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Abstract 10 

The uppermost Pleistocene and Holocene palaeoenvironmental evolution of the Añamaza river 11 

valley (Iberian Range, NE Spain) is deduced using multidisciplinary approach including 12 

stratigraphical, mineralogical, palynological, geochemical, geophysical methods and drilling. 13 

Main changes were registered in distinct subenvironments of a carbonate fluvial system, 14 

including the channelled zone and wetlands in the floodplain. 15 

Tufa barrages dominated although pools also existed. Geophysical survey and coring reveal 16 

tufa build-ups and pool facies also in the subsoil. Lower water temperature and scarce 17 

evaporation are deduced for the Pleistocene fluvial system that progressively changed through 18 

the Holocene, with more hydrologically closed areas and higher evaporation influence. A 19 

general aggrading evolution during warm stages related with increasing base level and 20 

damming due to fast carbonate precipitation, characterised the Holocene. Detrital tufa indicates 21 

erosive high-energy floods or colder stages when water level would decrease favouring erosion. 22 
14

C and 
230

Th/
234

U dating reveal high sedimentation rates and three main discontinuities related 23 

with cold episodes: Younger Dryas, middle part of the Holocene Climate Optimum and Iron Age 24 

Epoch. During the uppermost Pleistocene tufa growth would be enhanced during warmer 25 

episodes as the Bølling/Allerød. In the Younger Dryas scarce vegetation favoured erosion of 26 

both, slopes and tufa constructions. Subsequent warmer temperatures during the first part of 27 

the Holocene favoured vegetated slopes, enhanced tufa growing (although interrupted in the 28 

middle part of the Holocene Climate Optimum), and development of wetlands with riparian 29 

vegetation in the floodplain, where either siliciclastics or detrital tufa incoming alternated with 30 

low-energy waters stages and mud settling. Progressive decline in tufa is deduced for the upper 31 

Holocene but it is not possible to determine whether this, and other palaeoenvironmental 32 

changes were related either to climate or increasing human activities. During the Roman and 33 

Medieval Warm Periods more oxidizing conditions in the wetlands and increasing erosion 34 

prevailed, probably conditioned by human activities. 35 

The pollen record shows for the Early Holocene development of Pinus forest with Betula, and 36 

expansion of deciduous Quercus, xerophilous and heliophilous grassland. Subsequent 37 

increasing moisture supported open forests with deciduous (Quercus, Ulmus, Corylus) and 38 



 

evergreen (Quercus ilex, Pistacia) species. From ca.4000 yrBP, a dominant deciduous Quercus 39 

forest with groves of Corylus, Ulmus, Acer, Fagus and Taxus expanded and human activities 40 

(grazing) occurred. From 1200 yrBP dry grassland expanded due to intensive land use (agro-41 

pastoral activities). Almost completely deforested plateaus surround the site today with slopes 42 

covered by patchy grass with junipers groves and screeds with little soil. 43 

1. Introduction 44 

Ancient fresh water carbonate fluvial systems have been profusely studied all around the world 45 

mainly by analysing their most common and best preserved deposits: fluvial tufa constructions. 46 

A common topic on fluvial tufa systems studies has been sedimentology, with the main aim to 47 

recognize and interpret lithofacies and lithofacies associations and to propose coherent 48 

sedimentological models (Ordóñez and García del Cura, 1983; Pedley; 1990; 2009; Ford and 49 

Pedley, 1996; Zamarreño et al., 1997; Martín Algarra et al., 2003; Ordóñez et al., 2005; 50 

Carthew et al, 2006; Vázquez Úrbez et al., 2010, Arenas et al., 2014; García-García et al., 51 

2014). In fluvial systems fitting with the barrage/pool model (Pedley, 1990; 2009; Ford and 52 

Pedley, 1996), other kind of deposits mostly generated in the fluvial floodplains (e.g. detrital tufa 53 

and muds) are rarely studied due to their scarce preservation potential: they are highly erodible 54 

facies intensely exposed to erosion during common entrenchment stages (Ordóñez et al., 2005; 55 

Ortiz et al., 2009). Climate has been traditionally considered the main control factor on active 56 

tufa generation, which is favoured during warm and wet episodes (Pedley et al., 1996; Andreo 57 

et al., 1999; Horvatinčić et al., 2000; Zak et al., 2002; Martín Algarra et al., 2003; Pedley, 2009; 58 

Sancho et al.; 2015). Nevertheless, tufas also develop in other climate regimes (Willing, 1985; 59 

Pedley, 2009). Moreover, water level fall stages associated fluvial downcutting or destructive 60 

floods, cause often erosion of previous sediments (Vaudour, 1986; Taylor et al., 1994; Carthew 61 

et al., 2003; Ordóñez et al., 2005) and for this reason identification of sedimentary hiatuses in 62 

the series can be of equal importance on the study of palaeoenvironmental changes. 63 

In any case, carbonate fluvial systems dynamics is not only climate-dependent and it is widely 64 

known that can be controlled by other factors, both natural or antrophic (Goudie et al., 1993; 65 

Bell and Walker, 1992; Pentecost and Viles, 1994; Viles and Pentecost, 2007; Capezzuoli et al., 66 

2014), which can strongly complicate the knowledgement of the system and avoid correct 67 

palaeoenvironmental interpretations to be attained. For these reasons, during the last years, 68 

new research fields highlight the great importance of fluvial carbonates not only on the study of 69 

climate (Andrews et al., 1997; 2000; Kano et al., 2004; Andrews and Brasier, 2005; Capezzuoli 70 

et al., 2010; Luzón et al., 2011) but also of hydrological changes (Golubić, 1969; Kano et al., 71 

2007; Auqué et al., 2013), tectonic setting (Sbeinati et al.; 2010; Pazzaglia et al., 2013; Ascione 72 

et al., 2014; Henchiri, 2014; Camuera et al., 2015) or anthropogenic influence (Goudie et al., 73 

1993; Limondin-Lozouet et al., 2010) in the area where this kind of facies have developed. For 74 

the moment, most of the studied fluvial tufas are Quaternary in age as, commonly, only 75 

fragmentary erosional remnants of the fluvial system preserve (Pedley, 2009; Capezzuoli et al., 76 

2014). In this sense, the study of fluvial carbonate systems has benefited greatly during the last 77 



 

years of the use of coring methods (Pedley et al., 1996; 2000; Ordóñez et al., 2005; Sbeinati et 78 

al.; 2010) or shallow geophysical techniques that allow to better define internal geometries and 79 

not outcropping sectors to be studied (Pedley et al., 2000; Pedley and Hill, 2003; Pérez et al., 80 

2012). 81 

The present work is focused on the study of non-outcropping deposits belonging to a carbonate 82 

fluvial system developed during the Late Pleistocene-Holocene in the central Iberian Range 83 

(Spain), and the interpretation of the main palaeoenvironmental changes occurred in the area. 84 

Tufas in the channelled area have been considered, but also detrital tufas and mud deposits in 85 

the floodplain. The innovative aspect is that a multidisciplinary approach including 86 

stratigraphical, palynological, geophysical, geochemical and mineralogical studies all together 87 

has been followed on the study of different parts of the system, which difficult, but reinforce, 88 

palaeoenvironmental interpretations as they fit with all the considered proxies and have been 89 

registered in different parts of the system. 90 

 91 

2. Geological setting 92 

The Añamaza River valley is located in the central area of the Iberian Range (Fig. 1). The 93 

geological succession in the region is mainly Mesozoic (Middle Jurassic-Lower Cretaceous) and 94 

Tertiary in age. The Mesozoic is represented by the carbonate Chelva Formation (Middle 95 

Jurassic), the terrigenous Tera Group (Jurassic-Cretaceous transition) and the carbonate 96 

Oncala Group (Cretaceous). Conglomerates, lutites and limestones integrate the Tertiary series, 97 

which lies subhorizontal and unconformably on the Mesozoic rocks. Winter temperatures in the 98 

region are low (December and January mean temperatures below 4°C) and summers relatively 99 

warm (August mean temperature 19.9°C). The average annual rainfall is about 600 mm 100 

although there is significant inter-annual variability. During the summer months, the subtropical 101 

Azores anticyclone blocks moisture transport from the west. The vegetation dominant species in 102 

the heights are Quercus ilex and Quercus rotundifolia as well as Quercus faginea and Quercus 103 

canariensis, whereas at lower altitude Erica spp, Juniperus spp, Poaceae and Thero-104 

Brachypodietea predominate. 105 

The studied fluvial deposits form part of a Late Pleistocene-Holocene complex sedimentary 106 

system (Luzón et al., 2011) integrated by alluvial fans, passing downstream to a shallow lake 107 

(Añavieja Lake). Lacustrine deposits are represented by black and brown muds related to 108 

settling and carbonate precipitation. Both, alluvial fans and lake were located upstream the area 109 

where this study is focused. Downstream the lake, several stepped tufa barrages separated 110 

small lakes or natural pools, ore slow flowing areas (Sáenz and Sanz, 1989; Coloma et al., 111 

1996; Pérez et al., 2010; Luzón et al.; 2011; Arenas et al., 2014). The sedimentary system had 112 

a catchment area of about 140 km
2
 and water supplies included superficial discharges, but 113 

mainly groundwater (Coloma et al., 1996). Groundwater supplies to the Añamaza River come 114 

from the Jurassic aquifer; in fact, conductivity values (600-900 S/cm) and bicarbonate-sulphate 115 

calcium composition of this aquifer show clear similarity with the Añamaza River water. On the 116 



