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Realización de un estudio de
asociación genómica en el
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Supervisors

Mónica Hernández Giménez
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Chapter 1

Abstracts

1.1 Abstract

Genome Wide Association Studies (GWAS) of Alzheimer’s disease with quanti-
tative phenotype is an active field of research that has pointed out a number of
SNPs potentially related to this disease. Some initiatives such as Alzheimer’s
Disease Neuroimaging Initiative (ADNI) have been established in order to prove
whether anatomical or biological markers (from magnetic resonance imaging (MRI)
or positron emission tomography (PET)), genetic information, and clinical and
neuropsychological assessments can be combined to measure the progression of
mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). In the last
decade, ADNI database has been progressively augmented, including a consid-
erable number of patients yielding the subsequent projects and cohorts ADNI1,
ADNIGO, and ADNI2.

Although some GWAS have been carried out with subpopulations of ADNI1,
to the best of our knowledge, these works have not been replicated with the
whole ADNI1 or the subsequent cohorts. In this thesis, is it intended to study
which SNPs are consistently preserved through ADNI cohorts in GWAS, to give
support to the reproductivity of the previous study on ADNI (Hippocampal Atrophy
as a Quantitative Trait in a Genome-Wide Association Study Identifying Novel
Susceptibility Genes for Alzheimer’s Disease, Potkin et al. 2009), and to discover
new risk genes for AD.

This objective has been assessed by performing several GWAS on ADNI1 and
ADNI2 cohorts separately, on the merged population of ADNI1 and ADNI2, and
also on randomized sub-populations. The results show a positive association for
well-known SNPs related to AD: APOE rs429358 and TOMM40 rs2075650 SNPs
show association with the hippocampal volume in the ADNI1 cohort and in the
union of ADNI1 and ADNI2 populations. However, the association for APOE
and TOMM40 was not reported in ADNI2. It can be hypothesized that it is
the variability of association based on sample size the reason behind that result,
and this hypothesis is supported taking into account the results obtained in the
randomization of the 50% of the population, but future work is needed to be able
to confirm it. In addition, the study reported a weak association of SNPs that are
known to be associated to brain-related disorders.
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1.2 Resumen

Los estudios de asociación del genoma completo (GWAS) pertenecen a un campo
en desarollo muy explotado en los últimos años. En concreto, este método ha
intentado asociar la enfermedad de ALzheimer con su base genética, especialmente
con ciertos SNPs, mediante el uso fenotipos cuantitativos como el volumen de
estructuras cerebrales (que se sabe disminuyen con el progreso de esta infermedad).
Algunas iniciativas como ADNI (Alzheimer’s Disease Neuroimaging Initiative) se
establecieron para probar si marcadores anatómicos o biológicos (desde Imágenes
de Resonancia Magnética (MRI) hasta Tomograf́ıas por emisión de positrones
(PET)), la información genética, cĺınica o análisis neuropsicológicos se pueden
combinar para medir la progresión del Alzheimer. En la última década, la base
de datos de ADNI ha aumentado considerablemente, dando lugar a las cohortes
ADNI1, ADNIGO y ADNI2.

Aunque se han llevado a cabo algunos GWAS con subpoblaciones de ADNI1,
que sepamos no se han realizado con todo el proyecto de ADNI1 ni el resto de
cohortes. En esta tesis se trata de estudiar qué SNPs están preservados de forma
consistente en los diferentes GWAS de las cohortes, de forma que se haga posible la
reproducción de los resultados previos del estudio en ADNI Hippocampal Atrophy
as a Quantitative Trait in a Genome-Wide Association Study Identifying Novel
Susceptibility Genes for Alzheimer’s Disease (Potkin et al. 2009). También tiene
por objetivo descubrir nuevos posibles genes que representen factores de riesgo de
padecer Alzheimer.

Estos objetivos han sido abordados mediante la realización de GWAS para las
cohortes ADNI1 y ADNI2 por separado, para la población conjunta de ADNI1 y
ADNI2, aśı como para subpoblaciones randomizadas. Los resultados muestran en
varios SNPs una asociación positiva con el volumen de hipocampo en el análisis
de ADNI1 y en la población total. Se trata de dos SNPs ya relacionados con
ALzheimer: rs429358 del gen APOE y rs2075650 del gen TOMM40. Sin embargo,
esta relación no se encontró en ADNI2. Se podŕıa hipotetizar que la razón de
este resultado reside en la variabilidad encontrada en la asociación dependiendo
del tamaño muestral. Esta hipótesis estaŕıa respaldada teniendo en cuenta los
resultados que se obtienen para el 50% de la población randomizada (ADNI2
representa aproximadamente el 50% de la población total). Sin embargo, se
necesitaŕıa profundizar en este aspecto para poder confirmar la hipótesis. Además,
en este estudio se encontró una leve asociación en dos SNPs ya relacionados con
otros transtornos mentales.
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Chapter 2

Introduction

The increase of life expectancy and the growing number of elderly people is causing
dementia to emerge as a major health problem [1]. Among them, Alzheimer’s
disease (AD), a degenerative brain disease, stands as the most common expression
of dementia [2]. The characteristic symptoms of dementia are difficulties with
memory, language, problem-solving and other cognitive skills that affect a person’s
daily life. These difficulties derive from profound functional and structural changes
observed in neurons, their processes and synapses, and the microgliosis and
astrocytosis which accompany these changes [3].

In particular, in Alzheimer’s disease, neurons in other parts of the brain are
eventually damaged or destroyed as well, including those that enable a person
to carry out basic bodily functions such as walking and swallowing. People in
the final stages of the disease are bed-bound and require around-the-clock care.
Alzheimer’s disease is ultimately fatal [1] and together with unintentional injuries,
homicide, chronic lower respiratory diseases and suicide, was an important cause
of the decrease in life expectancy at birth for the total population of USA in 2015,
where the 7 leading causes of death were [4]:

1. Heart disease.

2. Malignant neoplasms (cancer).

3. Chronic lower respiratory diseases.

4. Accidents.

5. Cerebrovascular disease.

6. Alzheimer’s disease.

7. Diabetes mellitus.

Even though it is difficult to stipulate whether a death is due to Alzheimer’s,
according to data from the National Center for Health Statistics of the Centers
for Disease Control and Prevention (CDC), 93.541 people died from Alzheimer’s
disease in 2014 [5]. The CDC considers a person to have died from Alzheimer’s if
the death certificate lists Alzheimer’s as the underlying cause of death, defined by

3
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Figure 2.1: Causes of death, 2016: Number 051 represents Alzheimer’s disease
(Circled in red). Image generated from the Spanish National Institute of Statistics

the World Health Organization as “the disease or injury which initiated the train
of events leading directly to death [6]” .

In Spain, Alzheimer’s also represents one of the most common causes of death
(See Figure 2.1 ).

These already remarkable numbers are not dropping but increasing: between
2017 and 2025 the number of people with Alzheimer’s in USA is going to rise
at least a 14% [1] and the annual number of new cases of Alzheimer’s and other
dementias is projected to double by 2050 [7]. This means that, while today every
66 seconds someone in the United States develops Alzheimer’s dementia, by 2050 a
person in the United States will develop Alzheimer’s dementia every 33 seconds [1].

This alarming situation is making Alzheimer’s disease be the focus of a large
number of researches. However, there is no available medication by the date for
stopping or slowing down the damage and destruction of the neural system caused
by this disease [1]. Thus, it is interesting to know which groups are under special
risk of developing the disease, for example, in order to consider certain group
characteristics or similarities as risks factors susceptible for treatment or having a
better understanding of the disease.

4
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2.1 Risk Factors

The most common risk factors are:

• Age

Age is the greatest of the risk factors mentioned here, with the majority of
people with Alzheimer’s dementia being age 65 or older. The percentage of
people with Alzheimer’s increases dramatically with age: 3% of people age
between 65 and 74, 17% of people age 75-84, and 32% of people age 85 or
older have Alzheimer’s dementia [9]. It is important to note that Alzheimer’s
dementia is not a normal part of aging process, and older age alone is not
sufficient to cause Alzheimer’s dementia [1].

• Gender

As compared to men, 70% of the patients are females, and the reason is not
clear: while some believe that could be due to the higher life expectancy of
women [10], others think that could lay on biological or genetic variations or
differences in life experiences [11].

