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Generating measurement-induced non linearity with a BS (Beam splitter) is an easy
way to produce entangled states and potentially reduce the quadratures uncertainty
as BS is a simple tool that can be implemented in a huge number of experimental
setups without too much difficulty. The importance of this kind of states arises in
the fields of quantum information and communication and metrology.

To study this method, simulations, with the help of the software package QuTiP
for Python, of three different setups involving BS, detectors and phase selectors have
been done varying different parameters of the setup. In a simulation with one BS
and a detector a reduction of the quadratures uncertainty has been observed. It has
been found that same levels of entanglement are reached with one BS or two BS for
a photon and a coherent state as input states.
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Chapter 1

Introduction

Quantum mechanics, more specifically, Quantum Optics, is a topic that will be
around and linked to most of the parts and issues of this work. The aim of this
work is to study a simply and easy way to generate entangled and/or squeezed
states through measurement-induced non linearity. The applications of that kind of
states go from quantum communications to metrology methods.

Specifically, in the following sections using one of the main tools of the Quantum
Optics, the beam splitter (BS), different states of light (single photons, coherent and
squeezed states) will be studied through some computer experiments and simula-
tions.

1.1 Applications and historical review of Quantum Optics.
Motivation of the work

The way individual quanta of light (photons) interact with atoms and molecules is
a regarding issue of Quantum Optics [33]. This field of study is mainly the conse-
quence of joining quantum theory and light.

According to Gerard Milburn (an expert in quantum optics from the University
of Queensland in Australia) this branch of knowledge date back to the 1960s [41].
Roy Glauber (then at Harvard University) started it with his study about the optical
coherence of quantized electromagnetic fields – thanks to this study he was granted
a Nobel Prize in 2005, having published his first results in 1963 [1]. In the 1970s
the prediction and observation of photon antibunching was achieved thanks to the
study of the quantum features of photon-counting statistics [7][36]. Later on, in the
1980s, complementary "wave" aspect of light was studied, especially focusing on
phase-dependent properties such as squeezing [25]. In the 1990s, the non-classical
aspects of entanglement arise as the major area of investigation. Also in the 1990s,
two main branches of study made important progress, quantum information and
new fields of atomic condensates [41]. Quantum Optics became ideal for testing
new and advanced concepts and ideas developed in quantum information theory
has reached a huge level of success since then [35][47]. A lot of features, thoughts
and predictions of quantum theory (such as teleportation and the violation of Bell’s
inequality) have been proven in the Quantum Optics field [28][13]. With this prece-
dents, Quantum Optics (especially on the direction of communication and comput-
ing) will continue producing remarkable advances in the future [44].

Applications are currently limited by the available hardware, particularly to pho-
ton detectors and single photon on-demand sources. As the technology to improve
these devices advances, the number of applications will increase and their quality
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will improve. One remarkable fact is the important advances in the scaling of quan-
tum optical systems nowadays and the development of sophisticated integrated op-
tical circuits [29].

But not only applications of quantum optics are linked to quantum comput-
ing and communication. Also, quantum theory plays an important role in as-
pects of metrology and measurement schemes. By preparing quantum states in a
specifics way, it is possible to squeeze the uncertainty of measurements to levels
never reached before [4].

But achieving useful states for this kind of applications is sometimes difficult.
Normally it requires to induced some kind of nonlinearities [5]. However these
types of effects are often neglected in the most common scenarios of the applica-
tions of interest (low photon flux, photon-photon interaction...) [5][8]. Neverthe-
less, some of these photon-photon interactions at low light flux levels have been
achieved. Some of them through single atoms in cavities, atomic ensembles, many-
body physics with strongly interacting photons... [8], using quantum catalysis [5]
and so on.

Particularly, in this work, measurement-induced non linearity is simulated with
the action of BS. The objective is to get entangled states or a reduction in some of the
quadrature or both for quantum communication applications or to obtain measure-
ments with lower levels of uncertainly.

Why generate measurement induced no linearity with BS? A BS is used because
it is a simple tool (also relatively cheap) that can be manipulated easily inside the
setup of an experiment that requires entangled or squeezed states. Also, a BS could
be implemented in an integrated optical circuit resulting in a powerful, valuable and
compact element that could be used in a lot of applications mentioned above.

With the help of BS it is going to be generated measurement-induced non linear-
ity. A quantum toolbox in Python (QuTiP [see section 2.4] for more details about this
software) is going to be used in this work to simulate three computer experiments.
The setup consists basically of one or two beam splitters and some detectors differ-
ently arranged depending on the concrete simulation. The input states that are going
to be studied and tested in the different setups are: single photons, coherent states
and squeezed states. A further and more detailed explanation of each simulation is
described in Chapter 3.
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Chapter 2

Theoretical background

In this chapter the most important elements that are used in this work are going to
be explained:

Wigner function (Section 2.1) – Wigner function and quadratures.
Beam Splitter (Section 2.2) – Theory and input states.
Entanglement measures (Section 2.3) – What is? and log-negativity.
QuTiP (Section 2.4) – Description of the software used package. Comparing di-

mensions size of Hilbert space.

2.1 Wigner function

In quantum mechanics there is an uncertainty principle that makes it impossible to
know both q or x (position) and p (momentum) at the same time. In the standard
formulation of quantum mechanics one works with probability densities instead. It
would be desirable to have a single function that could display the probability in
both x and p. The Wigner function is a function constructed to do that although it
will not have a direct physical interpretation as a probability distribution we know
from classical physics. For example the Wigner function can be negative in regions
of phase space, which have no physical meaning if one thinks of it as a probability
distribution. [6]

The quadratures operators X̂ and P̂ are the dimensionless equivalent to position
and momentum defined in terms of the creator and annihilation operators as:

X̂ =
1
2
(â† + â) (2.1)

P̂ =
i
2
(â† − â) (2.2)

The definition of the Wigner function given a state ψ is:

W(x, p) =
1

2πh̄

∫
dye

−ipy
h̄ ψ(x +

y
2
)ψ∗(x− y

2
) (2.3)

In this work, all the computed Wigner functions are calculated through a QuTiP
specific given routine.

2.2 Beam Splitter

2.2.1 Theory

The beam splitter is the basic element of the setups that are going to be simulated.
With a beam splitter an input light beam can be sent to different output arms, it
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depends on the splitting ratio. A schematic is shown in figure 2.1).

FIGURE 2.1: A general BS ([49] FIG 1 modified).

In the figure 2.1, 0 and 1 are the input modes and 2 and 3 the output modes of
the BS.

The annihilation operators â of the different incident fields is transformed fol-
lowing relation [9]: (

â2
â3

)
=

(
t′ r
r′ t

)(
â0
â1

)
(2.4)

The coefficients have to fulfil the so called reciprocity relations:∣∣r′∣∣ = |r| (2.5)

|t| =
∣∣t′∣∣ (2.6)

|r|2 + |t|2 = 1 (2.7)

r∗t′ + r′t∗ = 0 (2.8)

r∗t + r′t′∗ = 0 (2.9)

So finally we get:

â†
0 = t′ â†

2 + r′ â†
3 (2.10)

â†
1 = râ†

2 + tâ†
3 (2.11)

In the general case, there is a phase relation between the coefficients that depends
on the construction of the BS. r′, t′ may differ from r, t respectively depending on
the way the BS is made. But, for simplicity, we are going to assume a simple case in
which our BS is lossless, r = r′ and t = t′ and the reflected beam suffers a π

2 phase
shift. With this assumptions, and taking into account that in a general case:



2.2. Beam Splitter 5

(
â†

0
â†

1

)
=

(
t′ r′

r t

)(
â†

2
â†

3

)
(2.12)

the matrix of a 50 : 50 BS would be:

B =
1√
2

(
1 i
i 1

)
(2.13)

As the transformation is lossless, B has to be unitary. This means B†B = I, that
in this case is clearly satisfied.

2.2.2 Input states

Now we are going to see how we can transform the different input states. Especially
we will focus on three main states that will be combined in different ports of the BS:

• Single Photon

• Coherent state

• Squeezed state

Single Photon

In the following picture (Figure 2.2) the Wigner function of a single photon is visu-
alized.