 

contrary, groundwater in the Quaternary aquifer has a predominantly sulphate calcium 117 

composition and higher conductivity values (1000-1400 S/cm). Springs mainly concentrate in 118 

two zones: i) close to Añavieja village, at 960 m.a.s.l. (Fig. 1) supplying a flow of 160 l/s, and ii) 119 

close Dévanos village, at 950 m.a.s.l., with 40 l/s (Coloma et al., 1996). Tufa deposits in the 120 

area are considered to have formed discontinuously from the Miocene to the Holocene. Arenas 121 

et al. (2014) proposed a detailed lithofacies classification for the Pleistocene and Holocene 122 

tufas and two different fluvial models related respectively to moderate and high slope reaches of 123 

the valley. The moderate-slope model that these authors consider representative for the 124 

Holocene, included extensive standing-water areas dammed by barrage-cascades; the high-125 

slope model, consisted of small slow flowing areas between cascades and barrage-cascades. 126 

The Holocene tufas are located slightly higher than the present course of the river (Luzón et al., 127 

2011; Auqué et al., 2013; Arenas et al., 2014). 128 

 129 

3. Methodology 130 

Different methods have been used for the study of the Añamaza fluvial carbonate deposits, in 131 

order to test and compare the potential of distinct sediments as palaeoenvironmental registers. 132 

As previously indicated, sedimentary facies analysis was the focus of previous works by Luzón 133 

et al. (2011) and Arenas et al. (2014); the latter made a facies analysis based on outcropping 134 

deposits and the former also considered data from cores. For this reason, lithofacies 135 

descriptions are not included in the present work. 136 

3.1. Coring 137 

Three new cores were drilled by rotation in the system with an RL-48-L device. They were 138 

named AÑ1.2, DV2 and DV3 (Fig. 1), which have, respectively, the following UTM coordinates: 139 

30TWM856462, 30TWM883404, and 30TWM882406. AÑ1.2 (15.5 m-long) was drilled mainly 140 

for palynological study, in a wide flat area located between two ancient tufa barrages, close to 141 

the previously extracted AÑ1 (Luzón et al., 2011; 2012) and the valley wall. DV2 (16.8-long) 142 

was drilled over a tufa barrage, and DV3 (21 m-long) immediately upstream it, in a zone 143 

interbarrages. The extracted cores were kept in humid conditions (more than 95% humidity) 144 

until being studied. In the Laboratory of Stratigraphy of the Zaragoza University, they were 145 

carefully split and photographed and their study was carried out following the protocol 146 

recommended by the Limnological Research Centre (Schnurrenberger et al., 2003). Description 147 

of each core included lithology, colour, texture, micro and macroscopic biological content, and 148 

sedimentary structures. 149 

3.2. Chronology 150 

The chronology of AÑ1.2 core was established by AMS (accelerator mass spectrometry) 
14

C 151 

dating on six samples. Selection of the samples was conditioned by the presence of organic 152 

material trying to avoid potential “hard water effect” problems. Necessary preparation and 153 

samples pre-treatment for radiocarbon dating was carried out by the 
14

C Laboratory of the 154 



 

Department of Geography at the University of Zurich (GIUZ). The dating itself was done by AMS 155 

with the tandem accelerator of the Institute of Particle Physics at the Swiss Federal Institute of 156 

Technology in Zurich (ETH). 
14

C ages were calibrated using IntCal program (Reimer et al., 157 

2009). Five samples from the dominantly carbonate DV2 core were dated using Uranium-series 158 

disintegration method (Ivanovich and Harmon, 1992) at Geochronology Laboratory of the ICT 159 

Jaume Almera (Barcelona, Spain). The chemical separation of the radioisotopes and 160 

purification followed the procedure described by Bischoff et al. (1988). The isotope 161 

electrodeposition was carried out using the method described by Talvitie (1972), modified by 162 

Hallstadius (1984). The separated isotopes were counted in an Alpha Ortec Octete Plus 163 

spectrometer and age calculations were based on the computer program of Rosenbauer (1991). 164 

3.3. Mineralogical analysis 165 

The mineralogical composition of seventy-two samples from AÑ1.2 was determined on the 166 

whole sample by X-ray diffraction (XRD) using a Philips PW 1710 diffractometer with Cu-K 167 

radiation, automatic divergence slit and graphite monochromator, belonging to the Zaragoza 168 

University. The XRD data were stored as computer files with the XPowder software (Martín, 169 

2004). To compare the study samples, an estimation of whole-sample mineral abundance was 170 

carried out using the normalized reference intensity ratio method (Chung, 1974; Jenkins and 171 

Snyder, 1996) and the weighting factors of Schultz (1964). The error of the semiquantitative 172 

determination is about 5%. 173 

3.4. Isotopical analysis 174 

Twenty-six calcite isotopic analyses (
18

OCc and 
13

CCc) on bulk sample were performed at the 175 

Stable Isotopes Laboratory of the Salamanca University. Samples, 10-15 mg, were leached with 176 

1 ml 100% pure H3PO4, at 25ºC under vacuum conditions (McCrea, 1950). The resulting CO2 177 

was extracted following the techniques described by Walters et al. (1972). The analyses were 178 

carried out in a SIRA II mass spectrometer. The precision of the method is 0.2‰ for 
18

O and 179 

0.1‰ for 
13

C. The isotope data are presented relative to the international VPDB standard 180 

(Craig, 1957; Gonfiantini, 1984). 181 

3.5. Pollen analysis 182 

A total of fifty-six samples were taken at 30 cm intervals for pollen analysis from the AÑ1.2 core, 183 

except at the lower part in which the intervals were of 8-10 cm. At least 350 pollen grains 184 

(minimum of 100 pollen grains apart from the most dominant taxa) and 20 different taxa were 185 

identified and counted per sample. Pollen percentages were calculated on a basic pollen sum 186 

that excluded aquatic plants (Cyperaceae, Alisma, Callitriche, Cladium, Myriophyllum 187 

alterniflorum-t., Myriophyllum verticillatum-t., Hydrocharis morus-ranae, Lythraceae, 188 

Menyanthes, Nymphaea, Polygonum amphibium-t., Potamogeton, Sparganium-Typha-t., Typha 189 

latifolia), Pteridophytes spores, indeterminables, unknowns and Algae. Aquatic plants 190 

percentages were calculated from the main pollen sum (basic sum plus Aquatic plants). 191 

Pteridophytes spores, indeterminables and unknown percentages were calculated from the 192 



 

main pollen sum plus Pteridophytes spores, indeterminables and unknowns. Algae were added 193 

to this total sum to calculate their percentages. The calculation of pollen concentrations followed 194 

the volumetric method of Cour (1974). The pollen diagrams were constructed using Psimpoll 195 

program (Bennett, http://www.chrono.qub.ac.uk/psimpoll/psimpoll.html). Samples of 1.5 g of 196 

sediment were prepared using standard palynological procedures (Faegri and Iversen, 1989). 197 

After physical (sieving through 160 μm mesh screens) and chemical (HF, HCl, KOH and 198 

acetolysis) treatment, pollen residues were diluted in glycerol and 40 µl were mounted on slides. 199 

Pollen and spores were identified and counted at a magnification of ×500 (oil immersion) and 200 

×1000 (oil immersion). Pollen determination was performed with pollen keys and pollen atlases 201 

(Moore et al., 1991; Beug, 2004; Reille, 1992; 1995; 1998), and using the reference collection of 202 

the Laboratoire de Géographie Physique (LGP) of CNRS-Université Paris 1-UPEC. Distinctions 203 

within the Poaceae are based on the classification depending on size and morphological 204 

features (Faegri and Iversen, 1989; Moore et al., 1991; Beug, 2004). Four groups were 205 

differentiated: Poaceae (wild grass pollen grains), Hordeum-t., Secale-t. and Triticum-t. 206 

(including Triticum and Avena pollen grains). Differentiation of three pollen types within Quercus 207 

pollen is based on specific morphological keys from Planchais (1962), Colombo et al. (1983) 208 

and van Benthem et al. (1984). Pinus stomata types were identified using identification keys of 209 

Trautmann (1953), Hansen (1995), Sweeney (2004) and García Álvarez et al. (2009a, 2009b). 210 

3.6. Geophysical survey 211 

Ground Penetrating Radar (GPR) survey was carried out along different zones were barrages 212 

and pools were expected to be present in the subsoil (Fig. 1) avoiding the presence of sharp 213 

topographical changes. 120 GPR profiles parallel and normal to the current flow river direction 214 

were made, comprising more than 8300 meters of linear survey. The use of different antennas 215 

allows us attain different resolution and research depths. In general, high frequency antennas 216 

give high resolution but low penetration while low frequency ones give higher depth but less 217 

resolution. A preliminary analysis through different antennas was performed to constrain the 218 

most appropriate ones to be later systematically used; 100 and 250 MHz antennas were finally 219 

selected (41 profiles using 100 MHz and 42 profiles using 250 MHz). GPR wave propagation 220 

velocity was established by the modelling of diffraction hyperbolae at profiles and comparison 221 

with DV2 and DV3 boreholes. This analysis permitted us to constrain a propagation velocity 222 

ranging from 78 to 113 m/µs with a mean value of 90 m/µs for the whole area. Propagation 223 

velocity is in the range of the obtained in similar settings (Annan, 1992; Dagallier et al., 2000; 224 

Kruse et al., 2000; Pedley and Hill, 2003 Neal, 2004; Mukherjee et al., 2010; McBride et al., 225 