• Down syndrome

According to the National Down Syndrome Society, about 30% of people
with Down syndrome at the age of 50 have Alzheimer’s dementia. Around
50% of people with Down syndrome will develop Alzheimer’s dementia as
they age [1].

• APOE ε4 gene

The best known genetic risk factor for Alzheimer’s dementia is apolipoprotein
E (APOE) ε4 gene form. The APOE gene encodes a protein that transports
cholesterol in the bloodstream. There are three main forms of the APOE
gene: ε2, ε3 and ε4, and everyone inherits one of the three forms from each
parent. As a result, everyone has two copies of the gene, and depending on
the heritage, this pair could be any combination of two from the three forms
mentioned above [1]. The ε3 form is the most common, with between 50%
and 90% of individuals having one or two copies [12]. The ε4 form is the
next most common, with 5% to 35% having one or two copies, followed by
ε2 which is the least common, with up to 5% having one or two copies [12].

alleles ε2 ε3 ε4
ε2 0.5 11.0 2.0
ε3 11.0 61.0 23.0
ε4 2.0 23.0 2.0

Table 2.1: Distribution of the six combinations of apolipoprotein E (APOE) main
alleles 2 ε2, ε3 and ε4 of the U.S. population (in percentages).

The risk of developing Alzheimer’s differs depending the number of copies
and form of the APOE gene: having the ε4 form increases one’s risk of

5



Alzheimer’s disease analysis

developing Alzheimer’s compared with having the ε3 form, while the ε2 form
may decrease the risk compared with having the ε3 form. More specifically,
those who inherit one copy of the ε4 form have three times the risk of
developing Alzheimer’s compared with those having the ε3 form. Also,
inheriting two copies of the ε4 form can lead an 8- to 12-fold risk of developing
the disease [13], [14], [15]. A meta-analysis of 20 publications has described
the frequency of the ε4 form among people in the United States who had
been diagnosed with Alzheimer’s, and it was found that 56% of those had
one copy of the APOE ε4 gene, and 11% had two copies of the APOE ε4
gene [16].

Nevertheless, inheriting the APOE ε4 gene does not guarantee that an
individual will develop Alzheimer’s. This is also true for more than 20
recently identified genes that appear to affect the risk of Alzheimer’s. These
genes are believed to have a limited effect on the overall prevalence of
Alzheimer’s because they are rare or only slightly increase risk [17].

In addition, those with the ε4 form are more likely to develop Alzheimer’s
at a younger age than those with the ε2 or ε3 forms of the APOE gene [18].

Genetically, the apoE main protein isoforms, ε2, ε3 and ε4 are the result
of two non-synonymous Single Nucleotide Polymorphisms (SNPs) 3. SNPs
rs429358 and rs7412, located in exon 4 of the APOE gene (See table 2.2).
Structural consequences of the exon 4 APOE haplotype appear to be that
the apoE ε4 protein binds preferentially to plasma very low density lipids
(VLDLs) whereas apoE ε2 and ε3 bind preferentially to plasma high density
lipoproteins (HDLs). In addition, apoE isoforms appear to influence plasma
cholesterol levels, neuronal growth and amyloid deposition [19].

rs429358 rs7412 Name
C T ε1
T T ε2
T C ε3
C C ε4

Table 2.2: Codification of APOE gene forms ε2, ε3 and ε4

Apart from these risk factors (age, gender, Down Syndrome and genetics),
having a family history of Alzheimer’s [23] also plays an important role, even
though it is not necessary for an individual to develop the disease. However,
individuals who have a parent, brother or sister with Alzheimer’s are more
likely to develop the disease than those who do not have a first-degree relative
with Alzheimer’s [23]. Those who have more than one first-degree relative with
Alzheimer’s are at even higher risk. The increased risk associated with having a
family history of Alzheimer’s is not entirely explained by whether the individual
has inherited the APOE ε4 risk gene [1].

3Single nucleotide polymorphisms (SNPs) are an abundant form of genome variation,
distinguished from rare variations by a requirement for the least abundant allele to have a
frequency of 1% or more. [25]
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With the exception of cases of Alzheimer’s caused by genetic abnormalities,
experts believe that Alzheimer’s, like other common chronic diseases, develops as
a result of multiple factors rather than a single cause [1].

2.2 Biomarkers and SNPs

Together with the groups of risk, diagnosis is crucial. Thus, due to the impor-
tance of diagnosis, several investigations have been carried out and nowadays it
is possible to distinguish between Alzheimer’s and other causes of dementia using
certain Biomarkers 4. These biomarkers are, among other studied factors: changes
in brain volume, the amount of beta-amyloid in the brain as shown on positron
emission tomography (PET) imaging and levels of certain proteins in fluid: for
example, the accumulation of the protein fragment beta-amyloid (beta-amyloid
plaques) outside neurons and the accumulation of an abnormal form of the pro-
tein tau (tau tangles) inside neurons are brain changes associated with Alzheimer’s.
Beta-amyloid plaques are believed to contribute to cell death by interfering with
neuron-to-neuron communication at synapses, while tau tangles block the trans-
port of nutrients and other essential molecules inside neurons [1].

It would be ideal to find a fast and inexpensive Biomarker-based test, such as
a blood test, to diagnose Alzheimer’s. Research is underway to develop such
a test, but presently there is no test reliable nor accurate enough to diagnose
Alzheimer’s [1]. In this direction, more research is needed and this thesis aims
to help to clarify the Alzheimer’s diagnosis via genetic biomarkers, in particular
SNPs.

2.3 Genome-wide Association Studies (GWAS)

Association tests between biomarkers and a phenotype (state of an organism
resulting from interactions between genes, environment, disease, molecular
mechanisms, and chance [26]) of interest are used to identify SNPs related with
diseases. There are association studies using the whole genome, called Genome-
wide association studies (GWAS) in which the phenotype could be dichotomous
(affected, unaffected) or quantitative (biomarker levels, imaging metrics, etc.).
This approach has identified susceptibility loci 5 in several diseases. GWAS of
Alzheimer’s, have confirmed the strong influence of APOE [21] [22], but there is
no convincing evidence implicating other genes, despite many biologically plausible
and interesting candidates. By design, GWAS’ content and meta-analysis results
are dynamically changing and reflect the continuing evolution of leading candidate
genes for AD and the biological pathways they may represent [20]. The most

4 A Biomarker is a measurable indicator of some biological state or condition in the human
body. Biomarkers are used to diagnose the presence or absence of disease, assess the risk of
developing a disease, or understand how a patient has responded to a treatment. [8] For example,
the level of glucose is a biomarker for diabetes.

5A locus (pl. loci) can be defined either as a segment of DNA with alternate nucleotide
sequences as alleles, or as a nucleotide site with alternate nucleotides as alleles. [27]
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robust findings from case-control GWAS and other types of genetic association
studies, can provide targets for examining quantitative phenotypes derived
from biomarkers’ databases. Between them, Alzheimer’s Disease Neuroimaging
Initiative (ADNI) plays an important role on GWAS related with Alzheimer’s
disease [28]. One of the phenotypes used for Alzheimer’s is the concentration of
grey matter in the hippocampus, because it is affected early in AD (hippocampal
atrophy is a well-known feature of Alzheimer’s disease [30], see 2.2), is implicated
in the conversion to AD, its progress and is associated with many of the main
symptoms, and it can be reliably measured in vivo [46].

A big challenge in case-control GWAS designs in which allele and genotype
frequencies are compared between AD and control patients is achieving sufficient
statistical power. Such categorical approaches require approximately 6000 cases
and controls to obtain 85% power to detect a 30% difference (odds-ratio of 1.3)
with a minor allele frequency 6 of 0.15. Quantitative trait association studies offer
several advantages over case-control studies, since the dependent measures are
quantitative and more objective than diagnostic categorization, and can increase
the statistical power four to eight fold, thus greatly decreasing the required sample
size to achieve sufficient statistical power [28].

