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Abstract  
 

PURPOSE: To study the functional recovery of the superior rectus muscle (SRM) after its partial resection 

in a rabbit model with and without cryopreserved amniotic membrane (AM).  

MATERIAL AND METHODS: Resection of the right and left SRMs of 30 rabbits was performed. On the 

left eyes, a single sheet of equine cryopreserved AM was placed covering the muscle edge sutured. Active and 

passive mechanical properties of muscles operated with and without AM were monitored over time at 30 

(n=10), 60 (n=10) and 90 (n=10) days after surgery. Muscle samples were extracted and electrically stimulated 

to register the force exerted by the samples, characterizing its active behavior. They were, then, subjected to 

stretching test to obtain its resistance to deformation, known as passive behavior. Moreover, right and left eyes 

of a control group (n=5) were equally subjected to active and passive tests to characterized the physiological 

behavior of SRM muscles. 

RESULTS: On active function examination, statistically significant differences were documented between 

the following: control vs AM and no AM at 30 days (p=0.002 and p=0.04, respectively). All other comparisons 

were insignificant (p>0.05). On passive function analysis, significant differences were only found between 

control vs. no AM at 30 days (p=0.004) and between AM vs. no AM at 30 days (p=0.002). Indeed, muscle 

operated without AM did not recover a normal passive function until 60 days after surgery. 

CONCLUSION: Cryopreserved AM is effective in accelerating recovery of SRM passive function in 

rabbits. Nevertheless, AM produced no significant effect on recovery of SRM active function. 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1. INTRODUCTION 

Strabismus is a misalignment of the visual axes due to an imbalance of the extraocular muscle (EOM) 

functions. This is a common ophthalmic pathology, affecting from 2% to 5% of general population (1–3). The 

surgical treatment of a high number of strabismus cases includes the recession to weaken an overacting muscle 

or the resection to strengthen an underacting muscle (4). As a consequence of surgical alterations, 

biomechanical changes could be induced leading on short and long-term effects on the EOM functions. 

Moreover, one of the major complications in strabismus surgery is the development of postoperative adhesions 

involving the EOM, Tenon’s capsule, conjunctiva, orbital fat and sclera (5,6).  

Among various techniques to reduce the formation of these postoperative adhesions and muscle fibrosis, the 

use of amniotic membrane (AM) has been widely described and numerous studies reported its positive effect as 

an adjunct in the strabismus surgery (7–14). AM acts as a temporary biological barrier between surfaces, 

preventing adhesion formation. Besides, its stromal matrix presents anti-inflammatory and anti-scarring actions 

and reduces neovascularization (15). 

This tissue could be used fresh or preserved, through lyophilization or cryopreservation. Fresh AM is not 

recommended because of the risk of communicable diseases transmission (6). Lyophilized AM is incubated in 

EDTA to deprive it of epithelial cells, then air-dried, vacuum-packed and finally sterilized by gamma-irradiation 

(16). This method is safer than the fresh membrane and cheaper than the cryopreserved one. However, in their 

studies, Kassem et al. (17,18), revealed that lyophilized AM is not able to prevent adhesion formation or reduce 

EOM fibrosis. Moreover, Chun et al. (19) described a similar inflammation level between operated eyes with 

and without lyophilized membrane. Thus, cryopreserved AM, stored in glycogen and frozen at -80ºC, has been 

reported as the best method to avoid membrane damage and maintain its properties (20). 

The efficacy of the cryopreserved AM for preventing adhesions and muscle fibrosis has been reported by 

Kirsch et al. (12), Kassem et al. (20) and Sheha et al. (8). However, all these investigations were based on 

histopathological studies or clinical case report, which do not give information about the functional recovery of 

the EOM. Since these muscles are the principal responsible of eye alignment, changes in motor tone or strength 

result in a modification of the rotational position of the globe (4).  

