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Word count abstract: 202 

ABSTRACT 

Cellular iron homeostasis is controlled by the iron regulatory proteins (IRPs) 1 and 2 that 

bind cis-regulatory iron-responsive elements (IRE) on target mRNAs. We identified the 

profilin2 (Pfn2) mRNA, which encodes an actin binding protein involved in endocytosis and 

neurotransmitters release, as a novel IRP-interacting transcript and studied its role in iron 

metabolism. Combination of EMSA experiments and bioinformatic analyses led to the 

identification of an atypical and conserved IRE in the 3’ untranslated region of Pfn2 mRNA. 

Pfn2 mRNA levels were significantly reduced in duodenal samples from mice with 

intestinal-IRP ablation, suggesting that IRPs exert a positive effect on Pfn2 mRNA 

expression in vivo. Over-expression of Pfn2 in HeLa and Hepa1-6 cells reduced their 

metabolically active iron pool. Importantly, Pfn2-deficient mice showed iron accumulation 

in discrete areas of the brain (olfactory bulb, hippocampus and midbrain) and reduction of 

the hepatic iron store without anaemia. In spite of low liver iron levels, hepatic hepcidin 

expression remained high, likely due to compensatory activation of Hepcidin by mild 

inflammation. Splenic ferroportin was increased probably to sustain hematopoiesis. 

Overall, our results indicate that Pfn2 expression is controlled by the IRPs in vivo and that 

Pfn2 contributes to maintaining iron homeostasis in cell lines and mice. 
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Key Points 

• Pfn2 mRNA has a functional and conserved 3’ UTR Iron-Responsive Element 

(IRE). 

• Pfn2 knock-out mice display an iron phenotype with iron accumulation in specific 

areas of the brain and depletion of liver iron stores. 
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Word count: 4250 words 

Introduction 

Cellular iron metabolism is maintained post−transcriptionally by iron regulatory proteins 

(IRP) 1 and 2, which bind conserved RNA stem-loop structures named iron−responsive 

element (IRE).1 IRPs bind to IREs present in mRNAs that encode proteins involved in iron 

acquisition [transferrin receptor 1, Tfr1, a.k.a. Tfrc; divalent metal transporter 1, Dmt1, 

a.k.a. Slc11a2], storage [ferritin H, Fth1; ferritin L, Ftl], utilization [erythroid 5-aminolevulinic 

acid synthase, Alas2; mitochondrial aconitase, Aco2], export [ferroportin, Fpn a.k.a. 

Slc40a1] and iron/oxygen sensing [hypoxia-inducible factor 2-alpha, Hif2a, a.k.a. 

EPAS1].2-5 

Functional IREs present a small asymmetrical cytosine bulge on the 5’ strand of the stem 

and a 6-nucleotide apical loop with the sequence 5’-CAGWGH-3’ (W =adenosine or 

uridine and H =adenosine, cytosine or uridine). The first cytosine and the fifth guanosine 

are pairing, forming an AGW pseudotriloop. The IRP1-IRE crystal structure revealed that 

the C-bulge and the pseudotriloop residues are important protein contact points.6 The IRE 

upper stem consists of five paired nucleotides with or without the presence of an extra 

unpaired uridine residue downstream the apical loop (Slc11a2 and Epas1 IREs), while the 

lower stem is of variable length.7-8 

IRP binding to IREs is regulated by intracellular iron levels as well as by nitric oxide, 

oxidative stress, and hypoxia. IRP activity is high in iron-deficient cells and low in iron-

replete conditions. Both IRPs inhibit translation when bound to an IRE located in the 5’ 

untranslated region (UTR), whereas their association with Tfrc 3’ UTR IREs prevents 

mRNA degradation.7-9  

Combined, body-wide ablation of both IRP1 and 2 in mice is embryonically lethal, showing 

that the IRP/IRE system is essential.10-11 Tissue specific co-ablation of both proteins also 

revealed important functions of the IRPs in the intestine12-13, the liver14 as well as in 
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macrophage-mediated immunity. 15 On the other hand, excessive accumulation of IRP2 

seemed lethal in mice16, while a moderate gain of IRP1 function due to expression of a 

constitutively active Irp1 transgene resulted in macrocytic erythropenia associated with 

impaired erythroid differentiation.17A key, yet unresolved question is whether all biological 

functions of IRP1 and/or IRP2 are achieved through regulation of the currently known IRE-

containing genes, or whether there are other targets. We recently determined the IRP/IRE 

regulatory repertoire on a transcriptome-wide scale and identified novel mRNAs that bind 

to both IRPs,18 including profilin 2 (Pfn2).  