In this direction, in 2009 Potkin et al. [46] published the study Hippocampal
Atrophy as a Quantitative Trait in a Genome-Wide Association Study Identifying
Novel Susceptibility Genes for Alzheimer’s Disease in which they used hippocam-
pal atrophy as a quantitative phenotype in a GWAS study with data from ADNI
database. They identified candidate risk genes for sporadic Alzheimer’s disease.
The most representative ones are shown in Table 2.3 :

Gene SNP p-value
TOMM40 rs2075650 7.48× 10−7

APOE rs429358 2.30× 10−6

EFNA5 rs10074258 2.5× 10−7

EFNA5 rs12654281 3.72× 10−7

PRUNE2 rs10781380 10× 10−6

I509T rs8115854 10× 10−6

RPN2 rs6031882 6.2× 10−6

E88K rs2073145 2.13× 10−6

RP11-232A1.1 rs10867752 3.08× 10−6

CAND1 rs1082714 4.93× 10−6

AL079307.7 rs11626056 1.18× 10−6

Table 2.3: Extract of the SNPs related to AD found by Potkin et al.

In the study, a subset of ADNI1 cohort was used as source data. In
the last decade, ADNI database has been progressively augmented, including
a considerable number of patients yielding to the subsequent projects ADNI1,
ADNIGO, and ADNI2. To the best of our knowledge, the work of Potkin et
al. [46] has not been replicated with the whole ADNI1 or the subsequent databases,

6 Allele frequency (also called gene frequency) is the term used to describe the fraction of
gene copies that are of a particular allele in a defined population. [29]
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perhaps because the arise of meta-studies has opened the opportunity to deal
directly with augmented cohort sizes [33]. However, it is also important to obtain
GWAS results on more homogenous data before attempting more sophisticated
meta-analysis.

2.4 Scope of the study

In this work, it is intended to study which SNPs are consistently preserved through
ADNI cohorts in GWAS. The association studies have been conducted separately in
the different ADNI cohorts and in the whole ADNI database. Also, an exhaustive
randomized analysis for the assessment of the consistency of the association results
with the sample selection was performed.

In addition, replication of results in independent samples is an important
strategy, therefore this thesis aims to give support to the reproducibility of this
previous study (Hippocampal Atrophy as a Quantitative Trait in a Genome-Wide
Association Study Identifying Novel Susceptibility Genes for Alzheimer’s Disease,
Potkin et al. 2009 [46]), and to discover new risk genes for AD. Consensus criteria
for replication have recently been published. They include study of the same
or very similar phenotypes and populations, together with the demonstration of a
similar magnitude of effect and significance for the same SNPs and alleles described
in the initial report. Replication is usually first attempted in studies as similar as
possible to the initial report [21] , so that is what is attempted here. At present,
the best way of resolving inconsistencies between studies seems to be additional
replication studies with larger sample sizes, and in this project more patients than
in the original article will be included (from the same Database) [21] .

For the purpose of this study, a GWA - QT (quantitative trait) analysis is
performed. The method uses the hippocampus volume from neuroimaging as the
quantitative trait (in the original study, hippocampal grey matter density was
used), and examines which SNPs (as proxies for genes) influence the quantitative
trait differently for AD and healthy controls. The trait used here is the volume of
hippocampus in AD subjects vs normal since MRI studies have suggested that
reductions in hippocampus over time can be particularly useful in predicting
AD before the beginning of clinical symptoms, and in assessing the efficacy of
pharmacological treatment in clinical trials [31] [32]. Therefore, in this GWA
study hippocampal volume is used as an imaging phenotype to reveal genes that
potentially influence hippocampal atrophy and dementia in the context of AD.
The genes which influence hippocampal grey matter concentration differentially
in AD and healthy subjects may provide important information regarding the
mechanisms of disease-related atrophy.

To sum up, a GWAS for SNP association with volume of hippocampus in
Alzheimer’s disease will be made. It will be performed using different data from
ADNI cohorts and randomizations. Previously the database (DDBB) will be
analyzed in order to extract the required information.
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Figure 2.2: Healthy patient brain (left) and brain affected by AD (right). Image
from Sunnybrook Health Science Centre

10



Chapter 3

Materials and Methods

3.1 ADNI Project

Data used in this project has been obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu/). This
database is constantly changing and growing. In 2003, the ADNI was launched
by the National Institute of Aging (NIA), the National Institute of Biomedical
Imaging and Bioengineering (NIBIB), the Food and Drug Administration (FDA),
non-profit organizations and private pharmaceutical companies. The main goal
of the initiative was to test whether some biological markers (such as magnetic
resonance imaging (MRI) or positron emission tomography (PET)), clinical and
neuropsychological assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early AD. Determination of sensitive and specific
markers of very early AD progression would help to develop new treatments and
monitor their effectiveness, as well as lessen the time and cost of clinical trials.

ADNI is the result of efforts of many co-investigators from a broad range of
academic institutions and private corporations, and the Principal Investigator of
this initiative is Michael W. Weiner, M.D., VA Medical Center and University
of California (San Francisco). Subjects have been recruited from all over North
America, and their number has been increasing from 800 to more than 2000
patients, coming from different phases of the initiative (ADNI1, ADNIGO, ADNI2,
ADNI3; See Figure 3.1):

• ADNI1: 400 subjects diagnosed with MCI, 200 with the early AD, and 200
elderly control subjects.

• ADNIGO: Existing ADNI1 cohort along with 200 new participants with
early mild cognitive impairment (EMCI).

• ADNI2: Participants from the ADNI1/ADNI GO phases in addition to the
following new participant groups: 150 elderly controls, 100 EMCI subjects,
150 late mild cognitive impairment (LMCI) subjects, and 150 mild AD pa-
tients. A new cohort, Significant Memory Concern (SMC), was also added in
ADNI2 to address the gap between healthy controls and MCI; a key inclusion
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criteria is a self-reported significant memory concern from the participant.
The study included 107 SMC subjects.

• ADNI3: Subjects from previous phases and 135-500 Normal Controls, 150-
515 MCI, 85-185 AD.

Figure 3.1: Temporal line of ADNI phases

The diagnosis of the patients is made according to the results they obtain
in some tests (Mini- Mental State Exam (MMSE), Clinical Dementia Rating
(CDR), Alzheimer’s Disease Assessment Scale-Cognitive (ADAS)) and medical
observations. For normal subjects: MMSE scores between 24-30 (inclusive), a
CDR of 0, non-depressed, non MCI, and nondemented; MCI subjects: MMSE
scores between 24-30 (inclusive), a memory complaint, have objective memory
loss, a CDR of 0.5, absence of significant levels of impairment in other cognitive
domains, essentially preserved activities of daily living, and an absence of dementia;
Mild AD: MMSE scores between 20-26 (inclusive), CDR of 0.5 or 1.0, and
meets NINCDS/ADRDA (Nacional Institute of Neurological and Communicative
Disordes and Stroke-Alzheimer’s Disease and Related Disordes Association)
criteria for probable AD.

More up-to-date information can be found at http://adni.loni.usc.edu/

about/.

3.2 Participants

All subjects studied here were part of different cohorts of ADNI. The initiative
enrolls participants between the ages of 55 and 90 who are recruited at 57 sites
in the United States and Canada. After obtaining informed consent, participants
undergo a series of initial tests that are repeated at intervals over subsequent years,
including a clinical evaluation, neuropsychological tests, genetic testing, lumbar
puncture, and MRI and PET scans. In the original article, 172 AD subjects and
209 healthy controls were included.

Some GWAS studies begin with small numbers of participants in the initial
scan but carry forward large numbers of SNPs to minimize false-negative results.
Other studies begin with more participants but carry forward a smaller proportion
of associated SNPs. Optimal proportions of study participants and SNPs have
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yet to be determined, but carrying forward a small proportion (≤ 5%) of SNPs
will often mean limiting the associations ultimately identified to those having a
relatively large effect [22] In this project, a total of 1492 subjects were included in
the analysis (757 from ADNI1 and 735 from ADNI2, 1111 patients in total more
than in the original article) with nearly 621.000 SNPs (516.645 in the original
article).

