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The Chirality Theorem

José M. Gracia-Bond́ıa, Jens Mund and Joseph C. Várilly

Abstract. We show how chirality of the weak interactions stems from
string independence in the string-local formalism of quantum field theory.

1. Introduction

Unanswered questions abound in electroweak theory [2]. Only time will tell
which ones were prescient, and which born only from theoretical prejudice [3].
A paramount trait of flavourdynamics is the chiral character of the interac-
tions in which fermions and the massive vector bosons participate. A litera-
ture search shows that most textbooks dispatch this trait in one word: it is a
fact. There are a few exceptions. The book by Peskin and Schroeder discusses
at some length how left-handed and right-handed components of fermions
can come to see (representations of, if you wish) different gauge groups [4,
Chap. 19]. The posthumous, reflective book by Bob Marshak [5, Chaps. 1
and 6], discoverer (together with E. C. G. Sudarshan) of the Vector-Axial the-
ory, interestingly elevates the “fact” to a principle, that of chirality invariance,
or “neutrino paradigm”.

Nevertheless, on the face of it, there is a mystery here, setting flavourdy-
namics apart from chromodynamics. That cannot be solved by invoking the
Glashow–Weinberg–Salam (GWS) model, which introduces chirality by hand
from the outset.

The aim of this paper is to tackle this riddle through the theory of string-
local quantum fields (SLF). This conceptual framework was introduced in [6,7],
improving on old proposals by Mandelstam [8] and Steinmann [9]. It is largely
the brainchild of Schroer [10].
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At the considerable price of an extra variable, SL fields appear to offer
advantages over the ordinary sort. We summarily list them here.

• The string-local fields evade the theorem that it is impossible to construct
on Hilbert space a vector field for photons, and more generally for cor-
responding representations associated with higher fixed-helicity massless
particles [11, Sect. 5.9].
For this reason, the concept of gauge fades into the background.

• Other improved formal properties include a better ultraviolet behaviour
for spin and helicity > 1

2 ; this turns out to be same for all bosons as
for scalar particles, and for fermions as for spin-1

2 particles.1 The upshot
is that perturbative renormalization of SLF models should take place
without calling upon ghost fields, BRS invariance and the like, since in
principle one need not surrender positivity of the energy and of the state
spaces for the physical particles. It is fair to say, however, that renormal-
ization of theories with SL field theory is still a work in progress.

• The reach of quantum field theory is enlarged, since the (boson and
fermion) Wigner unbounded-helicity particles [14], with Casimirs P 2 = 0,
W 2 < 0, that have no corresponding pointlike fields [15,16], become ad-
mitted into the realm of QFT through SL fields [6,7,17].

• Furthermore, SLF proves its worth by shedding light on some phenomeno-
logical conundrums of the current theory of fundamental forces and par-
ticles. (Chief among them, after chirality, is the observation that “the SM
accounts for, but does not explain, electroweak symmetry breaking” [18].)

We are going to show that the physical particle spectrum (charge and
mass structure) of the interaction carriers in the electroweak sector, includ-
ing the scalar particle, determines their relative coupling strengths with the
fermion sector entirely, and in particular forces the couplings of the massive
bosons to fermions to be parity-violating.

In more detail, our input (particle and coupling types) is the experimental
datum.

• The particle types are the electron, positron, neutrino and antineutrino;
the massive vector bosons W1, W2 and Z, and the photon; plus a scalar
(Higgs) particle.2

Their masses obey mZ > mW > 0, and the photon is massless. The
electron and Higgs particle are massive; the masses me, mν and mH are
otherwise unconstrained, but are assumed to be given.
The corresponding electric charges: the Z and Higgs bosons, the neutrino
and antineutrino ν, ν̄ are neutral; the electron e and W− boson have
charge −1; the positron ē and W+ have charge +1.

1 Arguably, that is inherited from the amazingly good behaviour of the field strengths
themselves, beyond näıve power counting, independently of spin, uncovered not long ago [12,
13].
2 It will be enough here to consider just one generation of leptons: bringing up the full
structure of the fermion multiplets only complicates the proof’s notation in a way immaterial
to the purpose.
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• The couplings are of two types. For the purely bosonic couplings, see the
beginning of Sect. 4.
For the couplings between bosons and fermions we make the most general
Ansatz which respects electric charge conservation, Lorentz invariance
and renormalizability (scaling dimension ≤ 4).
Apart from these general restrictions, our sole assumption is that in
photon-fermion couplings, the photon couples only to charged fermions,
so it does not couple to the neutrino or antineutrino, and even this could
be relaxed. All other coupling constants are left open.
Our powerful tool is the requirement that physical quantities like the

S-matrix must be independent of the string direction. This principle is quite
restrictive and, as we show here, in fact fixes all coupling constants, bar the
overall strength. In particular, it turns out that:

• the neutrino is completely chiral in that only left-handed3 neutrinos cou-
ple;

• the electron also couples in a parity-violating way;
• the Higgs particle couples only to scalar (and not to pseudoscalar) Fermi

currents.
This is our chirality theorem.

The proof, rigorous within perturbation theory, is achieved entirely within
the string-local scheme. It is simple, in that it requires only consideration
of tree graphs up to second order. Going a posteriori from our framework
to the GWS model for fermions is both trivial and almost inconsequential;
nevertheless, we indicate how to do it in an appendix.

A valid argument for chirality, with the same outcome as ours, can be
made and has indeed been made before, within the conventional framework—
see [19–21]; we owe these works a lot. Apparently that proof was scarcely
heeded, for reasons not easy to understand. It is certainly couched in the lan-
guage of (the causal version of) gauge theory, keeping its ungainly retinue of
unphysical fields, and there is some circularity in it, since the Kugo–Ojima as-
ymptotic fields invoked ab initio have to be derived first. Our method provides
a cleaner, more “native” form. Still, theirs was a good case, and we are keen
to employ new tools to reclaim it.

The plan of the article is as follows. Section 2 is a précis on free string-local
fields. Section 3 reviews the basics of perturbation theory and Epstein–Glaser
renormalization, as adapted to SLF, and introduces the simple principle of
physical string independence governing SLF couplings. The next two sections
examine constraints imposed on couplings with fermions by string indepen-
dence already at the first-order level. Section 6 displays a method, due to one
of us, to construct time-ordered products involving SLF for tree diagrams at
second order.

Once that has been digested, the rest of the proof, performed in Sect. 7,
proceeds by a series of lemmas, of interest in themselves, whose verifications re-
duce to fairly straightforward calculations, entirely determining the couplings.

3 Or right-handed ones—the theory of course cannot tell which.
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In particular, chirality of flavourdynamics emerges as an inescapable conse-
quence of string independence, given the mentioned physical spectrum of in-
termediate vector bosons. Section 8 is the conclusion.

The supplementary sections deal with a few relevant side questions. “Ap-
pendices A and B” furnish computational details. “Appendix C” verifies local-
ity for the stringy fields. “Appendix D” manufactures the GWS model from
the ascertained chiral coupling constants.

2. String-Local Fields

To define the SLF, we start from free Faraday tensor fields on Minkowski
space M4. These can be built from Wigner’s spin 1 or helicity ± 1 unitary,
irreducible representations of the restricted Poincaré group [14], by use of
appropriate creation operators α†

r(p) and polarization dreibein or zweibein
eμ

r (p), under the form:

Fμν
a (x) :=

∑

r

∫
dμ(p)

[
ei(px)

(
ipμeν

r (p) − ipνeμ
r (p)

)
α†

r,a(p)

+ e−i(px)
(−ipμeν

r (p)∗ + ipνeμ
r (p)∗)αr,a(p)

]
, (2.1)

where dμ(p) := (2π)−3/2 d3p/2E(p); we use the notation (ab) := gλκaλbκ =
a0b0−a·b for Minkowski inner products. Such fields are of the Lorentz transfor-
mation type (1, 0)⊕ (0, 1)—see [11, Sect. 5.6]. Consult also [22] in this respect.
Free string-local potential fields are determined from the Fa:

Aμ
a(x, l) :=

∫ ∞

0

dt Fμλ
a (x + tl) lλ , (2.2)

with l = (l0, l) a null vector. By [half-]string we understand the set of points
{x + tl}, with t ≥ 0. Each of the Aa lives on the same Fock space as Fa.

The main properties of the potential fields are as follows:
• Transversality:

(
l Aa(x, l)

)
= 0; and

(
∂Aa(x, l)

)
= 0 in the massless boson

case.4

• Pointlike differential: ∂μAλ
a(x, l) − ∂λAμ

a(x, l) = Fμλ
a (x), or dAa = Fa for

short.
• Covariance: let U denote the second quantization of the mentioned uni-

tary representations of the restricted Poincaré group on the one-particle
states. Then

U(c,Λ)Aμ
a(x, l)U†(c,Λ) = Aλ

a(Λx + c,Λl) Λλ
μ

=
(
Λ−1

)μ

λ
Aλ

a(Λx + c,Λl).

• Locality (causality): [Aμ
a(x, l), Aλ

a(x′, l′)] = 0 when the strings {x + tl}
and {x′ + t′l′} are causally disjoint.

4 Here and later, (∂A) = ∂μAμ denotes a divergence.
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The first three properties are nearly obvious. The last one is subtler.
It follows from (an easy variant of) the powerful argument in [23], based on
modular localization theory, spelled out in “Appendix C”.

Explicitly, in terms of (2.1), one finds that:

Aμ
a(x, l) =

∑

r

∫
dμ(p)

[
ei(px) uμ

r (p, l)α†
r,a(p) + e−i(px) uμ

r (p, l)∗ αr,a(p)
]
,

with

uμ
r (p, l) :=

∫ ∞

0

dt eit(pl)i
(
pμeλ

r (p) − pλeμ
r (p)

)
lλ = eμ

r (p) − pμ (er(p) l)
(pl)

. (2.3)

Note that in the massless case, the denominator (pl) may vanish; nonetheless,
(er(p) l)/(pl) is locally integrable with respect to the Lorentz-invariant mea-
sure dμ(p). In keeping with the nomenclature of [6,7], the quantities uμ

r (p, l),
uμ

r (p, l)∗, and similar ones for stringlike or pointlike fields, are here called in-
tertwiners.