FIGURE 2.2: Wigner function of a photon (made with own code, di-
mension of Hilbert space of 7)

The next step to be able to describe a photon after a BS is to write it in terms
of annihilation operators. In this case |1〉 = â† |0〉 so the whole system after the BS
would be (following Eq 2.10):

|1〉0 |0〉1 = â†
0 |0〉0 |0〉1

BS−→ (t′ â†
2 + r′ â†

3) |0〉2 |0〉3 (2.14)

This means, that in the case of a 50 : 50 BS you can find the photon in any output
port with equally probability.
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Coherent state

A coherent state is a quantum state of the quantum harmonic oscillator whose dy-
namics is closely resembling the oscillatory behavior of a classical harmonic oscil-
lator. The Wigner function of a coherent state is displayed in the following picture
(Figure 2.3).

FIGURE 2.3: Wigner function of a coherent state with α = 0.5 + 0.5i
(made with own code, dimension of Hilbert space of 7)

Now, to describe a coherent state after a BS we need to define the displacement
operator that give us a coherent state from the vacuum |α〉 = D̂(α) |0〉 [10].The dis-
placement operator D̂(α) is defined as:

D̂(α) = exp
{

αâ† − α∗ â
}

(2.15)

With α ∈ C being the parameter of the coherent state (the so called amplitude of the
state).

Now introducing a coherent state in the Port 1 (following Eq 2.11) the whole
system after the BS can be described as:

|0〉0 |α〉1 = D̂1(α) |0〉0 |0〉1
BS−→ exp

{
α(râ†

2 + tâ†
3)− α∗(râ†

2 + tâ†
3)

†
}
|0〉2 |0〉3 (2.16)

Squeezed state

Squeezed states have the variance of one quadrature reduced, while the other must
increase to preserve the Heisenberg uncertainty relation. The Wigner function of a
squeezed state is displayed in the following picture (Figure 2.4).

Now, to describe a squeezed state after a BS we need to define first the "squeeze"
operator that gives us a squeezed state from the vacuum |α〉 = Ŝ(ξ) |0〉 [11].Ŝ(ξ) is
defined as:

Ŝ(ξ) = exp
{

1
2
(ξ∗ â2 − ξ â†2)

}
(2.17)

With ξ ∈ C being the parameter of the squeezed state.
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FIGURE 2.4: Wigner function of a squeezed state with ξ = 0.5− 0.5i
(made with own code, dimension of Hilbert space of 7)

After the action of the BS the final state would be:

|0〉0 |ξ〉1 = Ŝ1(ξ) |0〉0 |0〉1
BS−→ exp

{
1
2
(ξ∗(râ†

2 + tâ†
3)

†2 − ξ(râ†
2 + tâ†

3)
2)

}
|0〉2 |0〉3

(2.18)

2.3 Entanglement measures

In the following sections entanglement is going to be described. Also a way to mea-
sure it through the logarithmic negativity is going to be given.

2.3.1 What is entanglement?

Entanglement is a quantum phenomenon, with no classical equivalent, in which the
quantum states of two or more objects must be described by a single state that in-
volves all the objects in the system, even when the objects are spatially separated.
This leads to correlations between observable physical properties. But a more de-
tailed and rigorous definitions is given by [24]:

“The definition of entangled state is made in terms of the physical resources
needed for the preparation of the state: a multipartite state is said to be entangled if
it cannot be prepared from classical correlations using local quantum operations.”

Given the typical example for quantum communications of Alice and Bob (see
Figure 2.5), a local quantum operation (LOCC) is an operation performed in ei-
ther Alice or Bob’s states (such as measurement of the state, a quantum gate like
Hadamard, CNOT...). In the abbreviation (LOCC) of this kind of operation over this
types of system is also included CC that stands for Classical Communication. It refers
to the classical channel which also exists between Alice and Bob.

Although the most common way to generate entangled states is the Spontaneous
Parametric Down Conversion (SPDC), in this work entangled states are also gener-
ated by passing different input states (Single photon, coherent states and squeezed
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FIGURE 2.5: Standard Quantum Communication setup [26]

states) through a BS. Moreover, it exists a lot of procedures to achieve entangled
states such as [14]:

• entangled photon pairs from calcium atoms [22].

• entangled ions prepared in electromagnetic Paul traps [30].

• entangled atoms in quantum electrodynamic cavities [21].

• long-living entanglement between macroscopic atomic ensembles [39].

• entangled microwave photons from quantum dots [23].

• entanglement between nuclear spins within a single molecule [14].

• entanglement between light and an atomic ensembles[32].

2.3.2 Logarithmic Negativity

Entanglement is essential in a huge amount of quantum communication processes.
That is why it is also crucial to measure and understand it to be able to quantify en-
tanglement [38]. For this purpose, a quantity called Logarithmic Negativity, EN(ρ), is
defined. Given, for example, a bipartite 1 quantum system represented by a density
matrix in a given orthonormal basis ρ = ∑ ρij,kl |i〉〈j| ⊗ |k〉〈l| the partial transposition
with respect to party B is given by [26]:

1A system with two parts (in this case, particles) is called bipartite. During the simulations that
are going to take place in this work, the system may be higher than only a bipartite state. It is the
case when two BS are used, where we have a four partites system, as it will be explained later in the
Chapter 3.
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ρTB = ∑
i,j,k,l

ρij,kl |i〉〈j| ⊗ |l〉〈k| (2.19)

With this, EN(ρ) can be defined as [26]:

EN(ρ) := log2

∥∥∥ρTB

∥∥∥ (2.20)

Where ‖X‖ is the so called trace norm, defined as [26]:

‖X‖ := Tr
√

X†X (2.21)

The properties of EN(ρ) are:

• can be computed very easily [26].

• is monotic under LOCC and positive partial transpose2 (PPT) operations [38].

• is an upper bound to distillable entanglement [48].

• possesses an operational interpretation as a special type of entanglement cost
under PPT operations [3].

The second property arise from the fact that logarithmic negativity is neither
convex nor concave. However, this convexity is just a mathematical requirement for
entanglement monotones that generally does not correspond to a physical process
in which a quantum system may loss information [38].

2.4 QuTiP

2.4.1 Description

QuTiP [17][18] is a Quantum Toolbox in Python and the main tool used in the simu-
lations made in this work. It is an open-source software for simulating the dynamics
of open quantum systems. QuTiP aims to provide user-friendly and efficient numer-
ical simulations of a wide variety of Hamiltonians, including those with arbitrary
time-dependence, commonly found in a wide range of physics applications such as
quantum optics, trapped ions, superconducting circuits, and quantum nanomechan-
ical resonators [43].

This software is developed in the Python language programming and the QuTiP
library depends on other numerical Pyhon packages like NumPy [34], SciPy [46][19]
and Cython [12]. Moreover, to be able of seeing and evaluating all the different out-
puts and results, the Matplotlib [27][15] plotting package is also used.

All programs, codes and Python routines have been written and run in a Jupyter
[20] environment, which is developed with a IPython [16][37] kernel.

2.4.2 Comparing different Hilbert space dimensions

While working with QuTiP, you have to take care of some parameters and details.
One of these parameters is the dimension of the Hilbert space you are working in.
This variable is a kind of convergence parameter and may affect to the performance,

2Positive partial transpose (PPT) operations are a kind of operations that preserve the positiveness
of the partial transpose across all possible bi-partite splits[26]. For a deeper explanation of the PPT
conditions see [40].
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quality and computational time of the current simulation. For this reason, it has to
be cleverly chosen trying to achieve an equilibrium between quality and required
computational time of the simulation. Of course, you have to take into account the
resources and computational power. It is clear that, the higher dimension you use,
the better result’s quality you will get. On the other hand, the higher Hilbert space
dimension you use, the more computer demanding it will be.

To try to evidence the dependence of the Hilbert space dimension, N, with the
overall performance of the simulation a test is going to be done. The test consists
of calculating the Wigner function of a single photon, coherent state and squeezed
state several times with different dimension in each time through QuTiP routines.
The technical information of which machine is used to run the simulations or the
specific version of the software packages can be consulted in Appendix A.1.

In the Appendix A.2 in the Figures A.1, A.2 and A.3 the results of the simulations
are shown and the times required are listed in the Table A.3.

0 40 80 120 160 200
0

20

40

60

80

100

N, Hilbert space dimension

Ti
m

e
[s

]

Hilbert space dimension test

Photon
Coherent (α = 0.5 + 0.5i)
Squeezed (ξ = 0.5− 0.5i)

FIGURE 2.6: Graph of the required time for a given state and a Hilbert
space dimension to compute the Wigner function.

There is almost no dependency between the input states and the time required
to compute the Wigner function. It just increases as N increases, as shown in figure
2.6. This increment is quite big, for example:

• going from N = 5→ N = 10 the required time increases by a factor of ∼ ×4.

