
Page 1 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

Graph-based solution batch management for
Multi-Objective Evolutionary Algorithms

P.M. Mateoa,∗, I. Albertob

aDepto. Métodos Estad́ısticos, Facultad de Ciencias, Universidad de Zaragoza, Pedro
Cerbuna 12, 50009 Zaragoza, Spain.

bDepto. Métodos Estad́ısticos, Escuela de Ingenieŕıa y Arquitectura, Universidad de
Zaragoza, Maŕıa de Luna 3, 50018 Zaragoza, Spain.

Abstract

In Alberto and Mateo [2], 2004, a graph-based structure used for manipulat-

ing populations of Multi-Objective Evolutionary Algorithms in a more efficient

way than the structures existing at that point was defined. In this paper, an im-

provement of such tool is presented. It consists of the simultaneous insertion of

a set of solutions (solution batch), instead of a single one, into the created graph

structure. Furthermore, two experiments devoted to comparing the behavior of

the new algorithms with the original version from Alberto and Mateo [2] and

with a well-known non-dominated sorting algorithm are carried out. The first

shows how the new version outperforms the original one in time and number

of Pareto comparisons. The second experiment shows a reduction in the time

needed in all the cases and an important reduction in the number of Pareto com-

parisons when inserting chains of dominated solutions. From these experiments

it is verified that, in general, the new proposals save computational time and,

in the majority of the cases, the number of Pareto comparisons carried out for

the insertion. In addition, when the new proposals outperform the others, they

increase their gain over them as the size of the population and/or the size of the

batch increases. The new tool can also be used, for example, in parallel genetic

algorithms such as the ones based on islands, to carry out the migrations of the

∗Corresponding Author
Email addresses: mateo@unizar.es (P.M. Mateo), isolina@unizar.es (I. Alberto)

Preprint submitted to Elsevier November 1, 2017

Page 2 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

solutions.

Keywords: Evolutionary Computation, Metaheuristic, Multi-Objective

Optimization, Graph, Partially Ordered Set

1. Introduction

In Alberto and Mateo [2] a tool for managing the population of Multi-

Objective Evolutionary Algorithms (MOEAs), significantly different from the

proposals available in the literature at that time [15], was presented. The pro-

posed method allowed the management of the whole population of a MOEA,

efficient and non-efficient solutions, instead of only the efficient ones, as the

available methods did. The use of this tool for managing the individuals of

the populations, instead of storing them using linear lists or arrays, provided us

with important improvements with respect to the time needed for executing, for

instance, a simplified version of the well-known Non-dominated Sorting Genetic

Algorithm-II, NSGA-II, [9], especially when the size of the population grows.

MOEAs are highly time consuming algorithms so researchers are focused on

developing algorithms reaching “better” solutions in a “faster” way. Therefore,

the improvement of any aspect of a MOEA is an extremely important task due to

the great relevance that these kinds of algorithms exhibit nowadays; for instance,

in Coello [7], more than 10,000 references related to MOEAs are collected by the

well-known researcher C.A. Coello. The elements that researchers try to improve

are, for example, representation and management of solutions, design of specific

variation and selection operators, techniques for improving the coverage of the

Pareto front, and so on. However, as far as we know, the number of papers

devoted to the representation and management of solutions that bear in mind

the specific issues of MOEAs is not significant enough.

The originally proposed tool was based on what the authors called Irreducible

Domination Graph, IDG. A Domination Graph, DG, is a graph in which the

individuals of the population of the MOEA are represented by means of nodes,

and the domination relations among these individuals by means of arcs. In

2

Page 3 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

particular, the IDG is the simplest DG (i.e. the domination graph with the

fewest number of arcs) which represents all the domination relations among the

individuals of the population. The interest in the use of IDGs is to reduce the

computational time needed for updating the population (i.e. for updating the

IDG).

It should also be noticed that this structure and the tools built around it

enable us to efficiently obtain some of the different elements associated with

MOEAs, especially for Pareto Dominance-Based Multi-Objective Evolutionary

Algorithms (PDMOEAs). For example, to accomplish a non-dominated sorting

(NDS) of the solutions in the population, which is used in a great deal of algo-

rithms based on NSGA-II; or to obtain the raw fitness assignment of algorithms

as SPEA2 [28], which, for each individual, takes into account how many indi-

viduals it dominates and it is dominated by; or even for the rank of Fonseca and

Fleming [12] based on the number of individuals dominating each solution. All

these calculations can be carried out by using efficient existing search network

algorithms.

The DG is an acyclic directed graph and the IDG is, in fact, the transitive

closure of any of the different DGs that represent the population. Due to this, it

could be used in other fields different from the Multi-Objective Optimization, in

which a huge set of objects are ordered according to a certain partial order and

where it is important to rapidly establish the relationship between every pair of

objects in the set. Examples that could be considered are the ones related to

Formal Concept Analysis [4] in which the different formal concepts are ordered

according to an appropriate partial order and then, a concept lattice is built (a

Direct Acyclic Graph, DAG). They are also important in the database field, the

computation of the transitive closure of large database relations [1] allows us to

answer, in quite a fast way, reachability requests; almost all important database

engines incorporate commands to calculate the transitive closure of databases.

A final example in which it could be useful is as a tool in the process of inferring

cellular networks in which some specialized versions of transitive closures are

calculated, [17]. However, the development of this paper is centered in the field

3

Page 4 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

of the Multi-Objective Optimization as in Alberto and Mateo [2].

So far, we have not found algorithms that manage the whole population

and/or use the solution batch processing. The ones most used consist of storing

the solutions in arrays. An important issue for them is reducing of the time

needed to obtain the efficient solutions or the Pareto layers of a population:

the first NDS was proposed by [14] with complexity O(mN3), (m no. objective

functions, N population size); which was reduced to O(mN2) in [9]. With the

same complexity but more efficient in practice, are [19, 21, 25, 26].

Other tools for storing and managing solutions are: quad-trees [15], dom-

inated and non-dominated trees [11], dominance decision trees [22], Pareto

optimal trees [6] and fast incremental binary space partitioning (BSP) trees

[13]. What they have in common is that they only manage the efficient solu-

tions, which makes them appropriate alternatives for storing the elitist external

archives some algorithms use. The efficient solutions are stored in different kinds

of trees. For instance, the first one uses quad-trees, a special structure previ-

ously proposed to represent multidimensional graphical point data in which each

node corresponds to one solution and the children are defined by a successorship

relation based on the values of the objective functions of the compared solutions.

On the other hand, dominated trees [23], and trie-trees [20] are devoted to man-

aging the whole population in a similar but not equivalent way to how IDGs

do. Dominated trees define a modification of a Binary Search Tree in which the

dominated solutions of a node are incorporated into its left-subtree and non-

comparable solutions into its right-subtree. The difference, with respect to our

proposal, is that with these methodologies some relations between non-efficient

solutions could be lost, or the information of Pareto layers which are different

from the first one might even not be directly accessible. Finally, the tool based

on trie-trees is a hybrid methodology since it maintains two trees: One devoted

to storing efficient solutions and the other for the remaining ones. In addition,

information about efficiency relations is not stored in the population tree. Al-

though it is a new storing structure, it is hardly related to our proposal. A

brief but complete description of the majority of these algorithms can be read

4

Page 5 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

in Altwaijry and El Bachir Menai [3].

The aim of this paper is to show an improvement of the original algorithm

for incorporating solutions into the population, i.e., for inserting individuals

into the IDG. The main contribution of this paper is the development of two

new algorithms for the insertion of nodes into the IDG. The novelty consists

of the solution batch processing, i.e., the simultaneous insertion of a set of

non-comparable solutions, or a chain of dominated solutions (the first solu-

tion dominates the second one, which dominates the third and so on). For both

alternatives, the specific characteristics of these batches of solutions will be con-

sidered and taken into account, the theoretical results needed will be presented

and the specific algorithms will be developed. After showing the algorithms,

a first experiment to show how the new proposal outperforms the original one

will be conducted. A second experiment will compare the proposals with a well-

known NDS algorithm [19]. For these experiments, the execution time and the

number of accomplished comparisons between solutions in order to determine

the Pareto relations among them (see Section 6) will be compared. With the

experiments carried out it will be shown that the solution batch processing im-

proves the speed of the algorithm with respect to the sequential processing of

our original version and the NDS; hence, it could accelerate the performance of

classical PDMOEAs, as for instance NSGA-II, SPEA2, etc., and their variants.

This paper is organized as follows: In the next section, the definitions and

notations which will be used throughout the article are presented. Next, Sec-

tion 3 examines the case of the simultaneous insertion of k non-comparable

solutions. The case of the simultaneous insertion of a sequence of k dominated

solutions is presented in Section 4. The next section presents the study of the

theoretical complexities of the algorithms introduced in the article and Section 6

analyzes the practical behavior of the algorithms when applying them to a clas-

sical collection of test problems. The final conclusions and future research lines

are detailed in Section 7.

5

Page 6 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

2. Previous definitions and notations

2.1. Multi-Objective Optimization Problems

Multi-Objective Optimization Problems (MOOPs) tend to be characterized

by a family of alternatives that must be considered equivalent in the absence

of information concerning the relevance of each objective with respect to the

others. A MOOP can be defined as follows:

Minimize f(x) = (f1(x), . . . , fq(x)), (1)

subject to: x = (x1, . . . , xp) ∈ D ⊂ Rp,

and the solutions to one of such problems are formed with all the feasible so-

lutions of the search space such that the components of the objective function,

f(x), cannot all be simultaneously improved. These solutions are called Pareto

optimal or efficient.

Definition 1. A solution x ∈ D is said to be Pareto optimal or efficient
if and only if �y ∈ D such that ∀k = 1, . . . , q, fk(y) ≤ fk(x) and ∃k ∈
{1, . . . , q} such that fk(y) < fk(x). Given x,y ∈ D, solution x dominates solu-
tion y, denoted by x ≺ y, if ∀k = 1, . . . , q, fk(x) ≤ fk(y) and ∃k ∈ {1, . . . , q}
such that fk(x) < fk(y). In this case, solution y is called a non-efficient or
dominated solution. If x,y ∈ D such that x ⊀ y and x � y, the solutions are
called non-comparable solutions, denoted by x �∼ y.

2.2. Evolutionary Algorithms

Evolutionary Algorithms (EAs) are search and optimization methods based

on the principles of natural evolution and genetics whose most important dif-

ference with classical techniques is that, in EAs, a population of solutions is

processed in every generation. This is a tremendous advantage for its use in

solving multi-objective optimization problems, since they seek the Pareto opti-

mal set. An extensive review on this matter can be obtained from Coello et al.

[8], Zhou et al. [27], Talbi et al. [24] and an introduction can be obtained from

Eiben and Smith [10].

The population of a Multi-Objective Evolutionary Algorithm in its t-th it-

eration is denoted by Pt, and by n its size. The individuals of the population,

6

Page 7 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

feasible solutions of the MOOP, are denoted by xi, i = 1, . . . , n. In the selec-

tion process of an EA, the individuals of the population need to be ordered. In

general, orders based on the Pareto relation are used, as in the well-known algo-

rithm NSGA-II (Deb et al. [9]), in which, from the joint population of parents

and children, the fittest individuals are selected according to the partial order

derived from the domination relation established by Definition 1. Reviewing

bibliography on MOEAs, there are many algorithms that maintain a similar

scheme to NSGA-II.

2.3. Graphs

A graph G is a pair (N ,A) where the set N = {x1, . . . , xn} is called the node

set of G and its elements are called nodes; and the set A = {(xi, xj)|xi, xj ∈
N} ⊆ N ×N is called the arc set and its elements are called arcs.

In this work directed graphs are considered, that is to say, if the arcs (xi, xj)

and (xj , xi) exist in A, then they are different. A directed path in G from node

xi to node xj is a sequence of distinct arcs, v1, v2, . . . , vp, p ≥ 1, such that a

corresponding sequence of nodes exists xi = xs0 , xs1 , . . . , xsp = xj satisfying

vh = (xsh−1
, xsh) ∈ A, for 1 ≤ h ≤ p. A directed path is a simple directed

path if all its nodes are different. A cycle is a directed path where the first and

last nodes coincide. A graph G with no cycles is called an acyclic graph. The

notation xi ↪→ xj represents that a simple directed path from xi to xj exists

in G. In this case, xi is an ancestor of xj and xj is a descendant of xi, and Aj

denotes the set of ancestors of xj and Di the set of descendants of xi. If the

directed path only consists of the arc (xi, xj), the notation xi → xj can be used,

if it is explicitly necessary to emphasize it. In this case, xi is a parent of xj and

xj is a child of xi.