In order to compare proportions of a categorical outcome according to AD and
CN groups, several statistical tests such as chi-squared test and Fisher’s exact
test are considered. The chi-squared test and Fisher’s exact test can assess for
independence between two variables when the compared groups are independent
and not correlated. The chi-squared test applies an approximation assuming the
sample is large, while the Fisher’s exact test runs an exact procedure especially
for small-sized samples [51]. Tables 3.1 ,3.2 , 3.3 represent the demographic
characteristics of the cases and controls of the non randomized samples analyzed
for independence (cohorts ADNI1, ADNI2 and ADNI1 merged with ADNI2). Also,
a median comparison (when possible) is performed. In all comparisons, healthy
control group had significantly more education than people with Alzheimer’s, and
also they scored high in MMSE (a cognitive test), as expected.

Furthermore, no statistical difference in the distribution of APOE ε4 alleles
between ADNI1 and ADNI2 cohorts was found (Fisher’s Exact Test for Count
Data, p-value = 0.7808).

Category Control AD p-value
Number of Subjects 214 175
Gender (Male/Female) 115/99 93/82 0.410 Chi Square (Yates Correction)
Age 75.67± 4.9 75.4± 7.4 ≥ 0.6743 Welch Two Sample t-test
MMSE 26.1± 0.99 23.27± 2.05 <2.2e-16 Welch Two Sample t-test
Years of Education 16.07± 2.78 14.6± 3.16 <2.586e-06 Welch Two Sample t-test
Ethnicity (Hisp-Latino/Not Hisp-Latino/Unknown) 2/211/1 4/169/2 0.6302 Fisher’s exact
Race(Am Indian-Alaskan/Asian/Black/More than one/White) 0/2/15/0/197 0/2/8/2/163 0.4881 Fisher’s exact
Copies of e4(0/1/2) 156/53/5 58/85/32 <2.2e-16 Fisher’s exact

Table 3.1: Baseline characteristics for both CN and AD groups in ADNI 1

Category Control AD p-value
Number of Subjects 149 110
Gender (Male/Female) 77/72 65/45 0.2898 Chi Square (Yates correction)
Age 73.84± 5.96 74.59± 8.57 ≥ 0.432 Welch Two Sample t-test
MMSE 29± 1.3 23± 2.1 <2.2e-16 Welch Two Sample t-test
Years of Education 16.48± 2.50 15.75± 2.61 <0.02488 Welch Two Sample t-test
Ethnicity (Hisp-Latino/Not Hisp-Latino/Unknown) 7/141/1 2/107/1 0.5264 Fisher’s exact
Race(Am Indian-Alaskan/Asian/Black/More than one/White) 1/5/9/0/134 0/3/3/0/104 0.4972 Fisher’s exact
Copies of e4(0/1/2) 112/33/4 37/52/21 <8.504e-12 Fisher’s exact

Table 3.2: Baseline characteristics for both CN and AD groups in ADNI 2

Category Control AD p-value
Number of Subjects 363 285
Gender (Male/Female) 192/171 158/127 0.5713 Chi Square (Yates correction)
Age 74.92± 5.43 75.09± 8.87 ≥ 0.7623 Welch Two Sample t-test
MMSE 29± 1.12 23± 2.07 <2.2e-16 Welch Two Sample t-test
Years of Education 16.24± 2.68 15.05± 3.01 <2.31e-07 Welch Two Sample t-test
Ethnicity (Hisp-Latino/Not Hisp-Latino/Unknown) 9/352/3 6/276/3 0.353 Fisher’s exact
Race(Am Indian-Alaskan/Asian/Black/More than one/White) 1/7/24/0/331 0/5/11/2/267 0.7563 Fisher’s exact
Copies of e4(0/1/2) 268/86/9 95/137/53 <2.2e-16 Fisher’s exact

Table 3.3: Baseline characteristics for both CN and AD groups in ADNI 1 and 2
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3.3 Genotyping

In order to obtain the genetic information, the DNA of patients was sequenced.
Nevertheless, different methods of genotyping were used: ADNI1 samples were
genotyped using the Illumina Human610-Quad BeadChip and intensity data
processed with GenomeStudio v2009.1 and ADNIGO/2 samples were genotyped
using the Illumina HumanOmniExpress BeadChip and intensity data processed
with GenomeStudio v2009.1. This leads to a difference in the presence of SNPs
genotyped between phases (for ADNI1 620.901 SNPs and for ADNIGO/2 730.525
SNPs), that must be erased for the analysis of the data. Therefore, the intersection
of all SNPs will be made and taken into account in analysing the data.

Moreover, none of the protocols had SNPs for APOE between the SNPs
genotyped. Due to its major importance, ADNI decided to make an additional
analysis and genotyped it. Therefore, the information about APOE is not included
in the first analysis, but in one unique file for all subjects. Also, the codification
of the APOE SNPs (See figure 3.2) is not the same as the analysis with the rest of
genetic information: APOE SNPs are represented by a combination of 2, 3 and 4
(not the bases A, C, T, G). Those numbers represent ε2, ε3 and ε4 and need to be
coded with A, C, T, G. That is made with a JAVA program following table 2.2.

Figure 3.2: APOE information from genotyped samples

3.4 ADNI Database and Data Processing

In order to carry out the analysis of the data, PLINK (the software used for that
purpose) needs several files with a especial format. The first step is to find the
information of the patients in the database: genotype (list of SNPs), phenotype
(hippocampus volume) and other information such as gender, age, Family ID,
Paternal ID and Maternal ID. This is a tough step, because of the dimension of
the database and the varied origin of data. Information is only found for subjects
from ADNI1, ADNIGO and ADNI2, so the last phase (ADNI3) will not be used
here.
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3.4.1 DDBB Organization

Information about ADNI initiative is stored in a repository from California
University http://adni.loni.usc.edu/. Here, all the mentioned data can
be reached and the information is divided in three different sections: Image
Collections, Genetic Data and Study Data.

On Image Collections there is a IDA searcher where one can find all information
about the images collected from patients (MRI, PET...). Regarding the genetic
data , ADNI1/GO/2 samples were whole-genome sequenced (WGS): There are two
releases of the ADNI array data, and the second one provides more information, so
it will be the one used here. This data comes on a .zip file containing all patients,
a .csv file per individual, so it is not possible to look for a patient in particular,
the whole data set must be download. Also, each project has its own .zip file
containing its patients.

In genetic data section more information can be found: gene expression, DNA
methylation profile and data prepared for challenges.

Figure 3.3: Organization of Genetic Data in ADNI

In what concerns to Study Data, it is divided into (See Figure 3.4) :

- Assessments: It contains files about diagnosis and Neuropsychological data, such
as results of tests before mentioned for diagnosing (MMSE, ADAS).

- Biospecimen: One of the goals of ADNI is the collection of biospecimens,
including blood, urine, and cerebrospinal fluid (CSF), blood for APOE and Cell
Immortalization from participants.

- Enrollement: Information about visits, non-clinical tracing of patients.

- Genetic: Genotype results for TOMM40 gene and information about ADNI
genetic data.

- Images: For MRI and PET images, information related to analysis and quality
of them.

- Medical History: List of adverse events, drugs consumed, medical history and
physical/neurological exams of the patients.

- Neuropathology: Neuropathology exams results.

- Study Info: Information about different studies and standardization of data
presentation. It also contains packages for programs used in the studies.
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- Subject Characteristics: Family History and demographic information about the
subjects.

- Test Data: Other data for challenges, but it contains no images.

3.4.2 Information Collection

In order find the desired data, these files are taken from ADNI DDBB:

- DATADICT.csv : Description of the columns in other files. It is placed in ”Study
Info”.

- APOERES.csv : This file includes the APOE gen sequenced. It is located in
”Biospecimen”.

- WGS: Genetic data for ADNI1 and ADNI2 patients, it is found in ”Genetic
Data” and consists of a .csv file per patient in which all the SNPs are listed and
their sequence given.

- ROSTER.csv : This file contains information about patients identification
(Individual ID and related). It can be found on ”Study Data” - ”Enrollment”.

- PTDEMOG.csv : This includes demographic data and other information such as
gender, date of birth, profession... It can be located in ”Subject Chracteristics”.

- ADNIMERGE.csv : It contains some key variables merged into one data table
and also information about the phenotype studied here (hippocampus volume).
It is placed in ”Study Info”.

Figure 3.4: ADNI DDBB
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Once all the information is located, it is time to convert the files into the format
required by the software, detailed below.

