are poles
of g(z). Then both the Riemann surface and the spectrum of the Hamiltonian remain
invariant. However, the characteristics change and then Dx () and the entropy vary too.
Observe that two regions of the space of couplings related by one of these dualities are
separated by a critical hypersurface.

We emphasize that dualities between la and 1b regions and between la and 2 are of
different nature. In the former the entanglement entropy is invariant while the spectrum
of the Hamiltonian changes. On the contrary, in the latter the entanglement entropy
varies but the spectrum of the Hamiltonian remains invariant.

Relation between dual theories in 1a and 2 with region 1b

Although the two dual theories in regions la and 2 have different entanglement entropies,
they can be combined to obtain the ground state entanglement entropy of a Hamiltonian
in the region 1b.

This result was first noticed by Igléi and Juhdsz in [139] for the quantum Ising model
(v = 1). They showed that the ground state entanglement entropy SZ(2|X|) of an interval
of length 2|X| of a XY spin chain with couplings hy = 0, yp < 1 (in the region 1b) is
exactly the sum

Sa (21X1) = Sa(IX]) + Sa(IX]) (5.32)

of the ground state entanglement entropies S%(|X|), S2(]X|) for an interval of length | X|
of two quantum Ising models, v, = 72 = 1, with magnetic fields

ha_l—’}/T @_1+7T

2 14y 2 1—n7

Notice that the magnetic fields h, and ho are related by inversion as in the duality that
we have established between regions la and 2.
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We shall extend here the previous relation. In order to proceed, it is useful to recall
the following identity of Jacobi theta functions (see e.g. [140]) that combines the two dual
theories in 1la and 2:

I[p+12)(s|r) [ ] (s]r) = D[4/ (s]7/2).

If we apply this identity for © = 0 and v = 0 to the asymptotic expression of Dx())
we can conclude that the sum of the entanglement entropies of two theories with modulus
7 and characteristics 1/2, 0 and 0, 0, like the two dual theories in regions la and 2 with
couplings 7,, h, and ~,, hy related by , gives the Rényi entanglement entropy of a
third theory with modulus 7/2 and characteristics 1/2, 0.

In particular, we may take that the couplings v, hy of the new theory are

h 1—+vV1—2a,
T 1= Y2 oy = 'ya—x, (5.33)
2 14++v1—2,
with
- (ha/2)2
=

Then defining y = /1 — z,, we obtain
_,1—(hT/%2__(1-+y>2

IrT =
0 1—y

Since v,, h, are the couplings of a theory in region la then 0 < z, < 1. Therefore, zp > 1,
and vyp, hy correspond to a Hamiltonian in the region 1b. Now carrying x, and z7 to the
expression ([5.28)) of the modulus, we respectively have

—_

I(V/1— ) (i)

T=T,=1 and 7 =1

I(y) ’ I (M)

<

14y

Using now the Landen identities for elliptic functions [92],

1(%%%):(L+wﬂw,amif(l_y)=1+yHVTf?%

1+y 2

we obtain 7p = 7/2 as we claimed.

Therefore, we have the following asymptotic relation between the Rényi entanglement
entropies in the three non critical regions

Se 4 8% = 8T (5.34)

where the superindices refer to the theories in the corresponding regions with the coupling

constants defined in (5.31)) and ([5.33)).

According to (5.33)), when the theories in la and 2 are quantum Ising models, i.e.
Yo = Y2 = 1, the theory in 1b corresponds to a XY spin chain with A = 0 and anisotropy
parameter
1—hg/2

PVT:—l‘i‘ha/?'
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This precisely corresponds to the original relation found by Igléi and Juhasz. Observe
that in this case the relation holds not only in the asymptotic limit but also for finite size
| X| as we have seen in (5.32)). In fact, Igléi and Juhdsz showed that the ground state
two-point correlation matrix of a XY spin chain with hy = 0 and vy can actually be
expressed as the direct sum of the ground state correlation matrices of two quantum Ising
models with external magnetic fields h, and 4/h,.

Even if in the next subsection we study the Mobius symmetry in the critical lines of
the model, it is interesting to analyse here the limit in which the theories involved in the
relation become critical. The critical lines correspond to h = 2 (critical Ising class)
and v = 0 and h < 2 (critical XX chain). According to and (5.33), if we take
he =2 (with 0 < |v,| < 1) the other two related theories have coupling constants hy = 2,
Y2 = q and yp = 0, hp/2 = /1 — 2. The dual theories in regions la and 2 become the
same, a critical XY spin chain belonging to the Ising universality class, while the model
in region 1b corresponds to a critical XX spin chain with an external magnetic field.

Before applying the relation ([5.34]) notice that, since we are dealing with critical theo-
ries, the entanglement entropy grows with the logarithm of the length | X| of the interval.
Therefore, in order to establish the additive relation between the entropies in the critical
case, we must take a finite size | X|. As in the exact relation found by Igléi and Juhész,
we must consider different length intervals for the different theories, namely

Sa (21X]) = 255(1X]).

This is a very interesting relation. It relates the ground state entanglement entropies
of the two critical lines of the XY spin chain. In addition, since we know the complete
asymptotic expression of the entropy for the critical XX spin chain, it allows to
compute the Rényi entanglement entropy in the Ising critical line. The result is

tsing _ garxl) = 00 x4 S 10e4 T 4ol
s = 51X = 10 6+ -l logap + T +o) (539

with 0 < |7, <1 and T, the constant that we defined in (3.24)).

The relation between the ground state entanglement entropies of the critical lines of
the XY spin chain and the full asymptotic behaviour for entropy in the critical Ising
line were first obtained by the author with Esteve, Falceto and de Queiroz in Ref. [137].
Only the case 7, = 1 was previously known in the literature. Igléi and Juhasz found it
particularising their exact relation to this case. Cardy, Castro-Alvaredo and Doyon
[132] obtained this result employing field theory techniques. Kadar and Zimboréds [109]
realised that in this point the theory is Kramers-Wannier self-dual and the correlation
matrix reduces to a Toeplitz matrix. Then they got the asymptotic expansion at this
point applying the Fisher-Hartwig conjecture.

In the next section we shall study the Mobius transformations in the critical lines of
the XY spin chain. In particular, in the critical Ising line, this symmetry also leads to
the asymptotic expression (5.35)) and it allows to extend it to any value of 7,.

As a summary, in Fig. |5.10] we represent in the plane of parameters (v, h) the dif-
ferent dualities and relations that we have found. The point A corresponds to a theory
in the region la with coordinates (v,,h,). The point V is its dual in region 1b with
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Figure 5.10: Plane of couplings (v, h) for the XY Hamiltonian with the dualities and relations that we
have obtained in the text. The dashed curves represent the induced flow of SO(1,1). Therefore, they
connect theories with the same entanglement entropy. The cross-ratio and the modulus of the associated
torus are equal for all the points lying in the same curve of constant entropy. The point A corresponds
to a theory with cross ratio x and modulus 7. Its dual theory in 1b is the point V. They have the same
entanglement entropy, Sy = Sﬁ. The dual theory of A in 2 is ¥ and, although the corresponding tori have
the same modulus, the entropies are different, SY # Sﬁ. However, the spectrum of their Hamiltonians

are equal up to a trivial rescaling. Finally, the entanglement entropy of the theory @ is given by (5.34)),
S& =554 8Y.

couplings (s, hy) given by . The point V¥ is its dual theory in region 2 with the
couplings (72, he) taken according to . Finally, the point 9 corresponds to the the-
ory with couplings (yr, hr) given by (5.33), so its entanglement entropy is the sum of the
entanglement entropies in the points A and ¥ according to .

Critical theories

Let us study now the Mobius transformations in the critical lines of the XY spin chain.
Since the coupling constants v, h are real the ground state is invariant under parity and
the discontinuities in the symbol of the correlation matrix correspond to pairs of branch
points of the elliptic curve w? = P(z) that merge at the unit circle. Therefore,

in the transformation ([5.23)) of the partition function there are no insertions related to
Fermi momenta and () = 0
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In the critical XX spin chain, v = 0 and h < 2, the pairs of complex branch points
“tand z_, z;l degenerate at the points of the unit circle

uy =h/24+1iy/1—(h/2)?, and wus =1y

respectively. Since we have the complete asymptotic expansion of the entropy in this line,
we can use it to check analytically the validity of the transformation law (5.23)). If we
write the asymptotic expression (4.52)) of the entropy in terms of the pinchings wuy, us,

Z4y R

a—l—ll
12«

it is immediate to conclude that the predicted transformation of the entropy under ad-

missible Mobius transformations (5.12)) is fulfilled, i.e.

a+1 ou'y, ou
C ) = S 1 F2 )
ax (U, u3) 2 (w1, u2) + 120 % (aul Ousy

a—+1
S x (U1, u2) = Wlog|X| + og |ug — us| + 271, + o(1),

Contrary to the case of the critical XX line, the asymptotic behaviour in the critical
Ising universality class, h = 2, is only partially known. In the previous section we were
able to determine it, see ([5.35)), for part of the critical line (0 < |y| < 1). Here we present
an alternative derivation of the same result based on the transformation of the entropy
under the Mobius group.

In the critical Ising line the pair of real branch points z,, z;l degenerate at u = 1.
Therefore, if we apply (.23), the entropy should transform under an admissible M6bius

transformation as 1 o/
o+ u

/ ! —_ Sa 1 _

a,X (’LL ) X (U) + 1204 08 8’&

The coupling constants h, 7 change according to (5.26)). Then if we initially take h = 2
and v = 1, we obtain the values

(5.36)

u=1

W=2 =%

The set of transformed couplings corresponds to a critical Hamiltonian that belongs again
to the Ising universality class.

Since
ou'

au u=1

if we consider |y| = ™% and apply (5.36)), we have

= e_2<7

_ —1h— +1
S"{,h—Q — S’y—l,h—Q « 1 .
Oé,X O(,X + 120[ Og |’Y|

Now using the known result that at the point v = 1, h = 2 the entanglement entropy is

7:17h:2:a+11 X Of+1
aX oo 8 IX 1+ =54

we obtain that the entanglement entropy along the critical Ising line h = 2 is

log2 + T, + o(1),

%hZQZOZ—Fll X O{—{—]_

log(4]v]) + Yo + o(1). (5.37)
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This result extends to the whole critical line the expression (5.35)) that we obtained for
0 < |v| < 1 using the duality between the regions la and 2.
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Figure 5.11: Numerical check of expression for the entanglement entropy in the critical Ising line
h = 2. We have computed the von Neumann entropy (o = 1, upper plot) and the Rényi entanglement
entropy with a = 2 (lower plot) for different lengths | X| of the interval and varying «. The insets are a
zoom of the plot for small values of v where the finite size effects are more relevant, specially in the case
a=2.

In Fig. we check the validity of this result comparing it with numerical compu-
tations. Observe that, since it is an asymptotic result, there are finite size effects which
are more important as we approach v = 0; that is, the essential critical point, where all
the branch points merge at the unit.
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5.4 Application to the XY spin chain with a DM cou-
pling

In Section [2.2.2] we saw that if we include in the Hamiltonian of the XY spin chain a
Dzyaloshinski-Moriya (DM) coupling the new Hamiltonian breaks parity. In terms of the
corresponding fermionic chain, the DM coupling adds an imaginary part s to the hopping
A; =1+ 1is. We analysed the entanglement entropy of this system in Section [4.5]

The Laurent polynomial ®(z) has now an antisymmetric part,
P(2)=(1+8)z—h+(1—-s)z",

while Z(2) is not modified. The elliptic curve w? = P(z) that describes the associated
compact Riemann surface only depends on the real part of the couplings. Hence it is the
same as in the case s = 0.

Therefore, under an admissible Mébius transformation (5.12), the coupling constants
7, h transform in the same way (5.26]) as for s = 0. From the behaviour of ®(z) under
the transformation,

z+ 271

1
() = (cosh 2¢ + sinh 2{) P(2),

we determine that the coupling constant s transforms like

s
(h/2)sinh 2¢ + cosh 2¢°

!/
S =

The breaking of the parity symmetry is irrelevant when the theory is non-critical. The
associated compact Riemann surface is not affected by the coupling s and the asymptotic
expression of Dx () is equal to the one (5.27) for s = 0. Therefore all the dualities and

relations that we have obtained for the non-critical XY spin chain are still valid.

The XY spin chain with a DM coupling is critical when s> —~? > 0 and (h/2)? — s* +
7? < 1 (Region A) or when v > s and h = 2 (Region B). In Region B the dispersion
relation,

w(f) = \/(h —2cos6)? + 492sin? 0 + 2ssin 6,

is always positive except at 6 = 0 where it is zero. Hence the ground state is invariant
under parity. In this case the zero of w(#) corresponds to the degeneration of the branch
points z, and z;l of w? = P(z) at u = 1 as it happens for the critical Ising line. Therefore,
the expression for the entropy that we have obtained for the line h = 2 when s =0
is also valid for v > s > 0.

In Region A the dispersion relation is negative between the Fermi points 6;, j = 1,2,

for which

/24 /(T =D -+ 1= (b2
s2—72+1
with 0; € (—m,0] for s > 0. Therefore, the ground state breaks parity symmetry and the

symbol has four discontinuities with lateral limits M and 41 at the points of the unit
circle v; = e and Vy_j = e 0 j=1,2.

, (5.38)

cosl; =
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In this region, the finite term of the ground state entanglement entropy is not known
except for some particular cases. However, we can actually determine its behaviour under
an admissible Mobius transformation. Since the discontinuities of the symbol correspond
to the existence of Fermi points and not to degenerate branch points of w? = P(z), in the
transformation law we have R =0 and (Q = 4 and

4
! ! ’ ]_ a g

«, Q,

For the particular case v = 0 the symbol G (0) is either &1 or +o,. Therefore, we can
reduce the problem to a scalar symbol and apply the results of Chapter [3] We obtain

2 2
grmtan_ a1 ol (4s (h/2)+1

log | X| 4+ 2
og | X[+ o 2+ 1

o X ” ) + 27, +o(1). (5.40)

Note that this result makes sense for s — (h/2)?> +1 > 0, i.e. when we are in the critical
region A with v = 0.

We can verify with the above expression the predicted transformation (5.39). The
product of the complex Jacobians at the insertions v, is

ov, s?+1 :
H v, (32 + ((h/2) sinh 2¢ 4 cosh 2()2)

(S S ()22 1)
o241 s2—(h/2)2+1

From the second line we can conclude that ((5.40)) transforms according to ([5.39)).

5.5 Theories with infinite range: the Long-Range Ki-
taev chain

We conclude this Chapter studying the Mobius symmetry when the range of the couplings
in the Hamiltonian is infinite. We shall discuss the Long-Range Kitaev chain as an
example of these systems.

As we have seen in Section [5.1] in order to study this symmetry we need to consider
the analytical continuation of the symbol M (6) from the unit circle y to the Riemann
sphere,

For finite range L, the functions ®(z) and =(z) are Laurent polynomials with monomi-
als between —L and L and coefficients A; and B; respectively. Under a Md&bius transfor-
mation in the z-plane, they change according to . As we show in Appendix @,
the M&bius transformations act on the sets A = (A_p,--- ,Ar) and B= (B_p,...,By)
like the L-dimensional spin representation of the SL(2,C) group.
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On the other hand, when the couplings extend throughout all the chain and L — oo,
instead of being Laurent polynomials, ®(z), Z(z) are the functions represented by the
Laurent series

[e.9] o0

O(2) = Z A, E(2) = Z B2

l=—00 l=—00

Therefore, under a Mobius transformation (5.3), they change as
'(2)=d(2), Z'()=E(z), (5.41)

where the resulting functions ® and =’ are represented by the Laurent series

P'(2) = Z Al Z(2) = Z B

l=—00 l=—0

with new coefficients A}, B]. Therefore, the M&bius group acts on the couplings of the
theory changing them from A;, B, to A], B]. Observe that, if we plug the transformations
(5.41)) into M(z), we have that M'(2’) = M(z), as in the case of finite range.

This means that if the symbol of the correlation matrix is M () and the entanglement
entropy tends to a finite value in the limit | X| — oo then the discussion of Section [5.1}is
also valid for infinite range. Thus the Rényi entanglement entropy is, in the asymptotic
limit, invariant under admissible Mobius transformations . Taking into account the
analysis of Section , the entanglement entropy is finite when | X| — oo if the symbol
M (0) is smooth enough and then the Widom theorem applies.

We also saw in Section that the entanglement entropy grows logarithmically with
the length of the interval when the symbol is discontinuous. In particular, if it has R
discontinuities at the points 6y, ..., 60, then the entanglement entropy behaves as

R
Sa,x = (Z Br,a> log | X| + Co 4 o(1). (5.42)

r=1

The contribution B, , of each discontinuity depends on the lateral limits at each side of
the jump. It can be computed using (4.16]) and then inserting the result into the contour

integral ([2.36]).

When the Hamiltonian has finite range couplings, the discontinuities in the symbol
arise due to the absence of mass gap. If the system has infinite range interactions, the
symbol can be discontinuous outside the critical points, as we explicitly saw in Section 4.6
when we study the entanglement entropy in the Long-Range Kitaev chain. Moreover, we
found that the lateral limits of the discontinuities originated by the long-range couplings
may not commute and give a contribution to the logarithmic term different from that

predicted by CFT ([1.10)).

In Section [5.2 we have studied the behaviour under admissible Mobius transformations
of the entanglement entropy in the ground state of finite-range critical chains. We obtained
in the transformation law for the corresponding partition function. It changes as a
product of homogeneous fields inserted at the discontinuity points with scaling dimension
(1 — «)B, 4, proportional to the contribution B, , of the discontinuity to the coefficient of
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the logarithmic term in the entropy. We conjecture that this result can be extended to
any chain where the entanglement entropy for an interval is of the form (}5.42)).