Profilins constitute a family of small monomeric actin-binding proteins containing an actin-

binding domain, a poly-L-proline binding domain and a phosphatidylinositol bisphosphate 

binding domain.19 In mammals, four different profilin genes have been identified (Pfn1, 

Pfn2, Pfn3 and Pfn4) with Pfn2 being predominantly expressed in the central nervous 

system. In mouse brain Pfn2 interacts with vesicle and membrane trafficking proteins such 

as dynamin1 (Dnm1), a multimeric GTPase required for receptor-mediated endocytosis.20-

21 Pfn2 binds with high affinity to Dnm1, resulting in its sequestration and thereby inhibiting 

endocytosis in neurons.22-23 Pfn2 ablation in mice results in viable rodents born with the 

expected Mendelian ratio, although about 20% of the mutant pups do not reach weaning 

age, possibly due to behavioral deficits (PPB, unpublished observations). Compared to 

control, Pfn2-null animals are hyper-reactive and show increased locomotion and 

exploratory behavior. This phenotype correlates with increased synaptic excitability and 

higher neurotransmitter vesicle exocytosis in glutamatergic neurons of the cortico-striatal 

pathway, due to high probability of synaptic vesicle release;24 therefore, Pfn2 appears to 

also negatively regulate vesicle exocytosis.24 

In this work, we report the identification of a conserved IRE in the 3’ UTR of the Pfn2 

mRNA, and provide evidence that Pfn2 expression is modulated in vivo by the IRPs. We 

show that Pfn2 knock-out mice have a hitherto unnoticed iron phenotype, with 
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accumulation of the metal in specific areas of the brain and a concomitant depletion of liver 

iron stores. This study uncovers a novel player in the IRP/IRE regulatory system and 

unveils the previously unrecognized importance of Pfn2 for iron homeostasis. 
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Methods  

Animals  

Mice were kept on a constant 12 hours light/dark cycle and food and water were supplied 

ad libitum. Male wild-type and Pfn2-/- littermates24 on a C57Bl6/J genetic background were 

sacrificed at 7-9 months of age by cervical dislocation and dissected tissues were flash-

frozen in liquid nitrogen for RNA, protein, and iron quantification studies. For histological 

analysis, mice were anesthetized with Ketamin and Xylazin (respectively 1 mg and 0.1 mg 

per 10 g of body weight, i.p.) (Sigma-Aldrich) and subjected to transcardial perfusion. For 

hematological and biochemical studies, heparinized or EDTA blood was collected from tail 

vein or via cheek-bleeding. Bone marrow was flushed out from femur and tibia bones. All 

experiments were performed according to EU regulations (Licenses n. 19/2005-B and AZ 

84-02.04.2013.A233). 

Cell culture 

HeLa and Hepa1-6 cells lines were obtained from ATCC (Wesel, Germany). Culture and 

transfection conditions for all cells used in the study are described in the supplemental 

data, available on the Blood website. 

Plasmid construction 

Plasmids (I-12.CATwt and mut) for the synthesis of human FTH1-IRE probes for EMSA 

were previously described.25 Mouse and human Pfn2 IRE sequences (wild type or ΔA 

mutated) were subcloned into the I-12.CAT plasmid by replacement of the wt FTH1-IRE 

sequence using annealed synthetic oligonucleotides. A mouse Pfn2 full length cDNA clone 

was purchased from OriGene Technologies. Fragments A-E in Pfn2 3’UTR were amplified 

by PCR and cloned into pCMV-XL5 (OriGene Technologies) using EcoRI and HindIII 

restriction sites. The mutated fragment A was obtained by site-directed mutagenesis 

(Stratagene). Pfn2-Mut S138D plasmid was previously described23. Primers used for 

cloning are listed in supplemental table 1. 
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Non-radioactive competitive electrophoretic mobility shift assay (EMSA) 

Competitive EMSAs were performed as previously described.3,26-28 See supplemental 

data, available on the Blood website for further details. 

RNA  

Protocols for isolation of total RNA, reverse transcription, and quantitative polymerase 

chain reaction (qPCR) were described previously.18,26 Expression levels of housekeeping 

mRNAs (RPL19, Tbp and β-actin) were used as calibration controls. Sequences for qPCR 

primers are listed in supplemental table 1. 

Labile iron pool (LIP) assay and reactive oxygen species (ROS) detection 

The cytosolic labile iron pool and ROS levels were measured by the fluorescent Calcein-

AM method and the dichlorofluorescein assay, respectively, as previously described.29,30 

Details for both assays are provided in the supplemental data, available on the Blood 

website. 

Plasma IL6 cytokine analysis 

Whole blood was collected in EDTA tubes and centrifuged at 1,500 g for 15 min at 4 C. 

Plasma supernatants were aliquoted and frozen in liquid nitrogen. Plasma samples were 

diluted 1:2 in assay buffer and measured using the Mouse Angiogenesis/Growth Factor 

Magnetic Bead Kit for detection of IL6 (EMD Millipore; MAGPMAG-24K) together with 

xMAP platform (EMD Millipore) according to the manufacturer’s instructions. The data was 

analyzed with the MILLIPLEX Analyst Software. 

Tissue iron content 

Liver, duodenum, spleen, kidney, lung, heart and skeletal muscle non-heme iron content 

was measured using the previously described bathophenanthroline colorimetric method.31-

32 Total iron content of brain areas and bone marrow was determined by atomic absorption 
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spectrometry as previously described.33 Further details are described in the supplemental 

data, available on the Blood website. 