Finally, let G = (N ,A) be a directed graph. The transitive closure of G is

the graph Ḡ = (N ,A∗) where A∗ = {(xi, xj)|xi, xj ∈ N , xi ↪→ xj in G}. The

transitive reduction of G is graph G− = (N ,A−) with a minimal number of arcs

satisfying Ḡ = (G−).

7

Page 8 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

2.4. Domination graphs

For managing the populations of a MOEA, Domination Graphs, DGs, are

used. A DG is a graph whose nodes have associated individuals xi of a popula-

tion and in which the arcs represent the domination relations between individ-

uals. An arc xi → xj means that the solution associated with xi dominates the

solution associated with xj (xi ≺ xj). A directed path xi ↪→ xj also means, by

the transitivity of the domination relation, that the solution associated with xi

dominates the solution associated with xj .

Definition 2. Let N be the set of nodes associated with all the feasible so-
lutions to a problem, one node per solution. Let Nt ⊆ N be the set of all
the nodes associated with the t-th population, Pt, in a run of the MOEA. Let
At ⊆ Nt × Nt be the arc set such that it reflects the domination relations of
the elements in the current population, i.e., given xi and xj in Pt such that
xi ≺ xj , then a directed path from xi to xj has to exist. The pair (Nt,At)
is called Domination Graph, DG, associated with the population Pt, and it is
denoted by Gt = (Nt,At).

To make the management as efficient as possible, among all the possible

DGs associated with one population, the one with the fewest number of arcs is

selected. This is called Irreducible Domination Graph, IDG, which is actually

the transitive reduction of any of the DGs of our population. Lemma 1 and

Theorem 1 establish a characterization and the uniqueness of the IDG (both

results have been taken from [2]).

Lemma 1. Given a population Pt and a DG associated, Gt, then Gt is irre-

ducible if and only if ∀xi, xj ∈ Nt such that xi ≺ xj only one of the next

statements holds:

1. The only directed path from xi to xj is the arc xi → xj.

2. Every directed path from xi to xj, xi ↪→ xj, has two or more arcs.

Theorem 1. Given a population Pt, the irreducible domination graph associ-

ated with it is unique.

The algorithm for adding a solution yj to an IDG (a new solution in the

population) can be seen in Algorithm 1 and it works with the following sets,

8

Page 9 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

which will also be used in the simultaneous insertion algorithms that will be

presented later:

• Bj = {xi ∈ Nt|xi ≺ yj}, Bj will be yj ’s ancestors.

• B∗
j = {xi ∈ Bj |�xk ∈ Bj such that xi ≺ xk}, B∗

j will be yj ’s parents.

• bj = {xi ∈ Nt|yj ≺ xi}, bj will be yj ’s descendants.

• b∗j = {xi ∈ bj |�xk ∈ bj such that xk ≺ xi}, b∗j will be yj ’s children.

As shown in Algorithm 1, the procedure for inserting yj is the following:

If xi ≺ yj then xi’s ancestors set, Ai, is determined (line 2); and if xi
 yj ,

xi’s descendants set, Di, is determined (line 3). A labeling procedure lets us

identify sets B∗
j and b∗j (lines 4 and 5). Then, all the arcs between nodes in B∗

j

and nodes in b∗j are removed since they will be redundant in the new graph (line

6). Finally, the new node yj is added (line 7) and the domination relations are

re-established by adding all the arcs B∗
j → yj and yj → b∗j to the IDG (lines 8

to 11). The complete description of this algorithm can be seen in [2].

Algorithm 1: Insertion Algorithm

Data: IDG, yj to be added to the IDG
Result: IDG

1 foreach xi ∈ Nt and xi unmarked do
2 if xi ≺ yj then mark all unmarked nodes of Ai and Bj = Bj ∪ {xi};
3 if xi
 yj then mark all unmarked nodes of Di and bj = bj ∪ {xi};
4 Determine the set B∗

j of unmarked nodes of Bj ;

5 Determine the set b∗j of unmarked nodes of bj ;

6 At = At \ {(xi, xk)|xi ∈ B∗
j , xk ∈ b∗j};

7 Nt = Nt ∪ {yj};
8 foreach xi ∈ B∗

j do
9 At = At ∪ {(xi, yj)};

10 foreach xi ∈ b∗j do
11 At = At ∪ {(yj , xi)};

2.5. Example

Let {a, b, c, d, e, f, g, h, i, j} be the population of solutions of a bi-objective

minimization problem, (f1, f2). The values of the objective functions and the

resulting IDG after applying Algorithm 1 are shown in Fig. 1.

9

Page 10 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

a b

c d e

f g h

i j

a (0, 3)

b (3, 0)

c (1, 7)

d (4, 3)

e (5, 1)

f (2, 9)

g (6, 5)

h (7, 2)

i (8, 8)

j (9, 6)

(f1, f2)

Figure 1: Population and IDG obtained after successively applying Algorithm 1.

3. Simultaneous insertion of k non-comparable solutions

The first new proposal consists of the insertion of a set of non-comparable

solutions, it generalizes Algorithm 1, and it follows a similar schema as can be

seen in Algorithm 2.

Let {y1, . . . , yk} such that yi �∼ yj i, j = 1, . . . , k, be a set of solutions to

be inserted. For inserting every new solution yj into the IDG it is essential to

identify sets B∗
j and b∗j , ∀j, and to investigate the relationships among them.

These tasks are carried out by means of Function LabelingProcessNC (line 1).

Next, the following processes to be accomplished are the removal of the arcs

between nodes of B∗
j and nodes of b∗j (lines 2 and 3), the insertion of the new

nodes yj (line 4), and finally the re-establishment of the domination relations

by adding the arcs B∗
j → yj and yj → b∗j , ∀j (lines 5 and 6).

Algorithm 2: Insertion Algorithm

Data: Node list, Nt; Arc list, At;
Solutions to be inserted, y1, . . . , yk, yi �∼ yj , i �= j

Result: Updated node list, Nt; Updated arc list At

1 LabelingProcessNC(Nt);
2 for j = 1 to k do
3 At = At \ {(x, x′)|∃j ∈ {1, . . . , k} such that lj(x) = 2, lj(x

′) = −2};
4 Nt = Nt ∪ {y1, . . . , yk};
5 for j = 1 to k do
6 At = At ∪ {(x, yj)|lj(x) = 2} ∪ {(yj , x)|lj(x) = −2};

10

Page 11 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

The following lemma lets us simplify the labeling process carried out by

Function LabelingProcessNC since it justifies that only a certain kind of labels

will be used. The proof of this lemma can be found in the Appendix.

Lemma 2. Given yi and yj such that yi �∼ yj, then Bi ∩ bj = ∅. As a conse-

quence, B∗
i ∩ b∗j = ∅.

3.1. Obtaining B∗
j and b∗j

The labeling procedure proposed in Function LabelingProcessNC lets us

identify sets B∗
j and b∗j , ∀j. The main idea of this function is to update the

labels in parallel, i.e., instead of labeling each node in relation to one of the new

solutions, each node will be labeled, if it is possible, in relation to several of the

new solutions at the same time.

Let y1, . . . , yk be the solutions to be inserted. Every node x in the current

IDG will receive one label, L(x) = (l1(x), . . . , lk(x)), where component j is

associated to solution yj . If lj(x) is positive and equal to 1 or 2, it means that

node x has been labeled in an ascending trajectory (construction of B∗
j); if lj(x)

is negative and equal to −1 or −2 it means that node x has been labeled in a

descending trajectory (construction of b∗j); and if lj(x) it is equal to 3, it means

that node x is not comparable with yj . Initially, ∀x ∈ Nt will have L(x) = 0

(line 2) and it means that node x is still not labeled in any component.

As a consequence of Lemma 2, all the components of L(x) different from 3

will have the same sign (positive or negative), i.e. no node x will have positive

and negative values different from 3 in its label (this fact would imply that

Bi ∩ bj �= ∅).
Given a node x ∈ Nt and its label L(x) = (l1(x), . . . , lk(x)), the following

elements are defined:

z(x) = {j|lj(x) = 0}j∈{1,...,k}

p(x) = #{j|lj(x) ∈ {0, 2,−2}}j∈{1,...,k}

s(x) = sign{lj(x)|lj(x) �∈ {0, 3}}j∈{1,...,k}

11

Page 12 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

Function LabelingProcessNC(Nt)

Input: Node list, Nt

Result: Set of labels, L = {L(x) = (l1(x), . . . , lk(x))|x ∈ Nt}
1 p(x) = k, ∀x ∈ Nt;
2 L(x) = (0, . . . , 0), ∀x ∈ Nt;
3 foreach x ∈ Nt do
4 P = ∅;
5 if z(x) �= ∅ then
6 foreach j ∈ z(x) do
7 if x ≺ yj then
8 lj(x) = 2;
9 P = P ∪ {j};

10 else if yj ≺ x then
11 lj(x) = −2;
12 P = P ∪ {j};
13 else
14 lj(x) = 3;

15 p(x) = |P |;
16 if p(x) > 0 then
17 switch s(x) do
18 case (+) do
19 L ← AscLabelNC(x, P, L,p)

20 case (−) do
21 L ← DescLabelNC(x, P, L,p)

12

Page 13 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

i.e. z(x) keeps the components of L(x) which are not labeled; p(x) is equal

to the number of pending components of L(x), i.e. components to be exam-

ined; and s(x) contains the sign of the labels, ‘+’ for an ascendant labeled node

(Function AscLabelNC) or ‘−’ for a descendant labeled node (Function DescLa-

belNC1).

Briefly, Function LabelingProcessNC works as follows. First, the number of

pending components is set to k and labels are set to 0 (lines 1 and 2). Then,

for each node x partially labeled (z(x) �= ∅) (line 5), it is completely labeled

and the set of current components P is established (lines 6 to 14). If P is not

empty (line 16) a labeling process which depends on the sign s(x) is carried

out (lines 18-19 or 20-21). Functions AscLabelNC/DescLabelNC accomplish a

standard ascendant/descendant labeling process for all the components of the

set of current indexes, P . Finally, Function LabelingProcessNC provides us

with the nodes of B∗
j (those with label 2 in component j) and the nodes of b∗j

(those with label −2 in component j). Furthermore, if a node has several labels

equal to 2 (−2), lj1(x) = lj2(x) = · · · = ljq (x) = 2 (−2), then it belongs to the

intersection B∗
j1
∩B∗

j2
· · · ∩B∗

jq
, (b∗j1 ∩ b∗j2 · · · ∩ b∗jq).

3.2. Insertion procedure

As it has been previously established, Function LabelingProcessNC lets us

obtain the labels for all the nodes in the IDG and to identify sets B∗
j and b∗j ,

j = 1 . . . , k. Following the insertion procedure of Algorithm 2, the next step is

the removal of arcs between B∗
j and b∗j (lines 2 and 3), i.e. all the arcs (x, x′) for

which there exists at least one j ∈ {1, . . . , k} with lj(x) = 2 and lj(x
′) = −2.

Then, the new yj nodes are incorporated into the graph (line 4) and all the

relations between the current and the new nodes are re-established (lines 5 and

6). All these processes are the sequential application of the corresponding steps

of the original insertion algorithm (Algorithm 1), which can be applied in this

1The description of Function DescLabelNC is omitted because it is analogous to Func-
tion AscLabelNC in which start(a) must be changed to end(a), 1 to −1 and incident in x to
salient from x

13

Page 14 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

Function AscLabelNC(x0, P, L,p)

Input: Initial node, x0; Current components, P ; Set of labels, L; Set of
No. of pending components, p

Result: Updated set of labels, L and pending components, p
1 NodeList = {x0};
2 while NodeList �= ∅ do
3 Extract x from NodeList;
4 foreach arc a incident in x do
5 if p(start(a)) > 0 then
6 aux =“F”;
7 foreach j ∈ P do
8 if lj(start(a)) �= 1 then
9 lj(start(a)) = 1;

10 p(start(a)) = p(start(a))− 1;

11 if lj(start(a)) == 0 then
12 aux =“T”;

13 if aux ==“T” then
14 NodeList = NodeList ∪ {start(a)};

way since the non-comparability of the new solutions causes the arcs to be

removed and so the new ones to be inserted become independent.

To finish this section, the following theorem states the correctness of the

algorithm.

Theorem 2. Let Gt be the initial IDG associated with a population Pt and G′
t

the graph obtained by applying the former procedure for inserting the solutions

y1, . . . , yk such that yi � yj, ∀i �= j. Then G′
t is the corresponding IDG.