3.5 PLINK

The software used for the analysis is PLINK v1.07 (http://pngu.mgh.harvard.
edu/purcell/plink/) [34]. This software is being developed by Shaun Purcell at
the Center for Human Genetic Research (CHGR), Massachusetts General Hospital
(MGH), and the Broad Institute of Harvard and MIT, with the support of others.
Is a free, open-source whole genome association analysis toolset, designed to
perform a range of basic, large-scale analyses in a computationally efficient manner
and its focus is purely on analysis of genotype/phenotype data, so previous steps
(study design and planning, generating genotype or CNV calls from raw data)
have no support on PLINK.

These files are required by PLINK in order to do the analysis, and have been
generated in collaboration with the group using JAVA, unix shell and R:

MAP This file is a list with all the SNPs wanted for the analysis. All patients must
have information about the same SNPs, so the intersection of all patients’
lists is made and is the one used from now on. The colums are:

Chromosome 1 : Chromosome number

SNP ID : SNP consensus name

SNP position : In centimorgans 2

SNP position : In base pairs (bp).

Figure 3.5: Example of a MAP file

FAM FAM files have the relevant information of the patients. The columns are:

Family ID : There is no Family ID found in data, so it is a counter.

1Chromosomes are the most prominent structures, and most genetic processes occur in
chromosomes including transcription, DNA replication and repair, and repression of gene
expression, which are modulated by interactions with gene-regulating proteins. [36]

2A centimorgan is defined as the distance between chromosome positions for which the
expected average number of intervening chromosomal crossovers in a single generation is 0.01. [37]
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Individual ID

Paternal ID : Set to 0 if patient has no father on the database.

Maternal ID : Set to 0 if patient has no mother on the database.

Sex : 1 = ”male”, 2 =”female”, 0 = ”unknown”.

Phenotype : 1 =”case”, 2 =”control”, -9 = ”unknown”. Here it is set as
”unknown” because the information will be upload from the pheno file.

Figure 3.6: Example of a FAM file

LGEN LGEN files contain the genotype (alleles) of each SNP for all patients (one
SNP per row, for patient). The columns are:

Family ID :The same Family ID used in other files.

Individual ID: The same Individual ID used in other files.

SNP ID: The same SNP ID used in other files.

Allele 1: A = Adenine, T = Timine, C = Citosine, G = Guanine.

Allele 2 :A = Adenine, T = Timine, C = Citosine, G = Guanine.

Figure 3.7: Example of a LGEN file

PED PED file contains the genotype (alleles) of all SNP in a row, one row per
patient. It also contains information about the phenotype, sex and ID’s.
The columns are:
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Family ID :The same Family ID used in other files.

Individual ID :The same Individual ID used in other files.

Paternal ID :The same Paternal ID used in other files.

Maternal ID: The same Maternal ID used in other files.

Sex :The same sex used in other files.

Phenotype: The same phenotype used in other files.

SNPs All the SNPs of the patient in the same row.

Figure 3.8: Example of a PED file

BIM BIM file contains the same information and structure as MAP file, but two
last columns are added. All columns are:

Chromosome: Chromosome number

SNP Name: SNPs consensus name

SNP Position: In centimorgans

SNP Position: In base pairs (bp).

Minor allele: Second most common allele.

Major allele: Most common allele.

Figure 3.9: Example of a BIM file

BED BED is a binary file containing the genotype.

PHENOTYPE This is a plain text file containing the phenotype in case it has not been
specified in FAM file or there are more than only one phenotype. It needs
a header with FID (Family ID), IID (Individual ID), and one column per
phenotype (See Figure 3.10). In order to be consider, the command –pheno
is required.
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Figure 3.10: Example of a phenotype file

COVARIATE This is a file similar to Phenotype file, needs a header with FID (Family ID),
IID (Individual ID), and one column per covariate (See Figure 3.11).In order
to be consider, the command –covar is required. In case sex is a covariate,
there is no need to add it as a column on the covariate file: the command
–sex automatically adds it.

Figure 3.11: Example of a covariate file

3.6 Randomizations and sample selection

In this project, three different GWAS were performed: one including the subjects
from ADNI1 (757 subjects), another with ADNI2 cohort (735 subjects) and the last
one was a single GWAS including all the subjects in both phases (1492 subjects).
That was made in order to study which SNPs are consistently preserved through
ADNI cohorts in GWAS.

In addition, an exhaustive randomized analysis of the patients was performed
in order to assess the consistency of the results and the sensibility of PLINK GWAS
with different selections of patients (different sample size and different patients for
each sample size). Therefore, from the whole population (entire ADNI cohort),
different percentages of the total sample were analyzed: The randomized analysis
selected distinct n% patients of the whole ADNI cohort, where n ranged from 30
to 95% in steps of 5%. For each n, 25 different sample randomizations were made
in order to make the corresponding GWAS.

In total, in this study 14 × 25 = 350 GWAS randomized, plus 3 GWAS with
ADNI cohorts were done.
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3.7 Quality control of genetic data

Once the sample selection and PLINK files are ready, a vital step that should
be part of any GWAS is the use of appropriate quality control (QC). This QC
is necessary because the raw data is inherently imperfect, and without a quality
data check, the GWAS will not be reliable. These errors coming from data can
arise for numerous reasons related with genotyping, such as poor quality of DNA
samples, poor DNA hybridization to the array, poorly probes, and sample mix-ups
or contamination [35].

For instance, failing to thoroughly control for these data issues has led to the
retraction of an article published by Sebastiani et al. (2010) in Science (Sebastiani
et al., 2010, 2011; Sebastiani et al., 2012; Sebastiani et al., 2013). The results of
the retracted article were affected by technical errors in the Illumina 610 array and
an inadequate QC to account for those. Even though the main scientific findings
remained supported after appropriate QC, the results of the new analysis deviated
strongly enough for the authors to decide to retract the article.

In order to make the quality-control analysis, SNPs that were missing in more
than 2% of the population were excluded, and also were subjects who had more
than 10% missing genotypes. SNPs with minor allele frequency greater or equal
to 5% were included, and markers that fail the Hardy-Weinberg test at a 10−6
significance threshold were excluded. PLINK provides some parameters and filters
in order to have this QC done. These parameters are presented at Table 3.4 and
specified below:
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Features As inclusion criteria Meaning

Missingness per individual –mind N

Exclude individuals with too much
missing genotype data. This option
is set as follows:
plink –file mydata –mind 0.1
which means exclude with more
than 10% missing genotypes
(this is the defalt value).

Missingness per marker –geno N

Exclude SNPs on the basis
of MAF (minor allele frequency):
plink –file mydata –maf 0.05
means only include SNPs with
MAF >= 0.05.
The default value is 0.01. This
quantity is based only on founders

Allele frequency –maf N

Exclude SNPs on the basis of
missing genotype rate, with
the –geno option: the default
is to include all SNPS (i.e. –geno 1).
To include only SNPs with a 90%
genotyping rate (10% missing) use
plink –file mydata –geno 0.1
As with the –maf option, these
counts are calculated after removing
individuals with high missing genotype
rates.

Hardy-Weinberg equilibrium –hwe N

Exclude markers that fail
the Hardy-Weinberg test at
a specified significance threshold,
use the option: plink –file mydata –hwe 0.001
By default this filter uses
an exact test.
The standard asymptotic
(1 df genotypic chi-squared test)
can be requested with the –hwe2
option instead of –hwe.

Table 3.4: Parameters for PLINK analysis

Missingness per individual: GWA studies rely on the “common disease,
common variant” hypothesis, which suggests that genetic influences on many
common diseases will be at least partially attributable to a limited number of
allelic variants present in more than 1% to 5% of the population [22]. According
to this and to what it is found in the literature [34], [47], [22] [48], and in order to be
able to compare the results with similar studies made about the same DDBB [46],
mind parameter is set to 0.02.

Missingness per marker: The list of SNPs presented is already the
intersection of all patients SNPs, so the parameter is set to 0.10.

Allele frequency: Due to the same reasons for missingness per individual,
the parameter was set to 0.05.