2012). After surveying, a similar data processing was applied to each profile: through time-zero 226 

correction, filter of frequencies out of range, running average or stacking to avoid irregular 227 

surficial displacement (in order to avoid significant resolution looses during processing, each 228 

trigger was defined for 1024 samples and trig distance established over the horizontal 229 

resolution). Exponential and linear gain was used to intensify GPR waves at middle to high 230 

depths, in some cases until GPR wave saturation, and in others to constrain significant 231 

reflectors in the subsoil. Background removal and subtract mean trace procedures were also 232 

http://www.chrono.qub.ac.uk/psimpoll/psimpoll.html


 

applied for erasing the subhorizontal distribution of GPR-records due to the sinusoidal wave 233 

characteristics. 234 

 235 

4. Results 236 

The location of the extracted cores inside the system and their lithological features allow them to 237 

be analysed from different perspectives, all enabling a more complete knowledge of the 238 

palaeoenvironmental evolution. AÑ1.2 core, drilled on fine terrigenous facies with macrophyte 239 

organic remains and some sand-size detrital tufas, preserves valuable pollen information. Mainly 240 

carbonate DV2 and DV3 cores have been more useful on the GPR study, because, on the 241 

contrary to AÑ1.2 sediments, which avoid waves penetration, they are made of highly reflective 242 

materials. 243 

4.1 Chronology 244 

AÑ1.2 
14

C dating indicates a Holocene age for these deposits (Table 1 and Fig. 2). Datings are 245 

in the range of those obtained by Luzón et al. (2011) in the AÑ1 core, drilled few metres to the 246 

East (Luzón et al., 2012), also included in Table 1. 
230

Th/
234

U datings on DV2 support a Late 247 

Pleistocene-middle Holocene age for these deposits (Table 2 and Fig. 3) and reveal a possible 248 

sedimentary hiatus between metres 15 and 16. These dating suggest the 16.5 uppermost 249 

metres of the DV2 core to represent a similar age that the sediments between ca. 8 and 12 m 250 

depth in AÑ1.2. It is worth nothing that the Late Pleistocene materials on this DV2 are harder as 251 

a consequence of higher cementation.  252 

4.2 Wetlands in the floodplain: AÑ1.2 core 253 

4.2.1 Lithological characterization 254 

Six lithological units can be distinguished in AÑ1.2 core (Fig. 3). The lowest (U1) is the most 255 

terrigenous one, integrated by siliceous and carbonate gravels and interbedded sands and silts. 256 

The second unit (U2) is made of black and brown muds alternating with intraclastic tufa beds. In 257 

Unit 3 (U3) silts and muds are interbedded with macrophyte remains and intraclastic tufa. Unit 4 258 

(U4) is made of alternating black muds and macrophyte remains with some silty intercalations; 259 

intraclastic tufa is nearly absent. Unit 5 (U5) shows less macrophyte remains and Unit 6 (U6) is 260 

made of brown and black bioturbated muds. Dominant dark muds with macrophyte organic 261 

remains and intraclastic tufa in AÑ1.2 indicate a commonly flooded vegetated area contiguous 262 

to the main channelled zone. Episodes of incoming terrigenous supplies (siliciclastic sand and 263 

tufa debris) alternated with stages of more stagnant waters and mud settling; terrigenous facies 264 

are more common in the lower part. Intraclastic tufa is related to the erosion of tufa build-ups 265 

(e.g. barrages or small phytoherms) located upstream, and occurred especially during 266 

deposition of U2 and U3, in the lower part of the Holocene.  267 

Mean mineralogical composition for each unit (Table 3) shows that the average quartz content 268 

is the highest in U1, decreases towards U5 and subsequently increases again in U6. 269 



 

Phyllosilicate mean increases, in general, from base to top, although slightly decreases in U5. 270 

Calcite mean shows a reverse trend to quartz, increasing in a general manner from U1 to U5, 271 

and clearly decreasing in U6. The average pyrite content is low and almost constant from U1 to 272 

U4, very low on U5, and it is not present in U6. Mean values of gypsum are low in all the 273 

differentiated units. The general decrease in quartz towards the, could be related to increasing 274 

vegetation cover in the surrounding mountain areas; nevertheless siliciclastics increase 275 

(phyllosilicates and quartz) is inferred again for U6. Calcite in U1 to U4 is related to the 276 

existence of intraclastic tufa and carbonate silts, whereas this kind of sediments are not visible 277 

with the naked eye in U5 and 6, suggesting carbonate precipitation. The high organic matter 278 

content and the existence of pyrite is related to the prevalence of anoxic and acidic conditions in 279 

the sediment, almost temporarily, avoiding the complete mineralisation of the organic matter 280 

(Luzón et al., 2011) and perhaps mire conditions, especially in relation U1 to U4. 281 

4.1.2 Pollen analysis results 282 

Two pollen diagrams are presented. In the pollen percentages diagram on figure 3, some 283 

selected pollen and spore data are presented; a complete pollen diagram with all taxa can be 284 

found in the Supplementary file. The summary pollen diagram (Fig. 4) includes taxa diversity, 285 

pollen concentration curve and groups established on the basis of the ecological requirements 286 

and/or as anthropogenic indicators of the corresponding plants. Nine local pollen zones have 287 

been defined based on variations of the relative frequencies of both natural and anthropogenic 288 

pollen, according on the definition by Gordon and Birks (1972). A brief description of the local 289 

pollen zones is presented in Table 4. Throughout most of the pollen record, pollen 290 

concentrations greatly fluctuate ranging from 242666 to 8317 grains/g, highlighting, as 291 

lithofacies do, an irregular sedimentation with alternating periods of significant deposition and 292 

phases of stop in sedimentation. The highest values characterize the first part of the pollen 293 

record (pollen zones Ana-1 to Ana-4) and from pollen zone Ana-5 upward, pollen 294 

concentrations gradually decrease. 295 

The first pollen zone Ana-1 is dominated by Pinus. Other taxa such as Juniperus, Betula and 296 

deciduous Quercus developed. Herbaceous pollen taxa such as Poaceae, Asteroideae, 297 

Cichorioideae as well as steppic plants (Ephedra distachya, Artemisia and Chenopodiceae) 298 

show significant values. The pollen zone Ana-2 is characterized by high Pinus values, the 299 

increase of thermophilous taxa such as deciduous Quercus, Corylus, Ulmus and of 300 

Mediterranean taxa, mainly Quercus ilex, while a marked decrease in Juniperus, Betula, 301 

Artemisia and Asteroideae percentages is recorded. These last taxa increase again in pollen 302 

zone Ana-3. Ana-4 is characterized by high Pinus values, the development of deciduous 303 

Quercus, Corylus and Quercus ilex. The decrease in steppic plants and pioneers trees values 304 

correspond to the development of Poaceae, Cyperaceae and Monoletes spores. 305 

A major change occurs in pollen zone Ana-5, as attested by the marked decrease in Pinus 306 

percentages and the simultaneous expansion of deciduous trees and Mediterranean taxa. A 307 

diverse assemblage of trees develops: deciduous Quercus, Corylus, Taxus, Ulmus, Hedera, 308 



 

Acer and Fagus are recorded. Poaceae and Cyperaceae show increasing frequencies. 309 

Anthropogenic indicators and Cerealia display a continuous curve. The pollen zone Ana-6 is 310 

characterized by a decrease of Pinus and deciduous trees while Mediterraean taxa remain 311 

stable. The pollen zone Ana-7 indicates increasing values of Poaceae, anthropogenic indicators 312 

(mainly Plantago lanceolata), Cyperaceae and Sparganium-Typha. Deciduous trees and 313 

Mediterranean taxa show stable values while Pinus displays gradual decrease. Pollen data from 314 

the pollen zone Ana-8 indicate the decline of deciduous trees while a rise in herb pollen is 315 

recorded with a maximum of Cerealia. In pollen zone Ana-9, the amount of Poaceae reaches its 316 

maximum. All the main arboreal taxa decrease or are no longer recorded, except Juniperus 317 

showing increasing percentages. 318 

4.1.2.1. Reconstruction of vegetation at the Añamaza river valley 319 

Ana-1 (1504-1430 cm): Dry grassland with pioneer tree open woodland (Juniperus, Betula, 320 

Pinus) 321 

A dry grassland, mainly composed by Poaceae, Artemisia and Chenopodiaceae may have been 322 

locally present. The increased values of Juniperus and Betula, associated with the presence of 323 

Pinus stomata and Pinus pollen aggregates suggest the local development of a pioneer tree 324 

open woodland (Pinus, Juniperus and Betula). However, long distance pollen transport from 325 

lower altitudes may have contributed to the high values of Pinus. Isolated deciduous Quercus-t. 326 

could be present in the area or open Quercus forest occurred at lower altitudes. 327 

Ana-2 (1430-1346 cm): Open temperate and humid forest & development of some 328 

Mediterranean plants 329 

The increased percentages of deciduous Quercus-t. and Corylus are associated with the 330 

continuous presence of deciduous trees such as Viburnum, Ulmus, Taxus and Hedera. In 331 

parallel, Mediterranean taxa (mainly Quercus ilex-t. and other taxa such as Pistacia, Quercus 332 

suber-t. and Cistus) show a slight increase. Concomitantly, frequency of pioneer trees (Betula 333 

and Juniperus), steppic taxa (Artemisia and Chenopodiaceae-t.) and herbaceous taxa, such as 334 

Helianthemum, Asteroideae-t. and Cichorioideae-t. decline. The significant values of deciduous 335 

trees suggest the local expansion of deciduous groves either in the riparian vegetation or within 336 

the always-present Pinus forest, as attested by stomata and aggregates of Pinus. 337 

Sclerophyllous Mediterranean woodlands may have occupied the lowlands. The increasing and 338 

diversifying aquatic herbaceous taxa indicate the development of the shore water zone 339 

vegetation. 340 

Ana-3 (1346-1295 cm): Dry grassland with open woodland (Juniperus, Pinus, Quercus) 341 

Increase in percentages and concentrations of Artemisia, Chenopodiaceae-t., Ephedra, 342 

Asteroideae-t., Cichorioideae-t., Helianthemum and Poaceae as well as Pinus, Betula and 343 

Juniperus suggests a re-expansion of the dry grassland with an open woodland with Juniperus, 344 

Pinus and Quercus. Moreover, the lowland sclerophyllous woodland was reduced as indicated 345 

by a decrease of Quercus ilex-t., and the absence of Pistacia and Quercus suber-t. 346 