Active behavior refers to the contractile capacity of the muscle to produce force, whereas passive behavior 

is the muscle resistance to deformation. Both functional characteristics of EOM contribute to the correct 

binocular vision (21) and they can be affected on a strabismus surgery (22,23). Therefore, it can be deduced the 

importance of EOM active and passive mechanical recovery after a strabismus surgery. However, to the 
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authors’ knowledge no mechanical studies about EOM after surgery with cryopreserved AM have been 

published.  

The aim of this work is to study the functional recovery of the superior rectus muscle (SRM) after its partial 

resection, together with cryopreserved AM transplantation in a rabbit model, by monitoring its active and 

passive mechanical properties over time.   

 

2. MATERIAL AND METHODS 

 

2.1. ANIMALS AND ETHICS REQUIREMENTS 

Thirty-five male New Zealand white rabbits, two-month aged (2150 ± 100 g) obtained from the Animal 

Experimentation Service of the University of Zaragoza were used. All animals were healthy and free of 

clinically observable ocular diseases. This research was conducted in accordance with the ARVO Statement for 

the Use of Animals in Ophthalmic and Vision Research. All procedures were performed under Project License 

27/16 approved by the in-house Ethics Committee for Animal Experiments of the University of Zaragoza. The 

care and use of the animals were performed in accordance with the Spanish Policy for Animal Protection 

RD53/2013, which meets the European Union Directive 2010/63 on the protection of animals used for 

experimental and other scientific purposes. 

 

2.2. GROUPS 

SRM from rabbit eyes were divided into three groups as explained: 

- Control group (n=10, right and left eyes): this group was used to determine active and passive 

physiological behavior of SRM, without being subjected to surgery. 

- AM group (n=30, left eyes): these SRM were resected and wrapped with cryopreserved amniotic 

membrane. 

- No AM group (n=30, right eyes): these SRM were resected without an amniotic membrane wrap. 

 

The AM and No AM groups were each divided in three subgroups (n=10 each), in order to determine the 

functional recovery of SRM over time at 30, 60 and 90 days after surgery, respectively. 
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2.3. SURGICAL PROCEDURE 

Animals were intramuscularly anesthetized with medetomidine (0.14 mg/kg, Medeson®; Uranovet, 

Barcelona, Spain), buprenorphine (0.02 mg/kg, Buprex®; Fort Dodge, Girona, Spain) and ketamine (20 mg/kg, 

Imalgene 1000®; Merial, Barcelona, Spain), and topically with tetracaine hydrochloride 0.1% and 

oxybuprocaine 0.4% eye drops (Colircusi anestésico doble®; Alcon Cusi, Barcelona, Spain). A superior rectus 

muscle resection described as strabismus treatment was performed in both eyes (24) (Figure 1). Firstly, the 

muscle was isolated through a conjunctival incision parallel to the limbus followed by dissection (Fig. 1A, 1B 

and 1C). The muscle was secured placing two sutures (temporal and nasal) at 3 mm of the scleral insertion of 

the muscle (Fig. 1D and 1E). Subsequently, 1 mm muscle segment anterior to the sutures was resected (Fig. 1E), 

and the muscle was sutured back to its original insertion site using the sutures previously fixed. An additional 

suture was placed in the center to ensure a correct apposition of the muscle edges (Fig. 1F). All sutures included 

the full-thickness of the muscle, and scleral or conjunctival passes were avoided. Finally, the conjunctival 

incision was closed by a continuous suture (Fig. 1H). In both procedures, 7/0 absorbable monofilament 

polyglycolic acid (Sinusorb®; Péters Surgical, Bobigny, France) was used. All surgeries were performed by the 

same surgeon (A.O.) to avoid inter individual variations. 

The effect of cryopreserved equine AM on the recovery of the muscular mechanical behavior was assessed. 

Therefore, on the left eyes a single sheet of this biomaterial (5 mm wide) was placed following the technique 

described by Kassem et al. 2013 (20). The muscle edges sutured were covered with AM as a bandage without 

sutures, with the stromal side towards the muscle (Fig. 1G). 

