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Abstract: The optical quality of a set of IOLs (modeling set: one monofocal and two bifocals) 
was assessed through focus by the area under the modulation transfer function (MTFa) metric 
and related to the visual acuity (VA) defocus curves of pseudophakic patients implanted with 
said IOLs. A non-linear relationship between the MTFa and clinical VA was obtained with an 
asymptotic limit found to be the best VA achievable by the patients. Two mathematical fitting 
functions between clinical VA and MTFa were derived with high correlation coefficients 
(R2≥0.85). They were applied to the MTFa obtained from a different set of IOLs with 
advanced designs (trial set: one extended range of vision –ERV-, one trifocal ERV and one 
trifocal apodized) to predict VA versus defocus of patients implanted with these IOLs. 
Differences between the calculated VA and the clinical VA for both fitting models were 
within the standard deviation of the clinical measurements in the range of -3.00 D to 0.00 D 
defocus, thus proving the suitability of the MTFa metric to predict clinical VA performance of 
new IOL designs. 
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1. Introduction

The optical quality of an intraocular lens (IOL) is a key parameter contributing to a patient’s 
visual performance after cataract or refractive surgery, and has drawn the attention of 
increasing number of researchers in the last years (e.g., [1–4]). This investigation can help: 1) 
designers of intraocular lenses, to better estimate the relative effects of modifying an implant 
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design on an average patient’s vision, 2) manufacturers, to determine a more accurate control 
and provide more useful specifications of their ophthalmic products, and 3) surgeons, to better 
evaluate the implications of specific optical parameters in the IOL selection. The difficulty 
lies in finding imaging quality metrics derived from objective measurements on optical bench 
(for example, metrics based on the optical transfer function) that highly correlates with 
subjective quality metrics of visual performance as measured by clinical tests (for example, 
visual acuity and contrast sensitivity). If these highly correlated metrics were found, it would 
be possible to predict the relative change in the clinical outcomes from a given change in the 
optical component (intraocular lens) tested on optical bench for a pupil range and different 
alignment conditions. 

Using a phenomenological approach, Lang et al. built up a model to predict the visual 
acuity (VA) and contrast sensitivity outcomes of clinical tests from in-vitro measurements of 
the modulation transfer function (MTF) taking into account a simple model of human 
threshold detection [1]. They computed and plotted graphs to predict VA versus defocus from 
through-focus MTF measurements at certain spatial frequencies and compared their 
theoretical results with the visual function measured clinically in pseudophakic (monofocal 
and bifocal) patients. Felipe et al. [2], also considered VA outcomes and MTF measurements 
on an optical bench (averaged in the range of 0 to 100 cycles per millimeter –approximately 
equivalent to 30 cycles per degree (cpd)) in their study with three different bifocal IOL 
designs. They searched for a mathematical relationship between VA and averaged MTF, and 
computed linear fits between both magnitudes from data obtained in either photopic or 
mesopic conditions. A maximum correlation coefficient of R2 = 0.91 was reached in photopic 
conditions. Plaza-Puche et al. [3], found significant correlations between another image 
quality metric (IQM) based on cross-correlation coefficients computed from images obtained 
on optical bench [5, 6] and VA clinically determined using a defocus curve measured in 
pseudophakic patients. Their study considered three types of IOL (monofocal, refractive 
varifocal and trifocal) and a linear predicting model with reported R2 = 0.85. Alarcon et al. 
[4], in their comprehensive paper proposed up to four metrics based on optical-bench data, 
three of them, using MTF based values integrated in a spatial frequency range, and a fourth, 
using the cross-correlation coefficient IQM to correlate with binocular VA clinically tested in 
pseudophakic patients implanted with six different IOL designs including two monofocals, 
three bifocals and one extended-range-of-vision (ERV), all of them from Abbott Medical 
Optics (Santa Ana, California). 