Therefore, let u, = €%, r = 1,..., R, be the points at the unit circle y of the z-
plane that correspond to the discontinuity points #,.. Thus, under an admissible Mobius
transformation , they are mapped into u, = ¢ as Fig. M illustrates. Then,
bearing in mind , we propose that the partition function for the entanglement

entropy ([5.42)) changes as

, R aul (1_04)Br,a
) =] <8ur> Zox(w). (5.43)

r=1

Hence the entanglement entropy ((5.42) transforms as

R
! ! 8u;
a,X(Q) = Sa,X (ﬂ) + Z Br,a log (8’& ) .
r=1 r

Let us check this conjecture using the results obtained in Section for the Long-Range
Kitaev chain. Remember that in this system Ag = h, A; = 1, and A; = 0 for || > 2 while
the parings decay with the distance B; = [ cos(¢l)/|l|**! with a dumping exponent § > 0
and ¢ € [0, 7). The functions ®(z) and Z(z) are in this case

O(2)=z+h+z21,

and

We found that the symbol of the ground state correlation matrix,

1 h+2cosf  Zsy4(e) )
M 0 — —_ i ’ , 544
NN = T e T ( ~Zpplc?) —h—2cos0 (5.44)

is discontinuous at the lines h = +2 because the mass gap is zero. The long-range
pairings also give rise to discontinuities when the dumping is 6 < 1. For our purposes,
the most interesting theories are those in the line 6 = 1 since the lateral limits of the
discontinuities do not commute. We have to take also into account that if ¢ = 0 there
is only one discontinuity at & = 0, and this is a fixed point of the admissible Mobius
transformations. When ¢ # 0 it splits into two discontinuities at §# = +¢, which enriches
the symmetry.

In the light of the previous discussion, let us consider a chain with 6 =1, h # +2, and
¢ # 0. Hence the mass gap is non-zero but the symbol of the correlation matrix has two
discontinuities of the non commutative type at the points +¢. According to the analysis
performed in Section [.6] each one contributes to the coefficient of the logarithmic term

with .
2 V1= )2

Boo = o dA VA = cos2(AE/2) + sin(AE/2)
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where A¢ = £ — ¢~ with the angles £+ and £~ those defined in (4.86)) and (4.87)). We call
Uty = e the points in the unit circle of the z-plane corresponding to the discontinuity

points +¢.

We now perform an admissible Mdbius transformation (5.12)) in the symbol (5.44)),
then M(6) — M ('), with

w €7 cosh( +sinh(
~ elfsinh ¢ 4 cosh ¢’

(5.45)

Then the set of couplings A;, B; transforms to another one Aj, B; according to (5.41)),
satisfying A’ = A} and B', = — B}, and the discontinuity points u., move to u,, = e+
as we describe in the inset of Fig. [5.12]

Hence, according to the conjecture ((5.43)), the partition function should transform as
a product of homogeneous fields inserted at the points w4,

Ou'\ L=¥Bae 79/ (1-a)Ba,s
[ —¢
Zt/:u,X (u/¢>7 uL¢>) = (8%) (au_¢> Lo X (qu, u_¢). (5.46)

Since the two insertions have the same scaling dimension and

duy 1
Ouy  (cosh( + ugsinh )2’

the transformation law of Z, x can be simplified to
Zg x (g, u” ;) = [cosh(2¢) + cos ¢ sinh(2¢)]A@ PBas Zox (Ugy u_p).

In conclusion, under an admissible Mobius transformation the ground state entanglement
entropy Si§’¢’h of a Long-Range Kitaev chain with ¢ = 1 and h # +2 changes as

X = g’:)%"ﬁ’h — 2B, log [cosh(2¢) + cos ¢ sinh(2()] . (5.47)

In Fig. [5.12] we have studied numerically the transformation of the von Neumann en-
tanglement entropy for a chain with 6 = 1, h = 1.2, and ¢ = 7/4. If we compare the
numerical points with the analytical prediction , the agreement is extraordinarily
good except, perhaps, when the discontinuities of the symbol approach ¢ = 0. As it can
be observed in the plot, near this point the finite size effects are more relevant.
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Figure 5.12: Change under admissible Mobius transformations of the ground state entanglement
entropy with a = 1 for the Long-Range Kitaev chain with parameters 6 =1, h = 1.2 and ¢ = /4.
The dots e are the numerical value of the entropy of this model for different lengths |X| of the interval.
The dots o are the numerical values obtained for the entanglement entropy after the transformation. We
represent the entropy in terms of the transformed angle ¢’. The discontinuities of the symbol are
located at +¢. Under the transformation ¢ changes to ¢’ according to and the corresponding
points u4g = e*? move along the unit circle of the z-plane as we indicate in the inset. The solid lines
represent the conjecture in , taking as Si:;@’h the value at the points e for the different lengths of
the interval.
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Chapter 6

Entanglement of several disjoint
intervals

In the previous chapters we have studied the asymptotic behaviour of the entanglement
entropy for a single interval of contiguous sites of the chain. A natural question is what
happens when the subsystem is made out of several disjoint intervals as in Fig. This
Chapter is dedicated to answer this point.

X=X,UX,
ﬂo;oooooXQOF

Figure 6.1: In this fermionic chain we have considered a subsystem X that consists of two disjoint intervals
of sites, X; and Xs.

So far our analysis of the entanglement entropy has been based on the relation between
this quantity and the determinant of the resolvent of the two-point correlation matrix Vi
of the subsystem X,

Sa,x = — lim ffa (A e) ilogdet(/\l Vx)dA. (6.1)

47r1 e—1+

Remember that Vy is a block matrix whose entries are the 2 x 2 matrices
1 " i0(n—m)
= — G(0)e df, n,me X,
™ —Tr

and G(0) the 2 x 2 matrix obtained in (2.39).

When the subsystem X is a single interval the matrix Vx is a block Toeplitz matrix.
All the entries (Vx),n of every subdiagonal parallel to the main one are equal, as it
is represented in Fig. A. Using the asymptotic properties of the determinants of
block Toeplitz matrices we have derived the behaviour of the entanglement entropy of an
interval.

139
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Figure 6.2: In A, we schematically represent a block Toeplitz matrix: its entries along any subdiagonal
parallel to the principal one are equal. In B, we take a principal submatrix of the former. Observe that
it is a block matrix in which each block is block Toeplitz but the full matrix is not.

On the other hand, if X consists of several disjoint intervals the matrix Vy is not block
Toeplitz anymore, but it is the principal submatrix of a block Toeplitz matrix (in fact is
a block matrix in which each block is a block Toeplitz matrix). Fig. B provides an
example of this. Therefore, the results found in the previous chapters do not apply.

In this Chapter we shall propose an asymptotic expression for the determinant of
a principal submatrix of a block Toeplitz matrix. With this result we will be able to
determine the behaviour of the entropy for several intervals. We shall derive the conjecture
from Conformal Field Theory, that can be used to compute the entanglement entropy in
the ground state of finite-range, critical theories.

We shall check numerically the proposed conjecture for different theories. The numer-
ical results do not leave any doubt about its validity.

It is particularly interesting to analyse the Mdbius symmetry studied in Chapter
in the case of several intervals. As we shall see it reveals a striking parallelism with the
behaviour of the entanglement entropy under conformal transformations in the real space.

6.1 Entanglement entropy for disjoint intervals in Con-
formal Field Theory

In Chapter 4] we obtained that, for a critical fermionic chain with finite range couplings,
the ground state Rényi entanglement entropy for a single interval of length | X]| is

1
Sx = 0‘6+ clog | X| + Co + 0(1), (6.2)

’ o

where ¢ is a constant proportional to the number of discontinuities of the symbol G(6) of
the two-point correlation matrix.

When the fermionic chain is critical the mass gap is zero and the correlation length
diverges. In this case, the group of symmetries of the system is enlarged and it includes
the conformal invariance.
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We can use this symmetry to derive the asymptotic behaviour of the entanglement
entropy. Actually, the transformation of the entanglement entropy under the conformal
group in the real space fixes the a-dependence of the coefficient of the logarithmic term.
The only free parameter is ¢ that, from this perspective, corresponds to the central charge
of the underlying conformal field theory.

Let us discuss now how the conformal symmetry determines the behaviour of the en-
tanglement entropy in the case of several disjoint intervals. For this purpose, it will be
interesting to briefly review the path integral representation of the replica trick following
the works by Holzhey, Larsen and Wilczek [52] and Calabrese and Cardy [53, [141]. This
procedure relates the entanglement entropy to the partition function of the CFT on a com-
pact Riemann surface. This surface is different from the one that we have introduced in
the previous chapters. Nevertheless, there are certain similarities and parallelism between
them that are worth commenting.

Consider a relativistic field theory defined on a 141 space-time without boundaries.
Suppose that the theory is in a thermal state with temperature 1/5. This state is rep-
resented by the density matrix pg = e ## / Tr(e ?H) where H is the Hamiltonian of the
theory.

Observe that pg is similar to the time evolution operator e *# after performing a
Wick rotation it — T. The time evolution operator gives the propagator of the theory,
the probability amplitude that the system evolves from a particular state to another one
after a time interval ¢. In the path integral representation, this probability amplitude is
expressed as the integral over all the possible configurations of the fields that connect the
initial and the final state. Then each entry of pg may be written as a path integral defined
on the Euclidean space-time strip of width [ represented in Fig. @, connecting a
particular configuration at T = 0 with another one at T = .

The trace of e #H is performed by setting the same initial and final configuration and
integrating over all the possible states. This is equivalent to the path integral over the
cylinder of circumference of length 5 obtained by gluing the edges of the strip at T =0
and T = f5.

Now let us consider in the spacial dimension a set X of P disjoint intervals
P

X = U[$2p—1ax2p]>

p=1

where x4, ; and z,, denote the end-points of the p-interval. In Fig. @ the intervals
of X correspond to the (red) segments depicted at the edges of the strip at T = 0 and

T=70.

In order to compute the entanglement entropy of these intervals we need the reduced
density matrix Try, pg. To compute this partial trace we have to set equal the configura-
tion of the fields at T = 0 and T = 3 at the points of the space that are not in X. In the
path integral representation, this corresponds to joining together the edges of the strip at
T =0 and T = 3 except at the points that belong to X. Then we obtain a cylinder like
that in Fig. @, with open cuts in the intervals [xg,_1,z9p], p = 1,..., P, that form
the subsystem X.
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Figure 6.3: The entries of the thermal density matrix e # can be represented as path integrals defined
on the strip of the Euclidean space-time of width 3 represented in (1). If we consider a set X = [z, z5] U
-+ [xap_1,22p] of disjoint intervals in the real space (the red segments), the reduced density matrix
Try, e PH is represented by a cylinder of circumference 3 with open cuts along the intervals of X, like
that in (2). In the limit 3 — oo we get the ground state and the corresponding reduced density matrix
px can be seen as a path integral on the plane with open cuts at the intervals of X. Then the quantity
Za x = Tr(p%) can be interpreted as the partition function of the theory defined on the compact Riemann
surface obtained by taking o copies of the plane with cuts represented in (3) and pasting them cyclically
along the cuts as it is described in (4).

From the thermal state one can recover the ground state p = |GS) (GS| taking the zero
temperature limit § — oco. In this limit the radius of the cylinder goes to infinity. Then
the path integrals that give the entries of px = Try, |GS) (GS| are defined on a plane
similar to the one represented in Fig. @, with cuts along the segments [zg,_1, Z2,)
corresponding to the intervals of X.

Now an integer power p$ can be computed with the replica trick. It consists in taking
a copies of the path integrals that represent px and combining them as follows. Each
copy is defined on a plane with P cuts like that of Fig. @ We paste them together
along the open cuts [zg,_1, 22, as we illustrate in Fig. @ That is, if we go around
the endpoints x9,_; clockwise we move to the upper copy while going around the points
Tgp clockwise we move to the lower one. Finally, the trace of p% is obtained by joining
the first and the last copies. This produces an a-sheeted Riemann surface with branch
points at the endpoints {xo,_1}, {z2,} of the intervals of X.

In conclusion, Z, x = Tr(p%) is given by the path integral over the compact Riemann

surface of Fig. @ that can be identified with the partition function of the field theory
defined on this surface [[]

The von Neumann entanglement entropy can be obtained from the analytical contin-

1Strictly speaking, Zq,x is the partition function Z, x of the field theory on the compact Riemann
surface normalised by the partition function Z of the theory defined on the Euclidean space-time so that
Za,x = Zq,x/2%. For simplicity, we refer to Z, x as the partition function.
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uation of Z, x to real values of o and then taking the limit

0
SI,X = — lim —10gZayx.
a—1 Jov

It is interesting to compare the Riemann surface that we have described here on the
context of the replica trick for several intervals with that obtained in Section from
the analytical structure of the extension of the correlation matrix symbol to the complex

plane, M(z).

In that case, the Riemann surface is obtained in the space of momenta, where the
symbol is defined, and it depends on the Hamiltonian of the theory. Actually, its genus
is given by the range of the couplings and the branch points are determined by the value
of the coupling constants.

On the contrary, the Riemann surface that arises in the replica trick is defined on the
real space and it is universal. It does not depend on the Hamiltonian of the theory. It is
univocally determined by the subsystem X and by the value of the Rényi parameter «.
In fact, its genus is (a — 1)(P — 1) and it can be described algebraically by the complex
curve

w” = [[(z = z2p-1) [ [1G- xzp,)] . (6.3)

p:l p/:l

Interestingly, a similar surface appears when one generalises the Wiener-Hopf factorisation
problem for the 2 x 2 symbol M discussed in Section and Appendix [B| to a symbol
of higher dimension « X «, see [142]. Observe that for a = 2 the curve (6.3)) is actually a
hyperelliptic curve.

So far we have not made use of the conformal symmetry. The previous discussion on
the replica trick is valid for all the theories, including the non-critical ones.

Cardy and Calabrese noted in [53] that the partition function of a theory defined
on the Riemann surface described by the curve (6.3)) may be written as the correlation
function of two kinds of fields 7, and T, inserted at the branch points {zq, 1} and {zy,}
respectively,

Zox = (Tal1)Tal22) - - - Talx2p1) T a(2p)).-

In Ref. [I32], Cardy, Castro-Alvaredo and Doyon interpreted T, and T, as the twist
fields associated to the Z, symmetry of the theory under the cyclic exchange of the sheets
of the Riemann surface.

When the theory is massless, the conformal symmetry tells us that the branch point
twist fields 7T,, T, are primary fields of scaling dimension 2cA,, where c is the central
charge of the theory and A, = (a™! — «)/24.

This means that, under a global conformal transformation in the real space

, ar+b (a b

= L(2,R A4
cr+d’ Cd>ES(’) (6-4)



144 6.1. Entanglement entropy for disjoint intervals in Conformal Field Theory

that moves the endpoints z = (x1,...,2z2p) of the intervals from z to 2/, the partition
function Z, x must change as

Za(@') = ﬁ (gii)ma Za(z).

T=1

Note that, for convenience, we have changed the notation for the partition function so
that Za(z) = Za,X-

The above transformation law implies that the partition function should be of the

form
2P

Za,X _ Ka H ‘xT — T |(71)‘r—7— +12AQCfa<g)’ (65)

7,7 =1,7#T1’
where K, is a constant that we shall determine below and F,, is a non universal function
that depends on the details of the theory but it is invariant under the conformal transfor-
mations (6.4]). Therefore, it only depends on the endpoints through the set of cross-ratios

Y= (y17 s 7y2(P—1))7

. (il‘s+2 - Zﬁl)(@ - sz)

s = , s=1
Y ($s+2 - $2)(I1 - x2P)

2P —1).

In Ref. [143], Casini and Huerta showed that for the ground state of critical free fermions,
as it is our case, F, = 1.

For more general theories, F, # 1. For instance, Caraglio and Gliozzi [144] and
Furukawa, Pasquier and Shiraishi [145] realised that F,, is a complicated function for spin
chains. One should mention that unlike for a single interval, as it was noted by Igldi
and Peschel in [140], the reduced density matrix of a subsystem of disjoint intervals in
a fermionic chain is different from that in the corresponding spin chain. Calabrese and
Fagotti explained in [I47] the reason behind this difference. We shall briefly review their
arguments.

If we take for instance the two-point spin correlation (0,70, ), and we apply the Jordan-
Wigner transformation (2.19) we have

n—1 m—1
(of o) = ([ [(=ala; + Val, [](—alay + Dawm) = (aSan).
j=1 J'=1

where

m—1
S = H (—CL;F-CLJ' + 1)
j=n

The correlation (a}Sa,,) can be expressed by means of the Wick theorem (2.27)) in terms
of the two-point correlations functions <alTal/>, (qay) with n <1,I" < m.

If X is a single interval of contiguous sites and n,m € X, all the operators involved
in the string S belong to X. Therefore, the two-point correlation matrix of the spin
operators in the interval X is given by the two-point correlation matrix of the fermionic
operators in the same subsystem. The Jordan-Wigner transformation maps the space of
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states of the interval X in the spin chain into the space of states of X in the fermionic
chain. Therefore, the entanglement entropy of an interval is the same in both chains.

On the contrary, suppose that the subsystem X is formed by two disjoint intervals
X =X, UXs. Ifn e Xy and m € X,, there are operators in the string & that do not
belong to X. Hence the correlations of the spin operators between the points in X are not
only given by the correlations of the fermionic operators in X, but also by those in the
sites between X; and X5. Hence the reduced density px is not the same for the fermionic
chain and for its corresponding spin representation.

The above discussion means that when X contains several intervals the expression
of the entanglement entropy S, x in terms of the fermionic two-point correlation
matrix Vy is valid to compute the entanglement entropy of the fermionic chain, but not
that of the spin chain.