Immediately after the surgical procedure, to minimize pain and avoid infections, intramuscular 

buprenorphine (0.05 mg/kg twice a day, Buprex®; Fort Dodge, Girona, Spain) and enrofloxacine (10 mg/kg 

twice a day, Alsir 5%®; Esteve, Barcelona, Spain), subcutaneous meloxicam (0.2 mg/kg once a day, Loxicom®; 

Karizoo, Barcelona, Spain), and a topical broad-spectrum antibiotic (twice a day, Oftalmowell®; UCB Pharma, 

Madrid, Spain) were administered in all animals for five days. 

 

2.4. MECHANICAL TESTING 

 

2.4.1. Muscle preparation 

All animals were humanely euthanized with intravenous sodium pentobarbital (150 mg/kg, Dolethal®; 

Vétoquinol, Madrid, Spain). After eye exenteration, conjunctiva was dissected to expose the EOM. A blunt 

dissection of the SRM was carried out, cutting off the muscle with a small section of sclera. Length, width and 
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thickness measurements of each sample were registered with a digital caliber (Mitutoyo Absolute Digimatic 

Series 227, Mitutoyo Inc., IL, USA). Finally, samples were oriented vertically in a methacrylate organ bath 

(20x20x20 cm) and installed in an electromechanical Instron Microtester 5248 (Illinois Tool Works Inc., 

Glenview, IL, USA) with a 5 N full scale load cell (see Fig. 2). This electromechanical test machine allows us to 

register active and passive forces developed by the muscles. 

The scleral end was fixed inside the bath and the upper end (distal tendon) to the machine actuator by 

means of a grip, based on a method for the muscle sample positioning inside the bath previously published (25). 

Temperature of the bath solution (Ringer’s solution) was maintained at 27ºC and saturated with carbogen gas. A 

pair of platinum plate electrodes was used to field stimulate the muscles, and they were connected to a 

CIBERTEC CS-20 electrical signal generator (25).  

After preparation, muscle samples were subjected to in vitro electrical stimulation to register its contractile 

properties, considered its active behavior. Then, the samples were stretched to determine its resistance to stretch, 

equivalent to its passive behavior 

 
2.4.2. Active behavior 

Each SRM from Control, AM and No AM groups, was subjected to electrical pulses (1 ms and 60 V), 

applied for the development of isometric twitch forces, varying muscle length. The length at which the muscle 

force production was maximum, was considered as the optimal length of each muscle sample. 

After optimal length determination, stimulation protocols differed between control and operated muscles. 

Control muscles were subjected to electrical voltage and frequency sweeps in order to determine the optimal 

stimulation parameters (length, voltage and frequency values at which the force production was maximum) of 

the SRM. Thereby, electrical pulses from 40 to 100 V were applied to the muscle for 1 ms each one. Two 

minutes were respected between stimuli. At the end, the sample rested for five minutes. Then, trains of pulses at 

increasing frequencies (from 20 to 100 Hz) were applied. Finally, 90 Hz, 100 V and 500 ms were chosen as the 

optimal parameters of SRM stimulation. 

Operated muscles were tested 30, 60 and 90 days after surgery. To register their active forces, all samples 

(with and without AM) were stimulated with 3 trains of pulses at 90 Hz, 100 V and 500 ms. These parameters 

were established and fixed according to the control sample results that provided maximum force. This active test 

allowed us to monitor the active behavior, or capacity to produce force, of the SRM over the time.  
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In order to compare the active behavior of all the samples, the active force produced by each one was 

normalized. Therefore, stress was calculated as active force (F) divided by muscle cross sectional area (Width x 

Thickness) of the control and operated SRM over time.  

 

2.4.3. Passive behavior 

After force characterization, the resistance to stretching, or passive behavior, of all the samples was 

measured. Thus, muscles were subjected to stretching through uniaxial tension tests at 0.1%·s-1 deformation 

rate. The experiment finished when the testing machine achieved the load or stretch limits, or the muscle sample 

broke. This passive tests allowed us to obtain stress (s) – stretch (l) curves of each sample, i.e. passive force 

exerted per unit area at different stretch levels (stretch is defined here as the final length divided by the initial 

length). 