In this paper the set {Fa} above includes one such field for each of the
physical particles, universally denoted W±, Z, γ. For the massive ones, it does
prove useful to consider the spinless string-local escort fields:

φb(x, l) :=
∑

r

∫
dμ(p)

[
ei(px) i(er(p) l)

(pl)
α†

r,b(p) + e−i(px) −i(er(p) l)∗

(pl)
αr,b(p)

]
.

(2.4)
We remark that

Aμ
b (x, l) − ∂μφb(x, l) =: Ap,μ

b (x) (2.5)

defines pointlike Proca fields, so that dAp
b = Fb. All these fields live on the

same Fock spaces as the Fb and have the same mass. Moreover:

φb(x, l) =
∫ ∞

0

Ap,λ
b (x + sl)lλ ds.

Note the relations (l ∂φb) = −(lAp
b ) and

∂μAμ
b (x, l) + m2

bφb(x, l) = 0.

The last relation follows directly from (2.3) and (2.4), since (p er(p)) = 0.
Let now dl :=

∑
σ dlσ(∂/∂lσ) denote the differential with respect to the

string coordinate. We may introduce the (form-valued in the string variable)
field:

dlφb(x, l) = wb(x, l)

:=
∑

r

∫
dμ(p)

[
ei(px)

(
ier,σ(p)

(pl)
− ipσ(er(p)l)

(pl)2

)
α†

r,b(p)

+ e−i(px)

(
ier,σ(p)

(pl)
− ipσ(er(p)l)

(pl)2

)∗
αr,b(p)

]
dlσ; (2.6)



J. M. Gracia-Bond́ıa et al. Ann. Henri Poincaré

and one obtains

∂μwb = −
∑

r

∫
dμ(p)

[
ei(px)

(
pμer,σ(p)

(pl)
− pμpσ(er(p)l)

(pl)2

)
α†

r,b(p)

+ e−i(px)

(
pμer,σ(p)

(pl)
− pμpσ(er(p)l)

(pl)2

)∗
αr,b(p)

]
dlσ = dlA

μ
b ;

as well as dlwb := d2
l φb = 0. In the case that Aμ

a describes a massless field,
we just take the second equality in (2.6) as definition of wa and dlA

μ
γ = ∂μwγ

still holds.5

We hasten now to exhibit a family of (Wightman) two-point functions
for our fields, of the general form

〈〈ϕ(x, l)ψ(x′, l)〉〉 =
1

(2π)3

∫
d4p e−i(p(x−x′))δ+(p2 − m2)Mϕψ(p, l) ;

where any of the two fields ϕ,ψ, belong to the collection

{Fμν
a (x), Aμ

a(x, l), φb(x, l), ∂μφb(x, l), wa(x, l), ∂μwa(x, l) }

with a running over (1, 2, 3, 4) and b over (1, 2, 3). We shall suppress the
subindex notation a, b in the rest of this section. Here δ+(p2 − m2) = δ

(
p0 −√|p|2 + m2

)
/2

√|p|2 + m2 and 〈〈 — 〉〉 denotes a vacuum expectation value of
the included operator.

The respective Mϕψ are computed from the definitions of the fields. It is
enough to note that:

Mϕψ
αβ :=

∑

r

u(ϕ)
r,α(p, l)∗ u

(ψ)
r,β (p, l),

in terms of intertwiners u(ϕ), u(ψ) already given. We get, to begin with,

MAA
μν = −gμν +

pμlν + pν lμ
(pl)

. (2.7a)

The noteworthy and truly valuable fact here is that this is of order 0 as p2 → ∞,
while the two-point function of a Proca field goes like p2. The formula is
analogous to that which comes out of lightcone gauge-fixing [25]. However,
the meaning is quite different; in particular, our formalism is fully covariant.
On configuration space, therefore, 〈〈A(x, l)A(x′, l)〉〉 essentially scales like λ−2

under x 	→ λx, whereas 〈〈Ap(x)Ap(x′)〉〉 goes as λ−4.

5 The form-valued wγ suffers from expected infrared problems. A promising way to deal

with them in perturbation theory has come to light recently [24].
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Let us fill up a little table of vacuum expectation values of field products,
needed further down:

MFF
μν,ρσ = −(pμpρ gνσ − pνpρ gμσ − pμpσ gνρ + pνpσ gμρ).

M∂A,A
μν,λ = i

(
pμgνλ − pμ

pν lλ + pλlν
(pl)

)
, MFφ

μν =
pν lμ − pμlν

(pl)
,

MAφ
μ = − ilμ

(pl)
, MA,∂φ

μν =
pν lμ
(pl)

, M∂A,φ
μν = −pμlν

(pl)
,

Mφφ =
1

m2
, M∂φ,φ

μ = − ipμ

m2
, (2.7b)

as well as

MAw
μ =

i

(pl)
MAA

μσ dlσ = i

(−gμσ

(pl)
+

pσlμ
(pl)2

)
dlσ , Mwφ = 0,

Mww =
1

(pl)2
MAA

στ dlσ ∧ dlτ = − gστ

(pl)2
dlσ ∧ dlτ ,

MFw
μν = dl MFφ

μν = i

(
pνgμσ − pμgνσ

(pl)
+

pμlν − pν lμ
(pl)2

pσ

)
dlσ , (2.7c)

using the relation lσ dlσ = 0. It is clear that massless bosons do not bear escort
quantum fields.6

The construction of SLF for spin 2 or helicity ±2 proceeds in the same
way, from the equivalent object to the Faraday tensor F , the linearized Rie-
mann tensor R for spin or helicity 2, towards the string-local replacement for
the pointlike (symmetric rank 2 tensor) “potential”. Note that physical scalar
fields are not stringy.7

3. Perturbation Theory for SLF: The Role of String
Independence

New theories demand care with the mathematics. We intend to borrow from
the Stückelberg–Bogoliubov–Epstein–Glaser (SBEG) “renormalization with-
out regularization” formalism for perturbation theory, both most rigorous and
flexible [30,31]. Since renormalization theory for SLF is in its infancy, it still
works partly as a heuristic guide. We only outline what we need here from it.

The method involves the construction of a scattering operator S[g; l] func-
tionally dependent on a (multiplet of) smooth external fields g(x), which math-
ematically are test functions. The procedure is natural in view of locality; the
functional scattering operator acts on the Fock spaces corresponding to local
free fields, of the pointlike or stringlike variety, for a prescribed set of free
particles. It is submitted to the following conditions.

6 Spacelike strings have been more often employed in the literature on SLF. It is, nevertheless,
better here to deal with lightlike strings, since then in general the intertwiners are functions,
not just distributions; so we need not smear them. Our arguments work either way [26].
7 Nor are free Dirac fields; SLF for half-integer spin greater than 1

2
or integer spin greater

than 2 are discussed elsewhere [27–29].
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• Covariance: U(a,Λ)S[g; l]U†(a,Λ) = S[(a,Λ)g; Λl], with (a,Λ)g(x) =
g(Λ−1(x − a)).

• Unitarity: S−1[g; l] = S
†[g; l].

• Causality. Let V +, V − denote the future and past solid light cones. Then

S[g1 + g2; l] = S[g1; l]S[g2; l] (3.1)

when (supp g2+R
+l)∩(supp g1+R

+l+V +) = ∅, or equivalently (supp g1+
R

+l) ∩ (supp g2 + V − + R
+l) = ∅.

In practice one looks for S[g; l] as a power series in g, of the form

S[g; l] = 1 +
∞∑

k=1

ik

k!

∫

M
k
4

Sk(x1, . . . , xk, l)g(x1) · · · g(xk) dx1 · · · dxk. (3.2)

Only the first-order term S1 is postulated. This will be a Wick polynomial
in the free fields.8

We come back in a moment to the structure of S1 in the present con-
text. In consonance with (3.1), the Sk(x1, . . . , xk, l) for k ≥ 2 are time-ordered
products, which need to be constructed. By locality, the causal factorization

S2(x, x′, l) = T[S1(x, l)S1(x′, l)] := S1(x, l)S1(x′, l) or S1(x′, l)S1(x, l),
(3.3)

according as {x+ tl} is later or earlier than {x′ + tl}, fixes S2 on a large region
of M

2
4 × S2. Indeed, assuming l0 > 0, a string {x + tl} lies to the future of

another string {x′ + t′l} if and only if ((x − x′) l) ≥ 0 and the intersection
of the strings is empty. That is, x lies to the future of, or on, the hyperplane
x′ + l⊥, but not on the full line x′ + Rl [26]. Consequently, the strings cannot
be ordered if and only if x lies on the string {x′ + t′l} or vice versa, i.e. if and
only if x − x′ is lightlike and parallel to l. This exceptional set:

D := { (x, x′, l) : (x − x′)2 = 0, ((x − x′) l) = 0 } (3.4)

is of measure zero in M
2
4 × S2. The extension of such products to the whole of

M
2
4 ×S2, mainly by upholding string independence, is the SBEG renormaliza-

tion problem in a nutshell.
Existence of the adiabatic limit is the property that the Sk be integrable

distributions, in the sense of Schwartz [32]. In that limit, as g goes to a con-
stant, the covariant S[g; l] is expected to approach the invariant physical scat-
tering matrix S, so that U(a,Λ)SU†(a,Λ) = S, all dependence on the string
disappearing.

A lesson of gauge field theory is that couplings of quantum fields should
fall out from a simple underlying principle. The natural and essential hypothe-
sis of interacting SLF theory is simple enough: physical observables and quan-
tities closely related to them, particularly the S-matrix, cannot depend on the
string coordinates. This is the string independence principle: colloquially, the

8 In many models it looks like an interaction Lagrangian. It should, however, be kept in

mind that the building blocks in the procedure are quantum fields; ditto, our starting point

is Wigner’s theory of quantum Poincaré modules [14] and corresponding field-strength rep-
resentations of the Lorentz group, rather than a classical Lagrangian that one attempts to
“quantize”.
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string “ought not to be seen”. Let S1 denote a first-order vertex coupling in
general. For the physics of the model described by S1 to be string-independent,
one must require that a vector field Qμ

1 (x, l) exist such that

dlS1 = (∂Q1) ≡ ∂μQμ
1 , (3.5)

so that, regarding the S-matrix as the adiabatic limit of Bogoliubov’s func-
tional S-matrix, on applying integration by parts, the contribution from the
divergence vanishes. Moreover, (perturbative) string independence should hold
at every order in the couplings, surviving renormalization.