Hardy-Weinberg equilibrium: Genotype mistakes can lead to increased
random error and bias in gene-disease associations, so methods have been
developed to detect and, where possible, deal with genotyping error. One of these
methods is Hardy-Weinberg equilibrium test. [45] Hardy-Weinberg equilibrium
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stands that, in the absence of migration, mutation, natural selection, and
assortative mating, genotype frequencies at any locus are a simple function of
allele frequencies. This phenomenon is called “Hardy-Weinberg equilibrium”, and
deviation from it at particular markers may suggest problems with genotyping or
population structure or, in samples of affected individuals, an association between
the marker and disease susceptibility. [44]

Consider a sample of SNP genotypes for N unrelated diploid individuals
measured at an autosomal locus. The sample includes 2N alleles, including nA

copies of the rarer allele and nB copies of the common allele. Let the number of
heterozygous AB genotypes be nAB ,and note that the numbers of AA and BB
homozygous genotypes are nAA = (nA - nAB ) / 2 and nBB = (nB - nAB ) / 2
. Note that there are (2N)! / nA!nB! possible arrangements for the alleles in the
sample and that 2nABN!/( nAA! nAB! nBB!) of these arrangements correspond to
exactly nAB heterozygotes. Thus, under the assumption of HWE, the probability
of observing exactly nAB heterozygotes in a sample of N individuals with nA minor
alleles is [44]:

P (NAB = nAB|N, nA) =
2nABN !

nAA!nAB!nBB!
× nA!nB!

(2N)!
(3.1)

The expression for P (nAB|N, na) given in equation 3.1 leads to natural tests for
HWE. For example, one could define one-sided tests that focus on detection of a
deficit of heterozygotes, by calculating the statistic Plow = P (NAB ≤ nAB|N, nA),
or detection of an excess of heterozygotes, by calculating the statistic Phigh =
P (NAB ≥ nAB|N, na). In each case, the statistic can be calculated by simply
summing over equation 3.1, to include all possible values of NAB that are lower
(for Plow ) or higher (for Phigh ) than those observed in the actual data [44].

In brief, let the expected proportion of heterozygotes be pAB = 2pq and the two
homozygote proportions be pAA = p2 and pBB = q2 . The distribution is stable
from generation to generation and genotypes occur at frequencies of p2, q2 and
2pq. The Hardy- Weinberg equilibrium is represented in 3.12.

Figure 3.12: Hardy-Weinberg equilibrium
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According with what is found in the literature [44], [46], here the significance
threshold for HWE is 1e-06.

3.8 Association Analysis

In PLINK, a case-control analysis can be performed by an association analysis.
However, quantitative traits (hippocampus volume from the last visit registered,
in this case) can also be tested for association, using either asymptotic
(likelihood ratio test and Wald test) or empirical significance values. Therefore,
PLINK provides an implementation of the between/within model, which uses a
permutation procedure (permuting genotype rather than phenotype) to control
for the non-independence of individuals within the same family. The analysis of
phenotype-genotype association is a standard regression of phenotype on genotype
(how the mean value of phenotype for a given genotype changes with the value of
genotype) that ignores family structure. Regression analysis is a reliable method
of identifying which variables have impact on a topic of interest. The process
of performing a regression allows to confidently determine which factors matter
most, which ones can be ignored, and how these factors influence each other. The
univariate regression analyzes one SNP at a time to assess its influence on the
phenotype.

The regression model may be described by saying, for a given continuous
phenotype (y), the SNP genotype at a given locus (x) follows a normal distribution
with mean (See Equation 3.2):

E(y|x) = α + βx (3.2)

and variance σ2 (a constant). The β is the regression coefficient or the
parameter that represents the strength of association between the SNP x and the
phenotype y. In order to estimate the parameters α, β and σ2 that characterize
the model, theoretical arguments lead to the following rule: α and β are estimated
by ”the least squares3” estimators, and a and b, namely the quantities which
minimize the residual sum of squares,

∑
(yi−Yi)2 where Yi is given by the estimated

regression equation 3.3:

Yi = a+ bx (3.3)

By solving this, it is found the parameter values that minimize the squared
distance between observed phenotype value and the predicted phenotype value.

It can be shown by elementary calculus that a and b are given by the formulae
3.4 3.5:

a = ȳ − bx̄ (3.4)

3The least squares estimators of α and β are also maximum likelihood estimators; furthermore,
among all unbiased estimators they have the smallest standards errors
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b =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2
(3.5)

Also, an unbiased estimator of σ2 is the residual sum of squares,
∑

(y − Y )2.
See Equation 3.6 :

s2o =

∑
(y − Y )2

n− 2
(3.6)

The divisor n− 2 on 3.6 is often referred to as the residual degrees of freedom,
s2o as the residual mean square, and so as the standard deviation about regression.
The quantities a and b are called the regression coefficients, the term is often used
particularly for b, the slope of the regression line.

When both x and y are random variables it might be useful to have a measure
of the extent to which the relationship between the two variables approaches the
extreme scenario in which every point on a scatter diagram fall exactly on a straight
line. Such an index is provided by the product-moment correlation coefficient (or
simply correlation coefficient), defined by:

r =

∑
(x− x̄)(y − ȳ)√

(
∑

(x− x̄)2
∑

(y − ȳ)2)
(3.7)

This (3.7) provides a useful interpretation of the numerical value of r. The
squared correlation coefficient is the fraction by which the sum of the squares of y
is reduced to give the sum of squares of deviations from its regression on x. It is
easy to note that 0 ≤ r2 ≤ 1.

In PLINK, significance is based on the following permutation procedure:
genotypes are decomposed into between- and within-family components, results are
applicable to study design in complex disease, especially for late-onset conditions
for which parents are usually not available [38]. These two components are then
permuted independently at the level of the family and are summed to form new
pseudogenotype scores for each individual. That is, between components are
swapped between families; within components have their sign swapped, with a
50% chance (similar for all members of the same family). This approach provides
tests that give correct type I error rates accounting for the relatedness between
individuals. Despite the need for permutation, one advantage is that nonnormal
and dichotomous phenotypes can be appropriately analyzed. Whereas the basic
test is of total association, the between and within components can also be tested
separately [34]. For more details about the performance, see [38].

In the regression model 3.4, suppose that repeated sets of data are generated,
each with the same n values of x but with randomly varying values of y. The
statistics ȳ, a and b will vary from one set of data to another. Their sampling
variances are obtained as follows:

var(ȳ) =
σ2

n
(3.8)

var(b) =
σ2∑

(x− x̄)2
(3.9)
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var(a) = σ2(
1

n
+

x̄2∑
(x− x̄)2

) (3.10)

Formulae 3.10, 3.9 and 3.8 all involve the parameter σ2. If inferences are to
be made from one set of n pairs of observations on x and y, σ2 will be unknown.
It can, however, be estimated by the residual mean square, so (3.6). Estimated
variances are, therefore,

var(ȳ) =
s2o
n

(3.11)

var(b) =
s2o∑

(x− x̄)2
(3.12)

and

var(a) = s2o(
1

n
+

x̄2∑
(x− x̄)2

) (3.13)

and hypotheses about ȳ, a or b can be tested using the t-distribution on n− 2
degrees of freedom [41] (Null Hypothesis Ho: β = 0 and Alternative Hypothesis
H1 : β 6= 0 for testing whether to reject the null hypothsis that there is no linear
relationship between the given SNP and phenotype or not). With PLINK, a Wald
test is performed. The Wald test is a parametric test for testing the truth value of
the estimators based on the sample estimation. There, the maximum likelihood θ̂
of the parameter θ is compared to the observed value θ0 under the hypothesis that
their difference would follow a normal distribution. Generally, is the square of the
difference what is compared to chi-square distribution. For univariate cases, Wald
statistic is 3.14:

(θ̂ − θ0)2

var(θ̂)
(3.14)

which is compared against a chi-squared distribution.
When using PLINK for estimate the parameters, if the phenotype (column 6 of

the PED file or the phenotype as specified with the –pheno option) is quantitative
then PLINK will automatically treat the analysis as a quantitative trait analysis.
The basic code to generate the analysis is:

1 plink --file mydata --assoc

The –assoc option will automatically perform an asymptotic version of the
usual Student’s-t test to compare two means.