To compare the resistance to stretching of the muscles operated with and without AM over time, the slope 

of lineal regions of stress (s) – stretch (l) curves obtained after passive tests, was also calculated. This slope is 

called the maximum tangent modulus (Emax) and it mesaures the tissue stiffness, or resistance to stretching (Fig. 

3).  

After carrying out the mechanical tests, samples were weighted and their volumes determined. 

 

STATISTICAL ANALYSIS 

Central tendency and dispersion of the quantitative variables were calculated and expressed as mean ± 

standard deviation. The statistical analysis was based on the multifactorial analysis of variance (ANOVA), with 

a standard threshold of 5%. Scheffe’s correction for multiple comparison groups was used. Before the ANOVA 

test, normal distribution of sample population was verified by a Kolmogorov-Smirnov test, also with a standard 

threshold of 5%.  

 

3. RESULTS 

Characteristic parameters of the samples analyzed are shown in Table 1 for the Control, AM and No AM 

groups. Thickness values showed statistically significant differences between control and 30, 60 and 90 groups 

(p=0.004, p=0.001 and p=0.001, respectively) in muscles operated with AM and between control and 60 

(p=0.012) and 90 (p=0.001) groups in muscles operated without AM (Table 1). However, comparing the results 

at each time separately, there were not statistically significant differences between operated muscles with and 
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without AM. No correlation was found between thickness and functional muscle behavior, suggesting that 

thickness increasing of extraocular muscles didn’t have consequences on functional recovery. 

 

3.1.  ACTIVE BEHAVIOR 

Figure 4 shows the % maximum stress values, corresponding to normalized muscle active behavior. As 

explained before, stress was calculated as active force divided by muscle cross sectional area. Control stress 

values were compared to AM and No AM stress. 

 At 30 days, muscles operated with (p=0.002) and without AM (p=0.04) showed a statistically 

significant drop of stress production (35.04 ± 22.13% and 57.88 ± 13.53% of the control stress, respectively). At 

that time, AM and No AM force productions per sectional area were lower than control muscle force 

production. After 60 days, no statistically significant differences were found between maximum control stress 

and SRM with (p=0.369) or without AM (p=0.953): 65.33 ± 11.07% and 77.53 ± 9.58% of maximum initial 

stress, respectively. No statistically significant differences were observed neither at 90 days after surgery 

between control and operated muscles (AM group (p=0.720) produced 75.36 ± 21.31% of maximum initial 

stress and No AM group (p=0.753), 72.68 ± 21.22%). Moreover, a comparison between groups with and 

without AM at each time was carried out. There were no statistically significant differences, showing an 

insignificant effect of the AM use in the muscle force production at 30, 60 and 90 days (p=0.114, p=0.354 and 

p=725, respectively). Thus, after 60 days SRM would recover its normal capacity to produce force indistinctly 

of AM use. 

 

3.2. PASSIVE BEHAVIOR 

As explained in Methods’ section, muscle stiffness, measured in N/mm2, was calculated as the slope of the 

linear zones of the curves obtained from passive tests. Then, muscle stiffness comparisons were carried out 

between Control group and AM and No AM groups (Fig. 5). 

Thus, control stiffness was 2.06 ± 0.44 N/mm2 whereas the operated muscles with AM presented a stiffness 

of 1.21 ± 0.81 N/mm2, 1.95 ± 0.95 N/mm2, and 1.83 ± 1.25 N/mm2 after 30, 60 and 90 days, respectively. No 

statistically significant differences were found between groups (p=0.402, p=0.998 and p=0.975). Regarding the 

operated muscles without AM, the stiffness was 3.98 ± 1.15 N/mm2, 2.14 ± 0.82 N/mm2, and 1.65 ± 0.52 

N/mm2 after 30, 60 and 90 days, respectively. Statistically significant differences were found between control 

and 30 days (p=0.004). At 60 and 90 days, statistically insignificant differences (p=0.998 and p=0.839, 
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respectively) were determined. Comparing at 30 days, muscle stiffness from SRM operated without AM was 

significantly different of muscle stiffness from SRM operated with AM (p=0.002). Hence, AM would have a 

positive effect on passive behavior recovery of SRM. 