The function F, gives precisely the difference between the entanglement entropy of
the fermionic and the corresponding spin chain. For the last years a considerable effort
has been invested in order to determine F,(x) in several models. This is in general a
difficult task. It involves applying CFT techniques on compact Riemann surfaces and
sophisticated numerical methods. In particular, this function has been determined ana-
lytically for integer v in the boson compactified on a circle (that includes the critical XX
spin chain) and in the Ising universality class line of the XY spin chain. Calabrese, Cardy
and Tonni initially obtained the expression of F, for these two theories in the case of two
intervals in [148] and [I49]. Coser, Tagliacozzo and Tonni [I50] generalised them for an
arbitrary number of intervals. The expression of F, that they obtained shows a compli-
cated dependence on «. This makes difficult to determine its analytical continuation to
any « and, therefore, the von Neumann entropy. Some recent works [I51], [152] [153] try
to address this problem using different approaches. The entanglement entropy of disjoint
intervals in the critical lines of the XY spin chain has been also studied numerically by
several authors [144] [145] 147, [154) 155] confirming the analytical predictions.

In this thesis we shall restrict to analyse the entropy of several intervals in the fermionic
chain. Therefore, for us F, = 1.

In this case, the Rényi entanglement entropy derived from (6.5)) is

a+1 Hiplzl \332;;—1 - x2p’| 1

Sox = clo
. & Hp<p/ (Top—1 — Top—1)(Top — 2p) 1 —

ba

Observe that the coefficient of the logarithmic term is exactly the same than in the one
interval case . In order to determine the constant term K, we can take the limit of
large separation between the intervals |zop11 — x2,| — 00, p=1,..., P — 1. In this limit
the entropy should be the sum of the entropies for each interval. Therefore, the constant
term is P times the constant term C, for a single interval.
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6.2 Principal submatrix of a block Toeplitz matrix

From the expression of the entanglement entropy for several disjoint intervals that we have
just obtained using conformal invariance we can propose an expression for the asymptotic
behaviour of a principal submatrix of a block Toeplitz matrix.

Observe that the entanglement entropy in Eq. can be written as a combination
of that for single intervals,

Sa(X) = Sallzay—1,22))+ Y (Sal[@ap, Tay 1)) = Sal[2p-1, Tapy1]) = Sa[wap, wap]))
p=>p’ p<p’

(6.7)
For convenience, we have slightly changed the notation for the entanglement entropy so
that S,(X) = S, x. It is immediate to show that combining the latter expression and the
expansion of the entropy of a single interval we can derive . The relation
can also be obtained applying the Holographic principle [64] as Hubeny and Rangamani
did in [I56]. See also [I57].

The expression has the virtue of showing more clearly the possible asymptotic
behaviour of the determinant Dx(A) = det(A] — V) for several intervals. As it is ex-
plicit from the expression , the entropy S, x depends linearly on the logarithm of
Dx(\). Therefore, the relation can be derived from an analogous property for the
determinant of principal submatrices of a block Toeplitz matrix.

In order to formulate this property, let us consider a block Toeplitz matrix 7" generated
by a piecewise d x d matrix valued symbol J. For any set of indices X let us denote by
D(X) = det(Tx) where Ty is the restriction of T to the set of indices X. Then the
property for the determinant of a principal submatrix of 7' that we hypothesise can be
stated as follows.

Conjecture:

’ (U[J> o | e (UREl)

p=1 p p<p’ D([x2p_1’l‘2p/_1])D([x2p7m2p’])
(6.8)
where o(1) stands for terms that vanish when |z, — /| — oo for 7,7/ = 1,...,2P. In

Fig. formula is represented graphically for the case P = 2.

Notice that all the determinants of the right-hand side are of the block Toeplitz type.
Therefore, we can obtain their asymptotic behaviour applying the result (4.16]) that we
obtained in Section [£.1] According to it,

log D([z+, x.]) = Aplz, — x| + Bplog |z, — x| + O(1), (6.9)

for .7/ =1,...,2P and 7 # 7’. The coefficients Ap and Bp can be determined analyti-
cally from (4.16)).

This means that the new conjecture combined with allows to determine the

expansion of the determinant of a principal submatrix of a block Toeplitz matrix. To our
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Figure 6.4: Graphical representation of the conjecture for P = 2. On the left-hand side, we represent
the determinant of the shadowed submatrix of T" that, in general, is not block Toeplitz. On the right-hand
side, however, the determinants of the shadowed submatrices are of the block Toeplitz type (or product
of these).

knowledge, this result has not been considered previously in the literature until the work
[158] by the author with Esteve and Falceto.

Before applying this conjecture to the computation of the entanglement entropy for
several intervals, we believe that it is worth checking its validity for arbitrary piecewise
symbols.

For this purpose, let us consider the case P = 2 (two disjoint intervals) and introduce
the quantity

]D([l’l, IQ] U [Ig, ZL'4]) = 10g D([C(]l, IQ]) + IOg D([(L’g, ZL‘4]) — lOg D([(L’l, ZL‘Q] U [[E37 174]) (610)
According to the proposed conjecture ((6.4))

D[y, 24]) D([1, 29]) D([2, x5]) D([5, 24])
D([w1, w3]) D([2, 24]) '

If we apply the expansion to the determinants D([z,,z.]) of the block Toeplitz
submatrices which appear in the above expression we have

D([z1, x2) U [3, 24]) =

]D([Ihl’g] U [I3,$4D ~ —BD 1Ogy7 (611)

where
(23 — 22) (74 — 71)

Y= .
(w3 — 21) (24 — 72)
According to the definition in (4.57)), this is the cross-ratio of the four endpoints (21, xo; T4, x3).
Observe that if take this order for the endpoints in the cross-ratio then 0 < y < 1. This

will be convenient for the representation of the numerical results. The coefficient Bp can
be obtained analytically from the discontinuities of the symbol using (4.16]).
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Consider now the scalar symbol (d = 1)

J () = {

It has a jump at § = —7 from 3/4 to 1/2 and at # = 0 from 3/4 to 1. Then according to
1) the coefficient Bg) is in this case

B = ﬁ [(log 3/%1)2 + <log %)1 . (6.12)

In Fig. [6.5] we represent by dots the numerical value of I for this symbol while the solid
line represents the logarithmic dependence (|6.11]) predicted by our conjecture, with the

(3+4sinf), 0 € [—m0],
(34 cosh), 6€ (0,7).

s

coefficient Bg) computed above.

0.045 ](1)

0.04 |

0.035 |

0.03
Sa 0025 (50,50) ©
~" 002 1 (500, 500) o

0.015

0.01

Figure 6.5: Difference between the determinants when they are generated by the scalar symbol
JW Tt is represented against the cross ratio of the endpoints y = (z1,22;x4,23). The dots ¢ represent
the numerical value of considering two intervals of size |1 — x2| = |z3 — 4| = 50 and varying the
gap between them, |25 — 23|, from 1 up to 200. The dots e are obtained when we take two intervals of
length 500 separated by a distance between 1 and 4500. The continuous line is the conjectured analytical

expression of (6.11]) using the coefficient calculated in (6.12)).

As we can see in the plot, the agreement between the numerical results and the ana-
lytical curve is certainly remarkable. Due to the asymptotic nature of our formulae, the
accordance with the numerical result should be poorer when the separation between the
intervals is only of a few sites; that is, when y tends to zero. This is more clearly seen
when we study the determinant of two small disjoint intervals.

To reinforce further the validity of our conjecture we shall check it for the 2 x 2 symbol

1 sinf -
I+<§+ A )Uxa 96[_7T7§]7

J2(0) =

sin 6 cos
I+ —o, —~5

5 0., 0e(Z,m).
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It has discontinuities at § = —m, with lateral limits / + 1/30, and I — 1/20,, and at
6 = 7/2, with lateral limits I + 7/120, and I + 1/20,. Notice that both are of the non

commuting type. Applying 1} we have that the value of the coefficient Bg) is in this

case
2 2

1 1 \! 7 1 \!

log (I + §U$> (I — 5@) log <I + Eam) (I + §ay) ]

(6.13)
As for the scalar symbol, in Fig. we compare the numerical value of Ip for J?) with
the predicted behaviour |D by the conjecture using the coefficient Bg).

@ _ 1
Bp =2 Tr +Tr

J@

0.35

0.3 -

0.25 4

0.2 1 (50,50) ©
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Figure 6.6: Difference between the determinants generated by the 2x2 symbol J) as a function
of the cross ratio y = (x1,22;24,23). The ¢ represent the numerical results for two intervals of size
|1 — x| = |xz — x4 = 50. We modify the gap between them, |z2 — x3|, from 1 up to 200. The e
correspond to two intervals of length 500 separated by a distance between 1 and 4500. The continuous
line is the conjectured analytical expression of with the coefficient obtained in .

Again our analytical prediction describes well the behaviour of the determinant of
the principal submatrix. The finite size effects are more relevant when the length of the
intervals considered is small and the cross-ratio y of the end-points tends to zero.

6.3 Rényi entanglement entropy for several disjoint
intervals

The expansion that we have derived for the determinant of a principal submatrix of
a block Toeplitz matrix makes possible to determine the asymptotic behaviour of the en-
tanglement entropy of several disjoint intervals for any stationary state |K) = [[,cx dl |o)
of the fermionic chain (2.2)).

As we know, for these states the entanglement entropy can be expressed in terms of
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of the resolvent Dx () of the two-point correlation matrix restricted to X,

Su(X) = - lim f Fu(M2) 5 Tog Dy (A)dA.
If X = U;D:l[:z:gp,l, Tgy), applying the new conjecture to the determinant Dx(\) we
obtain that S,(X) is a sum of the entanglement entropy of single intervals,

ZS !E2p' 1>$2p +Z $2p,$2p’ 1) — Sa([$2p—1,$2p'—1])—Sa([$2p,$2p']))-
p=>p’ p<p’

(6.14)
In (6.7) we already obtained this kind of relation using CF'T methods, but thanks to the
conjecture we can generalise it to the entropy of any stationary state |K). Therefore,
we can extend to several intervals all the results and properties that we have obtained in
the previous chapters for a single interval.

In particular, we found that the entanglement entropy for a single interval [z, z./]
behaves asymptotically as

Sa([zr, 2+]) = Ay log |z, — x| + By log |z, — 2| + Co + o(1). (6.15)

The coefficients A, and B, can always be determined. However, we only know the form
of the constant term C, for certain cases.

Combining the previous expression with the relation (6.14]), we find that for X =
P
Upi[@2p-1, 23],

P
Hp,p’:l |Tap—1 — Top|

Hp<p’ (Top—1 — Top—1)(Toy — Tap)

P
Sa(X) = Aq Z |z9p — @2p_1| + Ba log

p=1

+PCo¢+"'

(6.16)
This result should be valid in the thermodynamic limit. The dots represent terms that
vanish when the separation between the endpoints grows, i.e. |z, — x| — oo, 7,7 =
1,...,2P.

The leading contribution in the expansion (6.16)) reflects the extensivity of the linear
term in ([6.15)). Remember that a linear term arises for instance in the entropy of a single
interval for the ground states of the local fermionic ladders considered in Section [3.3] A
particular interesting one was

N/2

H - n+N/2) |0>

that we called State 2. This state has the special property that its entanglement entropy
can be exactly computed. If |zop — 21| < N/2, the reduced density matrix is proportional
to the identity,

P =271,

where | X| = Z;D:l |zo, — x9p_1] is the sum of the lengths of the intervals that form X.
Hence
SP = |X|log2. (6.17)

a,
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In Section we obtained that the coefficients of the expansion (6.15)) for this state are
A = log
result.

2, B(f’,cﬁf) = 0. Therefore, the expression (|6.16|) gives in this case the exact

Let us check numerically the validity of (6.16]) in other states for which we already
studied the entropy of a single interval. It will be useful to introduce the following quantity

Iop= Z Sa([Tap-1,T2p]) — Sa (U[xQP—lv x2p]> . (6.18)

p=1

This is the analogue for P intervals of the usual mutual information for two intervals
X = [z, 2] U 23, 4],

Loz = Sa([z1,22]) + Sal[zs, w4]) — Sal[21, 22] U [23, 24]). (6.19)
Applying the expansions (6.15)) and (6.16) we observe that in (6.18]) the linear and the

constant terms cancel and we obtain

I,p~—B,logll (6.20)
where
IT = H Ypp' (6.21)
p<p’
and

Yoy — |[Top—1 — Top| [Ty — Dop_1]
p,p T

|Tap — Tapl|Tap—1 — Top1]
is the cross-ratio (zap—1, Tap; Top, Top—1)-

In order to verify (6.20)) in full lore, we shall consider systems that cannot be analysed
using twist fields in CFT.

i) Local fermionic ladder

First, let us take the ground state of the ladder

N
Hladder = Z (A()CL;[LCLn + Alailanﬂ + AN/QaiLan+N/2) + h.c. (622)

n=1
with AO = QAN/Q > 0, Al < 0 and 2AN/2 > —Al.
We studied this state in detail in Section B.2.1] where it was called State 3. We

obtained there the expansion of the entropy for a single interval, see Eq. (3.30)), using the
Fisher-Hartwig conjecture. In particular, the coefficient B29°r of the logarithmic term is

dder 11 [log2\?
for « =1, and
+1 1 - 2 =1)71\?
Bladder — «a _ 1 - 7 6.24
o 20 2r2(a—1) 2 |logsin == (6.24)

=1
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for integer o > 2. As it is clear B!2d9° is not of the form predicted by Conformal Field
Theory.

We have checked numerically the validity of (6.20]) for this state taking two disjoint
intervals (P = 2) of different sizes and changing the separation between them. In Fig.
m we plot the numerical mutual information (6.19) as a function of the cross ratio

y = (x1,29;x4,23). We compare the numerical results with the analytical prediction
(6.20)) using the above expressions for the coefficient Bladder,

Hyggger @ =1 Hyggger @ =2

0.6 <
0.25
0.5
0.2 4
0.4 4

(50,50) ¢

031 (1000, 500) o

I

0.2 4

0.1 4

(50,50) ©
(1000, 500) e

Figure 6.7: Two-intervals mutual information (6.19) for a = 1 (left panel) and o = 2 (right panel) as a
function of the cross-ratio y for the ground state of the ladder . With ¢ we represent the numerical
value for two intervals made up of 50 sites each of them, varying their separation from 1 up to 500 sites.
The dots e correspond to two intervals of length 1000 and 500 sites, separated each other between 1 and
1000 sites. The continuous line represents the function with coefficient Bl2dder that of for
a =1 and (6.24) for o = 2.
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054 0.25
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< P =3, (1000, 500, 1000) e < P =3, (1000, 500, 1000)
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Figure 6.8: Mutual information of three (o) and four (¢) intervals for the ground state of the ladder
(6.22). It is represented as a function of II, see (6.21)). For P = 3, we have chosen two intervals of 1000
sites and one of 500 sites. The separation between the latter and one of the former is 1500 sites. The
distance with the other one is modified from 1 up to 99000 sites. For P = 4, we take intervals of lengths
2000, 500, 1000, 2000. The distance between the first couple is 1500 sites. We also fix in 5000 sites the
separation between the middle intervals. The remaining distance is modified from 1 up to 99000 sites.
The solid line represents the analytical conjecture with the coefficient Bl2d4er given by when

a =1, and (6.24) for o = 2.
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In Fig. we repeat the same calculation but choosing three and four intervals, i.e.
P = 3 and 4. The outcome of the numerical computations is represented in terms of
the product of all the possible cross-ratios of the endpoints of the intervals II. We also
plot the conjectured behaviour stated in with the coefficient B2d9°r 'We obtain an

outstanding agreement.
ii) Long-Range Kitaev chain

We have also considered the ground state of the Long-Range Kitaev chain

N

[ cos(lo) Nh
n=1 [l|<N/2
(6.25)

with h =1.2, 6 =1, and ¢ = w/4.

In Section {4.6| we studied the entanglement entropy of a single interval for this state.
There we found that although it is the ground state of a Hamiltonian with non-zero mass
gap, the presence of long range interactions gives rise to a logarithmic term in the entropy
of an interval. We obtained that the coefficient of this term is of the form

g _ 2 / 4 Vi ¥

s B worag ranaen) O

™

for « = 1 and

LRK _ 1 - arctan sin(A¢/2) :
B = w2 (a—1) 121 ( t Vcos2(AE)2) + |)\l|2> (6.27)

for integer o > 2. According to the analysis performed in Section , AE = — €&
where the angles £ and £~ are defined in (4.86)) and (4.87)) in terms of the parameters h,

0 and ¢. The \;’s are given by (4.79)).
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Figure 6.9: Two-intervals mutual information (6.19) for a = 1 (left panel) and o = 2 (right panel) as a
function of y for the ground state of the long-range Kitaev chain with h =1.2, =1 and ¢ = 7 /4.
The dots ¢ correspond to the case of two intervals with 50 sites each of them, varying their separation
from 1 up to 180 sites. The dots e are calculated taking two intervals of lengths 500 and 250 sites and
modifying their separation from 1 up to 5000 sites. The continuous line corresponds to the function

using the coefficient B(II‘RK given in 1) if « =1 and 1) for a = 2.
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In Fig. we present the numerical results for the two-intervals mutual information
in the ground state of this model. We take different lengths and separations for the
intervals. We have also plotted the analytical prediction (6.20) with the coefficient BXRK
computed using the formulae above.

07 Higg @=1 s ® Higgy @=2
0.6 4 0.3 4
0.5 0.25
R, 04 - P =4,(200, 100, 175,200) @ q 024 P =4,(200, 100, 175, 200) o
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034

024
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Figure 6.10: Mutual information in the ground state of the Long-Range Kitaev chain with h = 1.2, § =1
and ¢ = m/4 as a function of II. We have considered three (¢) and four (e) intervals. For P = 3, we have
chosen two intervals of 500 sites and one of 100 sites which is separated from one of the former by 550
sites. The distance with the other one is modified from 1 up to 10° sites. For P = 4, we take intervals of
lengths 200, 100, 175, 200. The distance between the first couple is 550 sites, the separation between the
smallest intervals is also fixed, 5000 sites. The remaining distance is increased between 1 and 10° sites.
The continuous line represents the function assuming for the coefficient BLRX the value given by

(6.26) and (6.27)) for o = 1 and a = 2 respectively.