Nonlinear fitting functions between the clinical VA and each metric (x) with the power 
function form VA(x) = a·xb + c were derived and evaluated, with high R2 correlation 
coefficients in all cases. For example, metric MTFa, defined as the area under the MTF curve 
from 0 to 50cpmm (equivalently, from 0 to around 15 cycles per degree in the object space), 
fitted with b = −1, reached R2 = 0.95. The results led the authors to suggest that any of these 
metrics, as a variable of non-linear functions, could predict clinical average defocus VA 
curves, thus becoming preclinical metrics. Since various IOL designs were used in the 
experiment, including refractive and diffractive designs, different materials, amounts of 
spherical aberration, and add powers, the authors suggested that the correlations found in their 
study might be applicable for a wide range of IOL designs, although they did not report 
further verifications. 

In this work, we verify that the function that fits a MTF based optical-bench metric 
(MTFa) to clinical VA data of pseudophakic patients implanted with a set of IOLs (modeling 
set) can also be used to predict the clinical VA outcomes of pseudophakic patients implanted 
with IOLs of very different design, i.e. not included in the modeling set. To the best of our 
knowledge, such a kind of verification has not been reported yet. For that purpose, we 
consider two sets of IOLs: the first one –modeling set- consists of three widely studied IOLs 
(one monofocal and two bifocals) [7–10] and the second one –trial set- consists of three more 
IOLs of advanced design (one ERV, one trifocal ERV and one trifocal apodized) [11]. We 
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compare through-focus MTFa curves obtained using an eye-model on optical bench with VA 
defocus curves obtained clinically with patients following a pseudophakic implant with some 
of the six IOLs. We have enlarged the through-focus range to cover from + 3.0 D to −5.0 D in 
comparison with the referred works [2–4, 12]. In a prior study with six differently featured 
IOLs, we obtained that, beyond a certain level of optical quality established by a threshold 
value of the MTFa metric, any further increase in MTFa did not produce any noticeable 
improvement in VA [13]. Therefore, in this work, we hypothesize an asymptotic limit in the 
VA achievable by patients implanted with IOL designs with exceedingly large MTFa and 
refine the non-linear function that fits optical-bench with clinical data. The results are further 
discussed and compared with the power function approach proposed by Alarcon et al. [4]. 

2. Material and methods 

2.1 Intraocular lenses 

Six different IOLs, all of them with optical power for distance vision of 20 D, were analyzed 
in vitro in our test bench: a monofocal ZCB00, two bifocals ZLB00 and ZMB00, the ERV 
Symfony ZXR00 (all of them Tecnis, Abbott Medical Optics, Abbott Park, IL), the trifocal 
ERV AcrivaUD Reviol Tri-ED (VSY Biotechnology, Istanbul, Turkey) and the trifocal 
apodized FineVision (POD F) (Physiol, Lieje, Belgium). These IOLs were grouped in two 
sets: the modeling set, with the monofocal ZCB00 and the two bifocals (ZLB00 and ZMB00), 
and the trial set, with the ERV Symfony ZXR00 and the two trifocals (AcrivaUD Reviol Tri-
ED and FineVision). IOL specifications are listed in Table 1. 

Table 1. Optical data of the IOLs. 