 

Ana-4 (1295-1115 cm): Pinus-Quercus open woodland & Mediterranean plants development 347 

Pollen data indicate the decline of the dry grassland while increasing in deciduous Quercus-t. 348 

and Corylus percentages is recorded. However, values remain relatively low, suggesting some 349 

open deciduous Quercus woodlands within Pinus forest. Besides, increasing Mediterranean 350 

plants (mainly Quercus ilex-t. and Quercus suber-t.) frequencies suggests a sclerophyllous 351 

Mediterranean woodland expansion at lower altitudes. The development of Cyperaceae and 352 

Pteridophytes associated with other aquatic herbaceous taxa indicates a marshland vegetation 353 

spread on the riparian zone; Potamogeton and Mougeotia algae records suggest a slow flow. 354 

Ana-5 (1115-710 cm): Mixed oak forest (Corylus, Ulmus, Taxus, Fagus) with Pinus & Expansion 355 

of sclerophyllous Mediterranean woodland (Quercus ilex, Q. suber, Pistacia, Fraxinus ornus, 356 

Cistus) 357 

A major change occurs in this pollen zone suggesting a hiatus in the sedimentary record. This 358 

stratigraphic discontinuity is supported by 
14

C dating and occurred between ca 8500 and ca 359 

4000 yrBP. Pollen assemblages are characterized in this zone by a simultaneous expansion of 360 

deciduous Quercus-t. and trees such as Corylus, Ulmus, Taxus and Fagus. A diversified 361 

Quercus woodland developed at the expense of Pinus forest. Increasing Mediterranean plants 362 

(mainly Quercus ilex-t, Pistacia, Quercus suber-t.) suggest the presence of sclerophyllous 363 

woodlands at lower altitudes. Riparian vegetation is well developed and diversified, pointing to 364 

more stable conditions on the banks; it includes marshland, dominated by aquatic taxa (mainly 365 

Cyperaceae) associated with herbaceous plants such as Apiaceae, Lamiaceae, Liliaceae, 366 

Ranunculaceae, Filipendula, Rubiaceae and Pteridophytes, and riparian woodland with Salix, 367 

Apiaceae, Acer, Hedera and Populus. Increased Plantago lanceolata-t. and Rumex values 368 

combined with the presence of Cerealia-t. pollen suggest a limited human impact with grazing 369 

and crop cultivation activities in the surrounding area. 370 

Ana-6 (710-575 cm): Open mixed oak forest with riparian meadow and pasture & 371 

Sclerophyllous Mediterranean woodland 372 

An opening of the mixed Quercus woodland is inferred from the decreased percentages of 373 

deciduous Quercus-t, Taxus and Pinus. This coincides with the development of grazing 374 

activities suggested by the increased Plantago lanceolata-t., Rumex and Poaceae values 375 

(percentages and concentrations) and the expansion of the riparian vegetation, in which aquatic 376 

plants (Cyperaceae, Callitriche, Myriophyllum, Potamogeton and Sparganium-Typha-t.), tall 377 

herbaceous (such as Apiaceae, Cichorioideae-t., Lamiceae, Onagraceae, Ranunculaceae, 378 

Sanguisorba minor and Valerianaceae) and trees (such as Alnus, Salix and Fraxinus excelsior-379 

t.) may constitute a dense wetland vegetation. At lower altitudes, the previously sclerophyllous 380 

Mediterranean woodlands are thought to remain stable. 381 

Ana-7 (575-395 cm): Open mixed oak forest with heath, grassland, important pasture and 382 

cereal cultivation & Sclerophyllous Mediterranean woodland 383 



 

During this time period Fagus become established in the mixed oak forest vegetation, while 384 

Pinus decline. The increasing percentages of Ericaceae may indicate the development of heath 385 

in the understory of Quercus woodland. Moreover, in the riparian zone the decrease of Alnus 386 

and tall herbaceous taxa suggests that the dense wetland vegetation has been replaced by 387 

marshland vegetation with Cyperaceae, Sparganium-Typha-t. and Pteridophytes. This change 388 

in the vegetation around the site is possibly fire-related, as indicated by the simultaneous rise of 389 

Ericaceae and Artemisia and may be of anthropogenic origin, as indicated by the increased 390 

values of Poaceae, Hordeum-t. and pollen anthropogenic indicators such as Plantago, Plantago 391 

lanceolata-t. and Polygonum aviculare-t., which are associated with grazing (Behre, 1981). 392 

Ana-8 (395-95 cm): Open mixed oak forest with heath, dry grassland and important cereal 393 

cultivation & Sclerophyllous Mediterranean woodland 394 

The decline of deciduous Quercus woodland may be related to human impact from the 395 

increasing agricultural practices in the site area, Cerealia-t. pollen reaching over 6% at the end 396 

of Ana-8 pollen zone. Moreover, parallel with increasing Juniperus and Cistus values, 397 

herbaceous plants such as Poaceae, Artemisia, Cichorioideae, Brassicaceae, Helianthemum, 398 

Crassulaceae and Fabaceae develop. This suggests an expansion of dry grasslands and 399 

meadows, recolonizing abandoned pasture lands. In the riparian zone, streamside woodlands 400 

composed by Hedera, Acer, Populus, Salix, Alnus and Fraxinus excelsior are present while 401 

Sparganium-Typha and Pteridophytes are replaced by hygrophilous herbaceous taxa such as 402 

Callitriche, Menyanthes, Nymphaea and Potamogeton. At lower altitudes, sclerophyllous 403 

Mediterranean woodlands (mainly Quercus ilex-t., Quercus suber-t. and Pistacia) are still 404 

developed. 405 

Ana-9 (95-10 cm): Dry grassland with Juniperus 406 

A significant change is recorded at the end of the sedimentary record. An opening of the 407 

landscape and a local loss of woody taxa illustrate an ecological degradation. The decline of the 408 

open oak woodlands lead to an expansion of meadows and grasslands with Juniperus and 409 

xerophilous herbs such as Artemisia, Chenopodiaceae-t., Cichorioideae-t., Crassulaceae and 410 

Herniaria. The disappearance of aquatic herbaceous taxa, such as Menyanthes, Nymphaea 411 

and Potamogeton may be indicative of an increased distance from the river shore to the coring 412 

site. 413 

 414 

4.2 Barrage and pool areas in the channel area: DV2 and DV3 cores 415 

4.2.1 Lithological characterization and dating 416 

Cores DV2 and DV3 (Fig. 5) mainly comprise encrusted tufa with interbedded i) grey marls, ii) 417 

brown muds, both including oncolites and intraclastic tufa, and iii) ochre sands. Encrusted beds, 418 

10-20 cm-thick, correspond to phytoherms of either bryophytes or stems, being the latter less 419 

common; stromatolites are rarely present. Difference between both cores is mainly related to 420 

the lithology of the intercalated non-encrusted beds. In DV2 decametric to metric mud and marl 421 



 

beds with oncolites and intraclastic or phytoclastic tufas (forming wackestone, packstone, 422 

floastone and rudstone textures) are recognised. In DV3 yellowish sands are common in the 423 

lower part and grey marls in the upper part, both forming decimetre-thick (sometimes up 1 m-424 

thick) beds; marls can include disperse tufa remains as well as oncolites. 425 

Three units have been distinguished for both cores. Unit A1, strongly cemented, is made of 426 

phytoherms of stems and phytoclastic tufa (rudstone) related to the destruction of tufa build-ups; 427 

some interbedded silts with disperse tufa intraclasts also exist. In Unit A2 the phytoherms 428 

alternate with beds made of oncolites and tufa intraclasts; in DV3 core, this unit includes 429 

coarser terrigenous facies. Unit A3 supposes a decrease on intraclastic tufas. Oncolites and 430 

small phytoherms (both, of stems and bryophytes) are the dominant tufa facies in DV2, whereas 431 

in DV3 marls are quite common. Phytoherms in DV2 represent barrage constructions whereas 432 

oncolites are interpreted as generated in water-flowing areas, the same that intraclastic tufas, 433 

which generated by episodic tufa barrage erosion. DV3, also includes carbonate 434 

bioconstructions (smaller than those in DV2) and intraclastic tufas; its general evolution and 435 

higher detrital fraction, fits well with a progressive fill of a pool or slow flowing area between 436 

barrages. A general reduction in detrital supplies concomitant with the expansion of pool areas 437 

over the main barrage constructions can be interpreted for the Holocene. 438 

4.2.2 Isotopical composition 439 

The isotopical composition of the analysed tufas agrees with other Spanish tufas (Pedley, 2009; 440 

Andrews et al., 2000; Arenas et al., 2000; García-García et al., 2014). Values are in the range 441 

of those obtained in the same area by Arenas et al. (2014), although some values of the 442 

Holocene facies are higher than the obtained by them. 
18

O and 
13

C values are shown in Table 443 

5 and figures 5 and 6. For the Late Pleistocene samples (Unit A1) 
18

O and 
13

C vary from -7.39 444 

to -8.52‰ (-7,71 mean value) and from -4.77 to -5.68‰ (-5,23 mean value) respectively. In 445 

general 
18

O values are higher in the Holocene samples and the lower 
13

C values are, in 446 

general, in Unit A3. Values for the Holocene deposits (A2+A3) vary from -6.34 to -8.12‰ for the 447 


18

O (-7.06 mean value) and from -4.45 to -7.04‰ for the 
13

C (-5.43 mean value). Whether the 448 

two Holocene units (A2 and A3) are considered separately, in A2 
18

O values are comprised 449 

between -6.34 and -7.24‰, and 
13

C ones between -4.45 and -5.84‰, whereas in the upper 450 

unit (A3) 
18

O and 
13

C values are comprised between -6.34 and -8.12‰, and between -5.17 451 

and -7.04‰ respectively. 
18

O and 
13

C mean values are -6.92 and -5.01‰ respectively for A2, 452 

and -7.27 and -6.00‰ for A3. 
18

O and 
13

C covariance (Fig. 6) is very poor for the Pleistocene 453 

facies with r=0,03, and increases for the Holocene with r=0.74. Considering A2 and A3 454 

separately covariance is better for the upper one (r=0.87) than for the lower one (r=0.43). 455 