In Fig. we perform a similar calculation for three and four disjoint intervals. We
find again a remarkable agreement between the analytical prediction and the numerical
results.

6.4 Mobius symmetry for disjoint intervals

In Chapter |5 we unravelled a new symmetry of the entanglement entropy based on the
Mobius group that acts on the couplings of the theory. In particular, we found that a
subgroup of these transformations including the 141 Lorentz group,

, zcosh( +sinh ¢
o —

= 2
zsinh ¢ + cosh ’ (6:28)

maps the set of couplings A = (A_.,...,Ao,...,AL), B = (B_p,...,Bo,...,Br) into
another set A’, B’ that is physically admissible in the sense that the new couplings
satisfy the hermiticity condition A", = A’; and the antisymmetry B’ , = —B;.

A natural question is what happens with this symmetry when the subsystem X is made
out of several disjoint intervals. The relation (6.14]) that we have obtained between the
entanglement entropy for disjoint intervals and that of single intervals gives the answer.
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To study the Mobius symmetry it is useful to work with the partition function,
Zo(X) = elI7)5a(X0),

From the relation (6.14]) one derives that, in the asymptotic limit, the partition function
of X = UZ£1[$2p_1 — Z9p] can be expressed as

Zo(z) = H Zoo(Tr, 20 ) "7 (6.29)

1<r<7'<2P

where o, = (—1)". We have changed the notation so that Z,(X) = Z,(z) and z =
(x1,...,22p). Note that on the right hand side only the partition function for a single
interval appears.

If the range of coupling L is finite and the mass gap is non-zero, we showed in Section
that the asymptotic ground state Rényi entropy of an interval is invariant under
Mobius transformations. Therefore, the expression (|6.14]) implies that the Rényi entropy
of several intervals is also invariant under Mobius transformations when the distance
|z, — x|, 7,7 =1,...,2P, between the different endpoints is large enough.

On the other hand, if the theory is critical, the symbol G (f) of the ground state
two-point correlation matrix is discontinuous. In Section [5.2] we found that the partition
function of an interval transforms like the product of homogeneous fields inserted at the
discontinuities of the symbol. The dimension of these homogeneous fields depends on
the type of discontinuity. If it is associated to a pinching of the corresponding compact
Riemann surface (i.e. located at a point where the dispersion relation w(#) vanishes but
does not change its sign) the dimension is 2A,,. If it corresponds to a Fermi point (i.e. a
mode where w(f) does change its sign) the dimension is A,,.

Consider u,, = ¢, k = 1,..., R, the position of the pinchings at the unit circle and
v, = €% o =1, ...,Q, the points in the complex plane associated to the Fermi points
and their opposites. Under the Lorentz group, u = (uy,...,ug) and v = (vy,...,vQ)

transform according to (/6.28) into «’, v" and the partition function of the interval [z, z,/]
changes as

B rou 22 & o0\ A
Z/ ' Tyl ) = = z Za U L7, X7 ),y
- T () 2

o=1

Here we have written explicitly the dependence on u and v of the partition function
Zo(xr,x). Now combining this result with (6.29) and taking into account that

E 007 = _Pa

1<r<7'<2P

we obtain that, under any admissible Mobius transformation (|6.28)),

R PYARLLY Q v\ Fla
Zwvz) =[] (au”) 11 (af) Zo(u, v 2) (6.30)
k=1 K o

o=1

in the large |z, — x| limit.
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We can compare this behaviour with the one for a conformal transformation in the
real space (6.4]). In Section [6.1| we saw that the latter acts on the endpoints z +— 2’ and
the partition function of X changes as

2P @flf/ 2cAq
Zo(u,v;2) = = Zo(u,v;x). 6.31
(u, v;2) g(ax7> (u,v;2) (6.31)
In Section {4.3| we obtained that in a critical fermionic chain with finite range of couplings
the central charge c is given by the number of pinchings and Fermi points such as

R Q

Observe the striking similarity between ([6.30) and (6.31)) with the role of the endpoints
of the intervals, z,, replaced by the pinchings and the Fermi points, u,, v,.

It is actually possible to obtain a unified expression if one consider simultaneously
the 141 Lorentz group and conformal transformations. An element of the direct product
SO(1,1) x SL(2,R) induces a map on the space of couplings, pinchings, Fermi points and
endpoints

(A,B,u,v,z) — (A", B v, v, 2')

where the element in the factor SO(1,1) acts on A, B, u and v while the element in
SL(2,R) acts on z. The complex Jacobian determinant in (u,,z,) and (v,,2,) is given
respectively by

ou’. 0x!
‘]H)T = = Ta
ou,. 0x,
and 90’ B
v Ox
KO'T = — T7
v, O,

since the transformation of v and v do not depend on z and viceversa.

Uy U3
UI% Uzi
X1l | ,
‘ 77777 . -
3 x
)Cg N . : .
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Figure 6.11: The partition function Z, x of an interval X = [z1, 23] of a theory with pinchings at u1, and
ue and Fermi points at v1, vy behaves under SO(1,1) x SL(2,R) as the expectation value of a product
of homogeneous fields with dimension A, inserted at the points (u,z,), and with dimension A, /2 at
(vy, ;) where k = 1,2, 0 =1,2,3,4 and 7 = 1,2, with v3 = Ty and vy = 7;.
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Hence under a general transformation in SO(1,1) x SL(2,R) the expressions (6.30)
and ((6.31)) can be combined to give the following transformation law

Zl (W02 H HKA/QZ (u,v; ).

This expression can be interpreted as the transformation of the expectation value, in a
covariant theory in the cylinder S* x R, of homogeneous fields of dimension A, inserted
at the points (u,,z,) and of dimension A, /2 inserted at (v,,x,). A particular example
with R =2, Q =4 and P =1 is represented in Fig. [6.11]

The previous picture is very attractive. It immediately suggests a generalisation of
our results to larger groups containing the direct product of Mébius and conformal trans-
formations. Also more general configurations for the insertion points could be envisaged.
The form of the symbol G (0) dictates that the discontinuities appear in pairs. If there is a
discontinuity at # there must be another similar at —6, except at # = 0, —m. This implies
that pairs of insertions are related by inversion. An interesting point would be to break
this constraint and consider a symbol with discontinuities located at arbitrary points.

However, whether the above program can be carried out, its meaning and further
applications is an open question that we do no cover in this thesis.



158 6.4. Mdbius symmetry for disjoint intervals




Chapter 7

Sublogarithmic growth of the
entanglement entropy

In the previous chapters we have found that the entanglement entropy of a fermionic chain
may present different behaviours with the size of the chosen interval.

In Chapter [4] we saw that the entanglement entropy satisfies an area law in the ground
state of a non critical chain with finite-range couplings and it saturates to a constant
value in the large interval limit. On the other hand, if the mass gap becomes zero, the
entanglement entropy grows with the logarithm of the length of the interval.

The presence of infinite-range couplings enriches the previous picture. In the fermionic
ladders studied in Chapter (3| the leading term of the ground state entanglement entropy
is proportional to the length of the interval (volume law). In Chapter |4/ we found that in
the Long-Range Kitaev chain the infinite-range interactions may give rise to a logarithmic
growth of the entropy even when the system is non critical.

There are some recent works that address the possibility of other behaviours of the
entanglement entropy with the size of the subsystem. In Ref. [I59] Movassagh and Shor
introduced a translational invariant, non critical and local spin chain in which the ground
state entanglement entropy grows with the square root of the length of the interval. This
surprising result has been extended to other spin chains, see e.g. [160] [161].

Some numerical studies [56] using Ising spin chains with long-range interactions also
indicate the possibility of finding sublogarithmic terms in the entropy. This kind of
behaviour is also found by Bianchini et al. in their study [162] of the entanglement
entropy in non-unitary field theories. In particular, they obtained that sublogarithmic
terms may arise in logarithmic conformal field theories.

In the light of those works, an interesting question is if we could engineer a fermionic
chain with long-range couplings in which the entanglement entropy may display other
behaviour, different from the linear or the logarithmic growth.

The basic analytical tools that we have employed to study the entanglement entropy
have been the Strong Szegé Theorem and the Fisher-Hartwig conjecture for Toeplitz

159
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determinants as well as their generalisations to the block Toeplitz case. According to
these results, the entanglement entropy must grow linearly or logarithmically with the
size of the subsystem, or tend to a constant value.

However, we have to bear in mind that these theorems cannot always be employed.
The Strong Szegd Theorem is only valid for Toeplitz matrices generated by a smooth
enough, non-zero symbol. The Fisher-Hartwig conjecture extends the former to symbols
with discontinuities and/or zeros.

Therefore, an idea for looking for chains where the entanglement entropy presents
other behaviours could be to study symbols that violate the hypothesis of the Strong Szegd
Theorem and the Fisher-Hartwig conjecture. For example, symbols that are continuous
(and therefore the Fisher-Hartwig conjecture does not apply) but not smooth enough
according to the condition imposed by the Strong Szeg6é Theorem.

Interestingly enough, to our knowledge, there are not results in the literature that cover
the asymptotic behaviour of Toeplitz determinants with a symbol of those characteristics.

In this Chapter, we shall propose a conjecture for the asymptotic behaviour of non
smooth enough symbols generalising the Fisher-Hartwig conjecture. We shall check it nu-
merically for a family of continuous symbols whose derivative diverges at a single point.
We shall find that, for them, the conjecture is fulfilled and the leading term in the cor-
responding Toeplitz determinant is sublogarithmic. Finally, we shall apply this result to
the entanglement entropy of a fermionic chain with pairing couplings that decay logarith-
mically with the distance.

7.1 The Fisher-Hartwig conjecture revisited

In this Section we shall see how Fisher and Hartwig arrived at their conjecture starting
from the Strong Szegé Theorem (SST). This will allow us to establish a more general con-
jecture for the asymptotic behaviour of Toeplitz determinants with a continuous symbol
that does not satisfy the smoothness condition of the SST.

We shall consider an integrable, real and positive function g defined on the unit circle
St. We shall denote by Tx[g] the Toeplitz matrix with symbol g and dimension N x N.
Its entries (Tn[g])nm = gn_m are given by the Fourier coefficients of the function g,

1 s

:§ B

o g(0)e*dg.

Let us also introduce the Fourier coefficients of log g,

1 [" -
Sp = — log g(#)e'*d.
2 ) .

We already enunciated the SST in Section [4.1} In the original theorem [101], Szegd
considered that the symbol g must have a derivative satisfying the Holder continuity
condition for a non-zero exponent. In the following years, many mathematicians tried
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to weaken this assumption. There is a plethora of papers were the SST is proved using
different methods and considering more general symbols, see for instance the works by
Kac [163], Baxter [164], Ibraginov [I17] or Hirschman [165].

In particular, in the form due to Hirschman, the Strong Szegé Theorem establishes
that the determinant Dyl[g] of the matrix T |[g| satisfies

D
lim N [9]

— ZEO:1 ksis_i
=e < 00 7.1
N—oo elVso ( )

provided the Fourier coefficients of the symbol fulfil the condition

Y ol + D [Kllgel < oo (7.2)

k=—o0 k=—o00

This is in some sense the weakest condition for the smoothness of the symbol g. As
Devinatz showed in [166], for a real symbol such that 0 < g(f) < oo the limit in (7.1)) is
finite if an only if g verifies ((7.2)).

It will be convenient to rewrite (7.1]) in the form

log Dn[g] = Nsop + Z ksks_x + o(1). (7.3)

k=1

As we have seen in the previous chapters, in Physics we may deal with symbols that present
discontinuities and, therefore, violate the smoothness condition . In fact, the work
[167] by Wu on the classical Ising model and the study [168] of Lenard about impenetrable
bosons led Fisher and Hartwig to conjecture a generalisation of the Strong Szegd theorem
for symbols that present discontinuities and/or zeros [102]. Their conjecture was later
proved by Basor in [104].

Consider that the symbol g is discontinuous at 6, ...,0r. According to the Fisher-
Hartwig conjecture, the discontinuities contribute to log Dy[g] with a logarithmic term
whose coefficient only depends on the lateral limits g = limg o+ g(0),r=1,...,R. That
is,

log Dn[g] = Nso +

log N < (

2
ng
log 2 log £ 1). 4
yo; 0gg_> +log E[g] + o(1) (7.4)

r=1 T
Remember that we used this result in Chapters [3] and [4] to compute the asymptotic
behaviour of the entanglement entropy. In section [4.1] we generalised it to the determinant

of block Toeplitz matrices generated by matrix valued symbols with discontinuities.

Let us review the reasoning followed by Fisher and Hartwig in [102] to deduce the
expansion (|7.4]) because it will be the basis of our generalisation of their conjecture for
non smooth symbols.

For simplicity, and as they precisely did, we take the symbol
go(0) = PO g ¢ [_x ), (7.5)

that only has a discontinuity at 6 = 0.
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The Fourier coefficients of its logarithm are

and 5,(60) = ﬁ for k#0.

© _ g
) lk"

Sy =

Then if we apply to this symbol the Strong Szegé Theorem ([7.3)) we obtain the Harmonic

series
52
log Dy lga] = Nsi? + stﬁj”s L o) =3+ o)
k=1
that diverges logarithmically.

Let us suppose that log Dy[go] can be obtained truncating the series > -, kzsl(fo)s(fo,)C
at some k = | NAg|, with Ag a positive real number. Here |t] means to take the integer
part of the real number ¢. Then we find

[NAo] LNAOJ
log D |[go] Z ks 0)3(011 = Z = B*log(NAo) + f*vg + o(1), (7.6)

where g is the Euler-Mascheroni constant.

Observe that this truncation gives precisely the Fisher-Hartwig expansion ([7.4)) for the
symbol go. In fact, since go(f) presents a single discontinuity (R = 1) with lateral limits
e*P™ the expression in ([7.4)) particularises to

log Dy go] = *log N + log Elgo] + o(1). (7.7)
Comparing ([7.7) with (7.6) we can conclude that
log E[go] = #*(log Ag + ). (7.8)

Fisher and Hartwig were able to fix the constant term E|[go| and, therefore, the cut-
off parameter Ay because they realised that the Toeplitz matrix with symbol g, is also
a Cauchy matrixﬂ Using the properties of the determinants of Cauchy matrices they
determined that

Elgo] = G(1+iB)G(1 —1ip)

where G(z) is the Barnes G-function. Hence we have
log Ag = 26 %log |G(1 +i8)| — 7&. (7.9)

The same reasoning can be applied to a general symbol with R discontinuities. The
asymptotic behaviour of its determinant predicted by (7.4) can be deduced from the
Strong Szegd theorem ((7.3]) truncating the divergent terms in the series Y. | kspS_y.

The previous discussion suggests that one could deduce heuristically from the Strong
Szeg6 Theorem the asymptotic behaviour of a Toeplitz determinant generated by a symbol
that violates the smoothness condition . When this happens the series in
diverges. We propose that the truncation of this series at & = [NA], with A certain
positive real number, accounts for the asymptotic expansion of the Toeplitz determinant.

LA matrix is of Cauchy type if its entries are of the form C,, = (X, — Y;n) ! with X,, — Y, # 0, and
X, Y, € C where n,m € N.
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That is, if the symbol g is not smooth enough, then the corresponding determinant behaves

as
LNAJ

log Dy[g] = Nso + Z ksgs_ + o(1).
k=1

In the next section we shall check this conjecture for a family of continuous symbols that
does not satisfy the smoothness condition of the Strong Szegé Theorem.

7.2 Generalisation of the Fisher-Hartwig conjecture

Consider the symbols of the form

6 — msign(6
log.,(6) = 67 g e [ ), (7.10)
(— log §>
with <1 and v > 0.
log g.,(6) v
1 — ()
e ().(05
0.25
‘ 0.5
f i
- T

_14

Figure 7.1: Plot of the logarithm of the symbol g, defined in (7.10), taking 8 = 1/7 and different values
for the exponent v. If v = 0 the function go(f) is discontinuous at § = 0. When v > 0 the symbol is
continuous for all  but its derivative diverges at § = 0.

In Fig. [7.1) we plot log g, (f) for § = 1/7 and different values of v. It is a family of
positive bounded functions, 0 < g,(f) < co. For v # 0, the function is continuous but it
is non analytical at 6 = 0 since its derivative diverges at this point. For v = 0, it reduces
to the symbol , already studied above, that has a discontinuity at § = 0. Then in
this limiting case the Fisher-Hartwig conjecture can be applied.
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According to the discussion in the previous section, in order to determine the asymp-
totic behaviour of the Toeplitz determinant generated by g,, we have to study the con-
vergence of the series

> ks, (7.11)

)

where s, are the Fourier coefficients of log g,,

v I i
52, ) = %/ log g,,(0)e'*d0.

In Appendix |[E|l we calculate the asymptotic form of 3,(:) for large k. We find

w _ B b
%" T(iog [K])” [1 o <1og|k\)} ' (7.12)

Therefore, the series (7.11]) converges if and only if

kz:; k(log )z =

Using for instance the integral test it is immediate to see that the latter diverges for
0 < v < 1/2. Thus for these values of the exponent v the Strong Szegé theorem is
not valid to determine the asymptotic behaviour of Dy[g,]. We emphasize again that for
v # 0 the function is continuous and we can neither employ the Fisher-Hartwig conjecture
that only applies to symbols with discontinuities and/or zeros.

Therefore, we have to resort to the conjecture that we have proposed at the end of the
previous section. According to it, there exists a positive and real number A,, that depends
on v, such that the asymptotic behaviour of the Toeplitz determinant with symbol g, is
given by

[NAL]
log Dylgu] = Nsy” + > ksis") +o(1).
k=1
Since log g,(6) is an odd function then s(_l',z = —sg’). Hence s(()y) = 0, the linear term in
log Dy|g,] cancels, and
[NA,]
log Dylg,] = Z k")) + o(1). (7.13)

This conjecture predicts a sublogarithmic growth of log Dy[g,| with the dimension N. In

fact, if we consider the asymptotic behaviour 1) found for s,(:) and we approximate

the sum in ([7.13]) by an integral,

LNAVJ () NAV /82 1
ks 12 ~ S d6 14
2 H [ wogre 1+ (oga)| (r14)

where € > 0. The error that we make approximating the sum by the integral is of the
order of N~!(log N)~2
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Therefore, for 0 < v < 1/2 we have

[NA, | o) 62 1
k|ls” 7 ~ loe NAVY " +0( —— ).