Proof. By construction, Function LabelingProcessNC ensures the correct iden-

tification of sets B∗
j and b∗j , ∀j. Then, given that B∗

i ∩ b∗j = ∅ (by Lemma 2)

and since the procedure for inserting y1, . . . , yk such that yi � yj , ∀i �= j, is

the natural extension of the one proposed in Alberto and Mateo [2], the graph

obtained after applying the procedure is an IDG. �

14

Page 15 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

3.3. Example

Let A,B and C be the images in the objective space of three non-comparable

solutions, see Fig. 2, to be inserted into the IDG of Fig. 1. After applying the

labeling process of Function LabelingProcessNC, the labels obtained for the

nodes of the IDG are also shown in Fig. 2. Then, lines 2 and 3 of Algorithm 2

determine that the arcs to be removed are (e, g) and (c, i). Once the new

solutions are inserted (line 4), lines 5 and 6 determine the new arcs to be added,

which appear in dashed line in Fig. 2.

Labels

L(b) = (2, 1, 1)

L(c) = (2, 3, 3)

L(d) = (3, 2, 3)

L(e) = (3, 2, 2)

L(f) = (3, 3, 3)

L(g) = (3,−2, 3)

L(h) = (3, 3, 3)

L(i) = (−2,−1,−2)

A (3, 7)

B (6, 3)

C (8, 1)

(f1, f2)

a b

c d e

f g h

i j

A B C

L(a) = (1, 1, 3)

L(j) = (3,−1,−2)

Figure 2: A,B,C non-comparable solutions to be inserted, set of labels and new added arcs
(in dashed line) after applying Algorithm 2.

4. Simultaneous insertion of a sequence of k dominated solutions

In this section a sequence of k solutions such that each solution is dominated

by the previous one, i.e. k solutions y1, y2, . . . , yk such that y1 ≺ y2 ≺ · · · ≺ yk

is considered. The objective of this section is to develop an algorithm for the

simultaneous insertion of the whole set.

As in the previous section, sets B∗
j and b∗j , ∀j, have to be identified as well

as all the existing relations among them. But unlike what happened in the

case of non-comparable solutions, after constructing the sets and removing the

corresponding arcs, the insertion must be made taking into account the order in

which the new solutions are added. This is so because the insertion of previous

solutions can alter the composition of the remaining B∗
j and b∗j . For example,

15

Page 16 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

Fig. 3.a) shows the simultaneous insertion of two solutions with sets B∗
j and

b∗j , j = 1, 2, and Fig. 3.b) shows how B∗
2 and b∗2 will be if solution y1 has already

been inserted into the IDG.

Algorithm 3: Insertion Algorithm

Data: Node list, Nt; Arc list, At; Solutions to be inserted, y1 ≺ · · · ≺ yk
Result: Updated node list, Nt; Updated arc list, At

1 LabelingProcessC(Nt);
2 for j = 1 to k, i ≥ j do
3 At = At \{(x, x′)|lp(x) ∈ {2j, 2j+1} and ln(x

′) ∈ {−2i−2,−2i−3}};
4 Nt = Nt ∪ {y1, . . . , yk};
5 for j = 1 to k do
6 At = At ∪ {(x, yj)|lp(x) ∈ {2j, 2j + 1}} ∪ {(yj , x)|ln(x′) ∈

{−2i− 2,−2i− 3}};
7 if � ∃x such that ln(x) = −2j − 3 then
8 At = At ∪ (yj , yj+1);

The new proposal can be seen in Algorithm 3. Its general steps are the same

as in Algorithm 2. First, Function LabelingProcessC accomplishes a labeling

process in order to identify some sets related with B∗
j and b∗j (line 1). After this,

the removal of the corresponding arcs between nodes of these sets (lines 2 and

3) and the insertion of the new nodes (line 4) are carried out. Then, a new arc

addition process is proposed, which implicitly considers the necessary updating

of sets B∗
j and b∗j as the successive new solutions yj are added (lines 5 to 8).

y1

y2

f1

f2

b)

y1

y2

f1

f2

a)

B∗
1 = B∗

2

b∗1 = b∗2

b∗2

B∗
2

Figure 3: Example of insertion of y1 and y2 with the construction of sets B∗
j and b∗j in the

function space. a) Simultaneous insertion. b) Successive insertion.

A very important issue in further development of our algorithm is the fol-

16

Page 17 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

lowing decomposition of sets B∗
j and b∗j , j = 1, 2, . . . , k:

B∗
j = B∗1

j ∪̇B∗2
j ∪̇B∗3

j , (2)

b∗j = b∗1j ∪̇b∗2j ∪̇b∗3j ,

where:

• B∗1
j = nodes in B∗

j which dominate yj−1, i.e., belonging to Bj−1.

• B∗2
j = nodes in B∗

j non-comparable with yj−1.

• B∗3
j = nodes in B∗

j dominated by yj−1, i.e., belonging to bj−1.

That is to say, set B∗
j is divided into three disjoint subsets according to the

situation of its nodes with respect to yj−1, i.e., the “previous” solution.

And:

• b∗1j = nodes in b∗j dominated by yj+1, i.e, belonging to bj+1.

• b∗2j = nodes in b∗j non-comparable with yj+1.

• b∗3j = nodes in b∗j which dominate yj+1, i.e., belonging to Bj+1.

In this case, set b∗j is divided into three disjoint subsets according to the situation

of its nodes with respect to yj+1, i.e., the “next” solution. For convenience with

notation, if j = 1, B∗
1 = B∗3

1 and B∗1
1 = B∗2

1 = ∅. Similarly, if j = k, b∗k = b∗3k

and b∗1k = b∗2k = ∅. In Fig. 4, for three solutions yj−1 ≺ yj ≺ yj+1, the

distribution of the different subsets can be observed in an example in R2.

f1

f2

yj

yj−1

yj+1

B∗2
j B∗3

j

b∗3j b∗2j

B∗2
jB∗

j−1 ⊃ B∗1
j

b∗2j b∗1j ⊂ b∗j+1

Figure 4: Distribution of sets B∗
j and b∗j for yj−1 ≺ yj ≺ yj+1 in the function space (f1, f2).

17

Page 18 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

4.1. Obtaining B∗
j and b∗j

In order to identify sets B∗
j and b∗j and their appropriate decomposition

according to Eq.(2), it is necessary to define the following node lists:

aLb
c = {x ∈ Nt|x �∼ a and b ≺ x ≺ c} , (3)

i.e., aLb
c includes all those nodes in the IDG which are non-comparable with

node “a”, which are dominated by node “b” and which dominate node “c”.

In this case, since y1 ≺ · · · ≺ yk, and in order to classify the nodes of the

IDG, the following lists will be used, j = 2, . . . , k.

• Lj−1
j : set of nodes dominated by yj−1 which dominate yj (candidates to

B∗3
j ∪ b∗3j−1).

• jLj−1: set of nodes non-comparable with yj and which are dominated by

yj−1 (candidates to b∗2j−1).

• j−1Lj : set of nodes non-comparable with yj−1 which dominate yj (candi-

dates to B∗2
j).

Fig. 5 shows an example for three new solutions, y1, y2 and y3, to be inserted.

There, the position of the different lists is depicted in relation with the new

solutions yj , as well as the subset of Eq.(2) associated with that node list. By

construction, the following pairs of lists are always disjoint: Lj−1
j and Li−1

i ;

jLj−1 and iLi−1; j−1Lj and i−1Li; Lj−1
j and i−1Li, ∀i �= j; and j−1Lj and

jLj−1, ∀j (see Fig. 6 for an intuitive example in R2). However, j−1Lj and

iLi−1, j > i, i = 2, . . . , k may not be disjoint (these sets are those on the left of

Fig. 5 with the ones on the right at the same height and lower). But, as it will

be explained later in the labeling process, nodes in j−1Lj will receive positive

labels; and nodes in iLi−1 will receive negative labels. Then, if x ∈ j−1Lj∩iLi−1,

x will receive both, positive and negative.

In Function ListAssignmentC the lists L0
1,

1L0, 0L1, L
k
k+1 and

k+1Lk appear;

these have not been previously defined. They correspond to cases j = 1 and

18

Page 19 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

2L1
⊆

b∗21 ����

⊆

⊆

���

����b∗32

B∗3
3

L2
3

B∗3
2 ���

L1
2

b∗31⊆

⊆

����

B∗2
2 ���

1L2

⊆

⊆

3L2

b∗22 ����

���B∗3
1

⊆

L0
1

L3
4

��	�

⊆

b∗33

��������� ����	���
� �	� ����	���� 	����

��
���

�����

⊆

2L3

B∗2
3 ���

y3

y2

y1

Figure 5: Node lists created for the insertion process of 3 solutions y1 ≺ y2 ≺ y3.

j = k: L0
1 contains the candidates to B∗

1 ; L
k
k+1 the ones to b∗k and 1L0, 0L1 and

k+1Lk are used for an easier description of the algorithm.

The development continues showing the process for building the sets of

Eq.(2). It starts in Function LabelingProcessC by executing Function ListAssignmentC

for comparing the nodes x of the IDG with the successive yj and for including

them in the appropriate node list (lines 1 to 3). Function ListAssignmentC goes

over the tree of Fig. 7, in order to add these nodes to their appropriate lists

(j−1Lj , L
j−1
j or jLj−1). Given an x node from the IDG, x is compared to y1.

If x ≺ y1, x ends in Ds1; if x �∼ y1, x goes to the second level from Nc1; and

if y1 ≺ x, then x also goes to the second level from Db1. If x is on the second

level, x is compared to y2. If x ≺ y2, x ends in Ds2; if x �∼ y2, then x goes to

the next level from Nc2; and if y2 ≺ x, x goes to the next level from Db2. The

process continues until x reaches a terminal vertex, and it then takes another

19

Page 20 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��
��
��
��

��
��
��

��
��
��
��

��
��
��
��

�����
�����
�����

�����
�����
�����

���
���
���

���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

�������
�������
�������
�������

�������
�������
�������
�������

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

����
����
����
����

����
����
����
����

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

f2

yj−1

yj

yj+1

jLj−1

j+1Lj

a) iLj b) iLj
f1

f2

yj−1

yj

yj+1

j−1Lj
jLj+1

c) Li
j

f1

f2

yj−1

yj

yj+1

Lj−1
j

Lj
j+1

f1

d) iLj ∩ hLk

f1

f2

yj−1

yj

yj+1

jLj−1 ∩ jLj+1

Figure 6: Description and relations among the different node lists in the function space (f1, f2).

node from the IDG to repeat the process. Once the nodes have reached a ter-

minal vertex they are assigned to a list (Lj−1
j , jLj−1 or j−1Lj). For example,

for j = 2, . . . , k − 1, if x ≺ yj , the process ends in Dsj and x joins Lj−1
j if it

comes from Dbj−1, or
j−1Lj if it comes from Ncj−1 in level j− 1; and if x �∼ yj

and in level j − 1 it comes from Dbj−1, then x joins jLj−1. Lines 1 to 5 of this

function are included in order to avoid superfluous Pareto comparisons when

the parent of the solution to be classified has been previously classified.

##

#
Level 1

Level 2

#

#

Ds1 Db1 Nc1

Nc2Db2Ds2

Dsk Dbk Nck Level k

...
...

...

y1

y2

yk

means terminal vertex

Figure 7: List construction tree (k solutions to be inserted, y1 ≺ · · · ≺ yk).

20

Page 21 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

Function LabelingProcessC(Nt)

Input: Node list, Nt

Result: Set of labels, L = {L(x) = (lp(x), ln(x))|x ∈ Nt}
1 foreach x ∈ Nt do
2 ListAssignmentC(x);
3 L(x) = (0, 0);

4 for j = 1 to k do

5 foreach x ∈ j−1Lj ∪ Lj−1
j with lp(x) = 0 do

6 if x ∈ j−1Lj then
7 lp(x) = 2j;

8 else
9 lp(x) = 2j + 1;

10 AscLabelC(x, j, L);

11 for j = k to 1 do

12 foreach x ∈ j+1Lj ∪ Lj
j+1 with ln(x) = 0 do

13 if x ∈ j+1Lj then
14 ln(x) = −2j − 2;

15 else
16 ln(x) = −2j − 3;

17 DescLabelC(x, j + 1, L);

21

Page 22 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

Once the lists have been constructed, Function LabelingProcessC continues

with a labeling process in stages performed from j = 1 to k in the case of

Function AscLabelC (lines 4 to 10), and from j = k to 1 in the case of Func-

tion DescLabelC2 (lines 11 to 17). This means that every node x of the IDG

will receive one label, L(x) = (lp(x), ln(x)), which will let us identify the sets of

Eq.(2) and so, they will help us insert solutions y1, . . . , yk into the IDG. In the

case of Function AscLabelC, it considers one by one the elements in j−1Lj and

Lj−1
j not positively labeled. If the node belongs to j−1Lj the function labels

it with 2j; and if the node belongs to Lj−1
j , with 2j + 1. Then, the function

proceeds by labeling all its non-labeled ascendants with 2. If a node labeled

with 2j or 2j + 1 is found it is switched to 2; but if any other positive label is

found, they are kept and from then on its ancestors are not examined because

they have already been considered in a previous stage. This process guarantees

that the nodes of the previous lists are not relabeled.