Already the condition that dlS1 be a divergence severely restricts the
interaction vertices in S1; we proceed to throw light on the fermion sector by
using it in the next section. Further along, all the time-ordered products Sk

in the functional S-matrix ought to be determined from string independence.

4. On the String-Local Boson Sector

It turns out that the string independence principle holds great power both as
a heuristic device and a justification tool, dictating symmetry (of the Abelian
and non-Abelian kind) from interaction9 down to almost every nut and bolt.
A complete account of electroweak theory would start by showing that, when
the string independence principle is applied to the physically relevant set of
boson SLF, with their known masses and charges, replacing the standard point-
like fields, plus one physical Higgs particle φ4(x),10 one recovers precisely the
phenomenological couplings of flavourdynamics in the Standard Model (SM),
with massive bosons mediating the weak interactions, and the U(2) structure
constants, as, for instance, in [35] or [36, Ch. 1]. (One cannot quite say that
we recover the Standard Model picture after spontaneous symmetry breaking
has allegedly taken place, since our boson fields are different, and our rule set
cares little for Lagrangians. But the coincidence of the couplings ought to be
evident—see the discussion at the end of Sect. 7.)

Such a derivation, spelled out in a future paper [37], requires one to exam-
ine time-ordered products corresponding to graphs involving boson particles
up to third order in the couplings. For want of space, here we can just display
its flavour, and foremost the results we need, to build up our derivation for
chirality of weak interactions.

9 Thus, reversing Yang’s dictum, restated in the famous terminological discussion on gauge
interactions between Dirac, Ferrara, Kleinert, Martin, Wigner, Yang himself and Zichichi
[33].
10 Following Okun [34], and for obvious grammatical reasons, henceforth we refer to a
(physical) Higgs boson as a higgs, with a lowercase h. Note also that, in the presence of a
massless A4, the notation φ4 is not meant to purport the higgs as a rogue escort!
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• Apart from the higgs particle sector, a string-local theory of interacting
bosons at first order in the coupling constant g must be of the form:

SB
1 (x, l) = g

∑

a,b,c

fabcFa(x)Ab(x, l)Ac(x, l)

+ g
∑′

a,b,c

fabc(m2
a − m2

b − m2
c)

(
Aa(x, l)Ab(x, l)φc(x, l)

− Aa(x, l) ∂φb(x, l)φc(x, l)
)
, (4.1)

where we omit the notation : — : for Wick products, and the restricted
sum

∑′ runs over massive fields only. Here the fabc denote the (com-
pletely skewsymmetric) structure constants of the (reductive) symmetry
group of the model; the mass of the vector boson Aa is denoted ma, and
complete contraction of Lorentz indices is understood. Notice that the
escort fields hold a somewhat analogous place to Stückelberg fields.

• Now it is straightforward to check that the 1-form dlS
B
1 , measuring the

dependence on the string variable of the vertices in (4.1), is a divergence:
dlS

B
1 (x, l) =

(
∂QB

1

)
(x, l), where QB

1 is given by:

2g
∑

a,b,c

fabc(FaAc)μwb + g
∑′

a,b,c

fabc(m2
a + m2

c − m2
b)(Aaμ − ∂μφa)φcwb.

(4.2)

We shall need QB
1 to prove chirality of the couplings to the fermion sector.

• At once we adapt our notation to the one used in the SM. This model
has three masses m1 = m2 < m3 different from zero and one m4 = 0.
Defining the Weinberg angle11 by m1/m3 =: cos Θ, we employ the basis
in which

f123 = 1
2 cos Θ, f124 = 1

2 sin Θ, f134 = f234 = 0,

all other fabc following from complete skewsymmetry. They are seen to
be the structure constants of (the Lie algebra of) the U(2) determined
by the physical particle fields. We shall use the standard notations

W± ≡ 1√
2
(W1 ∓ iW2) :=

1√
2
(A1 ∓ iA2), Z := A3, A := A4

and similarly for φ±, w±, φZ and wZ , with masses mW = m1, mZ = m3

and mγ = m4 = 0.
• With this in hand, we focus on (4.2), keeping in mind that, although an

escort field does not exist for the photon, the field w4 exists at the same
title as w1, w2 and wZ . The first summand in (4.2) yields:

11 This makes sense in the renormalized theory [41, Sect. 29.1].
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2g
∑

fabc(∂μAaλ − ∂λAaμ)Aλ
c wb

= ig sin Θ
[
(∂μAλ − ∂λAμ)(w−Wλ

+ − w+Wλ
−)

+ (∂μW−λ − ∂λW−μ)(w+Aλ − w4W
λ
+)

+ (∂μW+λ − ∂λW+μ)(w4W
λ
− − w−Aλ)

]

+ ig cos Θ
[
(∂μZλ − ∂λZμ)(w−Wλ

+ − w+Wλ
−)

+ (∂μW−λ − ∂λW−μ)(w+Zλ − wZWλ
+)

+ (∂μW+λ − ∂λW+μ)(wZWλ
− − w−Zλ)

]
. (4.3)

• Our QB
1μ above is not complete, since bosonic couplings involving the

higgs sector have not been included. They are also derived from the string
independence principle.12 Of those, for our purposes in this paper we need
only:

g

2 cos Θ
mZ(φ4(∂μφZ − Zμ) − ∂μφ4 φZ)wZ ; (4.4)

actually these play a pivotal role in our problem. Clearly, terms of this
type are suggested by the last group of summands in (4.2).

• By the way, the expected g2AAAA terms and thus the indications of the
classical geometrical gauge approach are recovered in our formalism from
string independence at the level of S2.

5. The First-Order Constraints

Our framework for electroweak theory is outlined next. This both exemplifies
the principle and contributes to the core of this paper.

• The couplings between interaction carriers and matter currents in a the-
ory with massive or massless vector bosons Aaμ must be of the form

g
(
baAaμJμ

V + b̃aAaμJμ
A + caφaS + c̃aφaS5

)
; (5.1)

where

Jμ
V = ψγμψ, Jμ

A = ψγμγ5ψ, S = ψψ, S5 = ψγ5ψ,

with electric charge conserved in the interaction vertices. Our key as-
sumption point is that these Aμ

a and φa above are now given as string-
local quantum fields, thus satisfying renormalizability by power counting.
There exist no other scalar couplings which comply with renormalizabil-
ity. To wit, Lorentz invariance requires that all cubic terms be of the
above form, and renormalizability forbids quartic terms.13

• The ψ in (5.1) are ordinary fermion fields—we should not assume chiral
fermions ab initio, and we do not.

12 There again, SLF theory goes one better: the “negative squared mass” in the higgs’ self-

potential, not accounted for in the SM [18], is derived from string independence. We refer
to the forthcoming [38] in this respect.
13 Since the two Fermi fields required by Lorentz invariance already have scaling dimension 3,
any two further fields would give 5, exceeding the power-counting limit.
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• The coefficients ba, b̃a, ca, c̃a in (5.1) are to be determined from string
independence.

The proof of chirality in the couplings of electroweak bosons to the
fermion sector of the SM from string independence develops in two stages.
In the first stage, we need not invoke the Q1-vector of the boson sector. For
these couplings, we make the most general Ansatz, as explained after (5.1),
again omitting the notation : — : for the Wick products:

SF
1 (x, l) := g

(
b1W−μēγμν + b̃1W−μēγμγ5ν + b2W+μν̄γμe + b̃2W+μν̄γμγ5e

+ b3Zμēγμe + b̃3Zμēγμγ5e + b4Zμν̄γμν + b̃4Zμν̄γμγ5ν

+ b5Aμēγμe + b̃5Aμēγμγ5e + b6Aμν̄γμν + b̃6Aμν̄γμγ5ν

+ c1φ−ēν + c̃1φ−ēγ5ν + c2φ+ν̄e + c̃2φ+ν̄γ5e

+ c3φZ ēe + c̃3φZ ēγ5e + c4φZ ν̄ν + c̃4φZ ν̄γ5ν

+ c0φ4ēe + c̃0φ4ēγ
5e + c5φ4ν̄ν + c̃5φ4ν̄γ5ν

)
. (5.2)

All the boson fields here are string-local, except for the pointlike higgs
field φ4. Here e stands for an electron, or muon, or τ -lepton pointlike field or
for (a suitable combination of) quark fields d, s, b; and ν for the neutrinos or
for the quarks u, c, t.14 Charge is conserved in each term. Unitarity of the S-
matrix, in the light of (3.2) dictates that S1 be Hermitian. Thus, for instance,
b2 = b∗

1 and b̃2 = b̃∗
1; and we may choose phases so that both b1 and b̃1 are

real. Moreover, b3, b4, b5, b6 and b̃3, b̃4, b̃5, b̃6 are all real; c2 = c∗
1 and c̃2 = −c̃ ∗

1 ;
c3, c4, c0, c5 are real, whereas c̃3, c̃4, c̃0, c̃5 are imaginary. We may assume that
the photon should not couple to neutrinos, which are uncharged, and drop the
corresponding terms, with coefficients b6, b̃6, right away.15

As indicated, the ψ-fields e and ν are ordinary pointlike fermion fields.
Let us use the Dirac equation to handle them; we could employ Weyl equations
as well. The important feature is that the SBEG procedure is thoroughly an
on-shell construction:

−→
/∂ ψ = −imψψ, ψ̄

←−
/∂ = imψψ̄. (5.3)

String independence at this order demands that there be a QF
μ (x, l) such

that

dlS
F
1 (x, l) = ∂μQF

μ (x, l). (5.4)

14 As already indicated, we consider just one generation of leptons.
15 Were we not to do so, electric charge would appear as the difference between the couplings
of the photon to the electron and the neutrino.
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Proposition 1. The string independence requirement (5.4) can be satisfied if
and only if

2c1 = i(me − mν)b1, c3 = 0,

c2 = i(mν − me)b1, c4 = 0,

c̃1 = i(me + mν)b̃1, c̃3 = 2imeb̃3,

c̃2 = i(mν + me)b̃1, c̃4 = 2imν b̃4, and b̃5 = 0. (5.5)

The corresponding QFμ
1 is unique and is of the form

QFμ
1 := g

(
b1w−ēγμν + b̃1w−ēγμγ5ν + b1w+ν̄γμe + b̃1w+ν̄γμγ5e

+ b3wZ ēγμe + b̃3wZ ēγμγ5e + b4wZ ν̄γμν + b̃4wZ ν̄γμγ5ν

+ b5w4ēγ
μe

)
. (5.6)

Note that there are no restrictions at this stage on the set {c0, c̃0, c5, c̃5},
since the corresponding vertices are pointlike.