Observe that the contribution of the subleading terms in the asymptotic behaviour ([7.12])

of the Fourier coefficients 3,(:) tends to zero in the limit N — oo.

If we take into account that

(log NAV)l—QV _ (log N>1—2V 14 log A, 1-2v
log N ’

and employ the expansion (1 + 2)? =1+ pz + O(2?) for |z| < 1 and p > 0, we find

|NA, | 52

S ks~ (g ) o(1), if 0 < v < 1/2
— UV

k=1

On the other hand, for v = 1/2, the approximation in (7.14)) leads to

[NAL|

1
Z E|st)? ~ leoglogNA,,—l—O( )
k=1

log N

Expressing the latter as

log A,
loglog(NA,) =loglog N +log | 1+ o8 ,
log N

and applying the expansion log(1 + 2) = 2z + O(z?) when |z| < 1, then

[NA ]
Z k|s'))? ~ B2loglog N + o(1).
k=1

Finally, putting these results in the conjecture ([7.13|) we can conclude that

2

log Dylg,] = lfQV(logN)l_z” +o(1), if 0<v<1/2,

and
log Dy [g1/2] = B#?loglog N 4 o(1), if v =1/2.

Observe that for v = 0 the conjecture ([7.13)) gives the Fisher-Hartwig expansion (7.6
with Ay that given in ([7.9).

Let us check numerically. Since log Dy[g,| grows sublogarithmically with the
dimension N, we have to calculate it for a range of N larger than in the previous chapters.
In fact, notice that (log100)*?° = 1.46491 ... and, if we increase N two orders of mag-
nitude, (log 10000)%25 = 1.74208... The problem is that if we go to larger values of N,
we must diagonalise matrices of dimensions that are impossible to cope with a standard
computer.
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In principle, since the entries of a Toeplitz matrix only depend on the difference be-
tween the row and the column, the complete matrix is determined specifying a single row
or column. However, we do not know any specific routine for computing Toeplitz determi-
nants that makes use of this property. Hence it is needed to store the N? complex entries
to calculate the determinant. If we work in double precision in C, each entry typically
occupies 8 bytes of RAM memory. Thus, making a crude estimate, if the dimension of the
matrix is N = 20000, we will need around 6 GB of memory, and if we take N = 50000,
the amount of memory required increases to 37 GB.

We have bypassed that difficulty by performing the numerical calculations in the su-
percomputer Memento, managed by the Instituto de Biocomputacion y Fisica de Sistemas
Complejos, at the University of Zaragoza [169]. Each node of this cluster has 256 GB
of memory. This has allowed us to reach dimensions of the order of N = 10°. We have
computed log Dy[g,] from the spectrum of the matrix that has been obtained using the
routines for Hermitian matrices provided in the Intel MKL library [I70]. This library al-
lows to parallelise the diagonalisation, taking advantage of the 64 cores available in each
node of Memento. We describe the details of the numerical calculations in Appendix [A]

10g DN[gv]

0 T T T T 1
20000 40000 60000 80000 100000
N

Figure 7.2: Logarithm of the Toeplitz determinant with symbol the function g, defined in . We
represent it against the dimension N. The dots correspond to the numerical values obtained using
Memento for different exponents v and 8 = 1/7. When 0 < v < 1/2, g, does not satisfy the smoothness
condition of the Strong Szegd Theorem. The solid lines represent the conjecture proposed in
for the asymptotic behaviour of log Dy[g.], ,EZf”J k\s,(:)|2, with A, those given in Table For
v = 0 the symbol is discontinuous and we can apply the Fisher-Hartwig conjecture. In this case Ag
can be directly calculated using . The dashed lines correspond to the sum Zszl k|s,(:)|2, that is,
considering A, = 1.

In Fig. [7.2] the dots represent the numerical values calculated with Memento for
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log Dy|[g,] with v = 0,0.05,0.25, and 0.50. The dashed lines represent the sum
N
> ks (7.15)
k=1

that is, assuming A, = 1. The Fourier coefficients s,(:) have been computed numerically
for each v as we explain in Appendix [A] Comparing the dashed lines with the numerical
points it is clear the necessity of considering a cut-off A, different from the unity. We
have estimated its value for each v as follows.

Consider the difference between taking A, =1 and A, > 1,

VAL

> ks

k=N
For large N, if we apply the asymptotic expansion of s,(:) up to first order corrections, see
Eq. (E.3) in Appendix [E]

RN i3 ivfB(log(27) + &)
g k(log |k|)¥ k(log [k)+1 7

and we approximate the sum by an integral, we have

[NAL ]

Z k|S(V)|2 ~ /NAV ﬁ2 _ ZVﬁQ(IOg(27T) + ’}/E) de
= k N 6(log 6)?” (log 0)2+1

The first term in the integral gives

NA 2 2 1-2v
v B B 1-2 log A,
——df = log N)"™ (1 -1
/N O(log 0)* 1— 21/( og ) + log N

52 log A, V52(10g A,,)2 —2u—2
= (log N)2 - (log N )2+ +0 ((log N) ) ’

where we have employed the expansion (1+2)? = 1+pz+p(p—1)22/2+0(2?) for |2| < 1.

With respect to the second term in the integral, we follow the same lines

/NAV 2v3* (log(21) + 1) L o AT
log N
2v(log(27) + 1) log A,

N O(log )2+
= + 0 ((logN)™7?).

do = —p*(log(27) + ) (log N) >

(log N )2+
Putting all together, we have
LNZA"J k‘s(y)|2 B%log A, B 2v(log(27) + v&)B% log A, + v32(log A,)? (7.16)
k (log N2 (log N)2v+1 ' '
k=N

Therefore, a way to estimate A, is to calculate the difference between the numerical values
obtained for log Dy|g,] and the sum S~ k|s)|2 and use the result to fit the function
on the right hand side of ([7.16) where A, is the only parameter to be adjusted.
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In order to perform the fit, we have considered the numerical values obtained in the
interval N € [10*,105]. Taking into account that 8 = 1/7, in Table [7.1] we indicate the
values of A, that give the best fit.

v A,
0.00 2.566
0.05 2.599
0.25 2.659

0.50 2.660

Table 7.1: Values of A, for different v and 8 = 1/x obtained by fitting the curve on the right hand side of

(7.16) to the difference between the numerical values computed for log Dy [g,] and the sum 3N | k[s(")|2,
The case v = 0.00 has been calculated using the expression ((7.9).

The solid lines in Fig. represent the sum Z,LCZ?“J k|s,(:)|2 using the values for the
cut-off A, collected in Table The agreement between them and the numerical points
is outstanding.

In Fig. we represent separately the same results for each value of v considered.
In the inset of these figures we have plotted the difference between the numerical values
obtained for the determinant and our prediction,

(VAL
A(N) =log Dylg,) — 3 kls 2. (7.17)
k=1

We have found that the best fit to this difference is the curve

with the value for the coefficients a and b indicated in Table [7.2

v a(x1073%) b
0.05 1.65 0.149
0.25 2.84 0.205
0.50 1.37 0.232

Table 7.2: Coefficients a and b that give the best fit of the curve a/N? to the difference between the
outcomes in the numerical calculation of log Dy[g,] and the conjectured behaviour > ,EZ?”J
for A, the values determined in Table @

k\s,(c'/) |2 using
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Figure 7.3: Logarithm of the Toeplitz determinant generated by the symbol g, defined in (7.10)) for
B =1/m, and v = 0.05 (up), 0.25 (middle) and 0.50 (bottom). The dots correspond to the numerical
results obtained for the determinant varying the dimension N while the solid line represents the conjecture

[NAL

1 k|s§€") |2 using as A, the values given in Table In the inset the crosses are the difference 1'
between the numerical values and the prediction. The solid line in the inset corresponds to the curve
a/N® with the coefficients a and b those specified in Table [7.2] This curve is the best fit that we have

found for A(N).
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In the previous chapters we found some novel properties of the asymptotic behaviour
of (block) Toeplitz determinants. It is interesting to study if they are also satisfied for
the symbol g,.

7.2.1 Determinant of a principal submatrix

In Section [6.2, we proposed and checked numerically a conjecture for the asymptotic
behaviour of the determinant of a principal submatrix of a block Toeplitz matrix. We
employed this result to analyse the entanglement entropy for several disjoint intervals.

Let us repeat the analysis performed in that section for the symbol g,. Consider the
restriction of the Toeplitz matrix generated by g, to a subset of indices X, that we denote
Tx[g,]. For simplicity, let us assume that X = [z1, 23] U [z3, 24]. Then, according to the
conjecture established in (6.8)), the determinant D(X) = det T'x[g,] should behave as

D[z, za]) D([1, xo]) D([2, 23]) D([3, 24])

D ([x1, 5] U [x3, 24]) ~ D([z1, 23]) D[22, 24])

(7.18)

where ~ stands for the equality of the asymptotic behaviour when |z, — x| — oo for
7 =1,..., 4.

The determinants on the right hand side of (|7.18)) correspond to Toeplitz matrices
with symbol g,. Then we can apply to them the conjecture ([7.13]),

[N, .,
log D([z+, z,]) Z k|sk 12 4 0(1), (7.19)

where N, = |z, — x|

As we did in Section , in order to check the validity of the expression ((7.18) we
introduce the quantity

Ip ([x1, 2] U [23, 24]) = log D([x1, x2]) +1og D([z3, x4]) —log D ([, x2] U [x3, 24]) . (7.20)

Applying ([7.18]), we have

D([xy, 24]) D([z9, 73])
D([z1, w3]) D([wg, va])

Ip([z1, 2o U [x3, 24]) =~ — log

Considering now the expected asymptotic behaviour ([7.19)) for the Toeplitz determinants
D([xr,x]), 7,7 =1,...,4, we arrive at

2 LNp,p’JrQAVJ
Ip [y, wa) Uls, xa)) = 0 (=077 30 k5P (7.21)
p,p'=1 k=1

In Fig. [7.4) we have evaluated numerically I for the exponents v = 0.05, 0.25 and 0.50

taking 5 = 1/m. The solid line corresponds to the prediction that we have just obtained

in . In order to plot it, we have computed numerically the Fourier coefficients s( ¥)
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and we have assumed for A, the values estimated in Table [7.1] The agreement between
the numerical outcome and the expected behaviour is outstanding. This also reinforces
the conjecture proposed for the Toeplitz determinants with symbol g,,.
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Figure 7.4: Difference between the determinants for the symbol g, defined in considering
B = 1/m and v = 0.05 (up), 0.25 (middle) and 0.5 (bottom). We represent it as a function of the
cross-ratio (4.57)) y = (x1,22;24,x3). In all the cases we have taken |x; — x5| = |x3 — 4] = 500 and we
have modified the distance |x2 — 3| from 1 up to 10000. The dots ¢ are the results of the numerical
calculations while the solid line corresponds to the conjecture using as A, the values given in Table

for each v.
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7.3 Entanglement in a Kitaev chain with logarithmic
decaying couplings

In this section we shall apply the mathematical results found previously to the study of
the Rényi entanglement entropy in the following fermionic chain,

N N N/2
1
Hyy = ; <ha an + a’ IR an+1an> + Z ZN/Z W <aLaL+l — anan+l> )

(7.22)
where the pairing couplings decay logarithmically with an exponent 0 < v < 1/2 and
A > 1. We shall consider h # £2. The value v = 0 corresponds to the Long-Range
Kitaev chain introduced in Section 2.2.31 We found in Section (.6 that in this case the
ground state entanglement entropy grows logarithmically with the size of the subsystem.

According to the general discussion of Section [2.1] in the limit N — oo, the dispersion
relation of Hjg is

wiog(0) = VF(0)? + |G, (O)2,

where

F(0) = h+2cos(6),

and

00 _ il
Z I(log AW (e ).

Observe that the Fourier coefficients of G, 1/(I(log A|l|)”), are similar to the leading term
in the expansion for the Fourier coefficients s,(:) of the function log g, introduced
in ([7.10). Hence the behaviour of G,(6) in a neighbourhood of § = 0 is equal to that of
log g,,(6). We have seen that the divergence in the derivative of log g, (0) at § = 0 violates
the smoothness condition of the Strong Szegé Theorem when 0 < v < 1/2. This
divergence gives rise to a sublogarithmic growth of the Toeplitz determinant with symbol
gy Since G, (6) displays the same behaviour at § = 0, we expect that this affects the
asymptotics of the ground state entanglement entropy.

We shall derive the Rényi entanglement entropy for a subsystem X of this chain using

Sux = —— lim 7{ £ /e) —10g Dy (A\)dA, (7.23)
4mi e—1+

where ¢ is the integration contour represented in Fig. and Dx(\) = det(A — Vy)

with Vx the restriction of the ground state correlation matrix to X. Remember that if

the subsystem is a single interval of length |X| then Vy is a block Toeplitz matrix with

entries

1 [7 .
=5 /_WQ(G)e‘H(”m)dH, n,m=1,...,|X|,

and symbol G(#), the 2 x 2 matrix
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Our goal is to derive the leading term in the asymptotic expansion of the block Toeplitz
determinant Dx(\) with symbol G, = AI — G. The techniques developed in the previous
section are valid for Toeplitz matrices, that is, when the symbol is a scalar function.
Therefore, the first step in order to analyse the asymptotic behaviour of Dx()\) is to
express it in terms of Toeplitz determinants.

For this purpose, let us perform the following global change of basis,

a0 -5 )ao(] )

where
i€(0)
60~ o ©y )
and
cos £(6) sin&(0) = Gy (6) : 7.24
= FForraor 0" merrcor T

The determinants of the block Toeplitz matrices with Gy and G} are equal and, therefore,
log Dx(A) = log Dx[G}].
In the following, it will be convenient to work with the symbol G instead of G,.

We introduce now the symbol
- Y llE(@)]
Ga(0) = ( eilEO ) ) -

The behaviour of |£()| in the neighbourhood of § = 0 is similar to that of | log g,(0)|.
If we calculate the leading term of the Fourier coefficients 51(:) of | log ¢, (#)| using the same

steps as in Appendix [E] we find

) _ 1
Sk_O(w%%W“)

zygww

for any v > 0 and the smoothness condltlon 2)) of the Strong Szegd Theorem is satisfied.
Therefore, one may conclude that the symbol QA is also smooth and verifies the Widom
theorem for block Toeplitz determinants (4.6)).

This means that

Since G, is 'smooth, we can apply the Basor localisation theorem 1D to the product
of symbols G1G;". Then we have

Dx[G5G, "]
IXHOO DX[QA]DX[Q,\ g

This implies that

log Dx(\) = log Dx[G}] = log Dx[G4G5 "] — log Dx[G5!] + O(1).
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We can make use of Widom theorem |D to derive the asymptotic behaviour of log D x [é;l].
According to it, 3
log Dx[Gy'] = —log(\* — 1)|X| + O(1)

because det G, '(0) = (A\* — 1)~1. Therefore,

log Dx(\) = log Dx[GA\Gy '] + log(A\2 — 1)| X | + O(1). (7.25)

Observe that, by the definition of QN,\, the product ggé;l is
G (0)G\(0) =1, for —7m<H <0,

and 1 2 2i(0) 0)
, 5 1 A — et 2iAsin &(0
GO0 =55 ( Coinsin€(6) A2 — o)

Then the unitary matrix

>7 for 0 <0 <.

1 UL0) U(0)
vio) =% ( U8) U.(0) ) ’

with

1/2

Us(0) = (1% V1= VsecE@)])

diagonalises the symbol G4Gyt,

U©)G,G5 U (0)" = ( ’50(9) #;0(9) ) .

where the eigenvalues are
pi(0) =1, for —7<60<0,

and

2
VA2 —cos?£(0) £sin&(0
1y (0) = ( CO\S/% sin )> , for 0<0 <.

Since U (@) only depends on |£(0)| we may conclude that it is smooth by the same reasons

as those given for the symbol G. Then we can apply again the localisation theorem (4.9)
to the product UQ"AQ/\_IU*, and

log Dx[GAGy'] = log Dx[UGLG ' U] — log Dx[U] — log Dx[U~'] 4+ O(1).

Due to the smoothness of U, the Widom theorem gives the asymptotic behaviour
of log Dx[U] and log Dx[U~!]. Since det U() = 1, the linear, dominant term of their
expansion in | X| vanishes and the rest of the terms tend to a finite value when | X| — oc.
This leads to conclude that

log Dx[G4Gy '] = log Dx[UGLGY'U ™' 4+ O(1). (7.26)

Notice that the product U Q’AG/\_IU ~1 is diagonal and, therefore, the corresponding
block Toeplitz matrix can be expressed, after a global change of basis, as the direct sum



176 7.3.  Entanglement in a Kitaev chain with logarithmic decaying couplings

of two Toeplitz matrices with symbol the eigenvalues pf (6) and p; (). This fact implies
that
log Dx[UG\G\ U] = log Dx 1] + log Dx 3], (7.27)

that allows to apply the conjecture for Toeplitz determinants with non smooth symbol
that we have proposed in Section We suppose that the Toeplitz determinants with
symbol ,u)i\ behave as

RS

log Dx [113] = 55 ()| X| + Z kst (A)s™(A) + o(1), (7.28)
where | g
si(\) = %/ log 115 (0)e'?*do
are the Fourier coefficients of the logarithm of the eigenvalues 3 (6).
Since the zero modes satisfy sg(\) = —s; (A) then the linear terms of the expansion
(7.28) cancel in ([7.27)) and, therefore,
) x|
log Dx[UGLG'U™] = >k [sf(\)sT,(A) + 55 (M)sZ, (V)] +0(1). (7.29)
k=1

Collecting ([7.25)), (7.26)) and (7.29)), we conclude that the asymptotic behaviour of
log Dx () is given by

X

log Dx(\) = log(\ —1|X|+Zk ) + s, (N)sT,(M] +0(1).  (7-30)

As it happened in the previous chapters if we insert the linear term of this expansion
in the contour integral (7.23) it vanishes and, therefore, the leading contribution to the
entanglement entropy is given by the sum of the Fourier coefficients si ().