 Modeling set  Trial set 

 ZCB00a ZLB00a ZMB00a  Symfonya 
ZXR00 FineVisionb 

AcrivaUD 
Reviol 
Tri-EDc 

Material Hydrophod 
Acrylic 

Hydrophod 
Acrylic 

Hydrophod 
Acrylic 

 Hydrophod 
Acrylic 

Hydrophilic 
Acrylic 

Acrylic with 
hydrophobic 

surface 
Refractive 

index n 1.47 1.47 1.47  1.47 1.46 1.46 

Aspheric 
surface Anterior Anterior Anterior  Anterior Posterior Anterior 

SA = c[4,0] 
(µm)e -0.27 −0.27 −0.27  −0.27 −0.11 −0.165 

Diffractive 
design NAf 

Full-
aperture 
Posterior 

Full-
aperture 
Posterior 

 Pupil-
dependent 
Posterior 

Pupil-
dependent 
Anterior 

Pupil-
dependent 
Anterior 

Base Power 
(D) 20 20 20  20 20 20 

Add Power 
(D) NAf + 3.25 + 4.0  + 1.75 + 1.75, + 

3.50 + 1.5, + 3.0 
a Tecnis (Abbot Medical Optics Inc.). b FineVision POD F (Physiol, Lieje, Belgium). c AcrivaUD Reviol Tri-ED 
(VSY Biotechnology, Istanbul, Turkey). d Hydrophobic. e 6mm pupil. f NA, not applicable 
 
All four Tecnis IOLs shared the same material and had the same aspheric design of the 

refractive base lens [14]. The two bifocals (ZLB00 and ZMB00) had a hybrid refractive-
diffractive design intended to produce a balanced and pupil independent distribution of energy 
(41%) between distance and near foci. The Symfony ZXR00 IOL is designed with a 
proprietary method [15] for providing ERV [16] with combined correction of both, spherical 
and longitudinal chromatic aberrations with additional contrast sensitivity enhancement and 
reduction of photic phenomena [17]. Its design is pupil dependent, so the energy distribution 
benefits the distance focus for increasing pupils. We have recently reported a detailed analysis 
of the basis of focus extension and chromatic performance of this lens [18]. More specifically, 
we showed that under monochromatic green illumination, the design of the Symfony lens 
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Once the MTF of the four slit images –two horizontal and two vertical (Figs. 2(a-c))- were 
computed and averaged, the MTFa was calculated by integrating the resulting average MTF 
curve from 0 to 50 cycles/mm (Figs. 2(d-f)) as reported elsewhere [4]. 

2.2 Clinical data 

The clinical data for this study were obtained from 279 eyes from 159 patients recruited for 
two clinical trials carried out at two ophthalmology centers (Table 2). Both studies were 
prospective, consecutive and non-randomized and followed the tenants of the declaration of 
Helsinki. The patients underwent bilateral and symmetric cataract surgery followed by IOL 
implantation into the capsular bag. Previously, they had been fully informed about the study 
and signed a consent form. The local ethics committee of the corresponding ophthalmology 
center approved each clinical trial. 

Eligible patients for the study were aged between 50 and 75, with presence of bilateral 
cataracts and no comorbidities. Specific inclusion criteria were regular corneal astigmatism of 
≤1.00D, VA higher than 0.6 in logMAR scale, and IOL power between + 17.00 D and + 
27.00 D. For the multifocal lenses, other inclusion criteria were the desire for spectacle 
independence after surgery with realistic expectations, and availability and willingness to 
comply with examination procedures. 

Key exclusion criteria were irregular astigmatism, ocular comorbidities, history of ocular 
trauma or prior ocular surgery including refractive procedures, acute or chronic disease or 
illness that would increase risk or confound study results, such as age-related macular 
degeneration, glaucoma or corneal disorder, capsule or zonular abnormalities. 

Table 2. Clinical data. 

Setting IOL implanted Number of 
patients 

IOA Madrid, Innova Ocular, 
Madrid (Spain) 

ZLB00 (bifocal) 15 
FineVision (trifocal apodized) 21 

AcrivaUD Reviol TRI-ED (trifocal 
ERV) 

15 

Miguel Servet University 
Hospital, 

Zaragoza (Spain) 

ZCB00 (monofocal) 41 
ZMB00 (bifocal) 41 

Symfony ZXR00 (ERV) 26 
 
All patients underwent the same preoperative protocol that included optical biometry with 

IOLMaster 500 (Carl Zeiss AG, Oberkochen, Germany), Pentacam topography (Oculus, 
Wetzlar, Germany), intraocular pressure with Goldmann applanation tonometer, slit lamp 
biomicroscopy evaluation, optical coherence tomography with Cirrus OCT (Carl Zeiss, 
Dublin, California, USA) and fundus examination. 