Proof. The string differential dlS
F
1 with the Ansatz (5.2) for SF

1 is expressed
with the help of the form-valued fields defined in (2.6):

dlS
F
1 (x, l)

= g
(
b1∂μw−ēγμν + b̃1∂μw−ēγμγ5ν + b1∂μw+ν̄γμe + b̃1∂μw+ν̄γμγ5e

+ b3∂μwZ ēγμe + b̃3∂μwZ ēγμγ5e + b4∂μwZ ν̄γμν + b̃4∂μwZ ν̄γμγ5ν

+ b5∂μw4ēγ
μe + b̃5∂μw4ēγ

μγ5e

+ c1w−ēν + c̃1w−ēγ5ν + c2w+ν̄e + c̃2w+ν̄γ5e

+ c3wZ ēe + c̃3wZ ēγ5e + c4wZ ν̄ν + c̃4wZ ν̄γ5ν
)
.

Using the Dirac equations (5.3) and γ5γμ = −γμγ5 and defining QF
1 as in

Eq. (5.6), one finds:

dlS
F
1 (x, l)

= ∂μ

[
QFμ

1 + b̃5w4ēγ
μγ5e

]

+ g
[
(c1 − i(me − mν)b1)w−ēν + (c̃1 − i(me + mν)b̃1)w−ēγ5ν

+ (c2 − i(mν − me)b1)w+ν̄e + (c̃2 − i(mν + me)b̃1)w+ν̄γ5e

+ (c̃3 − 2imeb̃3)wZ ēγ5e + (c̃4 − 2imν b̃4)wZ ν̄γ5ν − 2imeb̃5w4ēγ
5e

+ c3wZ ēe + c4wZ ν̄ν
]
.

The last four lines cannot be expressed as divergences, and by linear indepen-
dence of the cubic operators, the corresponding terms must vanish separately.
This implies the claims. �

Notice also that the argument for b̃5 = 0 would have failed if the electron
were massless, whereas the axial terms for massive vector bosons in the original
Ansatz have survived. They will keep surviving, as we shall see.
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It is pertinent to substitute expressions (5.5) into (5.2), which we do now
for convenience later on:

SF
1 (x, l)

= g
(
b1W−μēγμν + b̃1W−μēγμγ5ν + b1W+μν̄γμe + b̃1W+μν̄γμγ5e

+ b3Zμēγμe + b̃3Zμēγμγ5e + b4Zμν̄γμν + b̃4Zμν̄γμγ5ν + b5Aμēγμe

+ i(me − mν)b1φ−ēν + i(me + mν)b̃1φ−ēγ5ν − i(me − mν)b1φ+ν̄e

+ i(me + mν)b̃1φ+ν̄γ5e + 2imeb̃3φZ ēγ5e + 2imν b̃4φZ ν̄γ5ν

+ c0φ4ēe + c̃0φ4ēγ
5e + c5φ4ν̄ν + c̃5φ4ν̄γ5ν

)
. (5.7)

6. Time-Ordered Products for Tree Graphs

Recall that the causal factorization (3.3) fixes the time-ordered product T[S1

(x, l)S1(x′, l)] only outside the set D. The possible extensions across D are
restricted by the requirement that the Wick expansion, valid outside D, hold
everywhere: we require that the time-ordered product of Wick polynomials
U = U(x, l), V ′ = V (x′, l) satisfy

T[UV ′] = :UV ′: +
[∑

ϕ,χ′
:
∂U

∂ϕ
〈〈T ϕ χ′〉〉 ∂V ′

∂χ′ :
]

︸ ︷︷ ︸
T[UV ′]tree

+ · · · + 〈〈T[UV ′]〉〉, (6.1)

where the sum in the brackets goes over all free fields, and we have employed
formal derivation within the Wick polynomial. The terms in brackets are called
the tree graphs. Thereby, the extension problem is reduced to the extension of
numerical distributions.

In particular, at the tree graph level, it only remains to extend the time-
ordered two-point functions 〈〈T ϕ χ′〉〉 of free fields. One such extension is given
by

〈〈T0 ϕ(x, l)χ(x′, l)〉〉 :=
i

(2π)4

∫
d4p

e−i(p(x−x′))

p2 − m2 + i0
Mϕχ(p, l). (6.2)

It has the nice feature that it preserves all off-shell relations between the
fields.16

If the scaling degree of the two-point function 〈〈ϕ χ′〉〉 with respect to D
and to the diagonal {x = x′} is lower than the respective codimensions 3 and 4,
then the time-ordered two-point function is unique, 〈〈T ϕ χ′〉〉 = 〈〈T0 ϕ χ′〉〉.
Otherwise, it admits the addition of a distribution with support on D.

A look at tables (2.7) shows that this happens only in the cases
〈〈T ∂λAμ A′

κ〉〉 and 〈〈T ∂λAμ ∂′
κw′〉〉. These have scaling degree 3 with respect

16 The string derivative dl fulfils the Leibniz rule with T0 unconditionally. As long as no
on-shell relations are involved, ∂μ can be exchanged with T0 as well, e.g.:

∂μ〈〈T0 Aνχ′〉〉 − ∂ν〈〈T0 Aμχ′〉〉 = 〈〈T0 Fμνχ′〉〉.



The Chirality Theorem

to both D and the diagonal {x = x′}, and therefore admit a renormalization
by adding a numerical distribution supported on D and with the same scaling
degree. Any such distribution is of the form

δl(x′ − x) :=
∫ ∞

0

ds δ(x′ − x − sl), (6.3)

multiplied by some well-behaved function f(x′ −x, l). Thus, in these cases the
most general two-point functions are

〈〈T ∂λAμ A′
κ〉〉 = 〈〈T0 ∂λAμ A′

κ〉〉 + cλμκ δl , (6.4a)

〈〈T ∂λAμ ∂′
κw′〉〉 = 〈〈T0 ∂λAμ ∂′

κw′〉〉 + bλμκ , (6.4b)

where cλμκ and bλμκ are some well-behaved function and one-form, respec-
tively, as yet undetermined.

We now seek to enforce string independence of time-ordered products at
second order in the coupling constant. String independence at first order (3.5)
plus the factorization (3.3) implies that the relation

dl T[S1(x, l)S1(x′, l)] = ∂μ T[Qμ
1 (x, l)S1(x′, l)] + ∂′

μ T[S1(x, l)Qμ
1 (x′, l)] (6.5)

holds for all (x − x′, l) outside D. The string independence principle forces
us to require that this relation be valid everywhere. It turns out that this
requirement fixes all coefficients in (5.2).

As advertised, to this end we shall only need to examine tree graphs in S2.
We reckon that the tree graph contribution to the obstruction (6.5) is given
by

∑

ϕ,χ′

[
dl

∂S1

∂ϕ
〈〈T ϕχ′〉〉∂S′

1

∂χ′ +
∂S1

∂ϕ
dl〈〈T ϕχ′〉〉∂S′

1

∂χ′ +
∂S1

∂ϕ
〈〈T ϕχ′〉〉 dl

∂S′
1

∂χ′

]

−
∑

ψ,χ′

(
∂μ

∂Qμ

∂ψ
〈〈T ψχ′〉〉 +

∂Qμ

∂ψ
∂μ〈〈T ψ χ′〉〉

)
∂S′

1

∂χ′ − [x ↔ x′], (6.6)

where we have written Q for Q1. This expression expands to

∑

ϕ,χ′

[
dl

∂S1

∂ϕ
〈〈T ϕχ′〉〉∂S′

1

∂χ′ +
∂S1

∂ϕ
〈〈T dlϕχ′〉〉∂S′

1

∂χ′

+
∂S1

∂ϕ
〈〈T ϕdlχ

′〉〉∂S′
1

∂χ′ +
∂S1

∂ϕ
〈〈T ϕχ′〉〉 dl

∂S′
1

∂χ′

]

−
∑

ψ,χ′

(
∂μ

∂Qμ

∂ψ
〈〈T ψχ′〉〉 +

∂Qμ

∂ψ
〈〈T ∂μψ χ′〉〉

)
∂S′

1

∂χ′ − [x ↔ x′]

+
∑

ϕ,χ′

∂S1

∂ϕ

(
dl〈〈T ϕχ′〉〉 − 〈〈T dlϕχ′〉〉 − 〈〈T ϕdlχ

′〉〉)∂S′
1

∂χ′ (6.7a)

−
∑

ψ,χ′

∂Qμ

∂ψ

(
∂μ〈〈T ψχ′〉〉 − 〈〈T ∂μψχ′〉〉)∂S′

1

∂χ′ − [x ↔ x′]. (6.7b)
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The first, second, fifth and sixth terms reduce to a tree graph contribution:
∑

χ′

[∑

ϕ

(
dl

∂S1

∂ϕ
〈〈T ϕχ′〉〉 +

∂S1

∂ϕ
〈〈T dlϕχ′〉〉

)

−
∑

ψ

(
∂μ

∂Qμ

∂ψ
〈〈T ψχ′〉〉 +

∂Qμ

∂ψ
〈〈T ∂μψ χ′〉〉

)]
∂S′

1

∂χ′

= T[(dlS1)S′
1]tree − T[(∂μQμ)S′

1]tree , (6.8)

which vanishes by construction; we refer to “Appendix A” for the proof of that
equality. The other four terms in the first two summations vanish similarly.