• going from N = 10→ N = 20 the required time increases by a factor of ∼ ×5.

• going from N = 10 → N = 100 the required time increases by a factor of
∼ ×100.

As you work with higher N the factor by which the required time is multiplied
also increases.

Talking about results quality, single photon does not care about N because it only
need a basis of two elements (|0〉 and |1〉) to completely define itself. Coherent and
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squeezed states improve (less blue spots around the centre [Figures A.2, A.3] and a
more "squeezed" figure in the case of squeezed states) as increasing dimension up
to N ∼ 20 more or less comparing the results with those given in [42] and [45] (only
squeezed states).

For a N higher than 20 the only appreciable change is the increment in the re-
quired time.

It has to be taken into account that this test consists just computing the Wigner
function, a simple, easy and quick task comparing the operations in the simulations
in the following sections (Chapter 3).

For this reason and the fact that the used device for the simulations in this work
is a domestic laptop (see Appendix A.1 for more details) , a Hilbert space dimension
of N = 7 has been chosen. Seeing the results of the test (Figures A.1, A.2, A.3) it can
be ensured that the quality of the following simulations will be good enough. It was
not possible to set a higher N because of memory problems on the used machine.
It has to be said that it might exist a way of optimising the used software and the
routines in which, maybe, you may fully exploit all the resources the devices has.
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Chapter 3

Simulations

As explained in previous sections, with the help of BS, measurement-induced non
linearity is generated to produce quantum states for applications such as quantum
communication.

There are three different systems which are going to be simulated with various
input states and varying the value of some of their parameters. Each system corre-
spond to one simulation:

• Simulation 1 – Only one BS. The entanglement of the final state is calculated.
(Section 3.1)

• Simulation 2 – One BS also, but with a detector in one of the output ports.
Here the quadratures are studied. (Section 3.2)

• Simulation 3 – Two identical BS with detectors in between. Wigner function in
different stages of the system and entanglement are computed varying param-
eters such as transmission of the BS or the phase between the states of the two
channels of the setup. (Section 3.3)

The possible options as input states in the simulations are combinations of:

• Single photon – |1〉

• Squeezed state – |ξ〉

• Coherent state |α〉

• Vacuum |0〉

As there are already a lot of parameters that can be varied in the simulations, the
decision of setting α and ξ fixed has been taken to try to simplify the parameter
analysis. The coherent amplitude is α = 1 and the squeezed parameter is ξ = 0.5−
0.5i. The values of these parameters pretend to be as general as possible and of the
order of the more widely used ones (based on [49] and [5]). Note that, for example,
a change in the phase of α or ξ, just results in a rotation of the Wigner functions of
the states which would be irrelevant for what is going to be studied in this work.

In all following simulations the Hilbert space dimension, N, is set to N = 7 as
explained in section 2.4.2. If we call t the transmission and r the reflectivity of the
BS we have:

t = |t| ∈ Z (3.1)

r = |r|i ∈ C (3.2)
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In simulations 2 and 3, the action of the detectors have been implemented by
multiplying the final state, after the BS, by an operator that projects into |1〉〈1| the
modes where the detectors are while keeping the rest. For simulation 2 this operator
is:

Psim2
D = |1〉〈1|A ⊗ IB (3.3)

And for simulation 3:

Psim3
D = |1〉〈1|A1 ⊗ |1〉〈1|A2 ⊗ IB1 ⊗ IB2 (3.4)

Where I is the identity matrix and A′s refer to the detector’s modes and B′s refer
to the output modes without detection. So if we call |ψ′〉 the state after the BS, the
final state after the detectors action is given by:

|ψ〉 = PD
∣∣ψ′〉 (3.5)

The variance of the quadratures has been calculated by a QuTiP routine. From a
given operator, specifically X̂ and P̂ (defined in eq 2.1 and 2.2), it returns:

〈∆X̂〉2 = 〈X̂2〉 − 〈X̂〉2 (3.6)

〈∆P̂〉2 = 〈P̂2〉 − 〈P̂〉2 (3.7)

The machine in which the simulations have been run is a personal laptop , to see
more details about the device see table A.1 . The version of the used software is pre-
sented in table A.2. All programs, codes and Python routines that were used to run
the following simulations have been written and run in a Jupyter [20] environment,
which is developed with a IPython [16][37] kernel. A copy of the developed code
for running this simulations can be seen in Appendix A.3.

3.1 Simulation 1 - One beam splitter and entanglement

3.1.1 Setup and method

In the Figure 3.1 the setup for the simulation 1 is presented.

FIGURE 3.1: Setup of the simulation 1
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The input ports of the BS are labelled as 0 and 1, with t and r being the transmis-
sion and reflectivity respectively. During the simulations, different combinations of
states will be placed in the 0 and 1 ports. Some aspects of the resulting output will
be studied (entanglement mainly) for a set of different values of t.

Remembering the assumptions made about the BS parameters (equations 3.1,
3.2) and what it was said in the BS section (section 2.2) the creation operators trans-
form as follow by the action of the BS:

â†
0 = tâ†

2 + râ†
3 (3.8)

â†
1 = râ†

2 + tâ†
3 (3.9)

With this and knowing how to express the different input states in terms of the
creator operators (see section 2.3) it is able to calculate the final states through the
BS.

3.1.2 Results

Here some results of interest are presented. It consist of two simulations with two
specific values for t with, as input state, the combination (with concrete values for
α 6= 1): single photon + coherent state (Figure 3.2) just to check the results given
by the developed code with those in [49]. Also entanglement measurements for
different combinations of input states over a set of values of t (Figure 3.3) are studied
(this time α = 1).

As it can be observed from figure 3.2, the results are almost the same. This fact
gives reliability to the code and the following results.

What one can read from the Figure 3.3 is that coherent state does not contribute
to the entanglement, at least through the action of a BS, just looking at Coherent
+ Vacuum and Coherent + Coherent figures (3.3e and 3.3h) that display an entan-
glement (log-negativity) of 0. For example, a Photon + Vacuum (Figure 3.3d) or a
Squeezed state + Vacuum (Figure 3.3f) have the same entanglement as Photon + Co-
herent state (Figure 3.3a) or a Squeezed state + Coherent state (Figure 3.3c). This is
an expected result since coherent states are classical and entanglement is a quantum
feature.

Also we have for the case of Photon + Vacuum (Figure 3.3d) for t = 1/
√

2 a
EN = 1 which match perfectly with what is said on [2].

For the setup of this simulation, just one BS, the maximal EN is achieved at t =
1/
√

2. More concrete, in the case of Photon + Photon (Figure 3.3g) a EN ≈ 2.5, for
the case of Squeezed state + Photon (Figure 3.3b) a EN slightly higher than 1 is also
achieved.

From this results it can be concluded that, if you need as much entanglement
as you can, the best option is to use a 50 : 50 BS with a Photon as input for each
port. However, for a concrete experiment (e.g. in quantum communication), it may
be more appropriate not to use such as combination because it could be too diffi-
cult to implement in the setup. To solve these there are more combination of input
states that gives entanglement such as only one Photon + Vacuum/Coherent state,
Squeezed state + Vacuum/Coherent state or Squeezed state + Photon.
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(A) Photon + Coherent state. α =
√

2eiπ/4 and t = 1/
√

2

(B) Photon + Coherent state. α = 10eiπ/4 and t = 1/10

(C) Figure obtained from [49]

FIGURE 3.2: Simulation 1. Checking the code with the results given
in [49].
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(A) Photon + Coherent state (B) Squeezed state + Photon

(C) Squeezed state + Coherent state (D) Photon + Vacuum

(E) Coherent state + Vacuum (F) Squeezed state + Vacuum

(G) Photon + Photon (H) Coherent state +Coherent state

FIGURE 3.3: Simulation 1. Entanglement for different input states
varying t.
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3.2 Simulation 2 - One beam splitter and a detector

3.2.1 Setup and method

In the following picture (Figure 3.4) the setup of the simulation 2 is shown.

FIGURE 3.4: Setup of the simulation 2

It is mainly similar to the setup of simulation 1 (Figure 3.1) but with a difference
that the detector is at the end of the port 2. This detector consists just of a projection
of the state onto a single photon state. As before (Section 3.1), different combinations
of states will be placed in the input ports (0 and 1) and some aspects of the resulting
output will be studied (this time we will focus on Wigner functions and quadratures
essentially) for different values of t.