In all cases, the lenses were calculated for emmetropia. All surgical procedures were 
performed under topical anesthesia. For phacoemulsification, a 2.2 mm clear corneal incision 
was made. Next, a continuous curvilinear capsulorhexis measuring approximately 5.5 mm in 
diameter was created. Two ophthalmic viscosurgical devices (OVD) were used, cohesive 
Healon (Abbott Laboratories Inc. Abbott Park, IL, USA) and the dispersive Amvisc (Bausch 
& Lomb, Inc., Rochester NY). All lenses were implanted through a 2.2 mm incision using an 
injector to facilitate implantation. All traces of OVD were removed. No patient included in 
the study suffered any intraoperative or postoperative complication, and all were operated on 
according to the established protocol. 

Monocular defocus VA curves between −5.00 D and + 3.00 D, with the patients having 
their best distance correction, were measured in logMAR scale during the last postoperative 
follow up. The measurements were carried out using the 100% contrast Early Treatment 
Diabetic Retinopathy Study (ETDRS) chart at 4 m under photopic conditions and with natural 
eye pupil. Following the procedure described by Wolffsohn et al. in [29], patients were first 
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grey regions of Fig. 4 define a limit for the achievable VA despite increasing optical imaging 
quality. 

The many experimental points (51 points in total) represented in Fig. 4 demonstrate a 
relationship between clinical VA and in vitro MTFa that associates, in general, larger values 
of MTFa (or equivalently, better optical quality) with better clinical VA scores (i.e. lower 
logMAR values). This relationship can no longer be represented by a linear function as it has 
been formerly done from fewer points [2]. Moreover, for MTFa values over certain threshold 
(set somehow arbitrarily around 20 in Fig. 4), changes in VA are barely noticeable from a VA 
value that remains almost constant and very close to 0.0 logMAR. 

The non-linear relationship found between clinical VA and MTFa in Fig. 4 led us to try 
different functions to fit the experimental data. The first one was the power function proposed 
by Alarcón et al. [4], given by: 

 ( ) ( ) 1 ,a aVA MTF a MTF c
−= +  (1) 

The best fit of our experimental data with Eq. (1) occurs with c = -0.25 ± 0.03 logMAR and a 
= 5.17 ± 0.32 (R2 = 0.845). As shown in Fig. 4 (solid blue line), this function works 
reasonably well for MTFa values up to approximately 20 but tends to overestimate calculated 
VA for MTFa values larger than 20. As such, in the case of the monofocal ZCB00, with a 
measured MTFa of 43.3 at 0.00 D defocus, Eq. (1) would result in a VA value of −0.13 
logMAR when, clinically, the assessed VA was only −0.03 ± 0.08 logMAR at this defocus 
position. 

This fact can be included in the model by acknowledging that parameter c in Eq. (1) is the 
asymptotic value of VA for large MTFa, and thus it would represent the potentially best VA 
achievable with an IOL design that showed exceedingly large MTFa (or equivalently, 
exceptional optical quality) [13]. This reasoning led us to try another non-linear fitting 
function that could provide an asymptotic value for calculated better VAs, closer to the 
experimental results found in our clinical trials. From our clinical data (Fig. 4), we set such 
asymptotic VA value at 0.0 logMAR. The function that fulfilled this restriction and had the 
highest R2 correlation coefficient, i.e. showed the best fidelity between experimental and 
fitted results, was an exponential decay function of the form: 

 ( ) exp ,a
a

MTF
VA MTF A c

B
 = − + 
 

 (2) 

with calculated free fit parameters A = 5.06 ± 1.32, B = 3.03 ± 0.35 and c = 0.00 logMAR, 
the latter having a standard deviation of zero to the second significant decimal place (e.g., 
0.00). The correlation coefficient R2 = 0.903 of the resulting function is higher than using Eq. 
(1). The new exponential function, plotted in Fig. 4 (solid red line), shows that, for values of 
the MTFa ≥20, the exponential term in Eq. (2) becomes negligibly small (<0.007 logMAR) 
and the calculated VA would tend to the asymptotic value c = 0.00 logMAR, in closer 
agreement to the clinical VA values. 