4.2.3 Geophysical survey 456 

GPR profiles show a relative good penetration along the studied zone, with similar penetration 457 

depth (around 6 to 8 meters) for the different antennas, and common non-horizontal reflectors. 458 

In general the records show a structured and reflective media in the upper part (with changing 459 



 

GPR-refraction style towards deeper zones) overlying a second, noisy media, with no clear 460 

reflectors (Fig. 7). The contact between both media is identified with independence of the 461 

central frequency of antenna used. The boundary between these two different geophysical 462 

media can be tentatively correlated with the boundary between the Holocene tufa deposits and 463 

the Mesozoic carbonate rocks. This is supported by: i) Mesozoic rocks outcrop close to the 464 

surveyed zones all along the valley, and ii) the contact between the Holocene system and the 465 

Mesozoic rocks can be located near the surface or identified in outcrops. 466 

With respect the tufa system, the majority of the profiles exhibit a general reflective behaviour 467 

with high contrast and clearly defined reflectors. Nevertheless, some areas are quite different 468 

(Fig. 8A), with two main different behaviours (or radarfacies in the sense of Baker, 1991) 469 

alternating in the flow direction. These radarfacies have been named A and B (RA and RB 470 

hereinafter). Discrimination between RA and RB is easier whit higher frequency antennas. RA 471 

corresponds to non-homogeneous reflective areas with hyperbolic anomalies, low to middle 472 

propagation velocity, high penetration depth and reflectors with changing dip and random 473 

pattern. They resemble the tufa units described as “bright zones” by Pedley et al. (2000). RB 474 

corresponds to non-reflective areas with more homogeneous geophysical behaviour, higher 475 

propagation velocity and attenuation, as well as subhorizontal reflectors. RB fits better with the 476 

results obtained for pool sapropels and silt-muds by Pedley et al. (2000). The physical 477 

behaviour and geometrical features of RA and RB (Fig. 8A) allow them to be tentatively 478 

correlated with non-outcropping tufa barrages and low-slope or pool media respectively. DV2 479 

and DV3 boreholes, drilled over RA and RB respectively, permit us contrast this interpretation. 480 

The lateral relationship between RA and RB can be also analysed. In figure 8A, RA can be 481 

identified in the SE and NW edges, with an intermediate RB sector. Where both facies are in 482 

contact, RB is over RA. Lateral relations between RA and RB show an asymmetrical pattern, 483 

being related each other by either net subvertical contacts, as occurs in the SE, or by 484 

progressive lateral adaptation (in the NW). This overlapping can be identified by the progressive 485 

displacement of RB towards the North, drawing onlap geometries. The analysis of the same 486 

transect for high frequency antennas (Fig. 8B) allows us to constrain a similar type of contact 487 

between RA and RB for the most surficial interval, with a nearly subvertical contact in the 488 

southern part of the profile and a more stepped one in the northern part. In these profiles the 489 

internal structure of RA shows a distinctive style and reflectivity differences between RA and RB 490 

are clearer. Moreover, some hyperbolic anomalies and apparent RA facies can be identified 491 

along the central zone where RB dominates that had not been clearly identified in the profiles 492 

made with low frequency antennas. These permit us to infer that although the intermediate area 493 

shows a RB behaviour it is locally interrupted by RA media, either isolated or laterally connected 494 

with other RA in the edges. In the same way, RA in the edges also includes locally RB facies, 495 

probably representing detrital facies related to erosion of the carbonate build-ups. The general 496 

overlapping of RB over RA can be interpreted as an increase of wideness of the pools (more 497 

expansive with time). Lateral changes slightly vary for different TWT-depth intervals (Fig. 9). RA 498 



 

facies located in zones where RB has not been recognised include very different geophysical 499 

behaviours. 500 

 501 

5. Discussion  502 

5.1. Palaeoenvironmental evolution in the Añamaza valley during the Holocene 503 

The exposed data evince different palaeoenvironmental changes during the Holocene in this 504 

area that have been registered in the distinct sedimentary facies and subenvironments. In this 505 

sense, our results highlight multidisciplinary approaches, although complicated, as very 506 

interesting for geological studies. 507 

Marginal wetland areas in the floodplain are represented by AÑ1.2 core, from which a high 508 

sedimentation rate is deduced, as occurs in other parts of the system (Luzón et al., 2011) for 509 

the Holocene period. The sedimentary units defined, together with mineralogical and pollen 510 

results reveal changes in sedimentation, vegetation and water level in the floodplain through the 511 

Holocene. Anoxic conditions were frequent, especially during U1 to U4 deposition, favouring 512 

organic matter conservation, including pollen that is a primary source of information about 513 

palaeoenvironmental changes in the valley. U1 represents the onset of the Holocene and the 514 

high terrigenous content suggests scarcely vegetated areas related to arid conditions, with the 515 

gravels in the lower part probably representing the Younger Dryas; this cold stage has been 516 

also recognised in nearby zones (Luzón et al.; 2007; Oliva-Urcía et al., 2012, 2016) where it is 517 

represented by an increase on coarse detrital supplies. Mineralogical data fit with 518 

sedimentological features with a high quartz mean for unit U1. The pollen record also agrees 519 

with these interpretations allowing more detailed palaeoenvironmental history to be 520 

reconstructed. Considering 
14

C dating, in the lower part typical characteristics of the early 521 

Holocene are recognised. The woodland migration linked to postglacial climatic amelioration 522 

starts with a pioneer tree open woodland (Pinus, Betula and Juniperus) development in a dry 523 

grassland (Ana-1), followed from ca 9600 cal BP (Ana-2 - Ana-4) by the establishment of a 524 

Pinus-Quercus open temperate and humid forest (with Ulmus, Corylus and Taxus) and at lower 525 

altitudes by sclerophylus Mediterranean woodland (Quercus ilex, Quercus suber and Pistacia) 526 

expansion. The dominance of Pinus in the vegetation and the progressive replacement of Pinus 527 

by Quercus and other deciduous trees during the early Holocene is a pattern also observed in 528 

several regional pollen records (Peñalba, 1994; García Antón et al., 1995; Sánchez Goñi and 529 

Hannon, 1999; Gil García et al., 2002; Gil García and Ruiz Zapata, 2004). The increasing and 530 

diversifying aquatic herbaceous taxa from An-2 indicate shore water zone vegetation 531 

development. In this sense, climate ameloriation favoured the disappearance of xerophilous and 532 

heliophilous vegetation and the expansion of wetland vegetation, suggesting increasing water 533 

table and slow flowing waters in this site, which fits with tufa widespread. The Pinus-Quercus 534 

open forest expansion is interrupted by a re-expansion of dry grassland (Ana-3); this fluctuation 535 

could reveal changes in humidity and suggests a dry climatic event that could be related to 536 

those recorded in the Central Ebro Basin (Davis et al., 2007), in the northern Iberian Range (Gil 537 



 

García et al., 2002) and in other Iberian Peninsula regions (Leira and Santos, 2002; Burjachs et 538 

al., 2016; Iriarte-Chiapusso et al., 2016). 539 

 540 

Unit U2 (dominated by dark muds and intraclastic tufa) suggests a frequently flooded area 541 

where terrigenous were trailed down by flowing waters. Coarse terrigenous (typical in U1) are 542 

substituted by intraclastic tufa, probably in relation with tufa growing in the valley and common 543 

erosion of non-cemented deposits (e.g. barrages or small phytoherms) located upstream during 544 

high energy runoff episodes; these episodes alternated with others of low water energy and 545 

mud settling. As wetter and warmer conditions favour the development of tufas (Ford and 546 

Pedley, 1996; Sancho et al., 1997; Martín Algarra et al., 2003; Pérez-Obiol et al., 2011; Pla-547 

Pueyo et al., 2015; 2016), the widespread growth of these facies is considered to have been 548 

related to the climate amelioration during the first part of the Holocene (Peñalba et al., 1997; 549 

Giralt et al., 1999; Gil García et al., 2002; Luzón et al., 2007; Bastida et al., 2013). Such climate 550 

conditions would favoured more vegetated slopes, installation of riparian vegetation in the 551 

floodplains, slow water flow and a decrease in coarse terrigenous supplies from the source 552 

areas, as recognised under warm and more humid conditions in other zones (Faust et al., 2004; 553 

Fenech, 2007; Giessner, 1990; Sancho et al., 2008; White et al., 1996; Rohdenburg, 1989; 554 

Vásquez-Méndez et al., 2010).  555 

Pollen data, supported with 
14

C dating, reveal a stratigraphic discontinuity between Ana-4 and 556 

Ana-5 zones (middle part of sedimentary unit U2). No sedimentological change has been 557 

detected, although the limit between these zones coincides with a change in calcite and 558 

siliciclastics vertical trend. The discontinuity would be related to drier conditions, as deduced for 559 

the same period in other areas of the Iberian Peninsula (Davis, 1994; Jalut et al., 1997; Giralt et 560 

al., 1999; Luzón et al., 2007; 2011) with decreasing water levels and concomitant erosion. From 561 

ca. 6000 cal yr BP, a mixed oak forest (with Corylus, Ulmus, Taxus, Fagus and Pinus) expands 562 

and limited human activities (grazing and crop cultivation) are recorded. Riparian vegetation is 563 

well developed and diversified, pointing to more stable conditions on the banks and dense 564 

wetland vegetation coinciding with the upper part of U2 and lower U3, in which macrophyte 565 

organic remains are very common. A significant change in vegetation and local deforestation 566 

due to grazing activities is recorded from Ana-6 pollen zone (upper U3). The increase of muds 567 

and macrophyte organic remains are related to these environmental changes. Tufa debris 568 

reduction from U3 indicates either a decreasing tufa growing or the effect of more stable banks 569 

avoiding intraclasts to reach the AÑ1.2 site in the floodplain. In fact, the youngest tufa deposits 570 

dated in the area (DV2 core, are ca 4000 yr BP). During U4 deposition (Ana-7 pollen zone) 571 

marshland vegetation replaced dense wetlands due to anthropogenic activities (important 572 

pasture and cereal cultivation), which perhaps destroyed tufa build-ups. Unit 5 (mainly Ana-8 573 

pollen zone), implies reduced terrigenous supplies suggesting a more humid environment, in 574 

agreement with the increase of Botryococcus and Pediastrum algae and the presence of 575 

hygrophilous herbaceous taxa in the riparian zone; in any case a change towards more humid 576 