The transformation of the creator operators are the same as in the simulation 1
(equations 3.8, 3.9).

3.2.2 Results

In the figure 3.5 the variance of the quadratures obtained for the case Photon + Co-
herent state is presented.

From the figure 3.5 can be seen the reduction over the variance of X̂ of the state in
the mode 3 for the case of Photon + Coherent state. The highest reduction is achieved
for t2 = 0.7 which is the same results as in [5].
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FIGURE 3.5: Simulation 2. Variance of quadratures for the case Pho-
ton + Coherent state varying t.

3.3 Simulation 3 - Two beam splitters

3.3.1 Setup and method

In the Figure 3.6 the setup for the simulation 3 is presented.

FIGURE 3.6: Setup of the simulation 3

In contrast to the previous simulations now we have two identical BS (four in
fact if we count the two that are placed for the detectors) and two detectors between
them. Also a phase selector is placed in one of the parts of the setup (7 looking at the
Figure 3.6).

The parameters of the BS for the detectors, td1, rd1, td2 and rd2, are fixed to a bal-
anced beam splitters:

td1 = td2 =
1√
2

(3.10)
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rd1 = rd2 =
1√
2

i (3.11)

If one detector should be removed it would be enough setting rd(1,2) =
0 and, of course, td(1,2) = 1. For this case, the transformation of the creator opera-
tors in the different stages of the setup is a little bit more complicated than in the
previous simulations.

â†
0 = t1 â†

2 + r1 â†
3 (3.12)

â†
1 = t1 â†

3 + r1 â†
2 (3.13)

â†
2 = td2 â†

7eiϕ + rd2 â†
6 (3.14)

â†
3 = td1 â†

5 + rd1 â†
4 (3.15)

â†
5 = t2 â†

9 + r2 â†
8 (3.16)

â†
7 = t2 â†

8 + r2 â†
9 (3.17)

Although the two BS are identical, t1, r1, t2, r2 have been remained separated to
avoid losing generality. In what follows, we will refer to t1, t2 as just t and r1, r2 as
just r.

3.3.2 Results

The dependency of entanglement while varying t and ϕ is displayed in the figure
3.7.

FIGURE 3.7: Simulation 3. Entanglement varying t and ϕ for the case
Photon + Coherent.
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It is a special case when ϕ = π because there is no entanglement in the final state
for any value of t. We can think in terms of an interference experiment and take into
account that each BS introduces a phase shift of π/2 to analyses the ϕ dependency.
With this, for a ϕ = π the final phase difference is 2π so there is no phase difference
between the two output states. Comparing with the results in the simulation 1, the
same level of entanglement has been achieved for ϕ = π/2. Note that a ϕ = π/2 is
the same phase difference that introduces just one BS in simulation 1.

One last consideration about this results is when t2 = 0.5. In this case, the vari-
ation of ϕ plays a important role. For a ϕ = 0 there is no entanglement while for
ϕ = π/2 the maximum is achieved because of the same interference argument used
above.





23

Chapter 4

Conclusions

Generating measurement induced no linearity with a BS is an easy way to produce
entangled states because a BS is a simple tool that can be implemented in a huge
number of experimental setups without no too much difficulties. This entangled
states are really useful in a lot of applications and protocols for quantum information
and communication.

Simulations, with the software package QuTiP for Python, for three different se-
tups involving BS, detectors and phase selectors have been done varying different
parameters of the setup (such as transmission of the BS, the phase...) to study this
method of producing entanglement.

A fact that appears in all executed simulations is that coherent states do not con-
tribute to the entanglement at all for this kind of setups as it is a classical state. For
this reason coherent states are not suitable to use to get entanglement with the setups
presented in this work. Nevertheless, in the simulation 2 it can be seen a reduction
in the variance of X̂ of the state in the mode 3 for the case of Photon + Coherent
state. The highest reduction is achieved for t2 = 0.7 which is the same results as in
[5].It has been found that same levels of entanglement are reached with one BS or
two BS for a photon and a coherent state as input states.A special case occurs in the
experiment 3 when ϕ = π is set. No entanglement is generated. A remarkable con-
sideration about the simulation 3 results is when t2 = 0.5. In this case, the variation
of ϕ plays a important role. For a ϕ = 0 there is no entanglement while for ϕ = π/2
the maximum is achieved because of interference arguments.

There are some improvements or further investigations about these topics. Some
would be: Adding losses to system to make it more realistic. In the real setups a big
problem is the losses in system and a good way to handle them would be simulating
them. It could be easily added to the simulations by just inserting additional BS in
each step you want to introduce a loss as done in [31]. Another one is putting more
BS in a row to see how this may affect the entanglement. It has been seen that for
two BS not too much entanglement has been obtained. But this is not indication for
this would be a rule of the more BS you have the less entanglement you get. Lastly
to deepthly explore all the available possibilities which offer this setups of BSa good
idea is to see how the entanglement (or other features of the states) changes when
you use no identical BS (in contrast to the experiment 3) or other combinations of
transmissions and phases.
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Appendix

A.1 Technical information

TABLE A.1: Device details used for the simulations

Type Personal laptop
Model Asus A550L (2014)
Operating system Windows 10 Home 64 bits
Processor Intel(R) Core(TM) i7-4510U CPU @ 2.00GHz up to 2.60 GHz
Cores 2
Virtual logic processors 4
RAM memory 8 GB | DDR3 DIMM 1600 MHz

TABLE A.2: Used software version

Software Version
QuTiP 4.2.0
Numpy 1.13.1
SciPy 0.19.1
matplotlib 2.0.2
Cython 0.26.1
IPython 6.1.0
Python 3.6.2 |Anaconda custom (64-bit)

A.2 Hilbert space dimension test. Graphs and tables

In this Appendix some graphs and tables regarding to the Hilbert space dimension
test made in section 2.4.2 are presented.
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N Time (s)
Photon Coherent (α = 0.5 + 0.5i) Squeezed (ξ = 0.5− 0.5i)

2 0.018 0.018 0.018
5 0.060 0.062 0.062
7 0.107 0.111 0.106
10 0.220 0.237 0.217
20 0.927 0.910 0.938
50 5.770 5.790 6.060
100 25.600 23.500 23.900
200 96.000 91.000 92.000

TABLE A.3: Time required for a given state and a Hilbert space di-
mension to compute the Wigner function.
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(A) (B)

(C) (D)

(E) (F)

(G) (H)

FIGURE A.1: Hilbert dimension test made with single photons



28 Appendix A. Appendix

(A) (B)

(C) (D)

(E) (F)

(G) (H)

FIGURE A.2: Hilbert dimension test made with coherent states (α =
0.5 + 0.5i)
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(A) (B)

(C) (D)

(E) (F)

(G) (H)

FIGURE A.3: Hilbert dimension test made with squeezed states (ξ =
0.5− 0.5i)
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A.3 Developed code for the simulations
In [ ]: # Jupyter commands

%matplotlib inline

%config InlineBackend.figure_format = 'retina'

# Import the required libraries

import matplotlib.pyplot as plt

import numpy as np

import imageio

import subprocess

import os

import sys

from qutip import *

from mpl_toolkits.mplot3d import Axes3D

from matplotlib import cm

from pylab import *

In [ ]: # Number of photons

N = 7

def plot_wigner (state, T, titulo, direc):

complex_format = "(% .2f%+.2fi)"

xvec = np.linspace(-5, 5, 300)

X, Y = np.meshgrid(xvec, xvec)

W = wigner(state.unit(), xvec, xvec)

fig = plt.figure(figsize = (10, 10))

plt.subplot(1, 2, 1, aspect = 'equal')

plt.title(titulo + ' $\eta$=' + str(round((T/100.00), 2)))

vmin = - 0.4

vmax = 0.4

patata = plt.contourf(xvec, xvec, W, vmin = vmin, vmax = vmax, cmap=cm.jet)

ax = fig.add_subplot(122, projection = '3d', aspect = 'equal')

c = ax.plot_surface(X, Y, W, rstride=2, cstride=2, cmap=cm.jet,lw=.1, vmin= vmin,

vmax= vmax);

ax.set_xlim3d(-5,5);

ax.set_ylim3d(-5,5);

ax.set_zlim3d(vmin, vmax)

fig.colorbar(c, fraction=0.046, pad=0.04)

savefig(direc + '/' + titulo + '_eta=' + '%.2f'%(T/100.00) +".png");

close()

return direc + '/' + titulo + '_eta=' + '%.2f'%(T/100.00) +".png", W;

def coefficients (N, psi_fin, T, titulo, direc):