3.2 Testing the model with the IOL trial set 

Figure 5 shows the through focus MTFa curves measured in-vitro for each IOL of the trial set: 
(a) ERV Symfony, (b) trifocal ERV AcrivaUD Reviol Tri-ED, and (c) trifocal apodized 
FineVision IOLs. 
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distance vision of the three groups are equally good (Figs. 3(a) and 3(b)), with mean values 
just slightly below 0.00 logMAR (−0.03 ± 0.08 ZCB00, −0.01 ± 0.06 ZLB00 and −0.02 ± 
0.07 ZMB00) and so, very close to the clinical VA outcomes at near vision of those groups 
implanted with the bifocals, with mean values just slightly over 0.00 logMAR (0.10 ± 0.06 
ZLB00 and 0.06 ± 0.08 ZMB00). We recall that differences among the lenses of less than 0.1 
logMAR are too small to be considered clinically significant [32]. These results are consistent 
with those reported in our preliminary study on the issue [13]. In comparison with the current 
work, for instance, Felipe et al. [2] only considered bifocal IOLs (one refractive and two 
diffractive) at no more than three defocus positions each (far, intermediate and near), which 
effectively limited the range of accessible MTFa values. From their shorter number of 
samples and range, they inferred a linear correlation between clinical VA and MTFa values. 

Interestingly, Plaza-Puche et al. [3] included a monofocal IOL (AcrySof SA60AT) in 
addition to two multifocal IOLs (a varifocal Lentis Mplus and a diffractive trifocal 
FineVision) in their study about the correlation of clinical VA with the in-vitro IQM for 
defocus levels ranging from −4.00 D to + 1.00 D. Similarly to our findings concerning MTFa, 
they found that the monofocal IOL had better IQM at 0.00 D defocus than the varifocal and 
trifocal IOLs (IQMmonofocal = 0.92 versus IQMvarifocal = 0.81 and IQMtrifocal = 0.80), but the 
clinical VA at distance vision of the patients of the three groups was very close to 0.00 
logMAR with no statistical differences among them (monofocal 0.01 ± 0.02 logMAR, 
varifocal 0.00 ± 0.04 logMAR, and trifocal 0.04 ± 0.05 logMAR). As a consequence, the 
linear model they used to fit their VA and IQM results for all three IOLs together (VA = 
−2.473·IQM + 2.077), though reaching high correlation coefficient (R2

IQM = 0.853), shows the 
larger departure from the clinical VA precisely in the case of the monofocal IOL at 0.00 D 
defocus (figure 3D of Ref [3].). Certainly, a clinical average VA = 0.01 ± 0.02 logMAR was 
obtained in the monofocal group of patients unlike the exceedingly good VA = −0.20 
logMAR predicted by their linear model. 

In the work of Alarcón et al. [4], they consider instead a non-linear relationship between 
clinical VA and MTFa, based on a power function of the form VA = a·(MTFa)