 

conditions has not been inferred from the rest of vegetation. The intensive land use pattern 577 

persisted until the end of the pollen record (Ana-9) marked by dry grasslands expansion with 578 

some Juniperus groves. Although wet conditions are still maintained in AÑ1.2 site, the 579 

disappearance of arboreal cover in the basin favoured again the incoming of terrigenous 580 

supplies. The disappearance of aquatic herbaceous taxa during Ana-9 pollen zone (Unit 6) may 581 

be indicative of an increased distance from the river shore to the coring site. 582 

Gypsum and pyrite, especially from U1 to U4, is indicative of the existence of sulphate-reducing 583 

bacteria working on anoxic conditions, which are typical from saturated wetlands and suggest 584 

high water levels and mire conditions, almost during some stages. As no tufa intraclasts exist in 585 

the upper units, calcite would be related to palustrine precipitation (Luzón et al.; 2011), implying 586 

a more oxidizing and less acidic environment. 587 

Apart from the palaeoenvironmental evolution information, the Añavieja sequence, due to the 588 

geographical location of the site in the transitional area between the central Iberian Range and 589 

the eastern Ebro Basin, brings new data about the past distribution of cork oak and yew during 590 

the Holocene. In NE Spain, the present-day distribution of Quercus suber (cork oak) and Taxus 591 

(yew) shows many separated small areas. Around the study site, isolated small stands of 592 

Quercus suber are present in Sierra de la Virgen and several pockets of Taxus are located in 593 

Peña Isasa (Blanco Castro et al., 2005) (Fig. 10) that strongly suggests a larger, more 594 

continuous range in the past. The studied pollen record displays two well-differentiated Quercus 595 

suber and Taxus pollen curves (maximum values around 7%) and provides evidence for an 596 

early Holocene presence of Quercus suber and Taxus in the central Ebro Basin since ca 9650 597 

cal yr BP. Quercus suber variations correlate well with the other Mediterranean taxa while 598 

Taxus pollen curve is paralleled by the deciduous Quercus-t. pollen curve. 599 

5.2. Stratigraphical arquitecture and isotopical composition: new insights for the 600 

dynamics and evolution of the fluvial system 601 

Cores and GPR profiles evince the existence of barrages and pool areas in the subsoil. 602 

Lithological and geometrical features allow a better approach to the system configuration 603 

through definition of radarfacies. As observed in the scarce outcrops, tufa barrages show more 604 

complex internal architecture than pool areas, which are characterised by more tabular beds. 605 

Cores, as well as geometries inferred from GPR, have permitted us interpret RA (reflective and 606 

non-homogeneous) as tufa constructions and RB (non-reflective and homogeneous) as pool 607 

facies. Comparison of DV2 and DV3 cores, and radarfacies, indicates that differences between 608 

radarfacies are related to the different architecture and the texture of the detrital beds. RA 609 

corresponds to more disorganized areas in which marls with oncolites and intraclastic tufa are 610 

common between the tufa phytoherms, whereas the homogeneous behaviour of RB correlates 611 

with the existence of carbonate beds with fine terrigenous intercalations. 612 

In more detail, RA facies commonly includes different geophysical behaviours with lateral 613 

interruptions of reflectors and very variable dips. They have been interpreted as facies 614 



 

heterogeneities inside the main barrages areas. Laterally related channels filled with oncolites, 615 

carbonate clasts or detrital tufa, small phytoherms, bryophytes covering steps in the bottom of 616 

the river or stem accumulations have been observed in the outcrops (Luzón et al., 2011; Arenas 617 

et al., 2014) and are thought to produce these geometries in RA (Pueyo-Anchuela et al., 2016). 618 

Smaller RA zones inside RB also exist that can show continuity with the barrage located 619 

downstream, indicating expansion of the barrage, or appear as isolated pockets, suggesting 620 

that tufa beds could also developed in the pools, either as small build-ups or barrage erosion 621 

products (intraclastic tufa accumulations). Vertical alternation between RB and RA is related to 622 

changes in the water depth with time. 623 

RB architecture reflects a geometry dependent of the available space and pool sediments in the 624 

upper part of the succession onlapping barrages. They also evince an aggrading system 625 

characterized by general adaptation of RB over RA, and anisotropic growth if pools are 626 

considered. In this sense, transition between RA and RB is different if downstream or upstream 627 

direction is considered (Fig. 8B). In the surveyed zone contacts are more progressive in the 628 

downstream face of the barrages, indicating that RB onlaps that located upstream. They are 629 

more vertical in the upstream face of the barrages, revealing high connectivity between porous 630 

facies in the barrages and tufa beds in pools in the downstream direction. Moreover, it can be 631 

observed that in zone 6 (Fig. 1) the upper part of the barrage located downstream is 632 

topographically higher than that located upstream (Fig. 8B). This, and onlapping of RB over the 633 

upstream barrage, indicates that aggradation could be related with an increasing base level 634 

induced by damming. The high sedimentation rate was controlled by fast carbonate precipitation 635 

and progressive growth of tufa barrages hindering sediment distribution downstream and forcing 636 

aggradation. It is worth mentioning that perpendicular to the river direction GPR-sections over 637 

RA facies exhibit a general displacement towards the recent river throughout the Holocene (Fig. 638 

7). In fact, tufas are very rare in the right riverbank of the valley. 639 

The evolution of DV2 and DV3 show a higher development of tufa build-ups during the 640 

Pleistocene and the lower middle part of the Holocene. The reduction of these facies and a 641 

higher detrital carbonate sedimentation, indicates, as GPR, a progressive fill of a pool or slow 642 

flowing area between barrages trough time. The possible sedimentary hiatus in the lower part of 643 

the Holocene inferred from 
230

Th/
234

U datings is proposed to represent the middle part of the 644 

Holocene Climate Optimum. With respect the isotopical composition of carbonates from DV2, 645 

the regression lines for the three units (Fig. 6) have a different origin, indicating that the water 646 

source, could have changed through time (Talbot, 1990), although always being typical of 647 

freshwater environments. Non-covariant 
18

O-
13

C values (r=0,03) in Unit A1, and slightly 648 

evolved waters, agree with a fluvial system with low influence of evaporation on the isotopic 649 

composition (Talbot, 1990) for the Pleistocene. 
18

O variations are considered to reflect 650 

changes either in water temperature or in the recharge characteristics (Andrews et al., 2000). 651 


18

O values for the Pleistocene facies are lower than for the Holocene ones, in agreement with 652 

colder Pleistocene temperatures, as in cold regions rain is isotopically depleted in 
18

O (Craig, 653 



 

1961). In fact, long term changes in 
18

O in Late Pleistocene fluvial tufa and lake carbonates 654 

have been shown to represent changes in the air temperature that control 
18

O of the rainfall 655 

(Craig, 1961; 1965; Andrews et al., 1994; 2000; Andrews, 2006; Marshall et al., 2002; Garnett 656 

et al., 2004; 2006). Higher values for the Holocene are related to warmer temperatures due to 657 

climate amelioration (Huntley and Prentice, 1993), as previously demonstrated from AÑ1.2. Due 658 

to the geographical location of the study site and the pollen results, increase 
18

O for the 659 

Holocene could be also a consequence of higher influence of the Mediterranean rain, 660 

isotopically enriched in 
18

O (Cruz-San Julián et al., 1992) with respect the oceanic one. General 661 


13

C decrease during the Holocene is supposed to be related to increase input of isotopically 662 

light soil CO2 as vegetation increased. 663 

Positive 
13

C-
18

O correlation in the Holocene samples suggests a change in the fluvial system 664 

with more hydrologically closed areas, especially during the deposition of A3 (r=0.87). The 665 

smaller covariance for Unit A2 could be interpreted as been provoked by higher buffering of 666 

pool waters due to higher groundwater recharge (Quade et al., 1995; Dunagan and Turner, 667 

2004) during the Holocene onset. Higher covariance in A3 (if compared to A2) is related, in 668 

agreement with GPR profiles, with the existence of higher hidrologically closure of pools (Talbot, 669 

1990). This framework fits with the diversifying of riparian vegetation in a dense wetland related 670 

to more stable channel banks that has been interpreted from AÑ1.2 core. Higher 
13

C and 
18

O 671 

values registered in A2 and A3 represent stages of more water loss of 
12

C- and 
16

O-enriched 672 

CO2 due to evaporation (Stuiver, 1975; Talbot, 1990; Talbot and Kelts, 1990). Relatively high 673 


13

C values in the whole series would reflect the influence of marshy C4-type vegetation and C3 674 

plants growing under water-stressed conditions that tend to have heavier 
13

C (Ehleringer, 1988). 675 

5.3. Climate vs tufa sedimentation 676 

Comparing data from the different proxies analysed and climate a summary can be proposed 677 

(Fig. 11). The older tufa deposits analysed in the area would formed probably during the 678 