Perls Prussian non-heme iron histochemistry 

9-11 months old mice were used for histological staining of non-heme iron using the 

perfusion Perls method with 3,3'-diaminobenzidine(DAB) intensification as described.34-35 

A detailed protocol can be found in supplemental data, available on the Blood website. 

Total protein extraction and immunoblotting 

Mouse tissues were lysed on ice in 44 mM Tris/HCl pH 6.8, 8% glycerol, 1.5% SDS, 3.2% 

b-mercaptoethanol, 0.12% w/v BPB using a glass Teflon douncer homogenizer at 600 

rpm. Samples were then incubated for 10 min at 99°C (for ferroportin detection, the heat 

denaturation step was omitted). Total protein concentration was determined using the 

Pierce BCA Protein Assay kit (Themo Scientific) or the BioRad Bradford reagent following 

the manufacturer’s instructions. For details, see supplemental data available on the Blood 

website. 

Statistics 

Data are shown as mean values ± SEM unless otherwise indicated. Statistical analysis 

was performed using two-tailed Student's t-test if two groups were compared, or one-way 

ANOVA test with Bonferroni multiple comparison test if three or more groups were 

compared. P-values are reported as follows:* 0.01<P value≤0.05, ** 0.001<P value≤0.01, 

*** P value≤0.001. Statistical analysis of Affymetrix microarrays was performed using a 

moderated Student's t-test with Linear Models for Microarray Data (LIMMA)36 and P-value 

adjusted for multiple comparisons with FDR.37 

 

See supplemental data, available on the Blood website for details of microarray analysis, 

Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray Spectroscopy 

(EDS) measurements.  
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Results 

Identification of Pfn2 as a novel IRP binding mRNA with a conserved 3’ UTR IRE 

We have previously identified novel mRNAs that interact with IRP1 and/or IRP2 by 

combining immunoprecipitation and microarray analysis.18,38 Three independent Affymetrix 

probes identified Pfn2 as a mRNA associated with both IRPs in several mouse tissues. 

Although bioinformatics predictive tools such as the SIREs algorithm39 fail to recognize a 

canonical IRE motifs in the Pfn2 transcript, the Pfn2 mRNA was enriched in a pull-down 

assay using recombinant IRP1 and RNA extracted from mouse spleen, brain, or liver (2.4 

to 11.4 fold enrichment of Pfn2 mRNA, depending on tissue) (Supplemental Figure 1). 

Furthermore, a full length Pfn2 transcript could displace the interaction between 

recombinant IRP1 and a ferritin H IRE probe in a competitive EMSA, while a Pfn2 

transcript with most of its 3’UTR deleted could not (Figure 1C). These results indicate that 

the Pfn2 mRNA interacts with IRP1 through an element located within its 3’UTR.18 

To delineate the exact position of this element, we subcloned and tested 5 overlapping 

250bp fragments of the Pfn2 mRNA 3’ UTR (Figure 1A) in competitive EMSAs using 

recombinant IRP1 (Figure 1C) or IRP2 (Supplemental Figure 3A). We found that the 

interaction between the Pfn2 mRNA and the IRPs was mediated by the most upstream 

region (fragment A) of the Pfn2 mRNA 3’UTR (Figure 1C and supplemental Figure 3). A 

detailed mRNA folding analysis identified a non-canonical IRE motif 326 bp downstream 

the stop codon (Figure 1B). The Pfn2 IRE motif is conserved across several mammalian 

species (Figure 1E and supplemental Figure 2) and similarly to other IREs, it consists of a 

5-paired upper stem and a mid-stem C bulge (C8) (Figure 1B), but differs from a canonical 

motif by the sequence of the hexanucleotide apical loop (AAGUUG instead of CAGUGH). 

Nonetheless, the first and the fifth ribonucleotide (adenosine and uridine) can pair, 

allowing the formation of an AGU pseudotriloop (Figure 1B), and deletion of the first 

adenosine in the apical loop (AAGUUG, Figure 1B) of the mouse and human PFN2 IREs 
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abrogates binding to IRP1 and IRP2, as assessed by competitive EMSA (Figure 1D and 

Supplemental Figure 3A). We also demonstrated that the IRP-IRE competitive binding is 

dose-dependent for Pfn2 mRNA (supplemental Figure 3B). Of note, two isoforms of the 

mouse Pfn2 mRNA have been described40. These splice variants differ in the first 267bp of 

the last exon and yield two proteins with different C-terminal amino-acid composition40-41, 

but both retain the 3’-IRE motif. 

Altogether, these results reveal the presence of a conserved IRE in the 3’UTR of Pfn2 

mRNA bound both by IRP1 and IRP2. 