At the end of the labeling process, the following labels have been assigned:

• B∗
1 = B∗3

1 nodes with lp(x) = 3; and for j = 2, . . . , k, B∗2
j nodes with

lp(x) = 2j and B∗3
j nodes with lp(x) = 2j + 1.

• For j = 1, . . . , k − 1, b∗2j nodes with ln(x) = −2j − 2 and b∗3j nodes with

ln(x) = −2j − 3; and b∗k = b∗3k nodes with ln(x) = −2k − 3.

4.2. Insertion procedure

In case that yj , j = 1, . . . , k, were to be added to the initial IDG in a

sequential way by using iteratively the original algorithm (Algorithm 1), sets

B∗
j and b∗j could not be the same as the ones identified with the simultaneous

labeling procedure. This is so since as y1 ≺ · · · ≺ yk, some of the yj could be

in sets B∗
i for i > j, if the sequential insertion started with y1; or some of the

yj could be in sets b∗i for i < j, if the sequential insertion started with yk (see

Fig. 3).

2Function DescLabelC is symmetrical to Function AscLabelC changing incident in x to
salient from x, start(a) to end(a), lp to ln, and multiplying the labels by −1.

22

Page 23 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

Function ListAssignmentC(x0)

Input: Node to be classified, x0

Result: Lists to which x0 belongs
1 if ∃xp parent of x0 in the IDG already classified then

2 posLevel = j such that xp ∈ Lj−1
j ∪ j−1Lj ;

3 negLevel = j such that xp ∈ Lj−1
j ∪ jLj−1;

4 else
5 posLevel = negLevel = 1;

6 preState = state = Db;
7 j = negLevel;
8 while j ≤ k & state �= Ds do
9 if x0 ≺ yj then

10 state = Ds;
11 if preState == Db then

12 Incorporate x0 to Lj−1
j ;

13 else
14 Incorporate x0 to j−1Lj ;

15 else if x0 �∼ yj then
16 if preState == Db then
17 Incorporate x0 to jLj−1;
18 j = max{j + 1, posLevel};
19 else
20 j = j + 1;

21 preState = Nc;

22 else //x0
 yj
23 preState = Db;
24 if j=k then
25 Incorporate x0 to Lk

k+1;

26 j = j + 1;

23

Page 24 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

Function AscLabelC(x0, j, L)

Input: Initial node, x0; level, j; set of labels, L;
Result: Updated set of labels, L

1 NodeList = {x0};
2 while NodeList �= ∅ do
3 Extract x from NodeList;
4 foreach arc a incident in x do
5 if lp(start(a)) = 2j or lp(start(a)) = 2j + 1 then
6 lp(start(a)) = 2;

7 else if lp(start(a)) = 0 then
8 lp(start(a)) = 2;
9 NodeList = NodeList ∪ {start(a)};

In the simultaneous insertion procedure, as set B∗
j has been decomposed de-

pending on the relation with solution yj−1, for the insertion of yj it is necessary

to identify only the nodes of B∗
j which will have a direct arc with yj , which

are those nodes non-comparable with (B∗2
j) and dominated by (B∗3

j) yj−1; for

those nodes of B∗
j that dominate yj−1 (B∗1

j), the domination relation with yj

will be reflected with a trajectory that goes through yj−1. The case for b∗j is

symmetrical.

In order to insert the new nodes, the same operations as in the previous

section need to be carried out. All the arcs between nodes in B∗
j and nodes in

b∗j , ∀j must be removed. Then, the new nodes must be inserted and finally, the

relations between nodes in B∗
j and nodes in b∗j should be expressed through the

newly inserted nodes. To carry out these processes the following lemma, whose

proof can be found in the Appendix, is enunciated.

Lemma 3. Once sets B∗h
j , b∗lj , h, l = 2, 3, j = 1, . . . , k, have been identified, in

order to insert y1, . . . , yk, such that y1 ≺ · · · ≺ yk, the following steps need to

be followed:

1. Remove the arcs: B∗h
j → b∗li for i, j = 1, . . . , k, j ≤ i and h, l = 2, 3.

2. Add the nodes: yj, j = 1, . . . , k.

3. Add the arcs:

24

Page 25 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

- B∗h
j → yj, for j = 1, . . . , k, h = 2, 3.

- yj → b∗lj for j = 1, . . . , k and l = 2, 3.

- And if ∃j, j = 1, . . . , k, such that b∗3j = ∅ (B∗3
j+1 = ∅) the arc yj →

yj+1 is incorporated.

After this result, the following theorem that guarantees that the process

works correctly can be stated.

Theorem 3. Let Gt be an IDG and G′
t the graph obtained by applying the former

procedure for inserting the solutions y1, . . . , yk such that y1 ≺ · · · ≺ yk. Then

G′
t is an IDG (it preserves all the existing relations, adds the new ones and does

not reflect fictitious relations).

Proof. By construction, Function LabelingProcessC ensures the correct iden-

tification of sets B∗h
j and b∗lj , h, l = 2, 3, j = 1, . . . , k. Then, since the procedure

for inserting y1 ≺ · · · ≺ yk is the natural extension of the one proposed in

Alberto and Mateo [2], the graph obtained after applying the procedure is an

IDG. �

4.3. Example

Let A,B and C, see Fig. 8, be the images in the objective space of three

solutions to be inserted into the IDG of Fig. 1. The labels obtained after ap-

plying Function LabelingProcessC are also shown in Fig. 8. So, lines 2 and 3 of

Algorithm 3 determine the arcs to be removed, (d, g) and (e, g). Then, in line

4, A, B and C are inserted and lines 5 to 8 determine the new arcs to be added,

which appear in dashed line in Fig. 8.

5. Theoretical study of the complexity of the proposed algorithms

In this section the computational complexity corresponding to the insertion

algorithms proposed is going to be calculated. After that, these complexities

will be compared with the ones derived from successively applying Algorithm 1.

According to Section 2, let n be the population size; m, the number of arcs of

25

Page 26 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

Labels

(f1, f2)

L(a) = (2,−2)

L(b) = (2,−5)

L(c) = (2,−2)

L(d) = (5,−2)

L(e) = (6,−2)

L(f) = (2,−4)

L(g) = (2,−9)

L(h) = (2,−2)

L(i) = (2,−2)

L(j) = (2,−2)

A (0, 2)

B (4, 4)

C (6, 4)

a b

c d e

f g h

i j

A

B

C

Figure 8: A,B,C dominated solutions to be inserted, set of labels and new added arcs (in
dashed line) after applying Algorithm 3.

the initial IDG, which is bounded by n2; q, the number of objective functions;

and k, the number of new solutions to be inserted.

Theorem 4. Algorithm 2 for inserting k non-comparable solutions has com-

plexity O(n2k + nkq).

Proof. In order to demonstrate the result, the different steps of Algorithm 2

are considered. First, in Function LabelingProcessNC, the comparison of each

solution of the current population with the set of non-comparable solutions is

made at most once, so it reaches a complexity O(nkq). Functions AscLabelNC

and DescLabelNC are called at most n times. Inside each of these functions

the needed calculations are the following: The list of incident or salient arcs

of each node are examined at most k times, since, in order to be included in

NodeList, a component of the label equal to 0 or 2 must be changed to 1 and

p(x) is reduced by, at least, one. Then, the complexity for visiting all the arcs is

O(mk). In addition, in each execution of AscLabelNC or DescLabelNC the label

vector of any node is examined at most once and these functions are executed

at most n times so a complexity of O(n2k) is added. Summarizing, the labeling

process has a complexity of O(n2k + nkq), since O(mk) is included in O(n2k)

since m < n2.

To determine sets B∗
j and b∗j the algorithm needs to examine the list of labels

26

Page 27 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

of every node and it needs O(nk). For removing the arcs between B∗
j and b∗j ,

the list of all salient arcs from nodes of B∗
j are examined. Then, all their ends

are tested looking for negative labels in the same components as the start ones,

so, at most m arcs are examined and for each one at most k components of

the label vector are examined, hence a global complexity of O(mk) is obtained,

which again is included in the term of n2k.

Finally, to add the k new solutions, the algorithm needs O(k) operations

and to add the new arcs between B∗
j and yj and yj and b∗j O(nk) since each

pair B∗
j and b∗j contains at most n nodes and the algorithm has to repeat the

operation at most for each of the k new solutions.

Adding up, the whole complexity is O(n2k + nkq). �

Theorem 5. Algorithm 3 for inserting a sequence of k dominated solutions has

complexity O(n log n+m+ nkq).

Proof. In order to demonstrate the result, the different steps of Algorithm 3

are considered. First, in Function LabelingProcessC, its first step is Func-

tion ListAssignmentC, in which each solution of the current population is com-

pared to each yj , which takes O(nkq). Then, each loop examines, at most once,

the arc set of the graph since the solutions are taken from the successive disjoint

sets j−1Lj and
jLj−1 in order, so it requires O(m) and hence, the whole process

is O(m+ nkq).

To obtain sets B∗h
j and b∗hj , ∀j and h = 1, 2, first the labels are examined

and each node with a positive or negative label is assigned the level to which it

belongs, then the sets are sorted. The examination of the labels takes n steps

and the sorting n log n, so this subprocess takes O(n log n).

To remove all the arcs, since B∗h
j and b∗hj , h = 1, 2 are disjoint, the salient

arcs from nodes in B∗h
j are examined only once in order to determine if the end

of the arc reaches a node with an appropriate negative label. So the process

takes O(m).

Finally k new solutions are added, O(k), and the arcs to reflect the new

relationships are added too. Since sets B∗h
j and b∗hj , h = 1, 2 are disjoint, at

27

Page 28 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

most 2n+ k arcs are added, so the complexity is O(n+ k).

Adding up, the complexity becomes O(n log n+m+ nkq). �

The next step is to calculate the complexity associated with repeating k

times the process proposed in Alberto and Mateo [2]. The complexity for the

insertion of one new solution in a graph with m arcs and n nodes is O(m+nq).

To obtain this value it is taken into account that the process of comparing each

existing solution with the new one was O(nq), the labeling process was O(m),

the determination of the sets B∗ and b∗ was O(n), the deletion of the arcs

between those sets was O(m), the insertion of the new solution was O(1), and

the insertion of the new arcs was O(n), resulting in the mentioned complexity

O(m+ nq).

Theorem 6. The process of inserting k non-comparable solutions by iteratively

applying Algorithm 1 from Alberto and Mateo [2] reaches complexity O(n2k +

nk2 + k3 + nqk).

Proof. First, comparing the nodes with the successive new solutions, assuming

that their relation is known, it is only necessary to compare the initial solutions

with each of the new ones, which gives a complexity of O(nqk). Although the

labeling process depends on the number of arcs and it is going to vary as the

new solutions are added, the complexity of this part is O(mk), since none of

the new added solutions will be labeled and then, only the original arcs of the

graph will participate in this process.

To obtain successive sets B∗
j and b∗j will consume O(nk), k pairs of sets that

only involve the original solutions (the new ones will never belong to those sets).

For the arc deletion process it has to be taken into account that the com-

plexity is of the order of the arc number, since each time the algorithm has

to visit all the arcs with the origin in B∗
j to see if they reach a node in the

corresponding b∗j , and there, the new arcs added will also appear. However,

the number of arcs varies when a new node is added, so it is difficult to find

a value. Therefore, instead of considering the arc number, its maximum will

28

Page 29 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

be considered, which is equal to the square of the number of nodes (m < n2),

which is equal to
∑k

j=1(n+ j)2 = kn2 + (2n(k + 1)k/2) + (k(k + 1)(2k + 1)/6)

which leads O(k(n2 + nk + k2)).

Finally, the insertion of the new arcs requires (in a trivial way) O(nk), since

again no arcs between new nodes are added.

Hence, and taking into account that O(mk) is included in O(n2k), the global

complexity is equal to O(n2k + nk2 + k3 + nqk). �

Theorem 7. The process of inserting a sequence of k dominated solutions by

iteratively applying Algorithm 1 from Alberto and Mateo [2] reaches complexity

O(n2k + nk2 + k3 + nqk).