Bølling/Allerød warm interval in the Late Pleistocene. It is very likely that the growth of tufa would 679 

stop during the Younger Dryas cold phase, and terrigenous deposits would cover the Jurassic 680 

rocks (as in AÑ1.2 area). Increasing temperature (as pointed by 
18

O values) and humidity in the 681 

Holocene onset after the previous cold stage, favoured tufa construction again in the whole 682 

valley (Holocene Climate Optimum) and a more diversified vegetation. From this moment and till 683 

the end of sedimentation in the Dévanos area, which can be related to lowering of the river 684 

entrenchment during the colder Iron Age Epoch, the two studied zones reveal similar 685 

environmental changes, with a sedimentary interruption and vegetation change related to the 686 

colder central part of the Holocene Climate Optimum. Sediments and pollen above this 687 

discontinuity do not allow us to perform a palaeoclimate-related interpretation, as increasing 688 

human activities could affect the dynamics of the fluvial system. The tufa growth interruption 689 

coincides with the Iron Age Epoch and younger deposits are only preserved in AÑ1.2, where 690 

more oxidizing conditions developed contemporaneous with increased erosive processes and 691 

higher human impact have been inferred during the Roman and Medieval Warm Periods. 692 



 

 693 

6. Conclusions  694 

The multidisciplinary study carried out in the fluvial deposits of the Añamaza river valley (NE 695 

Spain) allows the main palaeoenvironmental changes to be recognised and to deduce that 696 

distinct subenvironments and proxies registered valuable palaeoenvironmental information. 697 

Dating results (
14

C and 
230

Th/
234

U) reveal high sedimentation rates during the Holocene and 698 

three main stratigraphic discontinuities that we correlate with the Younger Dryas, the colder 699 

phase in the middle part of the Holocene Climate Optimum and the Iron Age Epoch. 700 

Widespread of tufa was favoured by warm and humid conditions. Some warmer episodes in the 701 

Late Pleistocene (Bølling/Allerød) would favour tufa growing, which was very important too 702 

during the Holocene Climate Optimum. Progressive reduction in tufa debris is observed in the 703 

upper part of the Holocene. Intraclastic tufas reveal tufa build-ups erosion during high-energy 704 

runoff episodes, especially during the first part of the Holocene, but also during colder stages 705 

when water levels would decrease. Isotopical results suggest cold temperatures and a 706 

carbonate fluvial system with low influence of evaporation during the upper part of the Late 707 

Pleistocene. Higher temperatures from the Younger Dryas, increasing mediterranean influence, 708 

and a change in the fluvial system, with progressively more hydrologically closed areas 709 

characterise the Holocene. 710 

Climate also affected considerably vegetation changes. Scarcely vegetated areas and arid 711 

conditions are inferred for the Holocene onset. Woodland migration occurred during the 712 

postglacial climatic amelioration (with a pioneer tree open woodland and dry grassland), 713 

followed by the establishment of a Pinus-Quercus open temperate and humid forest and 714 

sclerophyllous Mediterranean woodland at lower altitudes. Later on, during the Holocene 715 

Climate Optimum, wetland (probably mire) areas developed in the channel banks with 716 

increasing and diversifying aquatic herbaceous taxa, expansion of wetland vegetation and 717 

disappearance of xerophilous and heliophilous taxa. A discontinuity in the middle part of the 718 

Holocene Optimum is clearly recognised from pollen record and thereafter a mixed oak forest 719 

(with Corylus, Ulmus, Taxus, Fagus and Pinus) as well as limited human activities (grazing and 720 

crop cultivation) are recorded. Moreover, riparian vegetation developed and diversified. During 721 

the Roman and Medieval Warm Periods increasing human activities could affect the dynamics 722 

of the fluvial system. In this sense, local deforestation associated with grazing activities 723 

coincides with the disappearance of tufa, and anthropogenic activities (pasture and cereal 724 

cultivation) provoked progressively replacement of dense wetland by marshland vegetation. 725 

Towards the end of the sequence, disappearance of arboreal cover favoured terrigenous 726 

supplies incoming, clearly reflected also in mineralogy. 727 

Considering the carbonate fluvial system configuration, two radarfacies (RA and RB) have been 728 

defined for the main channelled area. RA (reflective and non-homogeneous) corresponds to tufa 729 

constructions, and RB (non-reflective and homogeneous) to pool facies. Differences between 730 

radarfacies are related to distinct architecture and texture of the detrital beds. Small RA zones 731 



 

inside RB-dominated areas indicate either expansion of the barrages or growing of isolated 732 

pockets and repetitive water level changes. Lateral relations between RB and RA reveal 733 

differences in connectivity between the distinct elements. An aggrading fluvial system during the 734 

Holocene, with pool sediments onlapping barrages, can be related with increasing base level 735 

induced by damming due to carbonate precipitation, in agreement with sedimentological and 736 

isotopical results. 737 
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Fig. 1. a) Geological setting of the studied area (black rectangle) in the Iberian Range. The 1104 

situation of the cores drilled (AÑ1.2, DV2 and DV3) and GPR profiles showed in this work is 1105 

also marked. b) Situation of the areas where GPR survey was developed (dashed square in a). 1106 

Fig. 2. Main sedimentological features and units in AÑ1.2 core. Mineralogical percentages are 1107 

also included.  Calibrated 
14

C datings are indicated in the left side of the log. 1108 

Fig 3. Diagram of selected pollen taxa versus depth, Añavieja core AÑ1-2. Dots indicate 1109 

percentages lower than 0.5%. The thick dotted line is used to represent a possible gap in 1110 

sedimentation. 1111 

Fig. 4. Summary pollen diagram versus depth, Añavieja core AÑ1-2. The thick dotted line is 1112 

used to represent a possible stop of sedimentation. Ecological groups: steppic plants (Ephedra, 1113 

Ephedra distachya-t., Ephedra fragilis-t., Artemisia and Chenopodiaceae-t.), pioneer trees 1114 

(Juniperus, Betula and Hippophaë rhamnoides), trees & shrubs (Abies, Cedrus, Picea, Taxus, 1115 

Acer, Hedera, Alnus, Carpinus betulus-t., Carpinus orientalis-t., Corylus, Sambucus, Viburnum, 1116 

Fagus, deciduous Quercus-t., Juglans, Fraxinus excelsior-t., Rhamnus, Populus, Salix, Ribes, 1117 

Ulmus and Vitis), Mediterranean plants (Pistacia, Quercus ilex-t., Quercus suber-t., Fraxinus 1118 

ornus, Ligustrum, Olea, Phillyrea, Celtis and Cistus), cereals (Hordeum-t., Secale-t. and 1119 

Triticum-t.), anthropogenic indicators (Papaveraceae, Plantago, Plantago lanceolata-t., 1120 

Polygonum, Polygonum aviculare-t., Rumex, Urticaceae and Urtica pilulifera), other herbaceous 1121 

plants (Apiaceae, Hydrocotyle, Anthemis-t., Aster-t., Centaurea, Centaurea nigra-t., Centaurea 1122 

scabiosa-t., Cirsium-t., Asteroideae, Cichorioideae, Boraginaceae, Brassicaceae, 1123 

Campanulaceae, Cannabis-Humulus-t., Caryophyllaceae, Corrigiola, Herniaria, Helianthemum, 1124 

Convolvulus, Crassulaceae, Knautia, Scabiosa-t., Ericaceae, Euphorbia, Mercurialis, Fabaceae, 1125 

Astragalus-t., Lotus-t., Trifolium-t., Vicia-t., Fumaria, Gentianaceae, Centaurium-t., Erodium, 1126 

Lamiaceae t. 3, Teucrium, Lamiaceae t. 6, Liliaceae, Asphodelus, Linum, Malvaceae, 1127 

Onagraceae, Limonium-t., Poaceae, Primulaceae, Ranunculaceae, Helleborus-t., Thalictrum, 1128 

Rosaceae, Alchemilla-t., Filipendula, Potentilla-t., Sanguisorba minor, Rubiaceae, Thesium, 1129 

Saxifragaceae, Saxifraga aizoon-t., Scrofulariaceae, Euphrasia-t., Solanaceae, Valerianaceae, 1130 

Centranthus and Violaceae), aquatic plants (Alisma, Callitriche, Cyperaceae, Cladium, 1131 

Myriophyllum alterniflorum-t., Myriophyllum verticillatum-t., Hydrocharis morus-ranae, 1132 

Lythraceae, Menyanthes, Nymphaea, Polygonum amphibium-t., Potamogeton, Sparganium-1133 

Typha-t. and Typha latifolia), algae (Botryococcus, Closterium idiosporum-t., Mougeotia, 1134 

Pediastrum, Spirogyra, Zygnema and Filinia). 1135 

Fig. 5. Main sedimentological features and units defined for DV2 and DV3 cores. U/Th datings 1136 

and isotopical (
18

O and 
13

C) values for DV2 are also included. 1137 

Fig 6: 
18

O vs. 
13

C in calcite in DV2 core. Straight lines are regression lines of A1 (r=0.001), A2 1138 

(r= 0,1846), and A3 (r= 0,7633). 1139 

Fig. 7. GPR profile (100 MHz) performed normal to the expected flow direction. Geometrical 1140 

changes and accommodation geometries are marked in the plot by arrows, which indicate a 1141 



 

main displacement of the carbonate system towards the East and define an asymmetrical filling 1142 

of the valley. 1143 

Fig. 8. A: GPR profile (50 MHz) carried out along zone 6 (see location in figure 1b), parallel to 1144 

the expected flow direction. Location of boreholes DV2 and DV3 is showed and the main 1145 

radarfacies defined (RA and RB) can be observed. B: GPR profile (250 MHz) carried out along 1146 

zone 6; it is coincident with profile in figure 8A. The contact between RA and RB facies is 1147 

marked in the plot: net (left side) and progressive (right side). Onlap marked by an arrow. 1148 