Modulation of Pfn2 expression by IRPs 

The Tfrc mRNA, which contains five IREs in its 3’UTR, is stabilized upon IRP binding in 

iron deficient cells, and is conversely degraded in iron replete conditions when IRP activity 

is low. We therefore tested whether Pfn2 mRNA expression is regulated by iron in 4 

different cell lines (NIH3T3, RAW264, Hepa1-6 and AML12). Contrasting with Tfrc, Pfn2 

transcript levels did not increase upon iron chelation with DFO, as assessed by qPCR; we 

even observed a significant reduction of Pfn2 mRNA levels in Hepa1-6 cells (supplemental 

Figure 4A-Pfn2). Pfn2 mRNA expression was nonetheless reduced in Hepa1-6 cells upon 

iron loading with hemin (supplemental Figure 4A-Pfn2). A time course experiment in 

Hepa1-6 cell lines showed that Pfn2 mRNA levels were significantly and constantly 

decreased after 5, 10, 15 and 20 hours of hemin treatment, similarly to the Tfrc mRNA, 

while Pfn2 mRNA reduction after DFO treatment was only transient (supplemental Figure 

4B). Because IRE activity can be context dependent12 and the regulation of Pfn2 via its 

3’UTR IRE may not be recapitulated in cultured cell lines, we also tested if Pfn2 mRNA 

expression was modulated in C57BL6 mice fed with a low iron diet. Tfrc mRNA expression 

was expectedly increased in the liver, duodenum and spleen of iron-deficient mice, but 

Pfn2 mRNA remained unchanged (supplemental Figure 5). Hence, iron depletion alone 
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seems not to suffice to stimulate Pfn2 mRNA expression neither in cultured cells nor in 

mice, at least under the experimental conditions tested. 

We therefore took advantage of a mouse model with acute loss of IRP1 and IRP2 function 

in the intestinal mucosa to study the impact of the IRPs on Pfn2 expression in vivo.12 As 

expected, Tfrc mRNA levels were reduced by about 50 % (Figure 2). Importantly, Pfn2 

mRNA levels were also significantly decreased (25%). These results thus indicate that 

IRPs exert a positive effect on Pfn2 mRNA expression, as expected for a 3’ IRE-containing 

transcript. 

Pfn2 reduces the labile iron pool of the cell. 

Because Pfn2 is regulated by the IRPs, the key regulators of iron metabolism in the cell, 

we next studied the influence of Pfn2 on cellular iron metabolism. Ectopic over-expression 

of wild type Pfn2 in HeLa cells was previously reported to inhibit endocytosis, thereby 

blocking transferrin uptake. This effect was not observed with a mutant Pfn2 form (Pfn2-

Mut S138D) that binds actin but not dynamin 123. 

To further study the effect of Pfn2 on cellular iron levels, we transiently over-expressed 

either a wild-type (wt) or a mutated (mut S138D) form of Pfn2 in HeLa cells and measured 

the iron labile pool (LIP). Over-expression of both clones was at similar levels (data not 

shown). As control, cells were either transfected with mouse H-ferritin (Fth1) or treated 

with DFO to chelate iron and thus reduce the LIP; conversely, they were treated with FAC 

to increase the LIP.  

We found that overexpression of wt Pfn2 reduced the LIP as efficiently as Fth1 or DFO 

treatment, while over-expression of the S138D Pfn2 mutant had no effect (Figure 3A). 

Similar results were obtained in HeLa and Hepa1-6 cells stably over-expressing Pfn2 

versus Pfn2-Mut S138D (Figure 3B). To further demonstrate that Pfn2 reduces cellular iron 

availability, we measured ROS levels in H2O2-treated cells. We found that transient wt 

Pfn2 expression reduced ROS levels in H2O2-treated HeLa cells, and that over-expression 
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of Pfn2-Mut S138D has no effect on ROS (Figure 3C). These data demonstrate that Pfn2 

decreases the metabolically active iron pool in the cell. 

Abnormal iron distribution in Pfn2-deficient mice  

Pfn2-/- mice have been reported to have neuronal hyper-excitability due to increased 

synaptic vesicle exocytosis.24 However, the role of Pfn2 in iron metabolism has not been 

addressed. In light of our finding that Pfn2 influences iron metabolism in cultured cells, we 

next studied the role of Pfn2 in iron metabolism in vivo in Pfn2-null mice. 

Enhanced Prussian Blue staining of iron with the Perls perfusion method was performed in 

key organs of iron homeostasis including the duodenum (site of iron absorption), the liver 

(site of iron storage), the spleen (site of iron recycling), and the bone marrow (site of iron 

utilization). We also analyzed the brain and kidney due to high Pfn2 expression in those 

tissues. We did not observe any change in the amount and distribution of iron in the 

duodenum, spleen, bone marrow and kidney of Pfn2-deficient mice (data not shown). This 

was confirmed by quantification of total non-heme iron levels in duodenum, spleen and 

kidney with the bathophenanthroline chromogen method (Figure 4C), and by atomic 

absorption spectrometry measurement of total iron in bone-marrow (Figure 4D). Hence, 