Proof. Similarly to Theorem 6, the complexity is fixed by the initial compar-

isons of the new solutions against the current ones, O(nqk), and the operations

involving the examination of all the arcs of the graph. As the number of arcs

varies with the addition of the new solutions, this number is bound by using the

square of the number of nodes and the earlier complexity O(k(nk+n2+k2)) is ob-

tained. So, globally the process reaches a complexity of O(n2k+nk2+k3+nqk).

�

From the above theorems it can be seen that, in the case of non-comparable

solutions, the complexity with the new methodology proposed is equal to or

improves the computational complexity of the successive application of the orig-

inal algorithm; and in the case of dominated solutions the complexity with new

methodology improves the one obtained with the original algorithm.

Finally, on the complexity associated with the storage of the different struc-

tures used, all of them have the same complexity: Those derived from the storage

of the arc lists of the largest graph, which, in theory, would correspond to the

graph with n+ k nodes.

6. Experiments

In order to test the behavior of the proposed insertion algorithms, firstly, a

computational analysis, in which the new proposal is compared with the orig-

29

Page 30 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

inal one, is carried out. Secondly, a specialized NDS algorithm, ENLU [19],

which uses arrays to store the population, is compared to Algorithms 2 and 3.

ENLU has been proved by their authors to be more efficient than well-known

NDS’s in the literature as Deductive Sort [21], Corner Sort [25] and ENS-BS/SS

[26]. The ENLU complexity for inserting one newly created offspring into the

population is O(n2q); then, for successively inserting k individuals, operating

as in Theorem 6, the complexity will be O(n2qk + nqk2 + qk3). So, compared

to Algorithms 2 and 3, the theoretical complexity of the selected NDS algo-

rithm is higher. For instance, assuming that the size of the batch k is a pro-

portion of the population size n, and then O(k) ≡ O(n), the complexity of

ENLU reaches O(n3q) while Algorithm 2 reaches O(n3+n2q) and Algorithm 3,

O(n log n+m+n2q). Therefore, ENLU has a higher complexity by a factor of q

when compared to Algorithm 2, and n when compared to Algorithm 3. This fact

will be confirmed in the practical experiment, in which ENLU computational

time will be the highest.

The performance of the algorithms is measured in terms of execution time

and number of Pareto comparisons (comparisons between solutions in order

to know their Pareto relation). All the experiments have been executed in an

Intel(R) Core(TM) i7 870/2.93GHz, and the authors’ programs have been coded

in GNU C under Linux (Ubuntu 14.04 Trusty). The Java code of ENLU has

been obtained from [18] and literally rewritten in C. The codification has been

accomplished assuming that the size of the subpopulations are not known in

advance, so, there can be no previous optimization.

To guarantee that the proposed algorithms will confront efficient solution

sets of different characteristics, a wide set of test problems proposed in [16]

has been used. A short description of the test suite used is shown in Table 1,

which has been obtained from the work mentioned. For each problem, a set

of random populations with different sizes are built. Then, subpopulations of

non-comparable and dominated solutions with different sizes are built for each

problem. The summary of these sets can be seen in Table 2.

For each combination of problem and population size, 25 replicas for each

30

Page 31 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

Test Objective No. of Total no. Separability

problem functions variables of variables and modality Geometry

1. S-ZDT1 f1 1 30 S, U convex

f2 29 S, U

2. S-ZDT2 f1 1 30 S, U concave

f2 29 S, U

3. S-ZDT4 f1 1 30 S, U convex

f2 29 S, M

4. R-ZDT4 f1:2 10 10 NS, M convex

5. S-ZDT6 f1 1 30 S, M concave

f2 29 S, M

6. S-DTLZ2 f1:3 10 10 S, U concave

7. R-DTLZ2 f1:3 10 10 NS, M concave

8. S-DTLZ3 f1:3 10 10 S, M concave

9. SYMPART f1:2 30 30 NS, M concave

10. WFG1 f1:3 24 24 S, U mixed

11. WFG8 f1:3 24 24 NS, U concave

12. WFG9 f1:3 24 24 NS, M, D concave

Table 1: Properties of the test functions. S: Separable; NS: Nonseparable; U: Unimodal; M:
Multimodal; D: Deceptive.

PS 300, 500, 1000 and 1500 individuals
SPS 2%, 5%, 10%, 20%, 30%, 40%, 50% of the PS
No. subpopulations 25 for each PS, SPS and problem

Table 2: Characteristics of the populations and subpopulations (set of non-comparable solu-
tions and sequence of dominated solutions) built. PS = population size, SPS = subpopulation
size.

subpopulation size are incorporated into the population (and later removed to

recover the initial population using the removal algorithm presented in [2]) by

using the new algorithms and by repeatedly applying (SPS times) the original

algorithm. The insertion execution time (in nanoseconds, Ns.) and the number

of Pareto comparisons are recorded in order to compare the algorithms.

For the first experiment, Tables 3 and 5 show the ratio between the time

required for inserting the solutions with the new proposal and with the original

algorithm. In addition, Tables 4 and 6 show the ratio between the number

of Pareto comparisons carried out for the new proposal and with the original

algorithm. The rows show the population size (PS); and the columns, the

subpopulation size (SPS, number of new solutions) in terms of a percentage of

the population size.

31

Page 32 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

For contrasting the performance of both algorithms, a statistical two-sided

Wilcoxon signed rank test was performed, with a significance level equal to 0.05.

When the value of the table is in italics it means that the original algorithm

outperforms the new methodology, if the value is in boldface it means that

both methodologies can be considered equivalent, and finally, when the value is

in standard text, it means that the new methodology outperforms the original

one.

SPS SPS
PS 2% 5% 10% 20% 30% 40% 50% 2% 5% 10% 20% 30% 40% 50%

300

S
Z
D
T
1 1.28 1.05 0.92 0.78 0.73 0.65 0.63

S
Z
D
T
2 1.10 0.86 0.72 0.61 0.55 0.51 0.49

500 1.18 0.94 0.81 0.71 0.67 0.62 0.59 0.98 0.74 0.62 0.52 0.50 0.47 0.44
1000 0.95 0.80 0.71 0.59 0.57 0.52 0.48 0.71 0.58 0.51 0.43 0.39 0.35 0.33
1500 0.85 0.69 0.60 0.52 0.48 0.46 0.40 0.61 0.51 0.44 0.37 0.32 0.30 0.27

300

S
Z
D
T
4 1.03 0.85 0.70 0.60 0.53 0.50 0.46

R
Z
D
T
4 1.20 0.91 0.82 0.69 0.62 0.58 0.54

500 0.87 0.71 0.61 0.53 0.48 0.48 0.43 1.02 0.80 0.71 0.63 0.55 0.53 0.51
1000 0.76 0.60 0.50 0.43 0.40 0.36 0.33 0.84 0.71 0.64 0.52 0.48 0.43 0.40
1500 0.61 0.51 0.42 0.37 0.33 0.29 0.29 0.76 0.60 0.52 0.45 0.36 0.34 0.28

300

S
Z
D
T
6 1.08 0.84 0.69 0.58 0.51 0.46 0.46

S
D
T
lZ
2 1.06 0.99 0.92 0.83 0.77 0.74 0.67

500 0.90 0.68 0.57 0.51 0.46 0.44 0.41 1.03 0.96 0.83 0.81 0.76 0.74 0.64
1000 0.70 0.56 0.47 0.39 0.38 0.33 0.31 0.94 0.81 0.78 0.71 0.63 0.56 0.57
1500 0.61 0.49 0.41 0.35 0.30 0.29 0.25 0.89 0.77 0.69 0.63 0.58 0.57 0.49

300

R
D
T
L
Z
2 1.12 1.05 0.96 0.88 0.84 0.78 0.79

S
D
T
L
Z
3 1.03 0.93 0.94 0.81 0.75 0.73 0.71

500 1.04 0.94 0.95 0.87 0.82 0.73 0.70 1.02 0.96 0.85 0.81 0.78 0.77 0.71
1000 0.99 0.92 0.85 0.74 0.70 0.65 0.61 0.97 0.84 0.77 0.71 0.66 0.61 0.59
1500 0.92 0.85 0.79 0.71 0.63 0.61 0.59 0.90 0.79 0.72 0.67 0.62 0.58 0.51

300

S
Y
M
P
. 0.56 0.38 0.31 0.23 0.23 0.22 0.20

W
F
G
1 0.93 0.82 0.74 0.64 0.62 0.54 0.54

500 0.38 0.29 0.23 0.20 0.19 0.18 0.17 0.82 0.76 0.68 0.59 0.58 0.52 0.54
1000 0.29 0.20 0.18 0.16 0.14 0.14 0.14 0.78 0.67 0.57 0.53 0.49 0.47 0.44
1500 0.23 0.18 0.15 0.13 0.13 0.13 0.11 0.67 0.60 0.55 0.48 0.45 0.43 0.39

300

W
F
G
8 0.93 0.84 0.77 0.75 0.69 0.65 0.63

W
F
G
9 0.92 0.77 0.79 0.77 0.75 0.76 0.66

500 0.88 0.82 0.78 0.73 0.70 0.67 0.62 0.87 0.84 0.76 0.72 0.72 0.71 0.70
1000 0.84 0.81 0.76 0.71 0.68 0.64 0.59 0.83 0.75 0.77 0.74 0.74 0.70 0.68
1500 0.81 0.75 0.74 0.69 0.67 0.64 0.59 0.80 0.77 0.72 0.77 0.74 0.68 0.67

Table 3: Ratio of time, in nanoseconds, for the new and original algorithms, for k non-
comparable solutions.

In general, and as might be expected, for small values of PS and SPS, the

laboriousness required to implement the new algorithm produces little decrease

in execution time. For example, in Table 3, situations in which Algorithm 2 is

not competitive with respect to Algorithm 1 appear only on 8 occasions, most of

which are with PS= 300 and SPS= 2%. It can be observed that when SPS> 5%,

32

Page 33 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

Algorithm 2 is never surpassed by Algorithm 1. It is also observed that as PS

and SPS increase, the gain obtained when applying Algorithm 2 increases pro-

gressively. For example, the percentage of times in which Algorithm 2 reduces

the execution time by half or more is 26.79% (90 out of 336 in which the entries

are less than or equal to 0.5 in Table 3); being 16.07% when PS= 300 or 500 and

37.5% when PS= 1000 or 1500. This behavior can also be observed graphically,

as an example, in the first column of Fig. 9, for problem S ZDT23, where the

difference in execution time between Algorithm 2 (in blue) and Algorithm 1 (in

red) increases progressively as PS and SPS increase.

SPS SPS
PS 2% 5% 10% 20% 30% 40% 50% 2% 5% 10% 20% 30% 40% 50%

300

S
Z
D
T
1 0.99 0.97 0.94 0.89 0.85 0.80 0.77

S
Z
D
T
2 0.99 0.96 0.93 0.87 0.81 0.76 0.72

500 0.99 0.97 0.94 0.89 0.84 0.80 0.76 0.98 0.96 0.92 0.86 0.81 0.76 0.71
1000 0.99 0.97 0.94 0.88 0.84 0.79 0.76 0.98 0.96 0.92 0.86 0.80 0.75 0.71
1500 0.99 0.97 0.94 0.88 0.84 0.80 0.74 0.98 0.96 0.92 0.85 0.80 0.75 0.68

300

S
Z
D
T
4 0.99 0.96 0.93 0.87 0.81 0.76 0.71

R
Z
D
T
4 0.99 0.96 0.93 0.87 0.81 0.76 0.72

500 0.98 0.96 0.93 0.86 0.80 0.76 0.71 0.98 0.96 0.93 0.87 0.80 0.76 0.73
1000 0.98 0.96 0.92 0.86 0.80 0.75 0.71 0.98 0.96 0.93 0.86 0.81 0.75 0.71
1500 0.98 0.96 0.92 0.85 0.80 0.74 0.70 0.98 0.96 0.92 0.86 0.78 0.74 0.66

300

S
Z
D
T
6 0.99 0.96 0.92 0.86 0.80 0.75 0.71

S
D
T
L
Z
2 0.99 0.98 0.95 0.91 0.87 0.83 0.80

500 0.98 0.96 0.92 0.85 0.80 0.74 0.70 0.99 0.98 0.95 0.91 0.87 0.83 0.79
1000 0.98 0.96 0.92 0.85 0.79 0.74 0.69 0.99 0.97 0.95 0.91 0.87 0.83 0.80
1500 0.98 0.96 0.92 0.85 0.79 0.74 0.68 0.99 0.98 0.95 0.91 0.86 0.83 0.79

300

R
D
T
L
Z
2 0.99 0.98 0.95 0.91 0.87 0.83 0.80

S
D
T
L
Z
3 0.99 0.98 0.95 0.91 0.87 0.84 0.80

500 0.99 0.98 0.95 0.91 0.87 0.83 0.80 0.99 0.98 0.95 0.91 0.87 0.83 0.80
1000 0.99 0.98 0.95 0.91 0.87 0.83 0.80 0.99 0.98 0.95 0.91 0.87 0.83 0.80
1500 0.99 0.98 0.95 0.91 0.87 0.83 0.80 0.99 0.98 0.95 0.91 0.87 0.83 0.80

300

S
Y
M
P
. 0.94 0.87 0.78 0.57 0.54 0.48 0.42

W
F
G
1 0.99 0.97 0.95 0.90 0.86 0.82 0.79

500 0.91 0.84 0.73 0.60 0.51 0.44 0.40 0.99 0.97 0.95 0.90 0.86 0.82 0.79
1000 0.92 0.81 0.70 0.57 0.44 0.39 0.35 0.99 0.97 0.95 0.90 0.86 0.82 0.79
1500 0.93 0.83 0.70 0.51 0.46 0.42 0.34 0.99 0.97 0.95 0.90 0.86 0.82 0.78

300

W
F
G
8 0.99 0.98 0.96 0.91 0.88 0.84 0.81

W
F
G
9 0.99 0.98 0.96 0.91 0.88 0.84 0.81

500 0.99 0.98 0.96 0.91 0.88 0.84 0.81 0.99 0.98 0.95 0.91 0.87 0.84 0.81
1000 0.99 0.98 0.95 0.91 0.87 0.84 0.81 0.99 0.98 0.95 0.91 0.87 0.84 0.81
1500 0.99 0.98 0.95 0.91 0.87 0.84 0.81 0.99 0.98 0.95 0.91 0.87 0.84 0.81

Table 4: Ratio of number of Pareto comparisons, for the new and original algorithms, for k
non-comparable solutions.