Thus, the whole expression (6.6) reduces to the sum (6.7) of the last two
lines above, which we may call the “obstruction to string independence”.

We now seek to determine this quantity. Its vanishing, even admitting the
most general time-ordering prescription T, will provide the correct couplings,
and in the occasion chirality of the interaction of the fermions with the massive
intermediate vector bosons.

We distinguish three types of 2-point obstructions. For terms ϕ, χ in S1

and ψ,Cμ in Qμ
1 , we label them as follows:

Ô(ϕ, χ′) := dl〈〈T ϕχ′〉〉 − 〈〈T dlϕχ′〉〉 − 〈〈T ϕ dlχ
′〉〉, (6.9a)

Oμ(ψ, χ′) := 〈〈T ∂μψχ′〉〉 − ∂μ〈〈T ψχ′〉〉, (6.9b)

O(C,χ′) := 〈〈T ∂μCμχ′〉〉 − ∂μ〈〈T Cμχ′〉〉. (6.9c)

Since the T0 ordering preserves all off-shell relations between the fields,
the first two types only occur for T �= T0. More specifically, the only obstruc-
tions of these types that we meet are

Ô(Fμν , A′
κ) = dl(c[μν]κ δl), (6.10a)

Oμ(w,F ′
αβ) = b[αβ]μ , (6.10b)

with skewsymmetrization c[μν]κ ≡ cμνκ − cνμκ and similarly for b[αβ]μ. These
are numerical 1-forms in the l variable. On the other hand, all obstructions of
type (6.9c) are 0-forms, since the only candidate field Cμ for a 1-form is ∂μw—
but this does not appear in Qμ

1 , see (4.3) and (4.4). We conclude that the terms
in (6.7b) which involve two-point obstructions of the third type must cancel
separately, i.e. cannot be cancelled by terms involving the first two types of
two-point obstructions.

We now examine 2-point obstructions of the third type (6.9c). First of
all, there are two that vanish:

O(A,φ′) := 〈〈T0 ∂μAμφ′〉〉 − ∂μ〈〈T0 Aμφ′〉〉 = 0, (6.11a)

O(∂λA,φ′) := 〈〈T0 ∂μ∂λAμφ′〉〉 − ∂μ〈〈T0 ∂λAμφ′〉〉 = 0. (6.11b)

Indeed, the left-hand side of (6.11a) is −m2〈〈T0 φφ′〉〉 − ∂μ〈〈T0 Aμφ′〉〉, which
vanishes because

∂μ〈〈T0 Aμφ′〉〉 =
−i

(2π)4

∫
d4p

e−i(p(x−x′))

p2 − m2 + i0
≡ −iDF (x − x′) = −m2〈〈T0 φφ′〉〉,
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in view of (2.7b). Thus, (6.11a) holds, and a similar calculation yields (6.11b).
Note that, by definition,

DF (x) :=
1

(2π)4

∫
d4p

e−i(px)

p2 − m2 + i0
, so that (� + m2)DF (x) = −δ(x).

Next, we consider

O(A,A′
κ) := 〈〈T0 ∂μAμA′

κ〉〉 − ∂μ〈〈T0 AμA′
κ〉〉.

Using (2.7), we get

O(A,A′
κ) =

1
(2π)4

∫
d4p

e−i(p(x−x′))

p2 − m2 + i0
(m2 − p2)lκ

(pl)

= − lκ
(2π)4

∫
d4p

e−i(p(x−x′))

(pl)
.

On bringing in the distributions 1/(pl) = −i
∫ ∞
0

ds eis(pl) and δl of (6.3), we
may rewrite the obstruction as

O(A,A′
κ) =

ilκ
(2π)4

∫ ∞

0

ds

∫
d4p e−i(p(x−x′−sl)) = ilκ δl(x − x′). (6.12)

We next determine

O(∂φ,A′
κ) := 〈〈T0 ∂μ∂μφA′

κ〉〉 − ∂μ〈〈T0 ∂μφA′
κ〉〉

= −(� + m2)〈〈T0 φA′
κ〉〉 = − 1

(2π)4

∫
d4p e−i(p(x−x′)) lκ

(pl)
= ilκ δl .

Since O is bilinear in its arguments, this yields a useful result: O(A−∂φ,A′
κ) =

0. Likewise,

O(∂Aλ, φ′) := 〈〈T0 ∂μ∂μAλφ′〉〉 − ∂μ〈〈T0 ∂μAλφ′〉〉
= −(� + m2)〈〈T0 Aλφ′〉〉 = −ilλ δl .

We now tackle the obstruction O(∂λA,A′
κ), which involves 〈〈T ∂λAμA′

κ〉〉
that is not unique but admits the renormalization (6.4a). To wit,

O(∂λA,A′
κ) := 〈〈T ∂μ∂λAμA′

κ〉〉 − ∂μ〈〈T ∂λAμA′
κ〉〉

= ∂λ

(−m2〈〈T0 φA′
κ〉〉 − ∂μ〈〈T0 AμA′

κ〉〉) − ∂μ
(
cλμκ δl

)

= ilκ ∂λδl − ∂μ
(
cλμκ δl

)
. (6.13)

Next, we find, using (2.7a) and (6.12), that

O(∂Aλ, A′
κ) := 〈〈T ∂μ∂μAλA′

κ〉〉 − ∂μ〈〈T ∂μAλA′
κ〉〉

= −(� + m2)〈〈T0 AλA′
κ〉〉 − ∂μ(cμλκ δl)

= −igλκ δ + i(lλ∂κ + lκ∂λ) δl − ∂μ(cμλκ δl). (6.14)

On subtracting (6.13) from (6.14), we arrive at

O(F•λ, A′
κ) ≡ O(∂λA − ∂Aλ, A′

κ) = −igλκ δ + ilλ∂κ δl + ∂μ(c[λμ]κ δl).
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Finally, we take note of

O(∂φa, φ′
a) := 〈〈T0 ∂μ∂μφaφ′

a〉〉 − ∂μ〈〈T0 ∂μφaφ′
a〉〉 =

i

m2
a

δ for a = 1, 2, 3;

O(∂φ4, φ
′
4) := 〈〈T0 ∂μ∂μφ4φ

′
4〉〉 − ∂μ〈〈T0 ∂μφ4φ

′
4〉〉 = i δ.

To sum up: the obstructions of the third bosonic type are:

O(A,φ′) = 0, O(A,A′
κ) = ilκ δl , O(∂φa, φ′

a) = (i/m2
a) δ ,

O(∂λA,φ′) = 0, O(∂φ,A′
κ) = ilκ δl , O(∂φ4, φ

′
4) = i δ ,

O(A − ∂φ,A′
κ) = 0, O(∂Aλ, φ′) = −ilλ δl ,

O(∂λA,A′
κ) = ilκ ∂λδl − ∂μ

(
cλμκ δl

)
,

O(∂Aλ, A′
κ) = −igλκ δ + i(lλ∂κ + lκ∂λ) δl − ∂μ

(
cμλκ δl

)
,

O(F•λ, A′
κ) = −igλκ δ + ilλ∂κ δl + ∂μ(c[λμ]κ δl). (6.15)

The fermionic obstructions, which do not involve stringlike fields, are
much simpler. They are of two kinds, where ψ, ψ′ denote two fermions of the
same type:

O(γψ, ψ̄′) := 〈〈T0 γμ∂μψ ψ̄′〉〉 − γμ∂μ〈〈T0 ψ ψ̄′〉〉 = −δ,

O(ψ′, ψ̄γ) := 〈〈T0 ψ′ ∂μψ̄〉〉γμ − ∂μ〈〈T0 ψ′ ψ̄〉〉γμ = +δ. (6.16)

Indeed, using (5.3), we obtain

O(γψ, ψ̄′) = −(/∂ + imψ)〈〈T0 ψ ψ̄′〉〉 = −i(/∂ + imψ)SF (x − x′) = −δ(x − x′),

and the second case follows similarly.

7. Computing the Second-Order Constraints

A priori, in equation (6.5) there may be three kinds of contractions pertinent
to our problem of the type (6.7b), coming from the crossing of the, respec-
tively, bosonic and fermionic couplings SB

1 and SF
1 with the QB

1 and QF
1 vector

operators. These crossings contain information about the fermionic vertices.
Happily, the bosonic interaction set SB

1 and the fermionic QF
1 -vertex turn out

an inert combination, because there are no obstructions involving the form-
valued fields wa.

Our goal in this section is to determine the couplings, as far as possi-
ble, from the vanishing of obstructions in (6.7b) of the third type (6.9c)—
which have to vanish separately from the other two types as remarked after
Eq. (6.10). Firstly, we seek the b̃3 and b̃4 coefficients of the Z-boson, which
are determined together with the higgs couplings c0 and c5. Secondly, we shall
be able to determine the quotient b1/b̃1, thereby obtaining chirality of the
charged boson interactions in the SM; the value of b1 is trivially determined
afterwards. Thirdly, we shall look for the electromagnetic coupling b5. At the
end, we find the missing terms for the neutral current and show vanishing of
the other higgs couplings.
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In what follows, we consider two types of crossings. The first involves
a QB

1 vector ψ, namely a summand taken from the formulas (4.3) and (4.4),
and a SF

1 coupling χ′ that is a summand of (5.7); these we call (QB
1 , SF

1 )-
type crossings. The second type pairs a QF

1 vector summand ψ of (5.6) with a
term χ′ in (5.7); these will be (QF

1 , SF
1 )-type crossings. (The possible fermionic

crossings are listed in “Appendix B”.) Each such crossing yields a single term
in the total obstruction (6.7b), consisting of a 2-point obstruction combined
with certain (Wick) products of fields. Different individual crossings may, and
will, turn out to have the same field content—which give opportunities for
cancellation of their obstructions.

For convenience and readability, we shall omit the factor g2 in all crossings
in this section, reinstating it in the final result.