Given a quantitative phenotype, –assoc writes regression statistics and Wald
test results to plink.qassoc and will generate the file with fields as follows:

CHR: Chromosome number
SNP: SNP ID
BP: Physical position (base-pair)
NMISS: Number of non-missing genotypes
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BETA: Regression coefficient
SE: Standard error
R2: Regression r-squared
T: Wald test (based on t-distribtion)
P: Wald test asymptotic p-value

Nevertheless, this analysis can be made on a finer way by adding some
modifiers. The ”qt-means” modifier causes an additional plink.qassoc.means file to
be generated, reporting trait means and standard deviations stratified by genotype.
Also, an output modifier (–pfilter 1e-4 ) for only report statistics with p-values less
than 1e-4 could be set. The parameters above mentioned are set as follows:

1 ./plink --bfile test --geno 0.10 --maf 0.05 --hwe

0.000001 --mind 0.02 --pfilter 1e-4 --assoc --

pheno phenotypes.txt --all -pheno --out as1
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Chapter 4

Results

4.1 Descriptive Analysis

In order to be able to make a better interpretation of results, a first descriptive
step is presented here, where differences between healthy and affected by AD
groups can be found for the genetic control (APOE ε4 copies) and the phenotype
(hippocampus volume), even though it does not necessary mean that this difference
is significant.

Differences on APOE ε4 allele distribution are represented on Figure 4.1 and
it is notable that most of people from control group had no ε4 alleles or had just
one copy. On the other hand, more people from AD than CN group present two
copies of the allele.

Figure 4.1: Number of APOE ε4 alleles by AD and CN groups on together ADNI1
and ADNI2 cohorts
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Difference on Hippocampus’ volume between healthy and AD groups is clear
(See Figures 4.2 , 4.3, where CN controls seems to have more Hippocampus volume
than AD patients. In 4.3 means of the two groups are also represented and the
difference between them is remarkable.

Figure 4.2: Density plot in which distributions on Hippocampus’ volume between
the studied groups are shown
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Figure 4.3: Hippocampus’ volume by age and studied groups

4.2 P-value Correction

In order to be able to extract information from the GWAS, it is necessary to
establish from which p-value we consider there is association between the SNP and
the phenotype. At the conventional p < 0.05 level of significance, an association
study of 1 million SNPs will result on 50.000 SNPs ”associated” with the disease,
almost all falsely positive and due to chance alone. The most common method
of dealing with this problem is to reduce the false-positive rate by applying the
Bonferroni correction, in which the conventional P-value is divided by the number
of tests performed. The same 1 million SNP study would thus use a threshold
of p < 0.05/106 , or 5 × 108, to identify associations unlikely to have occurred
by chance. This correction has been criticized as overly conservative because it
assumes independent associations of each SNP with disease even though individual
SNPs are known to be correlated to some degree due to linkage disequilibrium1 [21].
In most of the literature, and also in Potkin et al. 2009 [46] , it is established that
significant SNPs have p-values equal or less than 10−06. Therefore, and in order
to be able to compare the results of this study with Potkin et al. 2009 [46], 10−06

will be the threshold used here. Nevertheless, 10−08 will be considered for the
representation of results.

1Linkage disequilibrium (LD) is the correlation between nearby variants such that the alleles
at neighboring polymorphisms (observed on the same chromosome) are associated within a
population more often than if they were unlinked. [49]
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4.3 GWAS Results Representation

GWAS results are typically presented in Manhattan plots and Q-Q plots. There-
fore, in order to visualize the results obtained in the non randomized association
analysis, Manhattan and Q-Q plots are drawn with R (package ”qqman”). This
package is able to work with PLINK’s outputs.

Manhattan plot

A Manhattan plot is a specific type of scatter plot widely used in genomics to
study GWAS results. Each point represents a genetic variant. The X axis shows
its position on a chromosome, the Y axis tells how much it is associated with
a trait (hippocampus volume, in this case) [42]. Then, a Manhattan plot dis-
plays the association of the P value for each SNP in the genome (displayed as
− log10(p − value)). Here, the horizontal lines display the cutoffs for two signifi-
cance levels: blue line for high significance (p < 10−6) and red line for genome-wide
significance level (p < 10−8). See Figures 4.5, 4.9, 4.13.

Q-Q plot

The Q-Q plot, or quantile-quantile plot, is a graphical tool that helps to assess if
a set of data plausibly came from some theoretical distribution such as a Normal
or exponential. It is a scatterplot created by plotting two sets of quantiles against
one another. If both sets of quantiles came from the same distribution, the points
should form a line that is roughly straight [43].

Concerning GWAS, population structure should be assessed and reported,
typically by examining the distribution of test statistics generated from the
thousands of association tests performed and assessing their deviation from the
null distribution (that is expected under the null hypothesis of no SNP associated
with the trait) in a “Q-Q,” plot. In these plots, observed association statistics or
calculated P-values for each SNP are ranked in order from smallest to largest and
plotted against the values expected had they been sampled from a distribution
of known form. Deviations from the diagonal identity line suggest that either the
assumed distribution is incorrect or that the sample contains values arising in some
other manner, as by a true association [21]. Here, more than one point above the
diagonal can be found (See Figures 4.7, 4.11, 4.15).

4.4 Whole Population Results

The top 20th associated SNPs results of the GWAS in PLINK for ADNI1 together
with ADNI2 cohort (the whole population) are shown in Figure 4.4, including all
parameters before mentioned (Chromosome number,SNP ID, base-pair position
of the SNP,non-missing genotypes, β regression coefficient, SE, r2 measurement,
Wald test based on t-distribtion and Wald test asymptotic p-value):
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Figure 4.4: Output of the analysis of ADNI1 and ADNI2 together (top 20 SNPs)

The analysis in the whole cohort of patients reported the expected association
for APOE rs429358 and TOMM40 rs2075650 SNPs according to the current
knowledge (p-values of 1.256e-16 and 1.095e-09, respectively). Nevertheless, they
are not strongly correlated (r2 is 0.05187 and 0.02846). In addition to rs429358
and rs2075650, and close but below to the 10−6 threshold, six SNPs were found
associated in the analysis of the 100% of the population: rs301798 (located in
chromosome 1, p-value=6.65e-06), rs1267476 (chromosome 11, p-value=9.32e-
06), rs1002598 (chromosome 10, p-value = 8.657e-06), rs7149001 (chromosome
14, p-value = 3.485e-06), rs10510380 (chromosome 13, p-value = 6.454e-06) and
rs7328292 (chromosome 3, p-value = 6.782e-06). These SNPs will be tracked in the
rest of the GWAS’ and colored in green on the Manhattan plots. The Manhattan
and Q-Q plots representation of the results can be found in Figures 4.5 and 4.7 .
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Figure 4.5: Manhattan plot of the quantitative trait (hippocampus volume)
genome wide association analysis for the total population. In green, the significant
SNPs and the most close to the 10−6 threshold ones.

In order to have a better visualization of APOE and TOMM40, another
Manhattan plot, zooming the 19th chromosome, is made 4.6:
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Figure 4.6: Manhattan plot for the 19th chromosome of the quantitative trait
(hippocampus volume) genome wide association analysis for the total population.
In green, APOE and TOMM40 SNPs. The SNP with biggest p-value is annotated.

Figure 4.7: Q-Q plot of the quantitative trait (hippocampus volume) genome
wide association analysis.
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4.5 ADNI1 Cohort Results

The top 20th associated SNPs results of the GWAS in PLINK for ADNI1 are
shown in Figure 4.8, including all parameters specified above:

Figure 4.8: Output of the analysis of ADNI1 cohort (top 20 SNPs)

The results reported only a positive association for APOE rs429358 and
TOMM40 rs2075650 SNPs in ADNI1 (p-values of 4.162e-13 and 1.339e-07,
respectively). Nevertheless, they are not strongly correlated (r2 is 0.08173 and
0.0441, respectively). A representation of the results can be found in Figures 4.9
and 4.11:
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Figure 4.9: Manhattan plot of the quantitative trait (hippocampus volume)
genome wide association analysis for ADNI 1 cohort. In green, the significant
SNPs and the most close to the 10−6 threshold ones from the whole population
GWAS.

In order to have a better visualization of APOE and TOMM40, another
Manhattan plot, zooming the 19th chromosome, is made 4.10:
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Figure 4.10: Manhattan plot for the 19th chromosome of the quantitative trait
(hippocampus volume) genome wide association analysis for ADNI1 cohort. In
green, APOE and TOMM40 SNPs. The SNP with biggest p-value is annotated.