Pfn2 seems dispensable for maintaining iron homeostasis in the intestine, spleen, kidney 

and bone-marrow of mice kept under standard laboratory conditions. Interestingly, iron 

deposits were observed in particular brain areas such as the Ammon’s Horn of the 

hippocampus (Figure 4A). The analysis of dissected brain tissue by atomic absorption 

spectrometry confirmed the accumulation of iron in the hippocampus but also in the 

olfactory bulb and the midbrain of Pfn2-/- mice (Figure 4E). Contrasting with iron loading of 

neurons, liver parenchymal cells show a loss of iron stores (Figure 4B) and iron levels in 

the liver of Pfn2-null animals were reduced by 40% (Figure 4C). Similar results were 

obtained in 2-3 weeks old mice (data not shown), indicating that liver iron depletion occurs 

early in life. Depletion of the liver iron store was not due to increased urinary iron excretion 
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(Supplemental Figure 6) and was not associated with any hematological abnormality nor 

with any alteration of serum iron parameters (Supplemental Table 2). 

Together, these results show that Pfn2 plays an important role in brain and liver iron 

metabolism. 

Brain iron accumulation in Pfn2-/- mice 

Total iron was selectively increased in the olfactory bulb, hippocampus and midbrain of 7-9 

month-old Pfn2-/- mice, the three areas where Pfn2 expression levels are highest 

(Liemersdorf et al. manuscript in preparation), but was unchanged in other brain regions 

such as striatum, cortex and cerebellum (Figure 4E).  

In spite of iron loading, ferritin protein levels in hippocampus were reduced (Figure 5A), 

with no concomitant change in Fth1 and Ftl mRNA levels (Figure 5B). Transmission 

electron microscopy (TEM) in the hippocampus of Pfn2-deficient mice revealed abnormal 

electron-dense aggregates inside a subset of membrane organelles that resemble 

mitochondria, as indicated by the presence of lamellae (Figure 5C, white arrow). The 

presence of iron aggregates in hippocampus was confirmed by Energy Dispersive X-ray 

Spectroscopy (Figure 5D). A closer look at these organelles revealed two electron dense 

structures possibly corresponding to iron deposits: large amorphous biomineral 

aggregates (Figure 5C, arrow 1) and more defined nanoparticles (Figure 5C, arrow 2). 

Both entities are different from the typical iron aggregate present in spleen as ferritin shells 

(Figure 5C, arrow 3) or as hemosiderin (Figure 5C, arrow 4). Structurally, both 

hippocampal iron-containing species (arrow 1 and 2) differ from normal and pathological 

(observed in neurodegenerative diseases) cytoplasmic ferritins deposits40, 42 and from the 

mitochondrial biomineral iron aggregates found in the heart of Friedreich ataxia mice 43. 

Hepatic iron metabolism in Pfn2-/- mice 

The decrease of liver iron content in Pfn2-/- mice was accompanied by a significant 

reduction of Ferritin L expression both at the protein (Figure 6A) and mRNA level (Figure 
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6C). In line with the decreased hepatic iron content, Bmp6 mRNA expression in Pfn2-/- 

livers was reduced by 30% (Figure 6C). While the reduction of the liver iron content and 

the concomitant suppression of Bmp6 would predict a decrease in hepcidin expression, 

hepatic Hamp1 mRNA levels remain unchanged in Pfn2-/- mice (Figure 6C). We 

hypothesized that antagonistic cues such as inflammation 44 could counteract the 

regulation of Hamp1 by low iron in Pfn2-/- animals. Indeed, expression array analysis of 

Pfn2-/- livers (Supplemental Table 3) revealed a mild activation of the IL6 pathway 

(activation Z-score: 0,247) associated with the up-regulation of several IL6-target genes 

(Supplementary Table 4). In line with this observation, plasma IL6 concentration was found 

to be elevated in Pfn2-/- animals (Figure 6B). Furthermore, Pfn2-deficient mice displayed a 

tendency for increased expression of several pro-inflammatory cytokine mRNAs in the 

liver, including Saa1, Tnfα, ActivinB, Il1β and Il6 (Figure 6C). Thus, the failure to 

downregulate Hamp1 in Pfn2-/- animals with low hepatic iron stores could be explained by 

concomitant stimulation of the gene transcription under mild pro-inflammatory conditions. 

Our expression array analysis overall showed 20 up-regulated and 29 down-regulated 

genes in the liver of Pfn2-/- mice compared to control littermates (representing 0.06% and 

0.08%, respectively, of the tested transcriptome) (Supplemental Table 4). Lipocalin2 

(Lcn2), an iron-trafficking protein that mediates the uptake of siderophores and catechol- 

Fe(III) complexes, 45,46 was among the up-regulated genes and its increase was confirmed 

by qPCR (Figure 6C).  

Iron uptake in liver is also dependent on Dmt1, which is encoded by the Slc11a2 gene.1 

We analyzed the expression of the Slc11a2-IRE and non-IRE mRNA isoforms47 by qPCR. 