7.1. Step 1: Impact of Higgs Couplings

Lemma 2. The crossings with field content wZ(x, l)φZ(x, l)ē(x)e(x) yield no
obstruction to string independence, if and only if the higgs and Z-boson cou-
pling coefficients c0 and b̃3 are related as follows:

c0 =
8b̃2

3 me cos2 Θ
mW

. (7.1)

Proof. One such crossing, of the (QB
1 , SF

1 )-type, arises from the last term
− 1

2 cos Θ mZ ∂μφ4 φZwZ in (4.4) with the term c0φ4ēe in (5.7). From table
(6.15), this contributes to the total obstruction the term:

−ic0
mZ

cos Θ
wZ(x, l)φZ(x, l)ē(x)e(x) δ(x − x′).

A factor of 2 comes from appending the identical second contribution in (6.5);
we do likewise from now on without further notice.

On the other hand, there is a crossing of type (QF
1 , SF

1 ), matching b̃3wZ ēγμγ5e

in (5.6) and 2imeb̃3φZ ēγ5e in (5.7). Here there are two ē-e contractions of equal
value, see table (B.1), for a total contribution of

8imeb̃
2
3 wZ(x, l)φZ(x, l)ē(x)e(x) δ(x − x′).

String independence therefore demands cancellation of the last two expres-
sions; since there are no more crossings with this field content, this yields (7.1).

�

Lemma 3. The crossings with field content wZ(x, l)φ4(x)ē(x)γ5e(x) yield no
obstruction to string independence, if and only if c0 = me/2mW . Hence

b̃3 = ± 1
4 cos Θ

=: ε1
1

4 cos Θ
(7.2)

where the sign ε1 = ±1 is yet to be determined.

Proof. There is one crossing of type (QB
1 , SF

1 ), of 1
2 cos ΘmZwZφ4 ∂μφZ from

(4.4) with the term 2imeb̃3φZ ēγ5e from (5.6). For this one, (6.15) yields

−2b̃3
me

mW
wZ(x, l)φ4(x)ē(x)γ5e(x) δ(x − x′).
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Now there are two relevant (QF
1 , SF

1 )-type crossings: b̃3wZ ēγμγ5e with c0φ4ēe
and b3wZ ēγμe with c̃0φ4ēγ

5e. The second vanishes—see (B.1) again—and the
first yields

4b̃3c0 wZ(x, l)φ4(x)ē(x)γ5e(x) δ(x − x′).

Cancellation of these crossings requires c0 = me/2mW , as claimed. Com-
paring that with the relation (7.1), we arrive at b̃2

3 = 1/(16 cos2 Θ), and (7.2)
follows. �

Lemma 4. The vanishing of obstructions implies similar relations between the
higgs and Z-boson coupling coefficients c5 and b̃4:

c5 =
8b̃2

4 mν cos2 Θ
mW

=
mν

2mW

and thereby leads to a determination of b̃4 with another unspecified sign ε2:

b̃4 = ± 1
4 cos Θ

=: ε2
1

4 cos Θ
. (7.3)

Proof. In much the same way as before, we look now for crossings of either
type with field content wZ(x, l)φZ(x, l)ν̄(x)ν(x). There are just two of these:
− 1

2 cos ΘmZwZ ∂μφ4 φZ with c5φ4ν̄ν and b̃4wZ ν̄γμγ5ν with 2imν b̃4φZ ν̄γ5ν.
These cancel provided that c5 and b̃4 satisfy the first relation above.

On the other hand, the field content wZ(x, l)φ4(x)ν̄(x)γ5ν(x) can arise
from four crossings: 1

2 cos ΘmZwZφ4(∂μφZ −Zμ) with both 2imν b̃4φZ ν̄γ5ν and
b̃4Zκν̄γκγ5ν; and moreover the (QF

1 , SF
1 )-type ones b̃4wZ ν̄γμγ5ν with c5φ4ν̄ν,

and b4wZ ν̄γμν with c̃5φ4ν̄γ5ν. The second and fourth of these again van-
ish. Cancellation of the first and third leads to c5 = mν/2mW ; and b̃2

4 =
1/(16 cos2 Θ) follows at once. �

Note that the higgs couplings c0 and c5 come out, respectively, propor-
tional to the electron and neutrino masses, with the same proportionality
constant—as it should be.17

7.2. Step 2: The Road to Chirality

The signs ε1 and ε2 turn out to be related. This is the main step in the proof.

Lemma 5. The coefficients b̃3 and b̃4 have opposite signs: ε2 = −ε1.

Proof. Consider together obstructions with field contents w−W+κēγκγ5e and
w+W−κēγκγ5e. They may come from crossings of type (QF

1 , SF
1 ):

b1w−ēγμν with b̃1W+κν̄γκγ5e and b̃1w−ēγμγ5ν with b1W+κν̄γκe,

b1w+ν̄γμe with b̃1W−κēγκγ5ν and b̃1w+ν̄γμγ5e with b1W−κēγκν.

Each line gives rise to two identical obstructions, with total value

−4b1b̃1(w−W+κ − w+W−κ)ēγκγ5e δ(x − x′).

17 We have left aside the possibility that b̃3, c0, b̃4 and c5 all vanish; this will soon be refuted.



The Chirality Theorem

Such a term also arises from the (QB
1 , SF

1 )-type crossing of the term
i cos Θ (w−Wλ

+ − w+Wλ
−)FZ

μλ in (4.3) with b̃3Zκēγκγ5e. As we saw in Sect. 6,
this is a “dangerous” crossing, yielding

2b̃3 cos Θ (w−W+κ − w+W−κ)ēγκγ5e δ(x − x′)

+ 2ib̃3 cos Θ (w−Wλ
+ − w+Wλ

−)ēγκγ5e ∂μ
(
c[λμ]κ δl(x − x′)

)
.

The term ilλ ∂κδl in O(FZ
•λ, Z ′

κ) does not contribute, since lλWλ
± = 0 by

transversality (see Sect. 2). We obtain, in all:

(2b̃3 cos Θ − 4b1b̃1)(w−W+κ − w+W−κ)ēγκγ5e δ(x − x′)

− 2ib̃3 cos Θ (w−Wλ
+ − w+Wλ

−)ēγκγ5e ∂μ
(
c[λμ]κ δl(x − x′)

)
.

Here string independence dictates that c[λμ]κ = 0.18 The end result is

2b1b̃1 = b̃3 cos Θ. (7.4a)

A completely parallel computation, for obstructions with the field contents
w∓W±κν̄γκγ5ν, gives the relation

2b1b̃1 = −b̃4 cos Θ. (7.4b)

In view of (7.2) and (7.3), this says that ε2 = −ε1. �

Corollary 6. The interactions with fermions of the charged vector bosons must
be fully chiral, because b̃1 = ε1b1.

Proof. We now observe that w−φZ ēν is produced either by the term from
(4.2) of the form i

2m2
W sec Θ w− ∂μφ+ φZ , crossed with i(me−mν)b1φ−ēν from

(5.7), or by purely fermionic crossings, between b̃1w−ēγμγ5ν and the terms
2imeb̃3φZ ēγ5e + 2imν b̃4φZ ν̄γ5ν. This, together with (7.2) and (7.3), leads to

i(me − mν)b1 = 2b̃1(2imeb̃3 + 2imν b̃4) cos Θ = i(me − mν)ε1b̃1

and the relation b̃1 = ε1b1 follows. �

Of course, this procedure cannot tell us whether ε1 = +1 or ε1 = −1.
The second of these appears to be Nature’s decision.

Equations (7.4) now dictate that b2
1 = b̃2

1 = 1/8. This determines b1, up
to a sign; we choose b1 = −1/2

√
2.

Observe that the proof of chirality requires the presence of a higgs, at
the level of tree graphs. (Indeed, were b̃3 = 0 or b̃4 = 0, it would follow that
b1 = b̃1 = 0 too, and the whole term SF

1 would vanish. Thus, none of these
coefficients are zero, and (7.2) is confirmed, with c0 �= 0 and c5 �= 0 as well.)
There are several consistency cases for the scalar particle of the Standard
Model. But it is hard to think of a simpler one. (We owe this remark to
Alejandro Ibarra.)

18 This implies that all two-point obstructions of the first type (6.9a) also vanish, see (6.10a).
Those of the second type (6.9b) can be freely set to zero, since they involve the up-to-now
free parameters bαβμ, see (6.10b).
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7.3. Step 3: Electric Charge

The coefficient e = gb5 of the coupling Aμēγμe in (5.7) is just the electric
charge. An important tenet of electroweak theory [36] is that e = g sin Θ, with
Θ being the Weinberg angle.

Lemma 7. The relation gb5 = g sin Θ holds.

Proof. Consider the term −i sin Θw− Aλ F+
μλ in (4.3), crossed with the term

b1W−κēγκν in (5.7), and the crossing of b1w−ēγμν with b5Aκēγκe. These are
the only terms yielding the field content w−Aκēγκν. The total obstruction is

(2b1b5 − 2b1 sin Θ)w−(x, l)Aκ(x, l)ē(x)γκν(x) δ(x − x′).

This vanishes if and only if b5 = sin Θ. �

The case could also have been made from the crossings with field content
w+Aκν̄γκe, mutatis mutandis.

7.4. Step 4: Mopping Up

We still have to determine the couplings b3 and b4 for the neutral current. For
that, we seek first the contributions with content w−W+κēγκe. The crossings
are of four classes:

i sin Θw−Wλ
+Fμλ with b5Aκēγκe,

i cos Θ w−Wλ
+FZ

μλ with b3Zκēγκe,

b1w−ēγμν with b1W+κν̄γκe,

b̃1w−ēγμγ5ν with b̃1W+κν̄γκγ5e.

The cancellation of the total obstruction now entails

b3 cos Θ + sin2 Θ = b2
1 + b̃2

1 =
1
4

, that is, b3 =
1

4 cos Θ
− sin2 Θ

cos Θ
.

Similarly, from the crossing of i cos Θ w−Wλ
+FZ

μλ with b4Zκν̄γκν, and the same
fermionic terms as before, the contributions with content w−W+κν̄γκν cancel
only if

b4 cos Θ = −b2
1 − b̃2

1 = −1
4

, and thus b4 = − 1
4 cos Θ

.

The expected result of the neutral current containing a right-handed compo-
nent has been obtained.