−1 + c (Eq. (1), 
which fitted fairly well their experimental results (R2 = 0,951) obtained from six different 
IOLs tested in the −3.00 D to 0.00 D defocus range. They determined an asymptotic c 
parameter of −0.21 logMAR [33], which is indeed quite close to the value derived from our 
measurements (c = −0.25 ± 0.03 logMAR) when fitting our results with Eq. (1). However, in 
the range of the largest MTFa values (MTFa greater than about 20) the fit based on Eq. (1) 
tends to predict an improvement of VA from 0.00 logMAR when MTFa = 20, to −0.13 
logMAR for MTFa = 43 (see Fig. 4 blue line), which does not represent properly what we 
found experimentally. Thus, the best clinical VA values with either the monofocal ZCB00 or 
bifocal ZLB00 and ZMB00 IOLs are nearly constant and do not go significantly below 0.00 
logMAR. It can be then concluded that beyond a certain level of optical quality or, 
equivalently, beyond an MTFa threshold, any further increase in the value of the MTFa metric 
will not be accompanied by any detectable improvement in the average VA of the patients. 
One can hypothesize that other ocular, optical and neuro-psychophysical factors may be 
playing a role to prevent further increase in VA, but it is difficult to assure which ones and to 
which extent are the most significant [34]. 

Better fitting to our clinical results with the three IOLs of the modeling set (R2 = 0.903) 
occurs with the non-linear approach based on the exponential function VA = A·exp(-MTFa/B) 
+ c (Eq. (2), which predicts that, for MTFa ≥20, the VA tend to an asymptotic value (or,
equivalently, to a potentially best achievable VA) of c = 0.00 logMAR as experimentally
observed and shown in Fig. 4. For MTFa < 20, both fitting expressions (Eq. (1) and Eq. (2))
are close (Fig. 4) and then, they predict similar VA results. This statement can be confirmed
by calculating the VA versus defocus, from MTFa measurements in three IOLs of advanced
design (ERV Symfony, trifocal ERV AcrivaUD Reviol Tri-ED, and trifocal apodized
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FineVision). For these IOLs, belonging to the trial set, most of the through focus MTFa 
values were below 20. As shown in Fig. 6, and for the three IOLs, both approaches lead to 
similar predicted VAs. 

More relevant to a patient’s functional range of vision, the predicted VA was in good 
agreement with clinical VA (Fig. 6) in the range between −3.00 D and 0.00 D, replicating the 
particular shape of the clinical defocus curves; e.g., from M-shape of the trifocal design (Fig. 
6(c)) to a smoother mode for ERV designs (Fig. 6(a) and. 6(b)). The differences between 
clinical and predicted VA are mostly within the standard deviation error of the clinical 
measurements (Fig. 7). Such agreement extends to more extreme positive and negative 
defocus regions for IOL designs with varying MTFa (not constant) in such extreme defocus 
regions: for example, (−4.0 D to + 2.5 D) for ERV design ZXR00 in (Figs. 5a and 6(a)), 
(−4.50 D to + 3.00 D) for trifocal ERV Acriva Reviol TRI-ED in (Figs. 5b and 6(b)), and 
(−3.00 D to + 0.50 D) for trifocal FineVision in (Figs. 5c and 6(c)). Outside the referred 
defocus intervals the quality of the images from where the MTFa was calculated is poor and 
as a consequence, MTFa values are always small and nearly constant, thus leading to poorer 
predictability and larger differences between clinical and calculated VA, particularly in the 
case of the trifocal FineVision. 

4. Conclusions

Clinical VA defocus curves of pseudophakic patients can be predicted from imaging quality 
assessments of monofocal and bifocal IOLs, tested in vitro in a model eye using the MTFa 
metric and through focus evaluation. The estimation of achievable VA, as non-linear function 
of variable MTFa, shows limiting behavior for IOLs with larger MTFa values, i.e. lenses with 
higher imaging quality. As a consequence, beyond certain MTFa threshold, VA tends 
asymptotically to a given value and any further increase in the imaging quality of an IOL does 
not translate into VA improvement. 

We have verified that the function that fits optical-bench MTFa to clinical VA data of 
pseudophakic patients implanted with a set of IOLs (modeling set) can also be used to predict 
the clinical VA outcomes of patients implanted with other IOLs, not included in the set. This 
has been proven for a modeling set consisting of one monofocal and two bifocal IOLs, and for 
a trial set consisting of IOLs of advanced design (ERV and trifocals). 
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