We have to study now the behaviour of s ()\) for large k. Since pi () = 1 for
—m < 0 < 0, we have that

TV o €(0) 4 s ,
:l/ log A2 — cos?£(0) Smg(e)e‘kedé.
T Jo

A2 —1

We can deal with this integral following the same steps as those described in Appendix
[E] for the Fourier coefficients of log g,. Then we arrive at the expression

e tdt + O(k™?). (7.31)

k

ke \/)\2—(:082§ Et ism{(%)
/{;7?/ N

The functions cos(it/k) and siné(it/k) depend on F(it/k) and G, (it/k) according to
(7.24). In F(it/k) we can perform the expansion

F(Z) =h+2+0(k™?)



Chapter 7. Sublogarithmic growth of the entanglement entropy 177

for large k. With respect to G, since it behaves similarly to log g,,, we make the following
approximation
it it/k —
G, (l—) ~ —il/—7r for 0<t<rk.

k (_ it )”’
Alk|
Then, for large k, we have

it i 1
(1) = o).
(k) (log |k[)~ (log |k[)¥+1

Plugging these expansions in cos{(it/k) and sin{(it/k), we obtain

cosé (%) ~140 (m) , (7.32)

and
it T 1
siné | — ) ~— + 0 <—) ) 7.33
(k> (v 200z )+ \og R (7:33)
Finally, putting (7.32)) and (7.33) in the expression ( - 7.31)) for sk ) we find that, for large
k,
VI e
£0\) ~ Ll (h+2)(log |k|) ‘ 34
5iy (A) ~ 1—log v (7.34)

Now we are ready to derive the asymptotic behaviour of the Rényi entanglement entropy
taking ((7.30)) and (7.34), and inserting them into the contour integral (7.23). As we have
already said the linear contribution vanishes and we can write

SaX—— lim ]{fa Ae) d)\EX( )dA,

471 e—1+

where

Ex(\) =Y k[sf(V)st(A) + s, (N)sZ, (V)] + O(1). (7.35)

As usual, we perform an integration by parts,

Sx = ——— lim 7({0 w&((x)dx (7.36)

Since s ()) is analytic outside the real interval [—1, 1], we can simplify the latter integral

if we deform the integration contour % to infinity and follow the same strategy and
considerations as in Section 4.2

When « = 1, as we illustrated in Fig. [£.2] the only contribution to the integral in
Sa.x is due to the change in the phase of df,(\/e)/dA when, integrating along the branch
cuts of this function, we go around its branch points A = £e. Then, for a = 1, we have

1

Six =3 / Ex(A)dA. (7.37)
1
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Observe that if in the latter expression we substitute Ex () for (7.35) and we apply the
approximation (7.34) for the Fourier coefficients s; then we have to deal with the sum of
two integrals of the form

0o 2
P 2 log2 ,
log (14 —— dA ~ —p“logp+ —p°,
e (14 2 )| an~ stonp s 222,
where p = 7 /(h + 2)(log |k]) .

Taking into account this behaviour in (7.37)), and approximating the sum over k to an
integral, we finally find

Six ~ ny)(log | X)) <D§V) loglog | X | + 1) , for 0<v<1/2,

where the constants C’l(”) and DYJ) depend on h and v. They can in principle be deter-
mined through a straightforward but cumbersome procedure. Their expressions are rather
involved and we think that it is no worth writing them here. They are simpler for integer
a > 1, for which we do give their explicit form.

For the limiting case v = 1/2, we obtain
Si.x ~ C1? log(log | X [)(D}/* loglog | X| + 1),
where Cflm and Dilm) depend on h.

On the other hand, for integer o > 1, the function df,(\)/dA has poles at the points
of the imaginary axis

20— 1 |
LGt T iy
20 2

/\l =1itan

Therefore, S, x can be written as the sum over all the residues of the integrand in ([7.30)
at these points,

1 o
Sax = 50 —a) ; Ex(\). (7.38)

Observe that

L 1 AVCEAY 1
ks (M)sZp (M)~ T2 <arCtan (log\k\)”> JrO((log]kl)ff”) ’

C()\l) 1
kllog k> (k<log\k|>3”) ’
where

1

(N = (h+22(A2+ 1)

If we plug this behaviour into ([7.38)) and approximate the sum over k by an integral,
we obtain that the Rényi entanglement entropy for integer a > 1 grows with | X| as

Sax ~ C¥(log | X[)'™* 4+ O ((log | X)), for 0<v<1/2 (7.39)
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where

1 < C()\l)
cw = .
o a—1 ; 1—2v

On the other hand,

Sax ~ CH?oglog | X| + O ( for v=1/2,

1
\/log!X|>’

with

1 (63
1/2
Oy = ﬁzc(h)-
=1
In conclusion, we expect a sublogarithmic growth of the Rényi entanglement entropy in the
ground state of the Hamiltonian (|7.22) with logarithmic decaying pairings. To our knowl-
edge, this kind of behaviour has not been reported in the literature. A striking feature
of our result is that the next terms in the expansion are of the form (log |X|)!=™
with m = 3,4,.... Therefore, all the terms for which m < 1/v also diverge in the limit
|X| — oo. This makes that very similar, divergent terms mix up and, therefore, it is
difficult to isolate numerically the leading asymptotic behaviour. We have suffered this
problem in our numerical experiments in which we are able to show the sublogarithmic
behaviour of the entanglement entropy but it has been impossible for us to determine
numerically its concrete form. We plan to tackle this problem in the near future.
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Chapter 8

Conclusions

In this thesis, we have studied the asymptotic behaviour of the Rényi entanglement en-
tropy in the stationary states of fermionic chains described by a general quadratic, homo-
geneous Hamiltonian that can present long-range couplings, and may break parity and
charge conjugation symmetries.

Since the stationary states of these systems satisfy the Wick decomposition theorem,
the analysis of the entanglement entropy can be performed using the two-point correlation
matrix. In particular, we have been able to express the Rényi entanglement entropy in
terms of the determinant of the resolvent of the correlation matrix. Then the study of
the entanglement entropy is reduced to examine the determinant of a matrix.

The translational invariance of the chain implies that the correlation matrix is a block
Toeplitz matrix. The asymptotic behaviour of the determinant of this kind of matrices
has been the object of an intense study. However, here we have had to deal with some
cases that, to our knowledge, have not been considered before in the literature. Then,
motivated by our physical problem, we have investigated more deeply into the theory of
block Toeplitz determinants discovering some novel results:

e We have considered block Toeplitz matrices with a symbol that has jump disconti-
nuities. We have derived the leading contribution of the discontinuities to the de-
terminant of these matrices as well as the expression for the coefficient of this term,
that only depends on the value of the symbol at each side of the discontinuities.
This result generalises the Fisher-Hartwig conjecture for Toeplitz determinants.

e Inspired by the results of Conformal Field Theory (CFT) on the entanglement en-
tropy, we have proposed an expression for the asymptotic behaviour of the determi-
nant of general principal submatrices of a block Toeplitz matrix. More specifically,
our result relates the determinant of the submatrix to the product of several others
of the block Toeplitz type. Then, combined with the result of the previous point,
it provides the asymptotic scaling of the determinants of this type of submatrices.
The numerical tests have confirmed the validity of this conjecture.

e We have established a conjecture to account for the asymptotic behaviour of Toeplitz
determinants with a symbol that is continuous, therefore the Fisher-Hartwig con-
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jecture does not apply, and besides it breaks the smoothness condition of the Strong
Szegd Theorem. For these cases, we propose a new asymptotic regime that leads to
the sublogarithmic growth of the logarithm of the determinant.

— We have checked numerically this conjecture for a family of continuous symbols
whose derivative diverges at a single point. For them, we have found that the
logarithm of the determinant of the Toeplitz matrix depends sublogarithmically
on its dimension as predicted.

— We have seen that our conjecture for the determinant of a principal submatrix
is also valid for this family of symbols.

Equipped with the previous results on block Toeplitz determinants, we have extended
further the understanding of entanglement in chains of spinless fermions:

e If the Hamiltonian does not have pairing couplings and, therefore, the number of
particles in the stationary states is well defined, the correlation matrix is Toeplitz.
Applying the Fisher-Hartwig conjecture, we have derived the complete asymptotic
behaviour of the Rényi entanglement entropy for an interval in the stationary states
of these chains.

— We have seen that the states for which the leading term in the entanglement
entropy is linear can be viewed as the ground state of a local fermionic ladder.
Then, this linear growth can be explained in terms of the area law. We have
also shown that the results of CFT can be applied in these ladders if we take
an appropriate fragment, instead of an interval, as the subsystem.

e [f the Hamiltonian contains pairing couplings, the correlation matrix is, in general,
block Toeplitz. In this case, we have restricted our study to the ground state.

— For non critical chains with finite range couplings, the symbol of the correlation
matrix is smooth and, according to the Widom theorem, the entanglement
entropy satisfies an area law. We have reviewed the known results for this case,
clearing up the beautiful geometric framework behind them. The analysis of
the entanglement entropy can be formulated in terms of a compact Riemann
surface given by the couplings of the Hamiltonian and genus related to the
range of the interactions. Then, in systems with parity and charge conjugation
symmetry, we have obtained a closed expression for the entropy in terms of the
Riemann theta function with characteristics. This approach has turned out to
be very useful to obtain many of the other results.

— If the symbol is discontinuous, then we have to resort to our result for block
Toeplitz determinants with discontinuous symbol. According to it, the discon-
tinuities give rise to a logarithmic term in the entanglement entropy. We have
performed a thorough analysis of the physical origin, nature and contribution
to the entanglement entropy of the discontinuities.

— In particular, we have seen that the discontinuities due to the absence of mass
gap are related to pinchings of the associated compact Riemann surface if the
ground state preserves parity and also to the Fermi points if it breaks this
symmetry. Their contribution to the coefficient of the logarithmic term is of
the form expected by CFT.
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— We have found that the presence of long-range couplings may also produce
discontinuities in the symbol. This implies that the entanglement entropy may
grow logarithmically outside the critical points. In addition, the two lateral
limits of the discontinuities due to the long-range couplings may not commute.
In this case, their contribution to the logarithmic term of the entropy is non
universal and it cannot be derived from a CFT.

— We have applied our methods to the XY spin chain with a Dzyaloshinski-Moriya
term, a model that breaks parity symmetry, and to the Long-Range Kitaev
chain, that contains power-law decaying pairings, determining analytically the
logarithmic term of the entanglement entropy in the whole parameter space of
these systems.

e Using our conjecture for the determinant of a principal submatrix of a block Toeplitz
matrix and the results for a single interval, we have obtained the expansion of the
Rényi entanglement entropy for subsystems made up of several disjoint intervals.

e We have discovered a new symmetry of the entanglement entropy under the M&bius
group that acts on the couplings of the Hamiltonian.

— We have shown that the spectrum of the correlation matrix is asymptotically
invariant under the action of the Mobius group when its symbol is smooth. As a
by-product, we have discovered that there are families of theories connected by
the 141 Lorentz group whose ground states are different but their entanglement
spectrum is the same in the asymptotic limit.

— When the symbol has discontinuities, we have found that the exponential of the
Rényi entanglement entropy, the partition function, transforms like a product
of homogeneous fields inserted at the points where the symbol is discontinu-
ous. The scaling dimension of these fields is related to the contribution of the
corresponding discontinuity to the coefficient of the logarithmic term in the
entanglement entropy and it is proportional to the number of intervals that
form the subsystem.

— One striking aspect of the previous behaviour is its parallelism with that of pri-
mary fields in CFT under conformal transformations in space-time. Actually,
under a conformal transformation, the partition function also behaves as the
product of homogeneous fields but now inserted at the endpoints of the sub-
system. Their dimension depends in this case on the number of discontinuities
in the correlation matrix symbol.

— This close similarity suggests the introduction of a larger group that includes
Mobius and conformal transformations. This group acts on a phase space ob-
tained from the cartesian product of the space of discontinuities of the symbol
(momentum space) and of the endpoints of the intervals (real space). In this
scenario, we have seen that the partition function transforms like the prod-
uct of homogeneous fields inserted at the points consisting of combinations of
discontinuities and endpoints.

— The Mobius symmetry can be used to find and understand relations and dual-
ities between different theories in terms of the entanglement entropy. We have
applied this idea in the XY spin chain. As a result, we have found the constant
term of the entanglement entropy in the Ising critical line.
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e Using our conjecture for Toeplitz determinants generated by a continuous but non
smooth symbol, we have discussed the possibility of unexplored behaviours for the
entanglement entropy, different from the linear and the logarithmic growth with the
length of the interval.

— In particular, we have discovered that the entanglement entropy should display
a sublogarithmic growth in the ground state of a Kitaev chain with logarithmic
decaying pairings.



Conclusiones

En esta tesis hemos estudiado el comportamiento asintético de la entropia de entrelaza-
miento de Rényi en los estados estacionarios de cadenas fermiénicas descritas por un
Hamiltoniano cuadratico y homogéneo general que puede presentar acoplos de largo al-
cance y romper las simetrias de paridad y conjugacion de carga.

Puesto que los estados estacionarios de estos sistemas cumplen el teorema de descom-
posicion de Wick, el analisis de la entropia de entrelazamiento puede realizarse utilizando
la matriz de correlaciones entre dos puntos. En particular, hemos expresado la entropia
de entrelazamiento de Rényi en términos del determinante del resolvente de la matriz de
correlaciones. De este modo, el estudio de la entropia de entrelazamiento se reduce a
investigar el determinante de una matriz.

La invariancia translacional de la cadena implica que la matriz de correlaciones sea
una matriz block Toeplitz. El comportamiento asintético del determinante de este tipo
de matrices ha sido muy estudiado. Sin embargo, en esta memoria hemos tenido que
tratar con algunos casos que no nos consta que hayan sido considerados previamente en
la literatura. De manera que, motivados por nuestro problema fisico, hemos profundizado
en la teoria de determinantes block Toeplitz descubriendo algunos nuevos resultados:

e Hemos considerado matrices block Toeplitz cuyo simbolo tiene discontinuidades de
salto. Hemos derivado la contribucién dominante de las discontinuidades en el
determinante de estas matrices asi como la expresion del coeficiente de este término,
que unicamente depende del valor del simbolo a cada lado de las discontinuidades.
Este resultado generaliza la conjetura de Fisher-Hartwig para determinantes de
matrices Toeplitz.

e Inspirados por los resultados de la Teoria de Campos Conforme (CFT) sobre la en-
tropia de entrelazamiento, hemos propuesto una expresion para el comportamiento
asintético del determinante de submatrices principales de una matriz block Toeplitz.
Concretamente, nuestro resultado relaciona el determinante de la submatriz con el
producto de varios otros que son block Toeplitz. Por tanto, combinada con el resul-
tado del punto anterior, esta conjetura proporciona el comportamiento asintotico
del determinante de esta clase de submatrices. Las comprobaciones numéricas han
confirmado su validez.

e Hemos establecido una conjetura que da cuenta del comportamiento asintético de
determinantes de Toeplitz cuyo simbolo es continuo, por lo que la conjetura de
Fisher-Hartwig no se aplica, y ademas rompe la condicién de suavidad del teorema
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fuerte de Szegd. Para esta situacién, proponemos un nuevo régimen asintético que
lleva a un crecimiento sublogaritmico del logaritmo del determinante.

— Hemos comprobado numéricamente esta conjetura para una familia de simbolos
continuos cuya derivada diverge en un punto. Para ellos, hemos encontrado que
el logaritmo del determinante de la matriz de Toeplitz crece sublogaritmicamente
con su dimensién como predeciamos.

— Hemos visto que nuestra conjetura sobre el determinante de una submatriz
principal también es valida para esta familia de simbolos.

Provistos de los resultados anteriores sobre determinantes block Toeplitz, hemos ampliado
el conocimiento de la entropia de entrelazamiento en cadenas de fermiones sin spin:

e Si el Hamiltoniano no tiene acoplos de pairing y, por tanto, el niimero de particulas
en los estados estacionarios estd bien definido entonces la matriz de correlaciones es
de Toeplitz. Aplicando la conjetura de Fisher-Hartwig, hemos derivado el compor-
tamiento asintotico completo de la entropia de entrelazamiento de Rényi para un
unico intervalo en los estados estacionarios de estas cadenas.

— Hemos visto que los estados en los que el término dominante de la entropia
de entrelazamiento es lineal pueden interpretarse como el estado fundamental
de una escalera local de fermiones. Asi, esta dependencia lineal en la longitud
del intervalo puede explicarse de acuerdo a la ley de area. También hemos
demostrado que los resultados de la CF'T pueden aplicarse en estas escaleras si
tomamos como subsistema un fragmento apropiado en lugar de un intervalo.

e Si el Hamiltoniano contiene términos de pairing entonces la matriz de correlaciones
es, en general, block Toeplitz. En este caso, hemos limitado nuestro estudio al estado
fundamental.

— En cadenas no criticas con acoplos de alcance finito el simbolo de la matriz
de correlaciones es suave y, de acuerdo con el teorema de Widom, la entropia
de entrelazamiento satisface una ley de area. Hemos revisado los resultados
conocidos en este caso, formalizando la elegante estructura geométrica que se
esconde detras de éstos. El andlisis de la entropia de entrelazamiento puede
formularse mediante una superficie de Riemann compacta determinada por las
constantes de acoplo del Hamiltoniano y cuyo género esta dado por el alcance
de las interacciones. En sistemas con simetria de paridad y conjugacién de
carga hemos obtenido una expresion cerrada para la entropia en términos de la
funcion theta de Riemann con caracteristicas. Este enfoque ha resultado muy
util para obtener muchos de los otros resultados.