3For the rest of problems, the behavior is quite similar to S ZDT2, so, those figures are
not shown

33

Page 34 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

10 20 30 40 50

0
60

00
00

PS= 300

% of population size

na
no

se
co

nd
s

10 20 30 40 50

0
20

00
0

40
00

0

PS= 300

% of population size

C

om
pa

ris
on

s

10 20 30 40 50

0
15

00
00

0

PS= 500

% of population size

na
no

se
co

nd
s

10 20 30 40 50

0e
+

00
6e

+
04

PS= 500

% of population size

C

om
pa

ris
on

s

10 20 30 40 500.
0e

+
00

1.
5e

+
07

PS= 1000

% of population size

na
no

se
co

nd
s

10 20 30 40 50

0e
+

00
3e

+
05

PS= 1000

% of population size

C

om
pa

ris
on

s

10 20 30 40 50

0e
+

00
3e

+
07

PS= 1500

% of population size

na
no

se
co

nd
s

10 20 30 40 50

0e
+

00
6e

+
05

PS= 1500

% of population size

C

om
pa

ris
on

s

Problem S_ZDT2

Figure 9: Simultaneous insertion of k non-comparable solutions. Evolution of the time, in
nanoseconds (left) and the number of Pareto comparisons (right), for problem S ZDT2, in
function of the SPS (expressed in terms of % of PS), for PS=300, 500, 1000 and 1500. Algo-
rithm 1 in red, Algorithm 2 in blue.

34

Page 35 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

As for the number of Pareto comparisons made, in Table 4 it can be observed

that Algorithm 2 is significantly better than Algorithm 1 because in no case does

Algorithm 1 surpass or equal the new one. Although the gain in the number of

Pareto comparisons is not as great as the gain obtained in time, more than 50%

of the time (concretely 53.57%) Algorithm 2 produces an improvement of at least

10%. It is also observed that the difference between the two algorithms increases

progressively as PS and SPS grow. We should also note that the reduction in the

number of Pareto comparisons would be greater since, in the calculation of these

values with Algorithm 1, we have subtracted the quantity k(k − 1)/2 that are

the comparisons resulting from comparing the new solutions y1, . . . , yk with each

other. In this way, both methodologies use the same amount of information,

that is, both use the fact that the new solutions are non-comparable. If these

comparisons were included in the case of the original algorithm, a quadratic

behavior could be observed in the second column of Fig. 9 instead of a quasi-

linear behavior as a function of SPS.

In the case of inserting a sequence of k dominated solutions, the results in

Tables 5 and 6 show that the improvements when using Algorithm 3 instead of

Algorithm 1 are even better than when inserting k non-comparable solutions,

except when considering PS moderate and SPS equal to 2%. Similar to what

happened in the previous case, for moderate values of PS and SPS, the complex-

ity of Algorithm 3 makes it impossible to outperform Algorithm 1 with respect

to the time needed (Table 5). However, from there, for incorporations of 5% or

more solutions, in almost all situations (except in 2 out of 288) Algorithm 3 is

equal to or better than Algorithm 1 (in 5 out of 288 times both algorithms are

equivalent, and in 281 of 288 Algorithm 3 is better than Algorithm 1).

Also, in the first column of Fig. 10 for problem S ZDT2, it can be observed

that, in this case, Algorithm 3 has a steeper improvement with respect to Al-

gorithm 1 than in the previous case.

As for the number of Pareto comparisons, Table 6, we can see that, except for

2 occasions in which both algorithms are equivalent, in all the others Algorithm 3

is significantly better than Algorithm 1. Moreover, in this case the improvement

35

Page 36 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

SPS SPS
PS 2% 5% 10% 20% 30% 40% 50% 2% 5% 10% 20% 30% 40% 50%

300
S
Z
D
T
1 2.61 1.09 0.56 0.33 0.24 0.20 0.16

S
Z
D
T
2 2.18 0.80 0.49 0.29 0.19 0.16 0.14

500 1.52 0.67 0.35 0.23 0.16 0.14 0.12 1.43 0.52 0.30 0.18 0.14 0.11 0.10
1000 0.90 0.34 0.23 0.14 0.11 0.09 0.08 0.65 0.29 0.17 0.12 0.09 0.08 0.08
1500 0.52 0.24 0.14 0.09 0.08 0.07 0.06 0.43 0.20 0.13 0.09 0.08 0.07 0.06

300

S
Z
D
T
4 1.99 0.92 0.48 0.30 0.19 0.17 0.15

R
Z
D
T
4 1.86 0.85 0.50 0.26 0.20 0.17 0.14

500 1.20 0.58 0.35 0.19 0.15 0.12 0.09 1.24 0.53 0.31 0.18 0.13 0.11 0.09
1000 0.71 0.34 0.18 0.12 0.09 0.07 0.06 0.66 0.30 0.18 0.11 0.09 0.07 0.07
1500 0.44 0.24 0.14 0.08 0.07 0.05 0.05 0.46 0.20 0.11 0.08 0.06 0.06 0.05

300

S
Z
D
T
6 2.02 0.86 0.48 0.27 0.22 0.16 0.14

S
D
T
L
Z
2 2.65 1.07 0.58 0.32 0.26 0.20 0.17

500 1.19 0.64 0.33 0.21 0.14 0.12 0.12 1.67 0.70 0.38 0.25 0.18 0.14 0.13
1000 0.67 0.30 0.19 0.12 0.10 0.08 0.07 0.95 0.41 0.26 0.15 0.13 0.11 0.10
1500 0.40 0.19 0.11 0.09 0.07 0.07 0.06 0.67 0.29 0.18 0.12 0.09 0.09 0.08

300

R
D
T
lZ
2 2.54 1.04 0.55 0.32 0.24 0.18 0.16

S
D
T
L
Z
3 2.51 1.09 0.56 0.34 0.24 0.20 0.17

500 1.53 0.61 0.36 0.22 0.15 0.13 0.12 1.69 0.69 0.37 0.22 0.17 0.14 0.13
1000 0.82 0.36 0.21 0.12 0.11 0.08 0.08 0.98 0.38 0.22 0.14 0.11 0.09 0.08
1500 0.54 0.25 0.12 0.09 0.07 0.07 0.06 0.60 0.29 0.16 0.10 0.09 0.07 0.06

300

S
Y
M
P
. 1.47 0.61 0.33 0.18 0.12 0.10 0.08

W
F
G
1 2.27 1.10 0.62 0.35 0.27 0.22 0.20

500 0.82 0.34 0.19 0.10 0.08 0.06 0.06 1.52 0.70 0.41 0.27 0.20 0.16 0.14
1000 0.39 0.18 0.10 0.06 0.04 0.04 0.03 0.88 0.40 0.27 0.15 0.13 0.12 0.10
1500 0.25 0.11 0.07 0.04 0.03 0.03 0.02 0.68 0.26 0.18 0.12 0.10 0.09 0.08

300

W
F
G
8 2.51 1.19 0.70 0.46 0.36 0.32 0.28

W
F
G
9 2.44 1.05 0.59 0.36 0.27 0.24 0.21

500 1.62 0.78 0.49 0.34 0.28 0.25 0.22 1.57 0.73 0.42 0.25 0.21 0.18 0.16
1000 0.99 0.47 0.32 0.23 0.19 0.16 0.15 0.87 0.42 0.24 0.16 0.12 0.12 0.10
1500 0.72 0.34 0.22 0.17 0.13 0.12 0.11 0.64 0.31 0.18 0.12 0.09 0.08 0.08

Table 5: Ratio of time, in nanoseconds, for the new and original algorithms, for a sequence of
k dominated solutions.

is greater than in the case of non-comparable solutions. For example, in 88.39%

of the occasions it reduces to less than half the number of Pareto comparisons

made; and a reduction of 75% occurs in 22.62% of the occasions.

In the second column of Fig. 10 we can see the evolution of the difference

in number of Pareto comparisons with each algorithm (Algorithm 3 in blue and

Algorithm 1 in red) as a function of PS and SPS. In this case, it can be seen

that the separation between the two lines is more pronounced than in the case

of non-comparable solutions.

As we have said before, in the second experiment, Algorithms 2 and 3 are

compared to ENLU. With respect to the first objective, time needed for the in-

sertions, ENLU always presents worse behavior than the proposed algorithms,

except in 3 out of 672 cases (12 test problems × 4 PS × 7 SPS and 2 algorithms)

36

Page 37 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

SPS SPS
PS 2% 5% 10% 20% 30% 40% 50% 2% 5% 10% 20% 30% 40% 50%

300

S
Z
D
T
1 0.51 0.40 0.35 0.31 0.29 0.27 0.28

S
Z
D
T
2 0.58 0.55 0.45 0.33 0.38 0.35 0.32

500 0.39 0.31 0.31 0.26 0.25 0.24 0.22 0.49 0.49 0.43 0.35 0.33 0.29 0.29
1000 0.28 0.31 0.26 0.26 0.24 0.22 0.21 0.54 0.51 0.42 0.38 0.43 0.33 0.36
1500 0.32 0.28 0.28 0.25 0.25 0.22 0.22 0.51 0.51 0.47 0.49 0.40 0.38 0.34

300

S
Z
D
T
4 0.71 0.55 0.44 0.36 0.31 0.30 0.30

R
Z
D
T
4 0.83 0.62 0.54 0.48 0.40 0.42 0.42

500 0.62 0.49 0.33 0.33 0.32 0.25 0.24 0.65 0.56 0.47 0.42 0.41 0.42 0.39
1000 0.45 0.33 0.34 0.28 0.27 0.25 0.28 0.60 0.47 0.45 0.45 0.33 0.36 0.37
1500 0.48 0.37 0.38 0.32 0.30 0.25 0.30 0.52 0.48 0.45 0.34 0.39 0.35 0.31

300

S
Z
D
T
6 0.68 0.67 0.48 0.50 0.46 0.35 0.37

S
D
T
L
Z
2 0.36 0.31 0.27 0.26 0.22 0.21 0.22

500 0.68 0.46 0.49 0.40 0.43 0.36 0.31 0.30 0.28 0.23 0.24 0.22 0.20 0.21
1000 0.56 0.47 0.39 0.41 0.36 0.33 0.32 0.31 0.25 0.23 0.23 0.23 0.21 0.20
1500 0.53 0.50 0.46 0.37 0.40 0.39 0.34 0.26 0.27 0.24 0.23 0.20 0.21 0.19

300

R
D
T
lZ
2 0.47 0.38 0.37 0.35 0.32 0.34 0.35

S
D
T
L
Z
3 0.42 0.32 0.30 0.30 0.27 0.29 0.26

500 0.39 0.38 0.36 0.36 0.34 0.34 0.30 0.32 0.28 0.29 0.26 0.24 0.25 0.23
1000 0.34 0.34 0.35 0.34 0.29 0.30 0.23 0.27 0.28 0.26 0.25 0.25 0.22 0.21
1500 0.30 0.28 0.31 0.27 0.26 0.26 0.29 0.24 0.22 0.22 0.24 0.23 0.20 0.21