Finally, crossing the term − 1
2mZ sec ΘwZφZ ∂μφ4 in (4.4) with the terms

c̃0φ4ēγ
5e and c̃5φ4ν̄γ5ν of (5.7) gives rise to terms with content wZφZ ēγ5e

and wZφZ ν̄γ5ν, respectively.
The crossings of b3wZ ēγμe with 2imeb̃3φZ ēγ5e and b4wZ ν̄γμν with 2imν

b̃4φZ ν̄γ5ν, respectively, vanish of their own accord: see table (B.1). Therefore,
they cannot cancel the former crossings, and so c̃0 = c̃5 = 0 must hold. That
is to say, the couplings of the higgs are not chiral.

In conclusion, we exhibit the leptonic couplings (for one family) of the
SM, as derived from string independence. For definiteness, we take ε1 = −1,
which is the experimental fact. Here, then, is the chirality theorem in full.
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Theorem 8. The couplings of electroweak bosons to the fermion sector of the
Standard Model are fully determined from string independence and the choice
of sign ε1 = −1. Given that choice, the absence of obstructions to string inde-
pendence, at tree level up to second order, entails that:

SF
1 =g

{
− 1

2
√

2
W−μēγμ(1 − γ5)ν − 1

2
√

2
W+μν̄γμ(1 − γ5)e

+
1 − 4 sin2 Θ

4 cos Θ
Zμēγμe − 1

4 cos Θ
Zμēγμγ5e

− 1
4 cos Θ

Zμν̄γμ(1 − γ5)ν + sin ΘAμēγμe

+ i
me − mν

2
√

2
(φ−ēν − φ+ν̄e) − i

me + mν

2
√

2
(φ−ēγ5ν + φ+ν̄γ5e)

− i
me

2 cos Θ
φZ ēγ5e + i

mν

2 cos Θ
φZ ν̄γ5ν +

me

2mW
φ4ēe +

mν

2mW
φ4ν̄ν

}
.

(7.5)

Amazingly, this differs from what is known from the standard treatment
by little more than a divergence.

Scholium 9. One can write SF
1 = SF,p

1 + (∂V ), where SF,p
1 is almost pointlike,

SF,p
1 = g

{
− 1

2
√

2
W p

−μēγμ(1 − γ5)ν − 1
2
√

2
W p

+μν̄γμ(1 − γ5)e

+
1 − 4 sin2 Θ

4 cos Θ
Zp

μ ēγμe − 1
4 cos Θ

Zp
μ ēγμγ5e

− 1
4 cos Θ

Zp
μ ν̄γμ(1 − γ5)ν + sin ΘAμēγμe

+
me

2mW
φ4ēe +

mν

2mW
φ4ν̄ν

}
; (7.6)

where V μ is given by

V μ = g

{
− 1

2
√

2
φ−ēγμ(1 − γ5)ν − 1

2
√

2
φ+ν̄γμ(1 − γ5)e

+
1 − 4 sin2 Θ

4 cos Θ
φZ ēγμe − 1

4 cos Θ
φZ ēγμγ5e

− 1
4 cos Θ

φZ ν̄γμ(1 − γ5)ν
}

.

That is to say, the divergence of the expression V sweeps away the escort fields.

We wrote “almost pointlike” because the fields in (7.6) are pointlike, ex-
cept for the photon field Aμ, which remains stringlike—for the good reason
that W± and Z can be lodged in a Hilbert space, whereas A cannot. Inci-
dentally, this causes the interacting electron field to be string-localized, thus
making direct contact with the early literature on stringlike fields [8,9]. A key
observation is that (∂V ) is not renormalizable by power counting, whereas
(∂Q) is.
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We rest our case. The only way to disprove it would be to find an incon-
sistency coming from crossings not discussed so far. To verify that this does
not happen is a routine, if utterly tedious, exercise.

A last remark is in order. In the stringlike version of electroweak theory,
the eventual need of “renormalizing” the original time-ordered product T0,
as in (6.4a), arises. We only found that the skewsymmetric part of cλμκ in
that formula must vanish. Whether or not the theory requires a time-ordered
product different from T0 remains an open question.

8. Conclusion and Outlook

To repeat ourselves: interactions of quanta should spring from a simple under-
lying principle. Gauge field theory has played this unifying role so far. That
flows from the embarrassing clash of the positivity axioms of Quantum Me-
chanics with the convenient description of electromagnetic and other forces
in terms of potentials. Not unreasonably, the difficulty was elevated into a
principle, and one that put geometry in the saddle. The resulting top-down
approach, with the need of “quantizing” the Lagrangian description, has ridden
us (without much mercy) for many a year. It should be recognized, however,
that the gauge-plus-BRST-invariance framework is just a very useful theoret-
ical technology to grapple with elementary particle physics problems. Other
theoretical technologies can and sometimes are and should be used to address
them. Stringlike field theory is but one of those. With the early dividends that
the mentioned clash fades away, and unbounded-helicity particles take their
due place among quantum fields [6].

To be sure, the extra variable complicates renormalized perturbation the-
ory and the proof of renormalizability of physical models in general. Notwith-
standing, the string independence principle becomes a powerful guide to in-
teracting models. Internal symmetries are shown as consequences of quan-
tum mechanics in the presence of Lorentz symmetry, and a bottom-up con-
struction of the string-local equivalent for self-interaction of the Yang–Mills
type ensues [37]. Fortunately, as with the chirality theorem itself, all that and
more requires only construction of time-ordered products associated with tree
graphs.19

All that being said, the model expounded here is of course anomalous,
which manifests itself in S3. The cure is the same as in the standard treatments.
The computation of the chiral anomaly in our framework will be published
elsewhere.

A natural question is: to what extent, on the basis of string independence
of the couplings, chirality of the interaction with fermions is a generic trait of
physics models. We do not have a comprehensive answer to this. From our

19 There is nothing much new in this: in the seventies it was generally understood that

unitarity and renormalizability requirements impose internal symmetries and at least the

presence of one scalar field, under appropriate circumstances [39,40]. For heavy vector boson
interactions, the Higgs-mechanism shortcut replaced this wisdom in the textbooks. Similar
bottom-up arguments surface nowadays in [41, Prob. 9.3 and Sect. 27.5].
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treatment here one gathers that models with only massless bosons like QCD
are purely vectorial, on the one hand. Limits of the SM, like the Georgi–
Glashow model and the Higgs–Kibble model, on the other hand, must exhibit
chirality.
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Appendix A. Proof of Eq. (6.8)

We prove here the identities
∑

ϕ

(
dl

∂S1

∂ϕ
〈〈T ϕχ′〉〉 +

∂S1

∂ϕ
〈〈T(dlϕ)χ′〉〉

)
= [T(dlS1)χ′]tree , (A.1)

∑

ψ

(
∂μ

∂Qμ

∂ψ
〈〈T ψχ′〉〉 +

∂Qμ

∂ψ
〈〈T(∂μψ)χ′〉〉

)
= [T(∂μQμ)χ′]tree . (A.2)

Using the identity

dlS1 =
∑

ϕ

:
∂S1

∂ϕ
dlϕ: ,

the right-hand side of Eq. (A.1) is

∑

ϕ

[
T :

∂S1

∂ϕ
dlϕ:χ′

]

tree

=
∑

ψ

{∑

ϕ

:
∂2S1

∂ϕ∂ψ
dlϕ:

}
〈〈T ψχ′〉〉

+
∑

ϕ

∂S1

∂ϕ
〈〈T(dlϕ)χ′〉〉.

But the term in braces is just dl
∂S1
∂ψ . Hence the right-hand side of the above

equation coincides with the left-hand side of Eq. (A.1).
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Similarly, using ∂μQμ =
∑

ϕ :(∂Qμ/∂ϕ) ∂μϕ: , the right-hand side of
Eq. (A.2) becomes

∑

ψ

{∑

ϕ

:
∂2Qμ

∂ϕ∂ψ
∂μϕ:

}
〈〈T ψχ′〉〉 +

∑

ϕ

∂Qμ

∂ϕ
〈〈T(∂μϕ)χ′〉〉,

which equals the left-hand side of Eq. (A.2).

Appendix B. Fermionic Crossings

The crossings of fermionic type in Sect. 7 are computed as follows. When
crossing ēγμν with ν̄′γkγ5e′, say, one meets two obstructions of type (6.16):
contracting the neutrinos gives a factor O(γν, ν̄′) = −δ(x − x′), whereas con-
traction of the electrons gives O(e′, ēγ) = +δ(x−x′). Thus, the overall crossing
yields a sum of two terms

−ē(x)γκγ5e(x) δ(x − x′) + ν̄(x)γκγ5ν(x) δ(x − x′).

On the other hand, the crossing of ēγμγ5e with ē′γ5e′, say, involving both
O(γe, ē′) and O(e′, ēγ), gives two equal contributions of ē(x) e(x) δ(x − x′) to
the total obstruction.

There are sixteen kinds of crossings in all, taking account of the order
of the contractions, and the presence or absence of γκ and/or γ5 factors. Let
f denote a fermion (ν or e, as the case may be). When computing the cross-
ings, we label the contracted terms with stars: either γμf f̄ ′ is replaced by
O(γf, f̄ ′) = −δ, or f ′ f̄γμ is replaced by O(f ′, f̄γ) = +δ. In the table which
follows, σ and τ denote uncontracted fermions:

σ̄γμf
�

f̄ ′
�
γκτ ′ � −σ̄γκτ · δ, f̄

�
γμτ σ̄′γκf ′

�
� +σ̄γκτ · δ,

σ̄γμγ5f
�

f̄ ′
�
γκγ5τ ′ � −σ̄γκτ · δ, f̄

�
γμγ5τ σ̄′γκγ5f ′

�
� +σ̄γκτ · δ,

σ̄γμγ5f
�

f̄ ′
�
γκτ ′ � −σ̄γκγ5τ · δ, f̄

�
γμγ5τ σ̄′γκf ′

�
� +σ̄γκγ5τ · δ.