# It returns an array with the pair (n,m) for each coefficients

# of the basis |n,m> for a given "psi_fin" state

# Also it plots the results

coefficients = []

for n in np.arange(N):

for m in np.arange(N):

try:

toco = tensor(fock(N, n), fock(N, m)).dag() * ket2dm(psi_fin) *

tensor(fock(N, n), fock(N, m))

except TypeError:

toco = tensor(fock(N, n), fock(N, m)).dag() * psi_fin * tensor(fock(N,

n), fock(N, m))

patata = (n, m), float(toco[0][0][0])

coefficients.append(patata)

coefficients = np.array(coefficients)

fig = plt.figure(figsize = (10, 10))

plt.title(titulo + ' $\eta$=' + str(round((T/100.00), 2)))
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ax = fig.add_subplot(111, projection = '3d', aspect = 'equal')

_x = np.arange(N)

_y = np.arange(N)

_xx, _yy = np.meshgrid(_x, _y)

x, y = _xx.ravel(), _yy.ravel()

ax.bar3d(x, y, np.zeros_like(coefficients[:,1]), 1, 1, coefficients[:,1])

ax.set_ylabel('n')

ax.set_xlabel('m')

ax.set_zlabel('c_nm^2')

ax.set_zlim3d(0, 0.4)

ax.set_xlim3d(0, 10)

ax.set_ylim3d(0, 10)

savefig(direc + "/Coeff_" + titulo + '_eta=' + '%.2f'%(T/100.00) +".png");

close()

return coefficients, direc + "/Coeff_" + titulo + '_eta=' + '%.2f'%(T/100.00)

+".png"

In [ ]: # ------ ONE BEAM SPLITTER ------

# DECISION = 0 -> Single photon + coherent state

# DECISION = 1 -> Single photon + squeezed state

# DECISION = 2 -> Coherent state + squeezed state

# DECISION = 3 -> Single photon

# DECISION = 4 -> Squeezed state

# DECISION = 5 -> Coherent state

# DECISION = 6 -> Single photon + Single photon

# DECISION = 7 -> Coherent state + Coherent state

DECISION = 0

a = destroy(N)

x = (a + a.dag())/sqrt(2)

p = -1j * (a - a.dag())/sqrt(2)

# Coherent amplitude

alpha = 1

# Squeezed parameter

rr = 0.5 - 0.5j

toco1 = []

complex_format = "(% .2f%+.2fi)"

Labels = []

Labels = np.append(Labels, 'Photon + Coherent (alpha=' +

complex_format%(float(real(alpha)), float(imag(alpha))) + ')')

Labels = np.append(Labels, 'Photon + Squeezed (r=' + complex_format%(float(real(rr)),

float(imag(rr))) + ')')

Labels = np.append(Labels, 'Coherent (alpha=' + complex_format%(float(real(alpha)),

float(imag(alpha))) + ') + ' + 'Squeezed (r=' + complex_format%(float(real(rr)),

float(imag(rr))) + ')')

Labels = np.append(Labels, 'Photon')

Labels = np.append(Labels, 'Squeezed (r=' + complex_format%(float(real(rr)),

float(imag(rr))) + ')')

Labels = np.append(Labels, 'Coherent (alpha=' + complex_format%(float(real(alpha)),

float(imag(alpha))) + ')')

Labels = np.append(Labels, 'Photon + Photon')

Labels = np.append(Labels, 'Coherent + Coherent (alpha=' +

complex_format%(float(real(alpha)), float(imag(alpha))) + ')')

# Create the folders where store the data

folder = []

folder = np.append(folder, './1BS/PhotonCoherent')

folder = np.append(folder, './1BS/PhotonSqueezed')

folder = np.append(folder, './1BS/CoherentSqueezed')

folder = np.append(folder, './1BS/Photon')
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folder = np.append(folder, './1BS/Squeezed')

folder = np.append(folder, './1BS/Coherent')

folder = np.append(folder, './1BS/PhotonPhoton')

folder = np.append(folder, './1BS/CoherentCoherent')

try:

os.makedirs(folder[DECISION])

except OSError:

if not os.path.isdir(folder[DECISION]):

raise

print (Labels [DECISION])

toco1 = []

pictures1 = [];

pictures2 = [];

picturesD1 = [];

pic_coef = [];

pictures_quad1 = [];

pictures_quad2 = [];

pictures_quadD1 = [];

x2 = []

p2 = []

x2p2 = []

detec = tensor(fock_dm(N, 1), qeye(N))

for T in np.linspace(0, 100, 11):

t = np.sqrt(T/100.0);

r = - np.sqrt((100 - T)/100.0) * 1j;

a1_dag = tensor(conj(t) * a.dag(), qeye(N)) + tensor(qeye(N), conj(r) * a.dag())

a2_dag = tensor(r * a.dag(), qeye(N)) + tensor(qeye(N), t * a.dag())

# Here you decide which states are incoming

if DECISION == 0:

psi_fin = Qobj(alpha * a2_dag - conj(alpha) * a2_dag.dag()).expm() * a1_dag *

(tensor(fock(N, 0), fock(N, 0)))

else:

if DECISION == 1:

psi_fin = Qobj(0.5 * (conj(rr) * a1_dag.dag() * a1_dag.dag() - rr * a1_dag *

a1_dag)).expm() * a2_dag * (tensor(fock(N, 0), fock(N, 0)))

else:

if DECISION == 2:

psi_fin = Qobj(alpha * a2_dag - conj(alpha) * a2_dag.dag()).expm() *

Qobj(0.5 * (conj(rr) * a1_dag.dag() * a1_dag.dag() - rr * a1_dag * a1_dag)).expm() *

(tensor(fock(N, 0), fock(N, 0)))

else:

if DECISION == 3:

psi_fin = a1_dag * (tensor(fock(N, 0), fock(N, 0)))

else:

if DECISION == 4:

psi_fin = Qobj(0.5 * (conj(rr) * a1_dag.dag() * a1_dag.dag() -

rr * a1_dag * a1_dag)).expm() * (tensor(fock(N, 0), fock(N, 0)))

else:

if DECISION == 5:

psi_fin = Qobj(alpha * a2_dag - conj(alpha) *

a2_dag.dag()).expm() * (tensor(fock(N, 0), fock(N, 0)))

else:

if DECISION == 6:

psi_fin = a2_dag * a1_dag * (tensor(fock(N, 0), fock(N,

0)))

else:

if DECISION == 7:

psi_fin = Qobj(alpha * a2_dag - conj(alpha) *

a2_dag.dag()).expm() * Qobj(alpha * a1_dag - conj(alpha) * a1_dag.dag()).expm() *

(tensor(fock(N, 0), fock(N, 0)))

print("T = %.2f"%T)

# Detector action
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psi_fin = detec * psi_fin

# # Output port 1

# aux, W = plot_wigner(psi_fin.ptrace(0), T, Labels[DECISION] + '_O1',

folder[DECISION])

# pictures1 = np.append(pictures1, aux)

coef, pic = coefficients(N, psi_fin, T, Labels[DECISION], folder[DECISION]);

pic_coef = np.append(pic_coef, pic)

# # --------QUADRATURES--------

# fig = plt.figure(figsize = (10, 10))

# plot(np.linspace(-5, 5, 300), np.sum(W, axis=0))

# plot(np.linspace(-5, 5, 300), np.sum(W, axis=1))

# plot(np.linspace(-5, 5, 300), np.sum(wigner(fock(N, 0), np.linspace(-5, 5, 300),

np.linspace(-5, 5, 300)), axis=1))

# plt.xlabel('x / y')

# plt.ylim([0, 30])

# plt.title(r'$\eta = %.2f$ - '%T + Labels[DECISION])

# plt.legend(['X - Quadrature', 'Y - Quadrature', 'Vacuum'])

# plt.savefig(folder[DECISION] + "/Quadrature_O1_eta=%.2f"%T + ".png")

# pictures_quad1 = np.append(pictures_quad1, folder[DECISION] +

"/Quadrature_O1_eta=%.2f"%T + ".png")

# close()

# --------___________--------

# Output port 2

aux, W = plot_wigner(psi_fin.ptrace(1), T, Labels[DECISION] + '_O2',

folder[DECISION])

pictures2 = np.append(pictures2, aux)