300

S
Y
M
P
. 1.08 0.72 0.58 0.48 0.39 0.35 0.31

W
F
G
1 0.58 0.39 0.37 0.38 0.33 0.34 0.36

500 0.95 0.74 0.62 0.46 0.42 0.39 0.36 0.47 0.39 0.37 0.34 0.37 0.35 0.27
1000 0.88 0.73 0.59 0.52 0.48 0.44 0.35 0.35 0.34 0.32 0.34 0.31 0.28 0.32
1500 0.85 0.67 0.62 0.53 0.46 0.39 0.35 0.33 0.35 0.37 0.32 0.32 0.25 0.30

300

W
F
G
8 0.57 0.51 0.48 0.45 0.43 0.41 0.40

W
F
G
9 0.44 0.36 0.33 0.30 0.27 0.27 0.27

500 0.47 0.42 0.41 0.38 0.36 0.35 0.33 0.32 0.27 0.25 0.24 0.23 0.23 0.22
1000 0.32 0.30 0.28 0.27 0.26 0.25 0.23 0.22 0.19 0.18 0.18 0.16 0.16 0.16
1500 0.26 0.24 0.23 0.22 0.21 0.20 0.20 0.18 0.16 0.15 0.14 0.14 0.13 0.13

Table 6: Ratio of number of Pareto comparisons, for the new and original algorithms, for a
sequence of k dominated solutions.

in which ENLU behaves slightly better, and 2 cases in which both can be consid-

ered equivalent4. In Figs. 11 and 12 left we show the results for S ZDT2, which

is representative of the behavior of all the problems. On the other hand, with

regard to the number of Pareto comparisons accomplished, the results depend

on the type of inserted solutions. For the case of non-comparable solutions,

ENLU behaves significantly better than Algorithm 2 in all the problems except

for SYMPART, where Algorithm 2 exhibits a slightly better performance. The

general behavior of ENLU versus Algorithm 2 can be observed in Fig. 11 right.

When the case of dominated solutions is considered, the behavior is the oppo-

4As the summary of the experiment is reduced to stating that in only 5 cases the behavior
of Algorithms 2 and 3 do not outperform ENLU, the equivalent tables to Tables 3 and 5 are
not shown.

37

Page 38 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

site: Algorithm 3 outperforms ENLU in all the cases except in 9 out of the 336

situations, in which both algorithms can be considered equivalent. In Fig. 12

this general behavior, which can be extrapolated to the rest of problems, can

be observed in the particular case of problem S ZDT2.5

Hence, taking into account the results obtained with these experiments and,

with regard to the time, we have verified the improvement in the practical

behavior of the new proposed algorithms in comparison with Algorithm 1 and

ENLU, in a wide battery of test problems.

With respect to the number of Pareto comparisons both, Algorithms 2 and

3, progressively improve Algorithm 1, when PS and/or SPS increase. When

comparing to ENLU and considering sets of non-comparable solutions, ENLU

shows a better performance which gets higher as PS and/or SPS increases.

However when considering sets of dominated solutions the behavior drastically

changes, being Algorithm 3 significantly better than ENLU.

7. Conclusions and future research lines

In this work two new algorithms for the solution batch insertion into a pop-

ulation of a MOEA have been presented. Their theoretical complexities have

been calculated and they have also been compared with the original proposal

(Alberto and Mateo [2]) and a well-known NDS algorithm (Li et al. [19]). In

these comparisons, the new proposals generally outperform the others when the

execution time is considered; only when the population and batch sizes are re-

ally small, the newly proposed algorithms could not be that competitive due

to the laboriousness needed for the implementation. When taking into account

the number of Pareto comparisons, the new proposal shows, in general, the best

behavior, except for non-comparable solutions for which the new algorithm is

better than the original one but shows a worse performance than ENLU. In gen-

eral, the higher the population and batch sizes, the higher the outperformance

of the new proposal.

5The corresponding tables are omitted for the same reason as before.

38

Page 39 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

The next step to carry out to study and corroborate the advantages in the

use of these new proposals will be to implement these tools in some of the ex-

isting algorithms. A first interesting idea could be to test it in parallel genetic

algorithms [5] as, for instance, the ones based on island models, in which the dif-

ferent demes can be stored by using particular IDGs. Then, in any of the IDGs,

classical search network algorithms can be used to obtain paths (batches of dom-

inated solutions) or to obtain non-connected nodes (batches of non-comparable

solutions). Once these batches are identified, the different migration schemas

that these kinds of algorithms carry out could be accomplished in a more effi-

cient way by using the proposed algorithms.

A second idea could be to use the new methodology in standard PDMOEAs

(such as NSGA-II) in which, once the population of descendants has been ob-

tained, batches of non-comparable or dominated solutions extracted from this

set would be identified for their insertion into the current population (before

the selection process). These batches can be built by using simple rules, for

instance, two descendants are taken; if they are non-comparable (or if one dom-

inates the other) a third one is taken and compared. If the three solutions are

non-comparable (or if they are a sequence of dominated solutions), a forth one is

considered. The process is considered finished when one solution is found which

dominates or is dominated by at least one of the previous solutions (or if a so-

lution breaks the sequence of dominated solutions). Subsequently, Algorithm 2

(or Algorithm 3) is applied and the process is repeated with the remaining

descendants. Another possibility, instead of using simple rules, would be to

build a new IDG in which to store the descendants and extract from it sets of

dominated/non-comparable solutions to be inserted, as we have commented for

parallel algorithms. In the first possibility, unlike what we have done in this

work, the new algorithms could be programmed taking into account that the

size of the batches would be smaller, and therefore, the algorithms could be op-

timized taking into consideration this fact and the improvement could become

greater than the one reached in the experiments presented.

39

Page 40 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

Appendix. Theoretical results

Lemma 2. Given yi and yj such that yi �∼ yj , then Bi ∩ bj = ∅. As a

consequence, B∗
i ∩ b∗j = ∅.

Proof. By contradiction, let’s assume that Bi ∩ bj �= ∅, i.e., ∃x ∈ Bi ∩ bj .

So, since x ∈ bj , it holds that yj ≺ x; and since x ∈ Bi, it holds that x ≺ yi.

Then, by the transitivity of the domination relation, it holds that yj ≺ yi, but,

however, yi �∼ yj , which is a contradiction. �

Lemma 3. Once sets B∗h
j , b∗lj , h, l = 2, 3, j = 1, . . . , k, have been identified, in

order to insert y1, . . . , yk, such that y1 ≺ · · · ≺ yk, the following steps need to

be followed6:

1. Remove the arcs: B∗h
j → b∗li for i, j = 1, . . . , k, j ≤ i and h, l = 2, 3.

2. Add the nodes: yj , j = 1, . . . , k.

3. Add the arcs:

- B∗h
j → yj , for j = 1, . . . , k, h = 2, 3.

- yj → b∗lj for j = 1, . . . , k and l = 2, 3.

- And if ∃j, j = 1, . . . , k, such that b∗3j = ∅ (and, by Lemma 6, B∗3
j+1 =

∅) the arc yj → yj+1 is incorporated.

Proof. 1. As stated in Alberto and Mateo [2], to insert yj into an IDG, all

the arcs B∗
j → b∗j , j = 1, . . . , k need to be removed. By Lemma 5, it holds

that B∗
j ⊂

⋃j
i=1

(
B∗2

i ∪̇B∗3
i

)
and b∗j ⊂

⋃k
i=j

(
b∗2i ∪̇b∗3i

)
, and sets B∗2

i , B∗3
i ,

b∗2i and b∗3i were identified in the labeling process with labels lp(x) = 2i,

lp(x) = 2i + 1, ln(x) = −2j − 2 and ln(x) = −2j − 3, respectively. So, if

all arcs B∗h
j → b∗li for i, j = 1, . . . , k, j ≤ i and h, l = 2, 3 are removed,

arcs B∗
j → b∗j , j = 1, . . . , k have also certainly been removed.

But now however, there is the doubt of whether too many arcs have been

removed, since the arcs between larger sets of nodes have been removed.

6For the proof of Lemma 3, Lemmas 4 to 6 need to be stated.

40

Page 41 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

To see that it is not so, suppose that ∃x1 → x2 in the initial IDG with

x1 ∈
⋃

h≤j

(
B∗2

h ∪̇B∗3
h

)
\B∗

j and x2 ∈
⋃

h≥i

(
b∗2h ∪̇b∗3h

)
\ b∗i , j ≤ i, and then,

x1 ∈ Bj and x2 ∈ bi. This means that x1 is an ancestor but not a parent

of yj and x2 is a descendant but not a child of yi. Then ∃x′, x′′ such that

x1 ≺ · · · ≺ x′ ≺ yj ≺ yi ≺ x′′ ≺ · · · ≺ x2, and then, the domination

relation x1 ≺ · · · ≺ x′ ≺ x′′ ≺ · · · ≺ x2 has to be reflected in the initial

IDG by means of a trajectory x1 ↪→ x′ ↪→ x′′ ↪→ x2.

Therefore, in the initial IDG there exist both the arc x1 → x2 and the

trajectory x1 ↪→ x2, which is a contradiction with Lemma 1. Hence, the

arc x1 → x2 does not exist in the initial IDG and so it is not possible to

remove it.

2. Add the nodes yj , j = 1, . . . , k, to the IDG.

3. Once the previous arcs are removed and the new nodes yj , j = 1, . . . , k,

added, the domination relations broken must be reestablished, i.e., all the

arcs B∗
j → yj and yj → b∗j , j = 1, . . . , k must be incorporated. However,

taking into account the decomposition of sets B∗
j and b∗j , only the following

steps need to be carried out:

• Add all arcs B∗h
j → yj and yj → b∗lj for j = 1, . . . , k and h, l = 2, 3.

• For j = 1, . . . , k, there is no need to add arcs B∗1
j → yj (or the arcs

yj → b∗1j) since all the domination relations between nodes in B∗1
j

(b∗1j) and yj must go through yi−1 (yj+1) since nodes in B∗1
j dominate

yj−1 by definition (nodes in b∗1j are dominated by yj+1 by definition),

and those arcs have been added in the previous step. The addition

of the arcs B∗1
j → yj (yj → b∗1j) would cause them to be redundant.

• Finally, if ∃j, j = 1, . . . , k − 1, such that b∗3j = ∅, and then, by

Lemma 6, B∗3
j+1 = ∅, the arc yj → yj+1 must be added. This is so

because there will be no parent of yj+1 in the IDG but yj (and there

will be no child for yj in the IDG but yj+1), and for reflecting the

domination relation yj ≺ yj+1 the arc yj → yj+1 is added. �

Lemma 4. If B∗1
j �= ∅ then B∗1

j ⊆ B∗
j−1. Also, if b∗1j �= ∅ then b∗1j ⊆ b∗j+1.

41

Page 42 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

Proof. Let’s assume that there is a xh ∈ B∗1
j ⊆ Bj−1 node with xh �∈ B∗

j−1.

The fact that xh ∈ Bj−1 together with xh �∈ B∗
j−1, implies that there exists at

least one xl ∈ B∗
j−1 such that xh ≺ xl ≺ yj−1 ≺ yj , which is a contradiction

because xh ∈ B∗
j . �

Lemma 5. B∗1
j ⊂

⋃
i<j

(
B∗2

i ∪̇B∗3
i

)
. Symmetrically, b∗1j ⊂

⋃
i>j

(
b∗2i ∪̇b∗3i

)
.

Proof. Set B∗
j was decomposed as B∗

j = B∗1
j ∪̇B∗2

j ∪̇B∗3
j . By Lemma 4 it holds

that B∗1
j ⊂ B∗

j−1, and also B∗
j−1 = B∗1

j−1∪̇B∗2
j−1∪̇B∗3

j−1. So, repeating the process

it holds that B∗
j = B∗1

j ∪̇B∗2
j ∪̇B∗3

j ⊂
⋃j

i=1

(
B∗2

i ∪̇B∗3
i

)
, and since the sets are

disjoint, B∗1
j ⊂

⋃j−1
i=1

(
B∗2

i ∪̇B∗3
i

)
. �

Lemma 6. b∗3j = ∅ ⇔ B∗3
j+1 = ∅.

Proof. (⇒) Let’s imagine that b∗3j = ∅ and assume that ∃xh ∈ B∗3
j+1. By

definition of B∗3
j+1 it holds that yj ≺ xh ≺ yj+1. As b

∗3
j = ∅, xh cannot be

a child of yj so, a trajectory yj → u1 ↪→ xh must exist with node u1 being

a child of yj , which dominates yj+1. Then, u1 ∈ b∗3j and a contradiction

appears since b∗3j = ∅.