— Si el simbolo es discontinuo entonces tenemos que recurrir a nuestro resultado
para determinantes block Toeplitz cuyo simbolo es discontinuo. De acuerdo
al mismo, las discontinuidades dan lugar a un término logaritmico en la en-
tropia de entrelazamiento. Hemos realizado un anadlisis detallado del origen
fisico, naturaleza y contribucion a la entropia de entrelazamiento de las discon-
tinuidades.
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— En particular, hemos visto que las discontinuidades debidas a la ausencia de gap
de masas estan relacionadas con pinchings o estrangulamientos de la correspon-
diente superficie de Riemann compacta si el estado fundamental es invariante
bajo paridad y también con los puntos de Fermi si rompe esta simetria. Su
contribucion al coeficiente del término logaritmico es de la forma prevista por
la CFT.

— Hemos encontrado que la presencia de acoplos de largo alcance también puede
producir discontinuidades en el simbolo. Esto implica que la entropia puede
crecer logaritmicamente fuera de los puntos criticos. Ademas, los limites late-
rales de las discontinuidades debidas a los acoplos de largo alcance pueden no
conmutar. En este caso, su contribucién al término logaritmico de la entropia
es no universal y no puede derivarse a partir de una CFT.

— Hemos aplicado nuestros métodos a la cadena de spines XY con un término
de Dzyaloshinski-Moriya, un modelo que rompe la simetria de paridad, y
a la cadena de Kitaev de largo alcance, que contiene términos de pairing
que decaen siguiendo una ley de potencias, determinando analiticamente el
término logaritmico de la entropia de entrelazamiento en el todo el espacio de
parametros de estos sistemas.

e Utilizando nuestra conjetura para el determinante de una submatriz principal de
una matriz block Toeplitz y los resultados para un tnico intervalo, hemos obtenido
la expansion de la entropia de entrelazamiento de Rényi para subsistemas formados
por varios intervalos disjuntos.

e Hemos descubierto una nueva simetria de la entropia de entrelazamiento bajo el
grupo de Mobius que actia sobre los acoplos del Hamiltoniano.

— Hemos demostrado que el espectro de la matriz de correlaciones es asintotica-
mente invariante bajo la accién del grupo de Mobius cuando su simbolo es
suave. Como resultado, hemos encontrado que existen familias de teorias conec-
tadas por el grupo de Lorentz 141 cuyos estados fundamentales son diferentes
pero su espectro de entrelazamiento es el mismo en el limite asintotico.

— Cuando el simbolo tiene discontinuidades, hemos encontrado que la exponencial
de la entropia de entrelazamiento de Rényi, la funcion de particion, transforma
como un producto de campos homogéneos insertados en los puntos donde el
simbolo es discontinuo. La dimensién de escala de estos campos esta rela-
cionada con la contribucién de la correspondiente discontinuidad al coeficiente
del término logaritmico en la entropia y es proporcional al nimero de intervalos
que forman el subsistema.

— Un aspecto notable del comportamiento anterior es su paralelismo con el de los
campos primarios en una CF'T bajo transformaciones conformes en el espacio-
tiempo. De hecho, bajo transformaciones conformes, la funcién de particién
también se comporta como un producto de campos homogéneos insertados
ahora en los puntos extremos de los intervalos del subsistema. Su dimension
depende en este caso del nimero de discontinuidades en el simbolo de la matriz
de correlaciones.

— Esta estrecha similitud sugiere la introduccién de un grupo mas grande que
incluye a las transformaciones de M6bius y conformes. Este grupo actiia sobre
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un espacio de fases construido a partir del producto cartesiano del espacio
de discontinuidades del simbolo (espacio de momentos) y del de extremos de
los intervalos (espacio real). En este escenario, hemos visto que la funcién de
particion transforma como un producto de campos homogéneos insertados en
los puntos resultantes de la combinacién de discontinuidades y extremos de los
intervalos.

— La simetria de Mobius puede emplearse para hallar y entender relaciones y dua-
lidades entre diferentes teorias en términos de la entropia de entrelazamiento.
Hemos aplicado esta idea en la cadena de spines XY. Como resultado, hemos
obtenido el término constante de la entropia de entrelazamiento en la linea
critica de Ising.

e Utilizando nuestra conjetura para determinantes de Toeplitz generados por un simbolo
que es continuo pero no suave, hemos discutido la posibilidad de comportamientos
inexplorados para la entropia de entrelazamiento, diferentes del crecimiento lineal y
logaritmico con la longitud del intervalo.

— En particular, hemos descubierto que la entropia de entrelazamiento deberia
mostrar un crecimiento sublogaritmico en el estado fundamental de una cadena
de Kitaev con pairings que decaen logaritmicamente.



Appendix A

In this Appendix we give some details on how we have obtained the numerical results
presented in the thesis. The source code of the programs written for the calculations can
be found in the GitHub repository: https://github.com/f-ares/entanglement.

We have calculated the Rényi entanglement entropy using the relation found in Section
between this quantity and the restriction of the two-point correlation matrix to the
chosen subsystem X,

S x = ﬁrﬁlog K”QVX)a 4 (I _2VX)Q} . (A1)

As we discussed in that section, this formula reduces drastically the complexity of com-
puting S, x with respect to its definition in terms of the reduced density matrix py. If
|X| is the number of sites in X, px is a matrix of dimension 2/X x 2/XI while the size of
Vx is 2| X| x 2| X].

Therefore, the numerical computation of S, x consists in calculating the correlation
matrix Vy, obtaining its spectrum and inserting it in the expression (A.l)). In the fol-
lowing, we shall present the tools employed and the problems found in each of these
steps.

Calculation of the correlation matrix

Remember that the entries of Vx are of the form
1 T :
(VX )nim = 2—/ G(0)e®™™dg, n,m e X
™ —T

where G(6) is the 2 x 2 matrix obtained in (2.39). If the symbol G(0) is sufficiently simple,
as it happens with the states studied in Section the integral can be determined
analytically but, in general, we have to obtain the elements (Vy ), calculating the integral
numerically.

We have computed the entries of Vx with Mathematica [I71]. The numerical integra-
tion has been done employing the function NIntegrate. In general, it works well for the
symbols considered in this thesis taking the default parameters assumed by Mathematica.
Nevertheless, there are some points that we must take into account.
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The first one concerns the symbol M () defined in (4.18). As we saw in Chapter [4]
its analytical continuation to the Riemann sphere,

oT(z)  E(2)
—Z(2) _q>+(2))’

is meromorphic on the Riemann surface described by the hyperelliptic curve w? = P(z)
introduced in . Remember that P(z) is a polynomial that depends on the coupling
constants in the Hamiltonian of the chain and it has half of its roots inside the unit disk
and the other half outside it. In Section we established the rule that the branch cuts
of the curve w? = P(z) must be chosen such that none of them cross the unit circle. This
must be also taken into account in the numerical calculations.

That rule implies that Mathematica has to take the square root \/ d+(2)2 — 2(2)2(2)
continuous at the unit circle. Or, in other words, the sign of this square root must be the
same for all z = e. We can make sure that the sign does not change with the following
trick. Taking into account that Z(z7!) = —Z(z), consider the logarithmic derivative

oy o (@) ()07 (&) 4 Z(e) = (e1) + E/(e”)=(e)
f1(0) = i’ Ot (e19)2 4 |Z(ei?)|2

We solve this differential equation numerically employing the function NDSolveValue in
the interval 6 € [—m, 7] and taking as initial condition

£(0) = 5log [27(1)” + [E()P]

The result is a continuous interpolating function for f(#) in the specified interval that
can be used in other Mathematica functions and whose exponential gives the square root
VOt (e)2 + |E(e¥?)[2 with constant sign.

We have to pay special attention to the situation in which pairs of roots of P(z) merge
at the unit circle. In this case, the system is critical, the corresponding Riemann surface
is pinched and there is a global change of sign in the symbol M (6) at the points where
the roots collide.

We have implemented those discontinuities in the numerical computations as follows:
according to the discussions in Sections and 4.3| on the degeneration of the roots at
the unit circle, we can replace the symbol M (6) with h(0)M,(e"?). Here M,(z) is the
2 X 2 matrix obtained from the analytical continuation of M(z) removing all the roots
that degenerate. The factor h(f) is the piecewise constant function that takes values
+1 and it has a jump at the points where M (f) changes the sign due to a pinching of
the Riemann surface. We have applied this strategy to compute the numerical points of
Fig. [5.5] where we checked the transformation law of the entanglement entropy under the
Mobius group in a theory with pinchings.

We also have to be careful when we consider matrices of large dimension as in Chapters
6] and [l Observe that, in the entries of Vi, there is an oscillating factor e?*~™. When
the size of Vx is of the order of 103, in some entries this term oscillates so fast that
the function NIntegrate gives a wrong result. We have solved this problem taking as
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integration rule the LevinRule with the default options considered by Mathematica. This
integration strategy is intended for dealing with integrands with rapidly oscillating terms
as it is our case. When the dimension of Vx is large it is also necessary to increase
the maximum number of recursive subdivisions of the integration region with the option
MaxRecursion. In our case, we set this parameter to 10%.

For the same reason, we have also used the NIntegrate function with the LevinRule
and the above value for MaxRecursion to compute the Fourier coefficients s,(:) of the

logarithm of the symbol g, in the Figs. [7.2] [7.3] and [7.4] of Chapter

Computation of the spectrum of the correlation matrix

Once we have calculated the elements of the correlation matrix Vx we must obtain its
spectrum. We have computed it with a program written in C' employing two different
mathematical libraries: the GNU Scientific Library (GSL) [115] and the Intel Math Kernel
Library (MKL) [170].

We could also obtain the eigenvalues of the matrix in Mathematica using the function
Eigenvalues. However, we experienced some problems with the management of the
memory when the size of the matrix is large enough and the calculation becomes slow.

The numerical results presented in chapters from [2] to 6] have been obtained using GSL
while the results in Chapter [7| have been calculated with MKL. As we explained in that
chapter, the reason to use MKL is that we considered matrices with dimension such that it
is required an amount of RAM memory that is not available in a standard computer. This
forced us to employ High Performance Computing resources. In particular, we employed
the supercomputer Memento [169], located at BIFI, University of Zaragoza. The nodes of
this cluster have enough memory to store the matrices that we needed to study. Of course,
one can use GSL in a supercomputer. However, the library MKL allows to perform the
diagonalisation of the matrix in parallel, and we can exploit the power that this machine
offers.

The library GSL includes the routine gsl eigen herm that it is specifically designed
to calculate the eigenvalues of a Hermitian matrix as it is the case of Vx. We have not
found any problems when we applied it to the matrices studied in this thesis.

In MKL the analogue routine for computing the spectrum of a Hermitian matrix is
zheev. In this case we should be cautious when we want to parallelise the process.

MKL can parallelise the calculation of the eigenvalues splitting it in several threads
using OpenMP. In order to make use of multithreading we have to indicate it with the
command mkl set num threads(int threads) before calling the function zheev. This
specifies the number of threads that MKL should request for parallel computation on
the current execution thread. By default, MKL can dynamically change the number
of OpenMP threads. We have disabled the dynamic adjustment with the command
mkl_set_dynamic(0). Then the library attempts to use the number of threads indicated
in mkl _set num threads.
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An important aspect in parallel computation is the scalability of the algorithm. That
is, its efficiency with the number of threads employed. The ideal situation would be that
the execution time of the parallel algorithm decreases with respect to the sequential one
as the number of threads employed grows. But the common situation is that the efficiency
of the parallel algorithm is poorer from a certain number of threads. In our case, as we
show in Fig. [A.1] we have determined that the optimal number is threads=8. From this
value the execution time of the diagonalisation begins to increase.

1.1

t/ty

0.4 | | | |

# threads

Figure A.1: In this plot we study the execution time of the diagonalisation of the Toeplitz matrix with
symbol g, defined in , with v = 0.25 and 8 = 1/7, using the routine zheev included in the Intel
MKL library. We represent the execution time ¢ as a function of the number of threads in which the
computation has been distributed normalised by the time t; spent using only one thread. For the points
x the size of the matrix diagonalised is 10* while the points [J correspond to dimension 2 x 10*. The
computation has been performed in a node of Memento, see [169], with two processors AMD Opteron
6272 (Interlagos). We have bound each thread to one core (32 in total).

Another point to take into account when we are paralellizing a routine is the affinity,
or how the threads are distributed in the available CPUs. In our case, we have found
that we gain a bit of performance by binding each thread to a core and banning the
migration of the threads from one core to another. This can be done setting the OpenMP
environment variable OMP_PROC_BIND=TRUE.
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In this Appendix we describe the Wiener-Hopf factorisation of the matrix My(z) =
A — M(z) where

M) = \/qﬁ(z)i — ( Ot (z) _E(z) ) '

Here M(z) is the analytical continuation to the Riemann sphere C of the symbol M ()
for the ground state correlation matrix in non critical chains with PC' symmetry and
range of coupling L. We introduced M(z) in Section [4.2] The Wiener-Hopf factorisation
of My(z) was found in [124] by Its, Jin and Korepin for L = 1. The generalisation to
higher values of L was done by Its, Mezzadri and Mo in [128].

The solution of the Wiener-Hopf factorisation problem for M,(z) is a pair of 2 x 2
matrices uy (z), vy (z), that are analytical inside the unit disk |z| < 1, and another pair
u_(z), v_(z), analytical outside the unit disk, such that

Mi(2) = us(2)u—(z) = v_(2)v4(2).

First of all, it is convenient to perform a change of basis and express M (z) in the following

w34 o1 7)
i~ g V)
with

Ot (2) + =(2)
R E R

Therefore, we shall look for the corresponding Wiener-Hopf factorisation of M (z),
M=) = 4 (2)3(2) = 5 ()54 (2),

where @ (z) and U4 (z) are analytic inside the unit disk while @_(z) and ©_(z) are analytic
outside it.

Observe that, for A # +1,
(A2 = Do My(2) Lo, = My(2). (B.1)
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Using this identity we can derive @4 (2) from 04 (2),
i (2) = (V=1)0,07'(2)0s,
i_(z) = o.,0-(2)o..

This means that we only have to find the matrices 0. (2).

If we diagonalise M, (z), we have

where
and

Now, we introduce a 2 X 2 matrix O(z),

Mi(2) = Q(2)DO(2)'O(2)Q(2) .

Then the problem is reduced to construct a matrix ©(z) such that the product v, (z) =
O(2)Q(z)! is analytic inside the unit disk while v_(z) = Q(z)DO(z)~! is analytic outside
it.

If we write explicitly the product ©(z2)Q(z)~! we find

11 —=/8(2)71(O11 — O12) O11 + Oy
OERET =3 ( —/8(2) (O3 — O) Oy + O ) / (B:2)

where we have omitted the dependence of the entries of ©(z) on z, ©;; = ©,;(2). There-
fore, the sum of the entries in each row of ©(z) must be holomorphic inside the unit disk
while the difference must cancel the discontinuities and singularities of 1/g(z)~! in this
region.

On the other hand, for the product Q(z)DO(z)~!, we have

1 —/8(2) [N =1)B20 + (A +1)O9] /g(2) [(A—1)O12+ (A + 1)O14]
DO =956 < (A=1)B95 — (A +1)O2 A+1)Ou — (A= 1)O1, ) |

As we explained in detail in Section E g(z) is a rational function and \/g(z) is
meromorphic in the compact Riemann surface described by the hyperelliptic curve

w? = P(z) = 22(®F(2) + 2(2)) (@ (2) — 2(2)),

where P(z) is a polynomial of degree 4L. Therefore, the genus of the Riemann surface
is g = 2L — 1. Let us assume that the roots of P(z) are simple. Then half of them are
inside the unit disk while the other half are outside it. We follow the rule established in
Section , for the branch cuts of w = /P(z). We take the 2L non intersecting curves
¥y, p=0,...,g, that join the roots of P(z) 22,41 and 25,42 and do not cross the unit
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circle. Hence /g(%) is discontinuous at the points that belong to the branch cuts X, and
it has branch points at the roots of P(z) z;, j = 1,...,4L.

Before writing the form of ©(z), we need to introduce several tools from the theory of
compact Riemann surfaces. A nice book on this topic is for instance [I72].

As in Section [£.2] we take for the homology basis of the Riemann surface described
by w = \/P(z) the cycles a,, b., r = 1,...,g. The cycle a, surrounds anticlockwise the
cut X, in the upper sheet while the dual cycle b, encloses clockwise the branch points

R2y+ vy R2r 41

We also consider the basis of holomorphic forms

_ ¢r(2)
P(z)

dny dz,

where ¢,(z) is a polynomial of degree smaller than g. We normalise it demanding

fdn,q/: T =1, g (B.3)

The integration of the holomorphic forms along the b, cycles gives the entries of the matrix

of periods II,
Hrr’ = f dnr’-
by

Now let us define the Abel-Jacobi map A(z) = (A1(2), ..., Ag(2)) taking as origin the
branch point zq,

Ar(z):/dm, r=1,...,g.

21

We also have to introduce the abelian differential of the third kind dA with a simple
pole at oo of residue 1/2 and with the normalisation

fdA:O, S (BA)

Then we consider the map

A() = / dA.

1

In the neighbourhood of a branch point z;, j = 1,...,4L, of w = /P(2), /T(z) and

A(z) can be written as
Alz) = Alz) + /2 = 2 -, (2), (B.5)
A(2) = Al) + /7= 5 he(2), (B.6)
where ¢, (z) and h_,(z) are holomorphic functions.