We observed a statistically significant and specific up-regulation of the Slc11a2-IRE mRNA 

isoform in Pfn2-/- liver samples (Figure 6C), which could possibly be due to increased IRP 

binding to the Slc11a2-IRE mRNA under iron deficient conditions. 

Spleen iron metabolism in Pfn2-/- mice 
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Spleen non-heme iron content and size was comparable between Pfn2-/- mice and control 

mice (Figure 4C and Supplemental Figure 7A). No evidence of extramedullary 

hematopoiesis was detected in Pfn2-/- mice (Supplemental Figure 7B and 7C). Splenic 

structural iron deposits studied by TEM were expectedly present in lysosome-like 

structures arranged in ≈5nm large electron-dense nanoparticles (corresponding to the 

ferritin iron core) that are usually described as hemosiderin (Figure 5C arrow 4). 

Accordingly, ferritin L and H mRNA and protein levels were not changed (Figure 6E and 

data not shown). However, we detected a statistically significant increase in ferroportin 

protein and RNA level in the spleen of Pfn2-/- mice (Figure 6D and E), which could serve 

as a mean to counter-balance the effect of inappropriately normal hepcidin levels on 

ferroportin membrane expression. 

Discussion 

IRP-mutant mouse models revealed that the IRP/IRE regulatory system is critical for 

securing physiological iron distribution between major sites of systemic iron homeostasis. 

Here, we describe a new IRP mRNA target, Pfn2, and unveil a novel function for this actin-

binding protein in iron metabolism. 

We show that Pfn2 mRNA harbors a conserved and functional IRE in its 3’ UTR. Similar to 

the well-characterized 3’IRE-containing Tfrc mRNA, Pfn2 transcript levels are reduced 

upon IRP ablation in vivo in mice. Yet, steady-state Pfn2 mRNA levels are largely 

unchanged under iron deficient conditions, both in cultured cells and in mice. The lack of 

iron regulation of Pfn2 is not totally surprising, as it is already known that for example the 

modulation of the Slc11a2 mRNA by iron is cell-line specific and is influenced by the 

differentiation state of the cell.4 In addition, multiple integrative and opposing signals 

contribute to the regulation of several single IRE-containing mRNAs such as Epas1 

(protein HIF2alpha), Slc40a1 (protein ferroportin) and Slc11a2 (protein Dmt1). Overall, it 

seems that a straightforward regulation of 3’ IRE-containing mRNAs by iron levels and 
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IRPs is only consistently observed in the case of Tfrc, although even for this transcript the 

fold regulation is very variable and depends on the cell line or tissue analyzed. 

On the other hand, mice with constitutive deficiency of Pfn2 exhibit a striking iron 

phenotype, with iron accumulation in specific areas of the brain and a reduction of the liver 

iron stores, although displaying normal red blood cell counts and plasma iron parameters. 

Iron accumulation in the brain of Pfn2-/- mice correlates with the expression pattern of 

Pfn2, being the highest in hippocampus, olfactory bulb and midbrain (Liemersdorf et al. 

manuscript in preparation). It is well established that iron bound to transferrin is 

internalized through receptor-mediated endocytosis of Tfr1, involving clathrin-coated pits 

and Dnm1.48 Pfn2 interacts with and sequesters Dnm1 in neurons, thereby preventing its 

binding to endocytic effectors.23 Thus, Pfn2 acts as a negative regulator of endocytosis. 

Indeed, neurons from Pfn2-knockout mice show increased endocytic rate and ectopic 

over-expression of Pfn2 in HeLa cells slows down transferrin uptake.23 In this work, we 

observed that Pfn2 over-expression in several cell lines decreased the cLIP. Hence, it is 

conceivable that the iron overload in the brain of Pfn2-/- mice is due to an increased rate of 

transferrin-Tfr1 endocytosis in the absence of Pfn2 (Figure 7). Interestingly, we show that 

iron accumulation in hippocampus of Pfn2-/- mice occurs in previously undescribed 

biomineral iron forms inside organelles whose membrane structure resembles 

mitochondria. As Pfn2-/- mice do not manifest overt neurodegeneration or ataxia, we 

hypothesize that the iron aggregates could be a harmless way to confine the otherwise 

highly toxic iron excess inside the neurons. 

While iron accumulates in the brain of Pfn2-/- mice, we were surprised to observe a 

substantial depletion of the liver iron stores. Although microarray data did not reveal major 

alterations in this tissue, we observed up-regulation of genes involved in liver uptake of 

extracellular iron that could likely be a compensatory mechanism to reestablish hepatic 

iron stores. The liver iron content of Pfn2-null mice is deficient in the context of unchanged 
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spleen and duodenal iron levels as well as normal red blood cell counts and serum iron 

parameters. Hence, it cannot be explained by the classical mobilization of the hepatic iron 

stores in conditions of anemia. Future work is needed to elucidate this phenomenon. 