 

4. DISCUSSION  

Since strabismus is caused by an imbalance between EOM, it is important to know their functional 

characteristics after surgery, as well as the effect of complementary treatments on muscle active and passive 

behavior. The in situ models have been described as the suitable models to study absolute power production of 

extraocular muscles. However, its high complexity is an important limitation. By contrast, ex vivo models, 

presenting lower complexity, are accepted to carry out comparative studies, where relative active and passive 

tension are calculated (26,27). Thus, the ex vivo rabbit model of strabismus described here is considered as a 

valid model to assess the recovery of contractile properties and resistance to stretching in extraocular muscles. 

The use of cryopreserved amniotic membrane after strabismus surgery has been deeply studied in the 

literature (9,10,12,17). Among their main effects, AM reduces the tissue inflammation, neovascularization and 

scar formation of the muscle resected or recessed (15). However, despite the importance of EOM active and 

passive response, no mechanical studies have been published to compared its functional recovery after using 

AM. The ex vivo model presented in this study allowed to study the benefits of using cryopreserved AM after a 

strabismus surgery and its effects on the mechanical recovery of the SRM. 

The active stress data through time observed in muscles operated with and without AM, did not showed 

statistically significant differences. At 60 days, both groups (AM and No AM) recovered its functional capacity 

to produce force. These data suggested that cryopreserved AM did not improve the recovery of the active 

muscle properties. The significant muscle stress reduction showed at 30 days AM could be related to the 

increase of inflammation provoked by the membrane, previously described by different authors (12,20,28,29). 

This phenomenon, related to the xenogenic nature of the equine AM, would reverse the anti-inflammation effect 

of the membrane, slowing down the muscle active properties recovery. Further studies are needed to investigate 

allogeneic use of AM and its effects on muscle functional recovery. 

Regarding the passive behavior, several studies have demonstrated the cryopreserved membrane 

effectiveness for reducing postoperative adhesions and scar formation (8,12,13,20). However, no mechanical 

characterizations of ex vivo extraocular muscle passive properties have been described; although their 

histological analysis showed a fibrosis reduction when AM was used. Whereas Kirsch et al. (12), reported this 
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after 30 days, Sheha et al. (8), demonstrated a positive effect of the AM in the eye alignment six weeks after 

surgery. Nevertheless, Kassem et al. (20), did not observe differences in muscle fibrosis production regardless 

the use of AM after 42 days. Therefore, these results would be coherent with the data presented in this study. 

Thus, muscles without membrane showed a significantly higher stiffness than muscles with membrane at 30 

days after surgery. Together with the histological studies previously published, the results suggest that 

cryopreserved AM prevents muscle fibrosis production, improving an earlier recovery of the EOM resistance to 

stretching after a strabismus surgery. The initial tension of EOMs plays an important role in keeping the eye 

suspended, and it comprises passive and active contributions of the muscle (30). Considering the eye alignment 

as the principal goal of strabismus surgery, it is clear the importance of passive and active properties recovery 

after the operation. Thus, accelerating passive behavior recovery, cryopreserved AM would improve global 

recovery after surgery. 

In conclusion, cryopreserved equine AM has not showed a positive effect on recovery of rabbit SRM active 

properties. However, muscles operated with AM showed a significantly faster recovery of passive properties. 

Since eye alignment depends on passive and active behavior of EOM, cryopreserved AM could improve the 

global recovery after strabismus surgery. Moreover, the ex vivo rabbit model of strabismus described here has 

been described as a valid model to study the recovery of the active and passive properties in extraocular 

muscles. Thereby, in the future this model could be applied to test the effect of strabismus alternative methods 

(botulinum toxin, etc.), in the muscle mechanical behavior. 
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FIGURE LEGENDS 
 
Figure 1. Surgical protocol of superior rectus muscle resection (A-F) and cryopreserved amniotic membrane 

transplant (G).  