# --------QUADRATURES--------

fig = plt.figure(figsize = (10, 10))

plot(np.linspace(-5, 5, 300), np.sum(W, axis=0))

plot(np.linspace(-5, 5, 300), np.sum(W, axis=1))

plot(np.linspace(-5, 5, 300), np.sum(wigner(fock(N, 0), np.linspace(-5, 5, 300),

np.linspace(-5, 5, 300)), axis=1))

plt.xlabel('x / y')

plt.ylim([0, 30])

plt.title(r'$\eta = %.2f$ - '%T + Labels[DECISION])

plt.legend(['X - Quadrature', 'Y - Quadrature', 'Vacuum'])

plt.savefig(folder[DECISION] + "/Quadrature_O2_eta=%.2f"%T + ".png")

pictures_quad2 = np.append(pictures_quad2, folder[DECISION] +

"/Quadrature_O2_eta=%.2f"%T + ".png")

close()

# # --------___________--------

# Log negativity

rho_toco = partial_transpose(ket2dm(psi_fin), [1, 0])

toco1 = np.append(toco1, np.log2((rho_toco.dag() * rho_toco).sqrtm().tr()))

x2 = np.append(x2, variance(x, psi_fin.ptrace(1) / psi_fin.ptrace(1).norm()))

p2 = np.append(p2, variance(p, psi_fin.ptrace(1) / psi_fin.ptrace(1).norm()))

x2p2 = np.append(x2p2, variance(x, psi_fin.ptrace(1)) * variance(p,

psi_fin.ptrace(1)))

# # Maiking .gif with all the obtained pictures

# with imageio.get_writer(folder[DECISION] + './N%d_'%N + Labels[DECISION].replace(" ",

"").replace("=(", "=").replace("(", "_").replace(")","") + '_O1.gif', mode='I', duration

= .5) as writer:

# for filename in pictures1:

# image = imageio.imread(filename)

# # os.remove(filename) #This works on Windows, idk if it works on linux

# writer.append_data(image)

# with imageio.get_writer(folder[DECISION] + './N%d_'%N + Labels[DECISION].replace(" ",

"").replace("=(", "=").replace("(", "_").replace(")","") + '_quadra_O1.gif', mode='I',

duration = .5) as writer:
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# for filename in pictures_quad1:

# image = imageio.imread(filename)

# # os.remove(filename) #This works on Windows, idk if it works on linux

# writer.append_data(image)

with imageio.get_writer(folder[DECISION] + './N%d_'%N + Labels[DECISION].replace(" ",

"").replace("=(", "=").replace("(", "_").replace(")","") + '_O2.gif', mode='I', duration

= .5) as writer:

for filename in pictures2:

image = imageio.imread(filename)

# os.remove(filename) #This works on Windows, idk if it works on linux

writer.append_data(image)

with imageio.get_writer(folder[DECISION] + './N%d_'%N + Labels[DECISION].replace(" ",

"").replace("=(", "=").replace("(", "_").replace(")","") + '_quadra_O2.gif', mode='I',

duration = .5) as writer:

for filename in pictures_quad2:

image = imageio.imread(filename)

# os.remove(filename) #This works on Windows, idk if it works on linux

writer.append_data(image)

# with imageio.get_writer(folder[DECISION] + './N%d_'%N + Labels[DECISION].replace(" ",

"").replace("=(", "=").replace("(", "_").replace(")","") + '_coef.gif', mode='I',

duration = .5) as writer:

# for filename in pic_coef:

# image = imageio.imread(filename)

# # os.remove(filename) #This works on Windows, idk if it works on linux

# writer.append_data(image)

# Ploting the log-negativity

plot(np.arange(0, 1.1, 0.1), toco1)

plt.xlim(0, 1)

plt.ylim(0, 2.6)

plt.xlabel('$t^2$')

plt.ylabel('log negativity')

plt.grid()

plt.title(Labels[DECISION])

savefig(folder[DECISION] + '/N%d_'%N + Labels[DECISION].replace(" ", "").replace("=(",

"=").replace("(", "_").replace(")","") + "_entan_1BS.png");

close()

# Ploting the quadratures variance

fig = plt.figure(figsize = (10, 7))

plot(np.arange(0, 1.1, 0.1), x2)

plot(np.arange(0, 1.1, 0.1), p2)

plot(np.arange(0, 1.1, 0.1), np.full(x2.shape, variance(x, fock_dm(N, 0))))

plt.xlim(0, 1)

plt.ylim(0, 2)

plt.xlabel('$t^2$', fontsize = 30)

plt.ylabel('variance', fontsize = 30)

plt.xticks(fontsize = 20)

plt.yticks(fontsize = 20)

plt.legend(['$(\Delta X)^2$', '$(\Delta P)^2$', '$(\Delta P)^2$ vacuum'], fontsize = 20)

plt.grid()

plt.title(Labels[DECISION])

savefig(folder[DECISION] + '/N%d_'%N + Labels[DECISION].replace(" ", "").replace("=(",

"=").replace("(", "_").replace(")","") + "_variance_1BS.png");

close()

# Exporting the log-negativity data to a .txt

file = open(folder[DECISION] + '/N%d_'%N + 'LogNeg.txt', 'w')

file.write(str(toco1).replace('\n','').replace('[','').replace(']','').strip())

file.close

# Exporting the quadratures variance data to a .txt
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file = open(folder[DECISION] + '/N%d_'%N + 'x2.txt', 'w')

file.write(str(x2).replace('\n','').replace('[','').replace(']','').strip())

file.close()

file = open(folder[DECISION] + '/N%d_'%N + 'p2.txt', 'w')

file.write(str(p2).replace('\n','').replace('[','').replace(']','').strip())

file.close()

file = open(folder[DECISION] + '/N%d_'%N + 'x2p2.txt', 'w')

file.write(str(x2p2).replace('\n','').replace('[','').replace(']','').strip())

file.close()

print ("END")

In [ ]: # ------ TWO BEAM SPLITTER ------

# DECISION = 0 -> Single photon + coherent state

# DECISION = 1 -> Single photon + squeezed state

# DECISION = 2 -> Coherent state + squeezed state

# DECISION = 3 -> Single photon

# DECISION = 4 -> Squeezed state

# DECISION = 5 -> Coherent state

# DECISION = 6 -> Single photon + Single photon

# DECISION = 7 -> Coherent state + Coherent state

DECISION = 1

PHASE = 4 * np.pi / 4;

phase_txt = 'PHASE=' + '%.2f'%(round(PHASE / np.pi, 2)) + 'pi - '

a = destroy(N)

x = (a + a.dag())/sqrt(2)

p = -1j * (a - a.dag())/sqrt(2)

# Coherent parameter

alpha = 1

# Squeezed parameter

rr = 0.5 - 0.5j

toco1 = []

complex_format = "(% .2f%+.2fi)"

Labels = []

Labels = np.append(Labels, phase_txt + 'Photon + Coherent (alpha=' +

complex_format%(float(real(alpha)), float(imag(alpha))) + ')')

Labels = np.append(Labels, phase_txt + 'Photon + Squeezed (r=' +

complex_format%(float(real(rr)), float(imag(rr))) + ')')

Labels = np.append(Labels, phase_txt + 'Coherent (alpha=' +

complex_format%(float(real(alpha)), float(imag(alpha))) + ') + ' + 'Squeezed (r=' +

complex_format%(float(real(rr)), float(imag(rr))) + ')')

Labels = np.append(Labels, phase_txt + 'Photon')

Labels = np.append(Labels, phase_txt + 'Squeezed (r=' + complex_format%(float(real(rr)),

float(imag(rr))) + ')')

Labels = np.append(Labels, phase_txt + 'Coherent (alpha=' +

complex_format%(float(real(alpha)), float(imag(alpha))) + ')')

Labels = np.append(Labels, phase_txt + 'Photon + Photon')

Labels = np.append(Labels, phase_txt + 'Coherent + Coherent (alpha=' +

complex_format%(float(real(alpha)), float(imag(alpha))) + ')')