-

Therefore, the maps A(z) and A(z) are discontinuous at the cuts X,. We shall denote

by AL(z) and AL(z) the lateral limits of A(z) and A(z) at each side of ¥,. Thus, for a
point z € ¥, in the proximity of z;, with j =2p+1+w and u = 0,1,

As(z) = Alz) £ /7 = 2 7, (),



196

As(z) = Alz;) £ /2 — zj hyy(2).
Since the origin of the Abel-Jacobi map is z;
A(z) =0. (B.7)

Due to the normalisation (B.3|) of the basis of holomorphic forms, for the rest of the
branch points we have

Alz) = %Z 1, (B.8)

and

r=1,...,g, (B.9)

with v = 0,1. The vectors ]\ﬁ, M, € Z# have components

- 0, r<r
(Nr)r/_{ 1’ ’I“/ZT )

and (Z\7[r)rr = 8, where ' =1,...,g.
On the other hand, for the map A(z) we have

1

A(z1) =0, A(z) = o

and .
A(2or4140) = %T +irk,, r=1,...,g u=0,1,

where k, is the r-component of the vector

Rl j[dA,...,]{dA .
2\ Ju be

Therefore, the jumps of A(z) and A(z) at the cuts satisfy the following equations.

For a point z € 3 close to 21,

—

A (2)+ A_(2) =0,
Ay(z)+A_(2) =0.
For a point z € ¥ close to zo,

A2+ A(2)=(1,1,...,1), (B.10)
A(z)+ A_(z) =im. (B.11)

For the rest of the cuts X,, r =1,...,g, we have

A (2)+ A_(2) =7, + M, 7, €78, (B.12)
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AL(z)+A_(z) =im + 27ik,. (B.13)

Let us assume, without loss of generality, that z; is a zero of the rational function
g(z). Then the entries of the matrix ©(z) can be expressed in terms of the Riemann theta
function with characteristics (4.24) as follows,

O11(2) = Vz — ze” 20

with 1 oA+1
BA) = 5~ log v,

and € € Z®& whose first L — 1 entries are 0 and the last L are 1.

We shall justify now why we have to take these entries for the matrix ©(z). For this
purpose we need to recall some properties of the the function 19[’;} (z). Tt is quasi-periodic
[92] Y

I

for any n,m € Z&.

RIEL
—~
Ny
+
3
+
3
=
S~—
Il
D
s
2
Tl
:‘1
N
3
I
N
BRI
=
3
&
3
<
RIEL
—~
Ny
N—

The theta function also satisfies the parity property
I[2)(Z) = (1) [ 5] (~7)

v

if i, v € (Z/2)%, as it will be our case.

Consider a point z € ¥ in the neighbourhood of z;. Taking into account the equations
(B.10) and (B.11) for the jumps in A(z) and A(z) and the previous properties of the theta

function, we have
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for z € X close to zs.

In the rest of the cuts 3,, r = 1,..., g, using the jump relations (B.12) and (B.13)) for
A(z) and A(z) and the quasi-periodicity and parity of 19[5}, we find

A1

_ (A - 1)“’“ eA_(z)ﬁ[g] («1(2) F B(N)E+ z)

for z € 3,.. We denote by e, the r-component of the vector €.

Given the form of the entries ©(z), the above relations imply that they are discontin-
uous at the branch cuts X,.

Observe that, since e, =0 for r = 1,..., L — 1, the lateral limits of the discontinuities
in ©(z) satisfy the relations

(©11(2))+ = (O12(2))-,  (O12(2))+ = (On1(2))-, (B.14)

and
(©22(2))4 = (©21(2))-, (O21(2))+ = (O22(2))-, (B.15)
at the branch cuts X, located inside the unit disk, i.e. p=0,...,L — 1.

On the other hand, for the branch cuts outside the unit disk X,., r = L,..., g, we have
e, = 1. Therefore, the discontinuities in ©(z) at these cuts have lateral limits

Ou() =51 On() s (©u(E) =3 7OuE)  ([B16)
and A+1 A—1
(©22(2))+ = /\—:(@21(2))7 (©21(2))+ = )\—11(@22(@)—- (B.17)

Observe in (B.2) the entries of the product ©(2)Q(z)~!. According to (B.14)) and (B.15)),
©11(2) + O12(2) and Og1(2z) + O9(z) are continuous at the branch cuts inside the unit
disk. Therefore, they are analytic in this region as we demanded.

On the other hand, ©11(z) — ©12(2) and O91(z) — O92(2) have a global change of sign
at the cuts inside the unit disk. Therefore, in the neighbourhood of one of the branch
points z; that the cut X, joins, they behave as

©11(2) — O12(2) ~ (2 — zj)ej/Q,

O91(2) — On(2) ~ (2 — )92

The index ¢; is +1 if A(z;) is not a zero of the theta function O] %] while ¢; = —1 if Alz))
is a zero of this function.
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Since we need that \/g(z)1(011(2)—012(2)) and /g (2)—©22(2)) be analytic

inside the unit disk, we have to impose that the zeros of 19 g < )> must be the branch

points that are poles of the rational function g(z).

The theta function .
9[4] (A=)

has g zeros at Py, ..., P, € C that satisfy

yAr

with fI,7 € (Z/2)% and the vector K € C# is the Riemann constant (see for instance
[T72]). The latter depends on the chosen homology basis. Let us determine it for our
case.

+ il - K, (B.18)

||
Ti

Consider the branch points 29,11, 7 =1,...,g. In we have obtained

A(ZQ»,-+1) — TH.

2

If we take ji = /' = 0 and we apply the quasi-periodicity property of the theta function,

we have
o[ (A =5 (A

Since N, - M, = 1 and due to the parity of the theta function, the above identity leads
to conclude that the branch points 29,41 are the zeros of 19[8:} (A(2)). In consequence,
according to (B.18]), the Riemann constant is

—

(z2r11)- (B.19)

]

.

r=1

Once we have obtained the form of K we have to tune the characteristics /i,  such that
the poles of g(z) satisfy the condition (B.18) to be the zeros of ¥[Z](A(z)). Or, in other
words, we have to take the condition (B.18]) and to demand

€9 — 1 €9 €opyg — 1 - I —'
2 ZQ + Z { 2l 22r+1) + %A(mru) =v+pull - K,
with €; equals to = +1 if z; is a zero of g(z) and —1 if it is a pole.

If we apply (B.8)), and (B.19) in the latter expression we arrive at

1
My = 1(627"4-1‘}‘627’—&—2)7 (BQO)

2r+1

v, = —Zej, =1,...,¢8. (B.21)

Coming back to the main discussion, if we take these characteristics for the theta func-

tions in the entries of ©(z) then 1/g(2)~1(O11(2) —O12(2)) and \/g(2) 71 (O21(2) — O22(2))
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are analytic functions for |z| < 1. This allows to conclude that 0, (2) = O(2)Q(z)! is
analytic inside the unit disk.

It remains to show that o = Q(2)DO(z)~! is analytic outside the unit disk. The
reasoning follows the same lines as for ©(z)Q(z)'. The only difference is that we have
to employ the relations and for the jumps of ©(z) at the cuts outside the
unit disk. Notice that the determinant of ©(z) also appears in this case.

Since det O(z) = ©11099 — ©1209,, it is straightforward to see using the relations for
the lateral limits of the discontinuities in ©(z) that the determinant is discontinuous at
the cuts ¥,, p =0,...,g. The lateral limits satisfy

(det O(z))1 = —(det O(2))_, z€X,.

Therefore, in the neighbourhood of one of the branch points z; that is an endpoint of the
cut ¥,, the determinant behaves as

det ©(2) ~ (2 — ;)92

Hence det ©(z) has the same discontinuities and singularities as 1/g(z).
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In this Appendix we shall check the consistency of the expression for Dx(A) that we
introduced in (4.25). In particular we shall show that it does not depend on the order
in which we choose the branch points of the hyperelliptic curve w? = P(z), provided we
take the first half inside and the last half outside the unit disk.

Suppose that we exchange the order of two roots z;, and z;,, with j, = 2r,+1+u,, x =
1,2and r, =1,...,g and u, =0, 1.

If we follow the prescriptions of Section this induces a change in the fundamental

cycles which are transformed into a,, b, such that

ar., r#£r,T, bl r<ry+ u,
a=9qa. +A, r=r, by =< +A ri+u <r<ro—1+u, (CI)
a,, — A, r=ry bl r>ry— 1+ ug
where N
A=b, -+ > a.
t=r14+u1

This transformation is a particular instance of the most general change of basis of cycles
given by a modular transformation [140]

b A B\ [V A B
()= (e D) (o) (& p)esmem
The new period matrix is
II'=(A-1C)"YIID — B).

While the normalized theta functions are related by

where

s = §(CIl' + D), (C.2)

and the characteristics verify

7.0 () = .00 () - 5 (st dins(0'm) (1))

a a

201
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In the particular case of the transformation (C.1|), after a straightforward calculation, one
obtains

7.0) () = 50 (1) + S+, < 1)+ M s -2 S (€3)

t=ri1+u;

We shall examine now how the arguments of the theta functions in (4.25)), § = £5(\)é,
are modified by the transposition. Taking into account the definition of € and the form
of the matrices C' and D one has €C = 0 and €D = €'if and only if the two roots z;, and
zj, that we exchange verify ji, jo < 2L or ji, jo > 2L, which means that both roots sit at

the same side of the unit circle. In this case applying 1' one has § = §= +8 (N)e.

In (4.26)) we gave a prescription to obtain the characteristics for the theta functions
involved in the computation of Dx (). They depend on the position occupied by the poles
and zeros of the rational function g(z) which are labelled by a sign €;. If we exchange two
of them, the original characteristics fi, 7 change into

Ly r #7117, Uy, r<ry+u,
fir = § py + 36, T =711, =R 430, ritu <r<r—1l4u, (C4)
iy — 1—1(5, r=r,, vy, r>1ry— 1+ uo,

where § = €;, —¢€;,. These, in general, are different from those obtained by the application
of |D to i and © which we denote by u/ and /. After a somehow lengthy but direct
computation one obtains

- (U €, —1 €5, +1 €, +1 €, — 1
— V) (a’) = (Ul ]12 — Uz ]22 )b;z_ <U1 ]12 — U2 ]22 )b;q

€. — 1 e 1) P
—|—((1—u1) o = (L) ) > a. (C.5)

t=ri1+u;

Yy

7
- M,

=y

(

The important point to notice here is that, given that u, = 0,1 and ¢; = *£1, one
always has 1 — /I’ ,v —v' € Z&. This implies that

o4-902).
as one can easily check from the definitions.

Finally, putting everything together one has
I L] @sye|m) = 3] % | @s(e| ) = F[ 2] (80| W),

where for the second equality we assume that the two branch points, whose order was
exchanged, belong both to the first half of the ordering (ji, jo» < 2L) or both to the second
half (j17j2 > QL)

From the equality of the normalized theta functions we deduce that a change in the
order in which we take the roots does not affect the expression for the determinant,
provided we do not exchange a root inside the unit disk with one outside.
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We shall show in this Appendix that the Mobius transformations (5.3) act on the set
of couplings A = (A_p,..., Ay, - ,Ar) and B = (B_p,..., By, -, By) like the spin L
representation of SL(2,C).

For this purpose, let us see how the Laurent polynomials

O(z)= Y AR, E(z)= ) B2

I=—L I=—L

change under an arbitrary Mobius transformation. This can be done studying the repre-

sentations of SL(2,C) in the space of homogeneous polynomials of two complex variables.
We shall follow Ref. [173].

To each element

it corresponds the linear transformation in C?
(21, 22) > (az1 + bzg, cz1 + d2o).

Associated with this transformation we have the operator 7j, which acts on the space of
functions f : C?* — C? such that

T,f(z1,22) = flaz + bza, cz1 + dzs). (D.1)

Note that T, is a reducible representation of SL(2,C) in the space of functions of two
complex variables. This space contains an invariant subspace under Tj: the space 91, of
homogeneous polynomials in two variables of total degree 2L,

L
_ L+l L1
h(z1, z2) = E w2y

l=—L

The restriction of T}, to £,y is an irreducible representation of SL(2,C).

There is an isomorphism between the space of Laurent polynomials £, of degree L in
one (complex) variable and $)27, given by

©: Ny — Lp
hi— Y(z) = 27 %h(z, 1), (D.2)
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and

el & — Do
T h(z1,22) = 2828 Y (21/2). (D.3)

If we call Tgﬁ the action of the SL(2,C) group on the space of Laurent polynomials then
we have the following commutative diagram

or, ‘ £r

Ty T}
oL > £y
where T is given by
T;: = pT,p "
Then taking into account (D.1)), (D.2)) and (D.3)) we obtain
_ az+b
T (z) = (az + b)*(dz"" 4+ ¢)*T (cz n d) : (D.4)

Let us choose now as basis of £, the monomials {z'} with —L < < L and the SU(2)-
invariant scalar product for which

(21, 2™) = 0, —L<Im<L. (D.5)

The matrix elements of T f in this basis are

9 = (2, Tr=m).

m

After a bit of algebra and using ([D.4)), (D.5]) and Newton’s binomial theorem we arrive at

9 = [(L+DV(L — DNL 4+ m){(L — m)!] /2
min(L—m,L+1)

Z L —m L+m |\ qHipg amti gl—m=i
L+1—j

j=max(0,l—m) J

Therefore, the coefficients of the Laurent polynomial T(z) transform under g € SL(2,C)

as
L

up = Z tl(frzum, —L<I<L.
m=—1L

Since the coefficients of the Laurent polynomials ®(z) and Z(z) are precisely the couplings
of the Hamiltonian, we have just found their behaviour under Mébius transformations,

L L
A= > A Bl= Y 4B,
m=—L m=—1L
Note that t(_gl),_m = tz(,gn)z &t
Therefore, in this case, the new couplings satisfy the required properties A’ ; = A] and

when a = d and b = ¢, as it happens for the SO(1,1) group.
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In this Appendix we shall determine the asymptotic behaviour of the Fourier coefficients

of the function
0 — msign ()

(~108%)"

log g,(0) = 3 0 €[-m,m),

with v >0, < 1and A > 7.

That is, the behaviour of
v L7 ;
S](i‘) = % /_7r log g,,(@)elekde

for large k.

Observe that we can express s,(:) in the form

s = 10 ZIm / g,
—log 5 I9\

Consider that k is positive. If we perform the change of variables z = k#,

(,,) Bm ke Z//ﬂ—ﬂ'
T wE Ny (log [k~ log %)

e¥dz.

We extend now the domain of the integrand above to the complex plane. It has branch
points at z = 0 and z = Ak. Then we take as branch cuts the real intervals (—oo, 0] and
[Ak,00). The integrand is analytic in the rest of the complex plane.

Then take the contour I' represented in Fig. [E.Il Applying the Cauchy residue theorem

we have L
f 2k —m —e*dz = 0. (E.1)
r (log |k| — log Z)

Therefore,

: km L — )
3,(:) = ﬁlm lim / 2/ T —e*dz
km e—0t J, (log |k| — log %)

= —ﬁlm lim / 2k —m _e*dz
km e=0% Jriur, (log ’k| - log %)
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Figure E.1: Contour of integration, cuts and branch points for the computation of the Fourier coefficients
of log g,, using the contour integral (E.1|). The integrand has branch points at 0 and Ak with A > 7 and
k > 0. The branch cuts are the real intervals [Ak, co) and (—oo,0].

where I'; and Ty are the curves indicated in Fig. [E.1]

With respect to the integral along the arc I'y,
15 z/k—m

I = Im l,eizdz,
kr r, (log|k| —log %)
if we take z = kmel¥ then
1§0 —1 ik cos p  —kmwsinp: ip
I, =ifmIm e e ie?dep.
log £ — 1g0)

Hence

w/2 i . /2 — .
|Il| < ﬁﬂ'/ %e_kﬁsmwdgp _ Bﬂ_/ 2 22(30890 Ve_kWSIH¢dCP.
0 ’10g T 190| 0 ((log é) + <p2>

Since the integrand in the latter expression decays exponentially with k for 0 < ¢ < 7/2,
the only non-neglectible contribution when £ is large enough to the integral is due to the
points close to ¢ = 0. Therefore, taking into account that cosp ~ 1 —¢?/2 and sin ¢ ~ ¢
for ¢ < 1, we can approximate the integral above as

/2 2-2005¢ pranor . [ 0 o 1—e (14 kr?/2)
5 € dp ~ Toa AV RS dp = oo AY 272 )
o\ (05 4)"+ ) o (log%) (108 2)" n2k

Thus we can conclude that
|| = O(k™?)
and, therefore,

. b _
s,(:) = —ﬁlm lim / 2/ T - e*dz
k r, ( z

s e—0+ log |k| — log Z)

+O(k™2). (E.2)
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Consider now

_ﬁl ikm Z//{Z—’ﬂ'

I, = m _e*dz.
ko Jo (log k[ —log %)
If we perform the change of variables t = —iz,
. km .
t/k —
IQ = ﬁ - / T ] e_tdt.

e o (log|k| —log %)

Assuming k > 1, let us express the integral above in the form

i k| log £ +im/2\ " _
L=—"__R t/h—m) (1—-—A4 "2 tdt
2= Tr(log [k])” e/o (it/ ﬂ( log |&] ¢

and expand the denominator using
(1+a)" =1—-va+0(a®), if |a] <.

Therefore

i3 k. log £ + im/2 ( 1 )] B
I:—Re/ itk —m [14—1/’4——1—0 — )| etde.
2= Tnllog Ry, (R log 7] (log [F])2

If we restrict the expansion of the integrand in terms of 1/log |k| to first order and we
take the real part then

ip ke vlog + 1
I:——/ et(1+—A+O _— dt.
27 k(log k)Y J log [k| (log [&])?

ip log A + Vg ( 1 >:|
[ PR € Y g
? k(10g|k!)”{ log || (log [k])2

Applying this result in (E.2) we find that

w B iBu(log A + ) R
Sy k(10g|k’|)u + k(loglkDV—H +O ]{j(log|/{j|)’/+2 (E?))

Hence

when k is large enough.
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