(⇐) This situation is symmetrical. �

Acknowledgments

This research has been supported by the Research Group of Gobierno de

Aragón E58 and by the spanish Ministerio de Economı́a, Industria y Competi-

tividad under grant MTM2016-77015-R (AEI/FEDER, UE).

References

[1] Agrawal, R., Jagadish, H. V., 1987. Direct algorithms for computing the

transitive closure of database relations. Proc. 13th Int. Conf. Very Large

Data Bases, 255–266.

[2] Alberto, I., Mateo, P., 2004. Representation and management of MOEA

populations based on graphs. Eur. J. Oper. Res. 159 (1), 52–65.

42

Page 43 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

[3] Altwaijry, N., El Bachir Menai, M., nov 2012. Data Structures in Multi-

Objective Evolutionary Algorithms. J. Comput. Sci. Technol. 27 (6), 1197–

1210.

[4] Belohlavek, R., 2008. Introduction to formal concept analysis. Tech. rep.,

Department of Computer Science, Faculty of Science, Palacký University,

Olomuc.

[5] Cantu-Paz, E., 2000. Efficient and Accurate Parallel Genetic Algorithms.

Kluwer Academic Publishers, Norwell, MA, USA.

[6] Chen, X., 2001. Pareto Tree Searching Genetic Algorithm. Approaching

Pareto Optimal Front by Searching Pareto Optimal Tree. Tech. Rep. 1999,

Department of Computer Science, Nankai University, Tianjin, China.

[7] Coello, C., 2017. List of references on evolutionary multiobjective optimiza-

tion.

URL http://www.lania.mx/ccoello/EMOO/EMOObib.html

[8] Coello, C., Lamont, G., Van Veldhuizen, D., 2007. Evolutionary algorithms

for solving multi-objective problems, 2nd Edition. Springer, Berlin.

[9] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002. A fast and elitist

multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput.

6 (2), 182–197.

[10] Eiben, A., Smith, J., 2007. Introduction to evolutionary computing.

Springer, Berlin.

[11] Fieldsend, J., Everson, R., Singh, S., 2003. Using Unconstrained Elite

Archives for Multiobjective Optimization. IEEE Trans. Evol. Comput.

7 (3), 305–323.

[12] Fonseca, C., Fleming, P., 1993. Genetic algorithms for multiobjective op-

timization: Formulation, discussion and generalization. In: Proc. fifth Int.

Conf. Genet. algorithms. Vol. 423. Citeseer, pp. 416–423.

43

Page 44 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

[13] Glasmachers, T., 2017. A Fast Incremental BSP Tree Archive for Non-

dominated Points. In: Trautmann, H., Rudolph, G., Klamroth, K.,

Schütze, O., Wiecek, M., Jin, Y., Grimme, C. (Eds.), 9th Int. Conf. Evol.

Multi-Criterion Optim. EMO 2017. Lect. Notes Comput. Sci. Vol. 10173.

Springer, Cham, pp. 252–266.

[14] Goldberg, D., 1989. Genetic algorithms in search, optimization and ma-

chine learning. Addison Wesley, Reading, Massachusetts.

[15] Habenicht, W., 1983. Quad Trees, a Datastructure for Discrete Vector Op-

timization Problems. Lect. Notes Econ. Math. Syst. 209, 136–145.

[16] Huang, V., Qin, A., Deb, K., Zitzler, E., Suganthan, P., Liang, J., Preuss,

M., Huband, S., 2007. Problem definitions for performance assessment of

multi-objective optimization algorithms. Tech. rep., Nanyang Technological

University, Singapore.

[17] Klamt, S., Flassig, R. J., Sundmacher, K., 2010. TRANSWESD: Inferring

cellular networks with transitive reduction. Bioinformatics 26 (17), 2160–

2168.

[18] Li, K., 2016. ENLU Codes.

URL https://github.com/JerryI00/publication codes/tree/master/ENLU

[19] Li, K., Deb, K., Zhang, Q., Zhang, Q., 2016. Efficient Nondomination

Level Update Method for Steady-State Evolutionary Multiobjective Opti-

mization. IEEE Trans. Cybern. (Accepted for publication).

[20] Li, X., Du, G., 2013. BSTBGA: A hybrid genetic algorithm for constrained

multi-objective optimization problems. Comput. Oper. Res. 40 (1), 282–

302.

[21] McClymont, K., Keedwell, E., 2012. Deductive sort and climbing sort: new

methods for non-dominated sorting. Evol. Comput. 20 (1), 1–26.

44

Page 45 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

[22] Schütze, O., 2003. A new data structure for the nondominance problem in

multi-objective optimization. In: 2nd EMO. pp. 509–518.

[23] Shi, C., Yan, Z., Shi, Z., Zhang, L., 2010. A fast multi-objective evolu-

tionary algorithm based on a tree structure. Appl. Soft Comput. 10 (2),

468–480.

[24] Talbi, E., Basseur, M., Nebro, A., Alba, E., jan 2012. Multi-objective opti-

mization using metaheuristics: non-standard algorithms. Int. Trans. Oper.

Res. 19 (1-2), 283–305.

[25] Wang, H., Yao, X., 2014. Corner sort for pareto-based many-objective op-

timization. IEEE Trans. Cybern. 44 (1), 92–102.

[26] Zhang, X., Tian, Y., Cheng, R., Jin, Y., 2015. An Efficient Approach

to Non-dominated Sorting for Evolutionary Multi-objective. IEEE Trans.

Evol. Comput. 19 (2), 1–15.

[27] Zhou, A., Qu, B.-Y., Li, H., Zhao, S.-Z., Suganthan, P., Zhang, Q., mar

2011. Multiobjective evolutionary algorithms: A survey of the state of the

art. Swarm Evol. Comput. 1 (1), 32–49.

[28] Zitzler, E., Laumanns, M., Thiele, L., 2001. SPEA2: Improving the

strength Pareto evolutionary algorithm. Tech. rep., Computer Engineer-

ing and Networks Laboratory, ETH Zentrum, Zurich.

45

Page 46 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

10 20 30 40 50

0e
+

00
6e

+
05

PS= 300

% of population size

na
no

se
co

nd
s

10 20 30 40 50

0
20

00
0

40
00

0

PS= 300

% of population size

C

om
pa

ris
on

s

10 20 30 40 50

0
15

00
00

0

PS= 500

% of population size

na
no

se
co

nd
s

10 20 30 40 50

0e
+

00
6e

+
04

PS= 500

% of population size

C

om
pa

ris
on

s

10 20 30 40 500.
0e

+
00

1.
0e

+
07

PS= 1000

% of population size

na
no

se
co

nd
s

10 20 30 40 50

0e
+

00
2e

+
05

4e
+

05

PS= 1000

% of population size

C

om
pa

ris
on

s

10 20 30 40 50

0e
+

00
2e

+
07

PS= 1500

% of population size

na
no

se
co

nd
s

10 20 30 40 50

0e
+

00
6e

+
05

PS= 1500

% of population size

C

om
pa

ris
on

s

Problem S_ZDT2

Figure 10: Simultaneous insertion of a sequence of k dominated solutions. Evolution of
the time, in nanoseconds (left) and the number of Pareto comparisons (right), for problem
S ZDT2, in function of the SPS (expressed in terms of % of PS), for PS=300, 500, 1000 and
1500. Algorithm 1 in red, Algorithm 3 in blue.

46

Page 47 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

10 20 30 40 50

0
10

00
00

0

PS= 300

% of population size

na
no

se
co

nd
s

10 20 30 40 50

0
15

00
0

35
00

0

PS= 300

% of population size

C

om
pa

ris
on

s

10 20 30 40 50

0e
+

00
4e

+
06

PS= 500

% of population size

na
no

se
co

nd
s

10 20 30 40 50

0
40

00
0

PS= 500

% of population size

C

om
pa

ris
on

s

10 20 30 40 500.
0e

+
00

2.
0e

+
07

PS= 1000

% of population size

na
no

se
co

nd
s

10 20 30 40 50

0e
+

00
2e

+
05

PS= 1000

% of population size

C

om
pa

ris
on

s

10 20 30 40 50

0e
+

00
4e

+
07

8e
+

07

PS= 1500

% of population size

na
no

se
co

nd
s

10 20 30 40 50

0e
+

00
4e

+
05

8e
+

05

PS= 1500

% of population size

C

om
pa

ris
on

s

Problem S_ZDT2

Figure 11: Simultaneous insertion of a sequence of k non-comparable solutions. Evolution of
the time, in nanoseconds (left) and the number of Pareto comparisons (right), for problem
S ZDT2, in function of the SPS (expressed in terms of % of PS), for PS=300, 500, 1000 and
1500. ENLU in green, Algorithm 2 in blue.

47

Page 48 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

10 20 30 40 50

0e
+

00
4e

+
06

8e
+

06

PS= 300

% of population size

na
no

se
co

nd
s

10 20 30 40 50

0
10

00
0

25
00

0

PS= 300

% of population size

C

om
pa

ris
on

s

10 20 30 40 50

0.
0e

+
00

2.
5e

+
07

PS= 500

% of population size

na
no

se
co

nd
s

10 20 30 40 50

0
20

00
0

50
00

0

PS= 500

% of population size

C

om
pa

ris
on

s

10 20 30 40 50

0.
0e

+
00

1.
5e

+
08

PS= 1000

% of population size

na
no

se
co

nd
s

10 20 30 40 50

0
10

00
00

PS= 1000

% of population size

C

om
pa

ris
on

s

10 20 30 40 50

0e
+

00
4e

+
08

8e
+

08

PS= 1500

% of population size

na
no

se
co

nd
s

10 20 30 40 50

0e
+

00
3e

+
05

PS= 1500

% of population size

C

om
pa

ris
on

s

Problem S_ZDT2

Figure 12: Simultaneous insertion of a sequence of k dominated solutions. Evolution of
the time, in nanoseconds (left) and the number of Pareto comparisons (right), for problem
S ZDT2, in function of the SPS (expressed in terms of % of PS), for PS=300, 500, 1000 and
1500. ENLU in green, Algorithm 3 in blue.

48

Page 49 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

Highlights

An improved version of the graph-based structure used for manipulating populations of Multi-
Objective Evolutionary Algorithms is presented.
The improvement consists in the simultaneous insertion of solutions (instead of a single one) into
the created graph structure.
The experiments carried out show that the new proposal saves computational time and number of
Pareto comparisons carried out for the insertion.

Page 50 of 50

Acc
ep

te
d

M
an

us
cr

ip
t

Labels

Initial IDG Simultaneous insertion of three dominated solutions

Simultaneous insertion of three non−comparable solutions

a b

c d e

f g h

i j

a (0, 3)

b (3, 0)

c (1, 7)

d (4, 3)

e (5, 1)

f (2, 9)

g (6, 5)

h (7, 2)

i (8, 8)

j (9, 6)

(f1, f2)

Labels

L(b) = (2, 1, 1)

L(c) = (2, 3, 3)

L(d) = (3, 2, 3)

L(e) = (3, 2, 2)

L(f) = (3, 3, 3)

L(g) = (3,−2, 3)

L(h) = (3, 3, 3)

L(i) = (−2,−1,−2)

A (3, 7)

B (6, 3)

C (8, 1)

(f1, f2)

a b

c d e

f g h

i j

A B C

L(a) = (1, 1, 3)

L(j) = (3,−1,−2)

(f1, f2)

L(a) = (2,−2)

L(b) = (2,−5)

L(c) = (2,−2)

L(d) = (5,−2)

L(e) = (6,−2)

L(f) = (2,−4)

L(g) = (2,−9)

L(h) = (2,−2)

L(i) = (2,−2)

L(j) = (2,−2)

A (0, 2)

B (4, 4)

C (6, 4)

a b

c d e

f g h

i j

A

B

C

Accepted Manuscript

Title: Graph-based solution batch management for
Multi-Objective Evolutionary Algorithms

Author: P.M. Mateo I. Alberto

PII: S1568-4946(17)30656-7
DOI: https://doi.org/doi:10.1016/j.asoc.2017.10.042
Reference: ASOC 4537

To appear in: Applied Soft Computing

Received date: 10-3-2017
Revised date: 21-9-2017
Accepted date: 26-10-2017

Please cite this article as: P.M. Mateo, I. Alberto, Graph-based solution batch
management for Multi-Objective Evolutionary Algorithms, <![CDATA[Applied Soft
Computing Journal]]> (2017), https://doi.org/10.1016/j.asoc.2017.10.042

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

https://doi.org/doi:10.1016/j.asoc.2017.10.042
https://doi.org/10.1016/j.asoc.2017.10.042