Our hepatic expression analysis revealed one contradictory situation in low iron stores 

condition: Bmp6 levels were low, while Hamp1 transcript levels were not decreased. Our 

microarray and qPCR data in liver and our plasma IL6 measurements indicate a mild 

chronic systemic inflammation in Pfn2-/- mice. As the absence of Pfn2 is known to increase 

neurotransmitter release,24 it is possible that it affects similarly the release of cytokines 

produced in different tissues. Therefore, the observed reduction in hepatic Bmp6 mRNA 

expression and the increased levels of IL6 may act as antagonistic signals, maintaining an 

overall stable Hamp1 expression.  

Spleen non-heme iron content and size was found unchanged in Pfn2-/- mice. 

Nevertheless, ferroportin expression was increased in spleens of Pfn2-/- mice. Since 

hepcidin negatively regulates membrane ferroportin levels, it is conceivable that increased 

ferroportin expression in spleen serves to stabilize its membrane presence in order to 

compensate hepatic iron deficiencies and sustain hematopoiesis, as Pfn2-/-mice are not 

anemic (Figure 7). 

Our work highlights that altering the expression of a key regulator of membrane trafficking 

and endocytosis pathways such as Pfn2 alters iron metabolism at the cellular level and 

affects body iron homeostasis, similarly to defects in other endosomal sorting proteins 

such as Snx349, or Sec15l150. In summary, our studies indicate that Pfn2 is a previously 

unrecognized critical player in iron homeostasis, which could contribute to human 

disorders of iron metabolism.  
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Figure legends 

Figure 1. Identification of the Pfn2 3’ IRE and IRP binding studies. (A) Schematic 

representation of the Pfn2 mRNA. Coding region (black box), Pfn2 XcmI fragment and 

fragments A to E and IRE are shown. (B). Human and mouse 3’ IRE motifs in Pfn2, Tfrc 

and Slc11a2 mRNAs. Notice differences in sequence in the apical loop. The arrow 

indicates the deletion of the adenosine (ΔA, mut) used as mutant construct. (C) Non-

radioactive competitive EMSA using fluorescent Ferritin-H IRE labeled probe and 2x fold 

molar excess of unlabeled competitors (full length Pfn2 mRNA or Pfn2 mRNA fragments). 

Constructs or fragments (XcmI fragment, A to E fragment) used as competitors are 

indicated. WT denotes wild-type fragment A and Mut denotes fragment A containing a 

single deletion in the first A of the 6-nucleotides apical loop. One representative 

experiment out of 4 is shown. (D) Non-radioactive competitive EMSA using fluorescent 

Ferritin-H IRE labeled probe and 80x fold molar excess of unlabeled competitors (Ferritin 

H or mouse and human Pfn2 IRE sequences). (E) Representative phylogenic conservation 

of the Pfn2 IRE among mammals, 100% conserved residues are indicated with an asterisk 

(*), an extended alignment is shown in supplemental figure 2. 

 
Figure 2. Duodenal expression levels of Pfn2 in mice with intestinal IRP1 and IRP2 

deficiency in adult stage. IRP1 and IRP2 deficiency was obtained using the CRE/Lox 

technology in a tamoxifen-inducible system in the intestinal mucosa. Adult animals 

carrying floxed IRP alleles plus the CRE transgene were given tamoxifen (1 mg i.p. per 

animal per day on 5 consecutive days) to trigger IRP ablation in the intestine. Mice were 

sacrificed 5 weeks after the last tamoxifen injection. Control mice (white bars) were wt 

mice treated with oil (no CRE oil) or tamoxifen (no CRE tamoxifen), or CRE-expressing 

mice receiving the vehicle only (CRE oil). Tfrc mRNA expression was assessed as a 

molecular signature of IRP deficiency. The histograms represent mRNA levels after 
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calibration to beta-actin and normalization to the “no Cre oil” control. P-values were 

determined by unpaired two-tailed Student’s t-test , **p<0.01,*** p<0.001. 

 
Figure 3. Labile iron pool (LIP) and reactive oxygen species (ROS) levels in cell lines 

over-expressing Pfn2. (A) HeLa cells were transiently transfected with pCMV6-Kan/Neo 

empty vector, pCMV6-Pfn2 or Pfn2-Mut S138D vector. As control, cells were transfected 

with pCMV6-Fth1 vector or with the empty vector and treated with 200µM DFO or 200µM 

FAC for 16h. Cytoplasmic labile iron pool (LIP) was measured by the calcein-AM method 

48h after transfection. Data were normalized to cells transfected with the empty vector, set 

as 100%. Means ± SD are shown. (B) Stable Hepa1-6 and HeLa clones over-expressing 

the wild type mouse Pfn2 or Pfn2-Mut S138D were isolated and LIP was measured and 

normalized to cells stably transfected with the pCMV6 empty vector, set as 100%. Means 

± SD are shown. (C) Reactive oxygen species (ROS) levels were measured using the 

2’,7’-dichlorofluorescin diacetate method in HeLa cells transiently transfected with pCMV6-

Kan/Neo empty vector, pCMV6-Pfn2, Pfn2-Mut S138D or pCMV6-Fth1 vectors or in cells 

transfected with the empty vectors and treated with 200µM DFO for 16h. ROS levels were 

assayed 48h after transfection following a pre-treatment with 200 µM H2O2 to induce ROS 

generation. ROS quantifications were normalized to cells transfected with the empty vector 

and not treated with H2O2, set as 100%. Means ± SD are shown.  