Fig. 9. Distribution of the radarfacies A and B (RA and RB) along different (TWT-depth intervals) 1149 

in zone 6 (see fig. 1 for location). Geometrical relationships are described as progressive or net 1150 

contact. This model was constructed from different parallel and perpendicular GPR profiles. 1151 

Fig 10. a) Present-day distribution of Taxus baccata in Spain (Blanco Castro et al., 2005). b) 1152 

Present-day distribution of Quercus suber (Blanco Castro et al., 2005). c) Map of the Añavieja 1153 

area showing isolated small stands of Taxus in Peña Isasa (white vertical bars) and Quercus 1154 

suber in Sierra de la Virgen (white horizontal bars) (Sobrón García I., 1985; Jiménez et al., 1155 

1999; Blanco Castro et al., 2005). 1156 

Fig. 11. Correlation of results and data inferred from the study of AÑ 1.2, DV2 and DV3 logs. 1157 

The table contains a palaeoenvironmental synthesis of the studied fluvial system (lithological 1158 

units, pollen zones, mineralogical mean content vertical evolution and 18
O DV2 carbonate 1159 

isotopical values), as well as correlation with temperatures deduced from GISP2 ice core (Alley, 1160 

2000). Non-filled circles in the GISP2 curve show the isotopical values trend inferred in DV2. 1161 

Note the parallelism with the GISP2 trend that demonstrates a climate-dependent evolution for 1162 

the carbonate fluvial system. Ages in AÑ1.2 are 
14

C calibrated ages and in DV2 
230

Th/
234

U ages. 1163 

Ages in italics are based on previously published works (Luzón et al. 2011; 2012); they have 1164 

been positioning in the age scale in order to date active sedimentation in the area. 1165 

Discontinuities inferred from stratigraphy, dating and pollen data. The lower one is based on the 1166 

position of the Pleistocene-Holocene deposits overlying Mesozoic rocks. The middle one, as 1167 

explained in the text, evinces a net change in pollen data and vegetation. The upper one is 1168 

based on the non-existence of younger tufa deposits above the present course of the river, 1169 

being located the recent ones several metres below the dated ones due to the river 1170 

entrenchment. 1171 

Table 1. AMS radiocarbon dates on organic matter. AÑ1.2 core (dated in this work) and the 1172 

previously dated AÑ1 core (Luzón et al., 2011) have been included. AMS 
14

C measurements 1173 

are calibrated using IntCal program by Reimer et al. (2009) 1174 

Table 2. U-series radiometric data and derived dates for samples in DV2. 1175 

Table 3. Mean mineralogical composition of AÑ1.2 units. Qtz: quartz; Phy: phyllosilicates, CC: 1176 

calcite, Py: pirite, Gy: gypsum. 1177 

Table 4. Description of the Añavieja AÑ1-2 pollen record. 1178 



 

Table 5. Isotopic 
18

O and 
13

C values in DV2 core.  1179 
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TABLE 1



 

TABLE 2



AÑ12
Qtz Phy Cc Py Gy

U6 18.5 49.0 28.3 0.0 2.7

U5 4.7 16.3 76.2 1.6 1.5

U4 10.0 24.8 57.8 7.8 1.4

U3 10.7 21.5 61.7 4.5 1.6

U2 14.9 21.1 55.2 6.2 1.9

U1 28.7 17.1 49.9 6.8 1.0

TABLE 3



Pollen zone Depth (cm) Pollen zone description 
Ana-9 95-10 Decrease of diversity (trees and herbs taxa); fall in AP percentages (33-16%), mainly 

deciduous Quercus-t. (9-3%) and absence of all arboreal taxa recorded in the previous 
zone; stable percentages of Pinus (13-9%); increase of Juniperus (2-12%); increase of 
Poaceae (19-44%), Cyperaceae (10-39%), Cichorioideae-t. (6-7%), Brassicaceae (3%), 
Rubiaceae (1-4%), Artemisia (3-9%), Chenopodiaceae-t. (2-3%), Plantago (3%) and 
Plantago lanceolata-t. (2%). 

Ana-8 395-95 Decrease of Pinus (24-5%) and deciduous Quercus-t. (24-11%); presence of Hedera and 
Acer; notations of Juglans and Carpinus betulus-t.; at the end, increase of Quercus ilex-t. 
(1-12%), Quercus suber-t. (1-6%) and Cistus (2%); high diversity of NAP taxa (29-40); 
increase of Poaceae (10-32%), Cyperaceae (12-44%), Cichorioideae-t. (1-4%), 
Brassicaceae (0-5%), Helianthemum (1-5%), Ericaceae (1-3%), Fabaceae (1-3%), 
Lamiaceae (1-4%), Rubiaceae (1-6%), Hordeum-t. (1-3%), Triticum-t. (0-2%) and Secale-t. 
(0-3%). 

Ana-7 575-395 Decrease of Pinus (21-19%); stable frequencies of deciduous Quercus-t., Corylus (1-4%), 
Fagus (1-2%), Taxus (1-3%), Salix (1%), Quercus ilex-t. (4-5%) and Quercus suber-t. (1-
3%); increase in NAP values, mainly Poaceae (14-24%), Cyperaceae (16-41%) and 
Sparganium-Typha-t. (1-10%); presence of Ericaceae (1%); increase of Plantago 
(2%),Plantago lanceolata-t. (2%), Artemisia (2-7%) and Chenopodiaceae-t. (2%); 
decrease of Apiaceae. 

Ana-6 710-575 Increase of NAP percentages (51-62%), concentrations (9746-63589 gr/g) and diversity 
(31-38 taxa); decrease of Pinus (35-24%), deciduous Quercus-t. (23-15%), Corylus (1%) 
and Taxus (1%); stable frequencies of Quercus ilex-t. (3-5%) and Quercus suber-t. (2%); 
presence of Alnus; increase of Poaceae (14-22%), Cyperaceae (13-26%) and Apiaceae (2-
12%). 

Ana-5 1115-710 Decrease of Pinus (67-18%); increase of deciduous Quercus-t. (11-26%), Corylus (2%) and 
Taxus (0-5%); presence of Ulmus, Hedera, Acer, Fagus, Salix and Populus; increase of 
Quercus ilex-t. (6%) and Quercus suber-t. (2%); presence of Pistacia, Olea, Phillyrea, 
Fraxinus ornus-t. and Cistus; increase of Poaceae (5-29%), Plantago lanceolata-t. (3%) 
and Rumex (1%); notations of Hordeum-t., Secale-t. and Triticum-t.; increase of 
Cyperaceae (8-26%. 

Ana-4 1295-1115 High values of Pinus (66-81%); increase of deciduous Quercus-t. (4-10%), Corylus (0-4%) 
and Quercus ilex-t. (2-5%); presence of Quercus suber-t.; decrease of Artemisia (2-0.5%) 
and Juniperus (1-0.5%); absence of Betula; increase of Cyperaceae (2-20%) and 
Monolete spores (0-10%); presence of Mougeotia and Zygnema. 

Ana-3 1346-1295 High values of Pinus (58-79%); slight increase of Juniperus (1-7%), Betula (1%), Artemisia 
(4%), Chenopodiaceae-t. (1%) and Asteroideae-t. (1-4%); presence of Ephedra, 
Cichorioideae-t. and Helianthemum; decrease of deciduous Quercus-t. (6-1%), Corylus 
(4-0.5%), Ulmus and Quercus ilex-t.; virtual absence of Taxus, Hedera, Pistacia, Quercus 
suber-t.; decrease of Cyperaceae (4-1%), Sparganium-Typha-t. (0.5%) and Monolete 
spores (2-0%). 

Ana-2 1430-1346 High values of Pinus (54-77%); increase of deciduous Quercus-t. (6-11%) and Corylus 
(0.5-3%); continuous presence of Viburnum, Ulmus, Taxus and Hedera; increase of 
Quercus ilex-t. (1-4%); notations of Pistacia, Quercus suber-t. and Cistus; decrease of 
Betula, Juniperus, Artemisia Chenopodiaceae-t., Helianthemum, Asteroideae-t. and 
Cichorioideae-t.; increase of Cyperaceae (3-10%) and Monolete spores (2-9%); presence 
of Sparganium-Typha-t., Callitriche and Nymphaea. 

Ana-1 1504-1430 High values of Pinus (>50%); increase of Juniperus (20%) and Betula (5%); notations of 
Hippophae and Ephedra; deciduous Quercus-t. (1-8%); dominant herbaceous taxa are 
Poaceae, Artemisia and Chenopodiaceae-t; aquatic plants represented by Cyperaceae 
and Sparganium-Typha-t. 

TABLE 4



Sample Depth (cm) 18O 13C

1 9 -6,34 -5,17 
2 10 -7,31 -5,9 
3 14 -7,94 -7,04 
4 41 -8,12 -6,83 
5 51 -7,04 -6,13 
6 54 -7,22 -5,85 
7 69 -7,1 -5,92 
8 79 -7,12 -5,18 
9 86 -7,23 -5,4 
10 88 -6,34 -5,17 
11 99 -7,21 -5,84 
12 121 -6,35 -4,85 
13 128 -7,24 -5,6 
14 133 -7,04 -5,47 
15 147 -7,18 -4,96 
16 148 -7,02 -5,1 
17 153 -6,78 -4,74 
18 156 -6,48 -4,45 
19 162 -7,21 -4,58 
20 163 -6,96 -4,54 
21 164 -7,96 -4,77 
22 175 -7,93 -5,2 
23 179 -7,39 -4,94 
24 180 -8,52 -5,36 
25 181 -7,52 -5,05 
26 185 -7,66 -5,3 
27 187 -7,55 -5,68 
28 195 -7,47 -5,17 
29 205 -7,69 -5,41 
30 206 -7,56 -5,31 
31 207 -7,57 -5,29 

TABLE 5