# Create the folders where store the data

folder = []

folder = np.append(folder, './2BS/PhotonCoherent')

folder = np.append(folder, './2BS/PhotonSqueezed')

folder = np.append(folder, './2BS/CoherentSqueezed')

folder = np.append(folder, './2BS/Photon')

folder = np.append(folder, './2BS/Squeezed')

folder = np.append(folder, './2BS/Coherent')

folder = np.append(folder, './2BS/PhotonPhoton')

folder = np.append(folder, './2BS/CoherentCoherent')
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try:

os.makedirs(folder[DECISION])

except OSError:

if not os.path.isdir(folder[DECISION]):

raise

print (Labels [DECISION])

toco1 = []

pictures1 = [];

pictures2 = [];

picturesD1 = [];

picturesD2 = [];

pic_coef = [];

pictures_quad1 = [];

pictures_quad2 = [];

pictures_quadD1 = [];

pictures_quadD2 = [];

x1 = []

p1 = []

x2 = []

p2 = []

detec1 = tensor(qeye(N), qeye(N), fock_dm(N, 1), fock_dm(N, 1))

for T in np.linspace(0, 100, 11):

t1 = np.sqrt(T/100.0) * 1;

r1 = np.sqrt((100 - T)/100.0) * 1j;

td1 = 1.0 / np.sqrt(2);

rd1 = np.sqrt((1.0 - td1 * td1)) * 1j;

td2 = 1.0 / np.sqrt(2);

rd2 = np.sqrt((1.0 - td2 * td2)) * 1j;

t2 = t1;

r2 = r1;

a6_dag = tensor(t2 * a.dag(), qeye(N), qeye(N), qeye(N)) + tensor(qeye(N), r2 *

a.dag(), qeye(N), qeye(N))

a8_dag = tensor(r2 * a.dag(), qeye(N), qeye(N), qeye(N)) + tensor(qeye(N), t2 *

a.dag(), qeye(N), qeye(N))

a4_dag = td1 * a6_dag + rd1 * tensor(qeye(N), qeye(N), a.dag(), qeye(N))

a3_dag = td2 * a8_dag * np.exp(PHASE * 1j) + rd2 * tensor(qeye(N), qeye(N), qeye(N),

a.dag())

a1_dag = t1 * a3_dag + r1 * a4_dag

a2_dag = r1 * a3_dag + t1 * a4_dag

# Here you decide which states are incoming

if DECISION == 0:

psi_fin = Qobj(alpha * a2_dag - conj(alpha) * a2_dag.dag()).expm() * a1_dag *

(tensor(fock(N, 0), fock(N, 0), fock(N, 0), fock(N, 0)))

else:

if DECISION == 1:

psi_fin = Qobj(0.5 * (conj(rr) * a1_dag.dag() * a1_dag.dag() - rr * a1_dag *

a1_dag)).expm() * a2_dag * (tensor(fock(N, 0), fock(N, 0), fock(N, 0), fock(N, 0)))

else:

if DECISION == 2:

psi_fin = Qobj(alpha * a2_dag - conj(alpha) * a2_dag.dag()).expm() *

Qobj(0.5 * (conj(rr) * a1_dag.dag() * a1_dag.dag() - rr * a1_dag * a1_dag)).expm() *

(tensor(fock(N, 0), fock(N, 0), fock(N, 0), fock(N, 0)))

else:

if DECISION == 3:

psi_fin = a1_dag * (tensor(fock(N, 0), fock(N, 0), fock(N, 0),

fock(N, 0)))

else:

if DECISION == 4:

psi_fin = Qobj(0.5 * (conj(rr) * a1_dag.dag() * a1_dag.dag() -

rr * a1_dag * a1_dag)).expm() * (tensor(fock(N, 0), fock(N, 0), fock(N, 0), fock(N, 0)))

else:

if DECISION == 5:

psi_fin = Qobj(alpha * a2_dag - conj(alpha) *

a2_dag.dag()).expm() * (tensor(fock(N, 0), fock(N, 0), fock(N, 0), fock(N, 0)))
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else:

if DECISION == 6:

psi_fin = a2_dag * a1_dag * (tensor(fock(N, 0), fock(N,

0), fock(N, 0), fock(N, 0)))

else:

if DECISION == 7:

psi_fin = Qobj(alpha * a2_dag - conj(alpha) *

a2_dag.dag()).expm() * Qobj(alpha * a1_dag - conj(alpha) * a1_dag.dag()).expm() *

(tensor(fock(N, 0), fock(N, 0), fock(N, 0), fock(N, 0)))

print("T = %.2f"%T)

psi_fin = detec1 * psi_fin

# --------Output1--------

aux, W = plot_wigner(psi_fin.ptrace(0), T, Labels[DECISION] + '_O1',

folder[DECISION])

pictures1 = np.append(pictures1, aux)

coef, pic = coefficients(N, psi_fin.ptrace([0, 1]), T, Labels[DECISION],

folder[DECISION]);

pic_coef = np.append(pic_coef, pic)

# # --------QUADRATURES--------

# fig = plt.figure(figsize = (10, 10))

# plot(np.linspace(-5, 5, 300), np.sum(W, axis=0))

# plot(np.linspace(-5, 5, 300), np.sum(W, axis=1))

# plot(np.linspace(-5, 5, 300), np.sum(wigner(fock(N, 0), np.linspace(-5, 5, 300),

np.linspace(-5, 5, 300)), axis=1))

# plt.xlabel('x / y')

# plt.ylim([0, 30])

# plt.title(r'$\eta = %.2f$ - Out1 -'%T + Labels[DECISION])

# plt.legend(['X - Quadrature', 'Y - Quadrature', 'Vacuum'])

# plt.savefig(folder[DECISION] + "/" + phase_txt + "Quadrature_O1_eta=%.2f"%T +

".png")

# pictures_quad1 = np.append(pictures_quad1, folder[DECISION] + "/" + phase_txt +

"Quadrature_O1_eta=%.2f"%T + ".png")

# close()

# # --------___________--------

# --------Output2--------

aux, W = plot_wigner(psi_fin.ptrace(1), T, Labels[DECISION] + '_O2',

folder[DECISION])

pictures2 = np.append(pictures2, aux)

# # --------QUADRATURES--------

# fig = plt.figure(figsize = (10, 10))

# plot(np.linspace(-5, 5, 300), np.sum(W, axis=0))

# plot(np.linspace(-5, 5, 300), np.sum(W, axis=1))

# plot(np.linspace(-5, 5, 300), np.sum(wigner(fock(N, 0), np.linspace(-5, 5, 300),

np.linspace(-5, 5, 300)), axis=1))

# plt.xlabel('x / y')

# plt.ylim([0, 30])

# plt.title(r'$\eta = %.2f$ - Out2 -'%T + Labels[DECISION])

# plt.legend(['X - Quadrature', 'Y - Quadrature', 'Vacuum'])

# plt.savefig(folder[DECISION] + "/" + phase_txt + "Quadrature_O2_eta=%.2f"%T +

".png")

# pictures_quad2 = np.append(pictures_quad2, folder[DECISION] + "/" + phase_txt +

"Quadrature_O2_eta=%.2f"%T + ".png")

# close()

# # --------___________--------

# # --------___________--------

# --------ENTANGLEMENT--------
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rho_toco = partial_transpose(psi_fin.ptrace([0, 1]) / Qobj(psi_fin.ptrace([0,

1])).norm(), [1, 0])

toco1 = np.append(toco1, np.log2((rho_toco.dag() * rho_toco).sqrtm().tr()))

# --------___________--------

x1 = np.append(x1, variance(x, psi_fin.ptrace(0) / psi_fin.ptrace(0).norm()))

p1 = np.append(p1, variance(p, psi_fin.ptrace(0) / psi_fin.ptrace(0).norm()))

x2 = np.append(x2, variance(x, psi_fin.ptrace(1) / psi_fin.ptrace(1).norm()))

p2 = np.append(p2, variance(p, psi_fin.ptrace(1) / psi_fin.ptrace(1).norm()))

with imageio.get_writer(folder[DECISION] + '/N%d_'%N + Labels[DECISION].replace(" ",

"").replace("=(", "=").replace("(", "_").replace(")","") + '_out1_2BS.gif', mode='I',

duration = .5) as writer:

for filename in pictures1:

image = imageio.imread(filename)

# os.remove(filename) #This works on Windows, idk if it works on linux

writer.append_data(image)

with imageio.get_writer(folder[DECISION] + '/N%d_'%N + Labels[DECISION].replace(" ",

"").replace("=(", "=").replace("(", "_").replace(")","") + '_out2_2BS.gif', mode='I',

duration = .5) as writer:

for filename in pictures2:

image = imageio.imread(filename)

# os.remove(filename) #This works on Windows, idk if it works on linux

writer.append_data(image)

with imageio.get_writer(folder[DECISION] + '/N%d_'%N + Labels[DECISION].replace(" ",