Figure 4.11: Q-Q plot of the quantitative trait (hippocampus volume) genome
wide association analysis for ADNI1 cohort.
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4.6 ADNI2 Cohort Results

As in previous sections, the top 20th associated SNPs results of the GWAS in
PLINK for ADNI2 are shown in Figure 4.12, including all parameters specified
above:

Figure 4.12: Output of the analysis of ADNI2 cohort (top 20 SNPs)

In this case, the GWAS performed for the ADNI2 cohort did not show a
significant association between them and the hippocampal volume (p-value 6.004e-
05 for APOE SNP and 0.002591 for TOMM40). A representation of the results
can be found in Figures 4.13 and 4.15:
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Figure 4.13: Manhattan plot of the quantitative trait (hippocampus volume)
genome wide association analysis for ADNI 2 cohort. In green, the significant
SNPs and the most close to the 10−6 threshold ones from the whole population
GWAS.

Here, also another Manhattan plot zooming the 19th chromosome is made 4.14:
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Figure 4.14: Manhattan plot for the 19th chromosome of the quantitative trait
(hippocampus volume) genome wide association analysis for ADNI2 cohort. In
green, APOE and TOMM40 SNPs. The SNP with biggest p-value is annotated.

Figure 4.15: Q-Q plot of the quantitative trait (hippocampus volume) genome
wide association analysis for ADNI2 cohort.
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4.7 Randomized Population Results

In what concerns to the randomized population, significant NPs from the whole
population were tracked through the different percentages of sample size and the
consecutive 25 randomizations. Figures 4.17, 4.16 and 4.18 show the results of the
p-values for the different GWAS:

[a]
30 35 40 45 50 55 60 65 70 75 80 85 90 95

Sample Size (%)

4

6

8

10

12

14

16

-lo
g1

0(
p-
va

lu
e)

APOE (rs429358)

[b]
30 35 40 45 50 55 60 65 70 75 80 85 90 95

Sample Size (%)

2

4

6

8

10

-lo
g1

0(
p-
va

lu
e)

TOMM40 (rs2075650)

Figure 4.16: Statistical distribution of the p-values ( log 10 (Observed p-value))
obtained in the randomized analysis. (a) Results for APOE SNP.(b) Results for
TOMM40 SNP.

Although these are not significant results, after performing a randomized
analysis similar to the one applied for APOE and TOMM40, we noticed that
there is a positive trend in the association significance between these SNPs and
the hippocampal volume, suggesting a possible association with a higher sample
size (See Figures 4.17 and 4.18.)
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Figure 4.17: Statistical distribution of the p-values ( log 10 (Observed p-value))
obtained in the randomized analysis for rs301798 (a) and rs1267476 (b) SNPs
associated to some brain-related disorders, such as Schizophrenia and Parkinson
[39], [40]
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Figure 4.18: Statistical distribution of the p-values ( log 10 (Observed p-value))
obtained in the randomized analysis. (a) Results for the SNP rs1002598.(b)
Results for the SNP rs7149001.(c) Results for the SNP rs7328292.(d) Results for
the SNP rs10510380.
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To sum up, the results reported a positive association for APOE rs429358
and TOMM40 rs2075650 SNPs, only in ADNI1 (p-values of 4.162e-13 and 1.339e-
07, respectively). The GWAS performed for the ADNI2 cohort did not show a
significant association between them and the hippocampal volume (p-value 6.004e-
05 for APOE SNP and 0.002591 for TOMM40). The analysis in the whole cohort
of patients reported the expected association for APOE and TOMM40 according
with the current knowledge (p-values of 1.256e-16 and 1.095e-09, respectively).
From the exhaustive randomized analysis, the association was consistent with the
results in the whole ADNI cohort from a sample size percentage of 80-90% (See
Figure 4.16)
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Chapter 5

Discussion and conclusions

To ensure that the strongest associations do not reflect genotyping artifacts,
additional checks on genotyping quality should be made. Associations with any
known “positive controls” (such as APOE here), should be reported in order to
increase confidence in the consistency of findings with prior reports [21]. The
results presented here are consistent with the state of the art and with those from
the original article Potkin et al.. Hence, the power of this approach is validated,
and emphasizes the value of the results implicating novel genes in candidate
neurodegenerative mechanisms. Nevertheless, not all the SNPs that Potkin et
al. pointed out were found in this study (rs10074258, rs12654281, rs10781380,
rs8115854, rs6031882, rs2073145, rs10867752, rs1082714 and rs11626056 were
found on the original article but not here). That could be due to the variability of
the results depending on the sample size.

Additionally, a typical GWA study has 4 parts: (1) selection of a large number
of individuals with the disease or trait of interest and a suitable comparison
group; (2) DNA isolation, genotyping, and data review to ensure high genotyping
quality; (3) statistical tests for associations between the SNPs passing quality
thresholds and the disease/trait; and (4) replication of identified associations
in an independent population sample or examination of functional implications
experimentally. Association studies as the one presented here essentially identify
a genomic location related to disease but do not provide new information on gene
function. For such porpuse, there are aditional studies. The examination of known
SNPs in high linkage disequilibrium with the associated SNP may identify variants
with plausible biologic effects. Also, tissue samples or cell lines can be examined
for expression of the gene variant. Other functional studies may include genetic
manipulations in cell or animal models, such as knockouts or knock-ins. The three
first steps have already been taken, and a future line of research could be based
on step 4: not only for TOMM40 and APOE SNPs, but specially forrs301798,
rs1267476, rs1002598, rs7149001 , rs10510380 and rs7328292, because there is
not information or biologic studies related to them, and they could be a very
interesting source of diagnosis and knowledge.

Other applications of GWA studies is that they can also demonstrate gene-gene
interactions, or modification of the association of one genetic variant by another (as
with GAB2 and APOE in Alzheimer’s disease), and can detect high-risk haplotypes
or combinations of multiple SNPs within a single gene. Therefore, more work could
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be done in this direction. For example, by performing a multivariate regression
that analyze all SNPs jointly to assess the influence of each SNP on the given
phenotype in the presence of all the other SNPs (this model would be more realistic
for common diseases, like Alzheimer’s disease, that are believed to be caused by
the contribution of many different genetic loci, each having small effect on the
disease susceptibility).

As above mentioned, replication is the first step in studies as similar as possible
to the initial report as it is made here. Then, it may be extended to related
phenotypes, different populations or different study designs to refine and extend
the initial findings and increase confidence in conclusions [21].

In conclusion, the two most significant SNPs from the whole population
(rs2075650 and rs429358 ) are both located on the 19th chromosome, and form
part of genes TOMM40 and APOE. In fact, these genes are close to each other
(See Figure 5.1) and are part of two genes related to Alzheimer’s in the literature
[1, 18, 28, 30]: TOMM40 and APOE. Other SNPs that might be relevant results
(notice that although they are close, they do not pass the significance threshold)
could be rs301798 and rs1267476, SNPs located at the intron region of RERE
(arginine-glutamic acid dipeptide repeats) gene and ABTB2 (Ankyrin Repeat and
BTB domain containing 2) gene, respectively. Both are known to be associated to
some brain-related disorders, such as Schizophrenia and Parkinson [39], [40]. We
encourage further studies for describing the specific role of the other SNPs found
(rs301798, rs1267476, rs1002598, rs7149001 , rs10510380 and rs7328292 ), which
may become important in the early diagnosis of the disease.

Figure 5.1: APOE gene

To sum up, in this work, the consistency of GWAS analysis through the different
ADNI cohorts was studied. A positive association was found for APOE and
TOMM40 SNPs with the hippocampal volume in the ADNI1 cohort and in the
union of ADNI1 and ADNI2 populations. However, the association for APOE
and TOMM40 was not reported in ADNI2. It can be hypothesized that the
variability of association based on sample size is the reason behind that result,
and this hypothesis is supported taking into account the results obtained in the
randomization of the 50% of the population, but future work is needed to be able
to confirm it. In addition, the study reported a weak association of SNPs that
are known to be associated to brain-related disorders. For future work, the study
should be extended to upcoming ADNI3 database and the associations with other
brain structures.
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