Figure 2. Scheme of experimental set up. One muscle end is fixed in a methacrylate organ bath. Then, the bath 

is placed in a universal electromechanical testing machine (Instron Microtester 5248) where the muscle is fixed 

and stimulated by means of two platinum plates.  

Figure 3. Example of maximum tangent modulus (Emax) or maximum resistance to stretching determination 

from control SRM tension-deformation curves. 

Figure 4. Active behavior: percentage of maximum stress and standard deviation. Statistically significant 

differences were only found between Control and SRM operated with and without AM at 30 days (*p=0.002 

and *p=0.04, respectively). 

Figure 5. Passive behavior: Mean Emax (stiffness) SD of operated SRM. Statistically significant differences 

were determined between Control and SRM operated without AM at 30 days (*p=0.004). Comparing the 

stiffness results of operated muscles with and without AM, statistically significant differences were also found 

at 30 days (*p=0.002).  
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Figure 1. Surgical protocol of superior rectus muscle resection (A-F) and cryopreserved amniotic 
membrane transplant (G)  
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Fig. 2. Scheme of experimental set up. One muscle end is fixed in a methacrylate organ bath. Then, the 
bath is placed in a universal electromechanical testing machine (Instron Microtester 5248) where the 
muscle is fixed and stimulated by means of two platinum plates.  
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Figure 3. Percentage of maximum stress and standard deviation. In SRM operated with AM, significant 
differences were detected between control (a) and 30 days (b), 30 (b) and 60 days (a), and 30 (b) and 
90 days (a). In SRM operated without AM, significant differences were only detected between control 
(a) and 30 days (b).  
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Figure 4. Example of maximum tangent modulus (Emax) determination from control SRM tension- 

deformation curves.  
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Figure 5. Mean Emax (stiffness) SD of operated SRM. A) With AM no significant differences were 
found between groups. B) Without AM significant differences were observed between control (a) and 

30 days (b), 30 (b) and 60 days (a), and 30 (b) and 90 days (a).  
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Table 1. Distribution of control, with AM and without AM groups.  
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With AM Weight (g) Length (mm) Width (mm) Thickness (mm) 

Control 0.083 ± 0.03 11.38 ± 3.36 4.05 ± 0.53 0.57 ± 0.17a 

30 days 0.130 ± 0.03 14.00 ± 2.91 4.34 ± 0.59 0.97 ± 0.20b 

60 days 0.120 ± 0.03 13.95 ± 2.73 4.21 ± 0.75 1.17 ± 0.26b 

90 days 0.110 ± 0.04 14.70 ± 3.44 4.09 ± 0.59 1.12 ± 0.23b 

Table 2. Dimensions of SRM operated with AM (mean SD) for the four groups defined (control, 30, 60 
and 90 days). Significant differences were observed between control (a) and 30, 60 and 90 days (b) 

thickness (*p<0.05, **p<0.01).  
  



	 22	

Without AM Weight (g) Length (mm) Width (mm) Thickness (mm) 

Control 0.083 ± 0.03 11.38 ± 3.36 4.05 ± 0.53 0.57 ± 0.17a 

30 days 0.110 ± 0.06 13.32 ± 2.16 3.91 ± 0.80 0.69 ± 0.17a,b 

60 days 0.120 ± 0.04 14.45 ± 2.64 5.53 ± 0.76 0.96 ± 0.23b 

90 days 0.090 ± 0.02 15.15 ± 2.74 4.19 ± 0.53 1.07 ± 0.32b 

 
Table 3. Dimensions of SRM operated without AM (mean SD) for the four groups defined (control, 30, 

60 and 90 days). Significant differences were observed between control (a), and 60 and 90 days (b) 
thickness (*p<0.05).  

 
 

 