σ̄γμf
�

f̄ ′
�
γκγ5τ ′ � −σ̄γκγ5τ · δ, f̄

�
γμτ σ̄′γκγ5f ′

�
� +σ̄γκγ5τ · δ,

σ̄γμf
�

f̄ ′
�
τ ′ � −σ̄τ · δ, f̄

�
γμτ σ̄′f ′

�
� +σ̄τ · δ,

σ̄γμγ5f
�

f̄ ′
�
γ5τ ′ � +σ̄τ · δ, f̄

�
γμγ5τ σ̄′γ5f ′

�
� +σ̄τ · δ,

σ̄γμγ5f
�

f̄ ′
�
τ ′ � +σ̄γ5τ · δ, f̄

�
γμγ5τ σ̄′f ′

�
� +σ̄γ5τ · δ,

σ̄γμf
�

f̄ ′
�
γ5τ ′ � −σ̄γ5τ · δ, f̄

�
γμτ σ̄′γ5f ′

�
� +σ̄γ5τ · δ. (B.1)

Appendix C. Proof of Locality of the Stringy Fields

We prove here locality in the sense that Aμ(x, l) and Aα(x′, l′) commute if the
strings {x + tl} and {x′ + tl′} are causally disjoint and not parallel. We begin
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with some geometric considerations about wedge regions. These are Poincaré
transforms of the wedge

W1 := {x ∈ R
4 : x1 > |x0| }.

Associated with W1 are the one-parameter group Λ1(·) of Lorentz boosts which
leave W1 invariant, and the reflection j1 across the edge of the wedge. More
specifically, Λ1(t) acts as

(
cosh t sinh t
sinh t cosh t

)

and j1 acts as the reflection on the coordinates x0 and x1, leaving the other
coordinates unchanged. For a general wedge W = LW1 = a + ΛW1 with
L = (a,Λ), one defines the corresponding boosts ΛW (·) and reflection jW by

ΛW (t) := LΛ1(t)L−1, jW := L j1 L−1.

The reflection jW results from analytic extension of the (entire analytic) matrix-
valued function ΛW (z) at z = iπ.

Note that in the definition of covariance in Sect. 2 the string direction
transforms only under the homogeneous part of the Poincaré transformations.
This leads us to consider the mapping (a,Λ) : l 	→ Λl as the natural action
of the Poincaré group on the manifold of string directions. In particular, if
W = a + ΛW1 then

ΛW (t)l = ΛΛ1(t)Λ−1l. (C.1)

Lemma 10. (i) A string {x + tl} is contained in the closure of a wedge W =
a+ΛW1 if and only if x and l are contained in the closures of W and ΛW1,
respectively.

(ii) Suppose that the strings {x + tl} and {x′ + tl′} are causally disjoint and
not parallel. Then there is a wedge W whose closure contains {x+tl} and
whose causal complement contains {x′ + tl′}. The corresponding boosts,
respectively, act as

ΛW (t)l = etl and ΛW (t)l′ = e−tl′. (C.2)

Proof. Item (i) is the same as in Lemma A.1. of [7], whose proof is valid for
any direction l ∈ R

4.
For item (ii), take W := 1

2 (x + x′) + Wl,l′ , where Wl,l′ is the wedge
{ y : (yl) < 0 < (yl′) }. The causal complement of this W is the closure of
1
2 (x+x′)+Wl′,l, see [42]. Furthermore, l is—up to a factor—the only lightlike
vector contained in the upper boundary of Wl,l′ (which is a part of the lightlike
hyperplane l⊥).

Using the elementary fact that {x+tl} and {x′ +tl′} are causally disjoint
if and only if (x − x′)2 < 0 and

(
(x′ − x)l

) ≥ 0 ≥ (
(x′ − x)l′

)
, one readily

verifies [26] that these strings are contained in the respective wedges W and
W ′, as claimed.

In terms of the lightlike vectors l(±) := (1,±1, 0, 0), the standard wedge
W1 is just Wl(+),l(−) . Since l(+) is, up to a factor, the only lightlike vector
contained in the upper boundary of W1, the Lorentz transformation Λ maps
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the span of l(+) onto the span of l. Thus, ΛW (t)l ≡ ΛΛ1(t)Λ−1l is a multiple
of ΛΛ1(t)l(+). But one readily verifies that Λ1(t)l(+) = et l(+). This proves the
first equation in (C.2). The second is shown analogously, using that Λ maps
the span of l(−) onto that of l′. �

We now prove locality of the two-point function, recalling first that the
on-shell two-point function for not necessarily coinciding directions is given,
instead of (2.7a), by

MAA
μν (p, l, l′) = −gμν +

pμlν
(pl)

+
pν l′μ
(pl′)

− pμpν (l l′)
(pl)(pl′)

, (C.3)

see [28]. Given the two causally disjoint and non-parallel strings, let W be
a wedge whose closure contains {x + tl} and whose causal complement con-
tains {x′ + tl′} (as in the lemma), and let jW and ΛW (t) be the reflection and
the boosts, respectively, corresponding to W . Denote by gt the proper non-
orthochronous Poincaré transformation ΛW (−t)jW . By translation invariance
of the two-point function, we may assume that the edge of W contains the
origin. Then x and l are in the closure of W , while x′ and l′ lie in the causal
complement of W . This implies that for t in the strip R + i(0, π) the imagi-
nary parts of both gtx and g−tx

′ lie in the closed forward light cone—see, for
example, Eq. (A.7) in [7].

Now consider the relation∫
dμ(p) e−i(p(x′−gtx)) MAA

αμ (p, l′, gtl)

=
∫

dμ(p) e−i(p(x−g−tx
′)) MAA

αμ (−gtp, l′, gtl), (C.4)

which is verified by applying the transformation p 	→ −gtp on the mass shell.
(We use −gt instead of gt, since the former is an orthochronous Poincaré
transformation, while the latter is not orthochronous and maps the positive
onto the negative mass shell.) We may write g−1

t = g−t, since jW and ΛW (t)
commute. We wish to extend the function F (t) defined by (C.4) analytically
into the strip R + i(0, π). To this end, note that the Minkowski products of
gtx and g−tx

′ with a covector p in the mass shell both have positive imaginary
parts due to the remark before Eq. (C.4). This implies that the functions
| exp i(pgtx)| and | exp i(pg−tx

′)| are uniformly bounded by 1 over the strip.
Furthermore, MAA

αμ (p, l′, gtl) = MAA
αμ (p, l′, l) since gtl = etl by Eq. (C.2), and

the factor et cancels as can be seen from Eq. (C.3). By the same token plus
covariance, one obtains

MAA
αμ (−gtp, l′, gtl) ≡ (−gt)α

βMAA
βν (p,−g−tl

′,−l)(−g−t)μ
ν

= (gt)α
βMAA

βν (p, l′, l)(g−t)μ
ν .

These facts imply that F (t) has an analytic extension into the strip, and
Eq. (C.4) holds, by the Schwarz reflection principle, also at t = iπ. But g±iπ =
1, and thus at t = iπ the left-hand side of Eq. (C.4) reduces, up to a factor
(2π)3, to the vacuum expectation value 〈〈Aα(x′, l′)Aμ(x, l)〉〉. On the right-
hand side, one verifies that MAA

αμ (p, l′, l) = MAA
μα (p, l, l′). Thus, at t = iπ the
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right-hand side of (C.4) reduces, up to a factor (2π)3, to 〈〈Aμ(x, l)Aα(x′, l′)〉〉.
In short, Eq. (C.4) at iπ is just the locality of the two-point functions. This
implies locality of the fields by a standard argument in the proof of the Jost–
Schroer theorem [43].

Appendix D. A Model of Leptons

Engineering the GWS model from our formalism is not overly desirable. But
we do it here, as promised in the introduction. Let us reconsider the three first
lines of expression (7.5). We begin by introducing the notation

ΨL :=
(

νL

eL

)
:=

(
1
2 (1 − γ5)ν
1
2 (1 − γ5)e

)
.

First,

− 1√
2
W−μēγμ (1 − γ5)

2
ν = − 1√

2
ΨLγμ

(
0 0

W−μ 0

)
ΨL = − 1

2ΨLγμW−μτ−ΨL

where τ± = (τ1 ± iτ2)/
√

2, with τi denoting here the Pauli matrices. Similarly,

− 1√
2
W+μν̄γμ (1 − γ5)

2
e = − 1

2ΨLγμW+μτ+ΨL.

The first two terms in (7.5) are therefore of the form

− 1
2gΨLγμ(W+μτ+ + W−μτ−)ΨL = − 1

2gΨLγμ(W1μτ1 + W2μτ2)ΨL. (D.1)

Knowing, as we know, that the interaction is governed by a U(2) symmetry,
it is tempting to regard ν and e as isospin components valued +1

2 and − 1
2 ,

respectively. The “right-handed leptons” eR := 1
2 (1+γ5)e and νR := 1

2 (1+γ5)ν
are isospin singlets.

Denote by Q the electric charge, so that Q(e) = −1 and Q(ν) = 0, and
isospin by I3. Observe that, putting Ψ = ΨL +ΨR, the next four terms of (7.5)
are rendered into:

−g sin ΘΨγμ(Aμ − Zμ tan Θ)QΨ − g

cos Θ
ΨLγμZμI3ΨL . (D.2)

In order to translate this into the received framework, with its “covariant
gauge transformation” technology, we now introduce the unobservable fields
W3μ := cos Θ Zμ + sin ΘAμ

Bμ := − sin ΘZμ + cos Θ Aμ
inverted by

Aμ = cos Θ Bμ + sin ΘW3μ

Zμ = − sin ΘBμ + cos Θ W3μ .

Then, with gB := g tan Θ, we can rewrite (D.2) as

−gBΨγμBμQΨ + gBΨLγμBμI3ΨL − 1
2gΨLγμW3μτ3ΨL . (D.3)

One can now bring in the convention

Y = 2(Q − I3), that is: Y (eL) = Y (νL) = −1; Y (eR) = −2, Y (νR) = 0.

Then the first two summands in (D.3) are rewritten as − 1
2gBΨγμBμY Ψ, while

the last one plus the right side of (D.1) yields − 1
2gΨL(γμ

Wμ · τ)ΨL.



J. M. Gracia-Bond́ıa et al. Ann. Henri Poincaré

In fine, we have manufactured the interaction parts of the GWS La-
grangian.
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