"").replace("=(", "=").replace("(", "_").replace(")","") + '_quadra_out1_2BS.gif',

mode='I', duration = .5) as writer:

for filename in pictures_quad1:

image = imageio.imread(filename)

# os.remove(filename) #This works on Windows, idk if it works on linux

writer.append_data(image)

with imageio.get_writer(folder[DECISION] + '/N%d_'%N + Labels[DECISION].replace(" ",

"").replace("=(", "=").replace("(", "_").replace(")","") + '_quadra_out2_2BS.gif',

mode='I', duration = .5) as writer:

for filename in pictures_quad2:

image = imageio.imread(filename)

# os.remove(filename) #This works on Windows, idk if it works on linux

writer.append_data(image)

# with imageio.get_writer(folder[DECISION] + './N%d_'%N + Labels[DECISION].replace(" ",

"").replace("=(", "=").replace("(", "_").replace(")","") + '_coef_2BS.gif', mode='I',

duration = .5) as writer:

# for filename in pic_coef:

# image = imageio.imread(filename)

# # os.remove(filename) #This works on Windows, idk if it works on linux

# writer.append_data(image)

# A rough plot of log-negativity

plot(toco1)

plt.title(phase_txt + Labels[DECISION])

plt.xlabel(r'$\eta$/10')

plt.ylabel('log negativity')

savefig(folder[DECISION] + '/N%d_'%N + Labels[DECISION].replace(" ", "").replace("=(",

"=").replace("(", "_").replace(")","") + "_entan_2BS.png");

close()

# Ploting the quadratures variance

fig = plt.figure(figsize = (10, 7))

plot(np.arange(0, 1.1, 0.1), x1)

plot(np.arange(0, 1.1, 0.1), p1)

plot(np.arange(0, 1.1, 0.1), np.full(x2.shape, variance(x, fock_dm(N, 0))))

plt.xlim(0, 1)
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plt.ylim(0, 2)

plt.xlabel('$t^2$', fontsize = 30)

plt.ylabel('variance', fontsize = 30)

plt.xticks(fontsize = 20)

plt.yticks(fontsize = 20)

plt.legend(['$(\Delta X)^2$', '$(\Delta P)^2$', '$(\Delta X)^2$ vacuum'], fontsize = 20)

plt.grid()

plt.title(Labels[DECISION])

savefig(folder[DECISION] + '/N%d_'%N + Labels[DECISION].replace(" ", "").replace("=(",

"=").replace("(", "_").replace(")","") + "_out1_variance_2BS.png");

close()

fig = plt.figure(figsize = (10, 7))

plot(np.arange(0, 1.1, 0.1), x2)

plot(np.arange(0, 1.1, 0.1), p2)

plot(np.arange(0, 1.1, 0.1), np.full(x2.shape, variance(x, fock_dm(N, 0)) * variance(p,

fock_dm(N, 0))))

plt.xlim(0, 1)

plt.ylim(0, 2)

plt.xlabel('$t^2$', fontsize = 30)

plt.ylabel('variance', fontsize = 30)

plt.xticks(fontsize = 20)

plt.yticks(fontsize = 20)

plt.legend(['$(\Delta X)^2$', '$(\Delta P)^2$', '$(\Delta X)^2$ vacuum'], fontsize = 20)

plt.grid()

plt.title(Labels[DECISION])

savefig(folder[DECISION] + '/N%d_'%N + Labels[DECISION].replace(" ", "").replace("=(",

"=").replace("(", "_").replace(")","") + "_out2_variance_2BS.png");

close()

# Exporting the log-negativity data to a .txt

file = open(folder[DECISION] + '/N%d_'%N + phase_txt + 'LogNeg.txt', 'w')

file.write(str(toco1).replace('\n','').replace('[','').replace(']','').strip())

file.close()

# Exporting the quadratures variance data to a .txt

file = open(folder[DECISION] + '/N%d_'%N + 'x1.txt', 'w')

file.write(str(x1).replace('\n','').replace('[','').replace(']','').strip())

file.close()

file = open(folder[DECISION] + '/N%d_'%N + 'p1.txt', 'w')

file.write(str(p1).replace('\n','').replace('[','').replace(']','').strip())

file.close()

file = open(folder[DECISION] + '/N%d_'%N + 'x2.txt', 'w')

file.write(str(x2).replace('\n','').replace('[','').replace(']','').strip())

file.close()

file = open(folder[DECISION] + '/N%d_'%N + 'p2.txt', 'w')

file.write(str(p2).replace('\n','').replace('[','').replace(']','').strip())

file.close()

print ("END")

In [ ]: # To make a comparative log-negativity plot including variation on t and phase

DECISION = 0

file = open(folder[DECISION] + '/N7_PHASE=000pi-LogNeg.txt', 'r')

a = file.readline()

file.close()

# file = open(folder[DECISION] + '/N7_PHASE=025pi-LogNeg.txt', 'r')

# b = file.readline()

# file.close()
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file = open(folder[DECISION] + '/N7_PHASE=050pi-LogNeg.txt', 'r')

c= file.readline()

file.close()

# file = open(folder[DECISION] + '/N7_PHASE=075pi-LogNeg.txt', 'r')

# d = file.readline()

# file.close()

file = open(folder[DECISION] + '/N7_PHASE=100pi-LogNeg.txt', 'r')

e = file.readline()

file.close()

a = a.split()

# b = b.split()

c = c.split()

# d = d.split()

e = e.split()

toco_a = []

toco_c = []

toco_e = []

for kk in np.arange(0, len(a), 2):

toco_a = np.append(toco_a, float(a[kk]))

# b[kk] = float(b[kk])

toco_c = np.append(toco_c, float(c[kk]))

# d[kk] = float(d[kk])

toco_e = np.append(toco_e, float(e[kk]))

fig = plt.figure(figsize = (10, 7))

plot(np.arange(0, 1.1, 0.1), toco_a)

# plot(np.arange(0, 1.1, 0.1), b)

plot(np.arange(0, 1.1, 0.1), toco_c)

# plot(np.arange(0, 1.1, 0.1), d)

plot(np.arange(0, 1.1, 0.1), toco_e)

plt.xlim(0,1)

plt.ylim(0,1)

plt.xlabel('$t^2$', fontsize = 25)

plt.ylabel('log negativity', fontsize = 25)

plt.xticks(fontsize = 30)

plt.yticks(fontsize = 25)

plt.legend(['PHASE = 0.00$\pi$',

# 'PHASE = 0.25$\pi$',

'PHASE = 0.50$\pi$',

# 'PHASE = 0.75$\pi$',

'PHASE = 1.00$\pi$'], loc = 0, bbox_to_anchor=(0.5, 0.5), fontsize = 20)

plt.grid()

plt.title(Labels[DECISION][15:])

savefig('C:/Users/Jaime/Documents/Universidad/Curso_2017-2018/TFG/BeamSplitter/2BS/' +

'N%d_'%N + Labels[DECISION][15:].replace(" ", "").replace("=(", "=").replace("(",

"_").replace(")","").replace('.','') + "_entan_2BS.png");

plt.show()

close()

print('toco')

In [ ]: # To make a comparative log-negativity plot including variation on t and phase

DECISION = 3

file = open('C:/Users/Jaime/Documents/Universidad/Curso_2017-2018/TFG/BeamSplitter/1BS/P

hoton/N7_LogNeg.txt', 'r')

a = file.readline()

file.close()

a = a.split()

b = []

for kk in np.arange(0, len(a)):

b = np.append(b, float(a[kk]))

# print('%.2f %.2f %d'%(b[int(kk/2)], float(a[kk]), int(kk/2)))
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fig = plt.figure(figsize = (10, 7))

plot(np.arange(0, 1.1, 0.1), b)

plt.xlim(0,1)

plt.ylim(0,2.6)

plt.xlabel('$t^2$', fontsize = 25)

plt.ylabel('log negativity', fontsize = 30)

plt.xticks(fontsize = 30)

plt.yticks(fontsize = 30)

plt.grid()

plt.title(Labels[DECISION][15:])

savefig('C:/Users/Jaime/Documents/Universidad/Curso_2017-2018/TFG/BeamSplitter/1BS/' +

'/N%d_'%N + Labels[DECISION][15:].replace(" ", "").replace("=(", "=").replace("(",

"_").replace(")","").replace('.','') + "_entan_1BS.png");

plt.show()

close()

print('toco')

In [ ]: # Version of the used software

from qutip.ipynbtools import version_table

version_table()
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