 

Figure 4. Abnormal iron distribution in Pfn2-/- versus wild-type mice. Enhanced 

Prussian Blue staining in brain (A) and liver (B) of Perls perfused Pfn2-/- and wt mice. In 

the Pfn2-/- brain section the arrows point to CA1-CA2 hippocampal regions, enriched in 

iron. In contrast, iron is lost in liver parenchymal cells. Scale is 100 µm in (A), and 200 µm 

in low magnification panels and 20 µm in the high magnification insets in (B). (C) Tissue 

non-heme iron content measured using the bathophenantroline chromogen method in the 
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indicated tissues shows a loss of 40% of iron in the liver of Pfn2-/- mice. Total iron content 

measured by atomic absorption method in bone marrow (D) and brain areas (E) shows 

iron overload in olfactory bulbs, hippocampus and midbrain of Pfn2-/- mice. Measures are 

given as percentage of control wild-type littermates. The sample size (n) is indicated. P-

values were determined by unpaired two-tailed Student’s t-test , *p<0.05,** p<0.01. 

 

Figure 5. Ferritin L and H protein and mRNA levels and iron deposits in the 

hippocampus of Pfn2-/- mice. (A) Hippocampal L-ferritin (Ftl) and H-ferritin (Fth1) protein 

measured by Western blotting are reduced in Pfn2 KO mice compared to wt controls. 

Ribosomal protein S6 levels were used for calibration. Graphs represent quantified data 

normalized to the wt control (set as 100%). Sample size (n) is indicated. (B) Hippocampal 

L-ferritin (Ftl) and H-ferritin (Fth1) mRNA levels measured by qPCR show no difference 

between Pfn2-/- and wt control mice. mRNA expression was calibrated with ribosomal 

protein L19 (RPL9) and TATA box binding protein (Tbp) mRNA expression and normalized 

to wild type mice (set as 100%). Sample size (n) is indicated. (C) On the left side, 

transmission electron micrograph (TEM) sample image from the hippocampus of a Pfn2-/-

mouse. The boxed area is magnified on its right. On the right side, sample image from the 

spleen of a Pfn2-/- mouse.TEM images of hippocampus (second image) and spleen (third 

image from left) are at the same magnification for comparison of the aggregates size and 

morphology. Lamellae structures characterizing a mitochondrion are highlighted by a white 

arrow. Iron aggregates of different morphology are indicated by yellow arrows: 

mitochondrial amorphous and big clustered aggregates (1), isolated biomineral 

nanoparticles (2), cytoplasm dispersed ferritin cores (3) and spleen hemosiderin 

aggregates (4). Small insets from center and right TEM images are at the same 

magnification, showing the smaller particle size observed in hippocampus (2) in 

comparison with the spleen ferritin cores (3). (D) In the hippocampus and spleen of Pfn2-/-
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mice, electron-dense areas have been tested by Energy Dispersive X-ray Spectroscopy 

(EDS) to confirm the presence of iron. 

 

Figure 6. Protein and RNA levels of iron-related genes in liver and spleen of Pfn2-/-

and wt mice. Liver (A) L-ferritin and H-ferritin protein levels measured by Western blotting 

are reduced in Pfn2-/- mice compared to wt controls, while splenic (D) ferroportin protein 

levels are increased in Pfn2-/- mice compared to wt controls. Ribosomal protein S6 levels 

were used for calibration. Graphs represent quantified data normalized to the wt sample 

(set as 100%). Samples size (n) is indicated. RNA expression of iron-related genes was 

analyzed by qPCR in liver (C) and spleen (E). mRNA expression was calibrated with 

RPL19 and Tbp mRNA expression and normalized to wild type mice (set as 100%). 

Sample size (n) is indicated. Plasma levels of IL6 were measured by Luminex 

immunoassay (B), data is shown as means ± SEM. The following abbreviations are used: 

Fth1: H-ferritin; Ftl: L-ferritin; Tfrc: transferrin receptor 1; Slc11a2: divalent metal 

transporter 1; Slc40a11 (protein: Fpn1): ferroportin; Lcn2: Lipocalin 2; Hamp1: hepcidin; 

Bmp6: Bone morphogenetic protein 6; IL6: Interleukin 6. 

 

Figure 7. Model for systemic iron distribution and homeostasis in wt versus Pfn2-/-

mice. Pfn2 KO mice exhibit brain iron accumulation and depletion of liver iron stores with 

normal hematological parameters. Brain iron overload can be attributed to an increase in 

transferrin-transferrin receptor endocytosis (Tf-Fe3+-TfR1) due to the lack of Pfn2 that 

negatively regulates this process. While in wild-type mice erythropoiesis is supported 

mainly by liver but also splenic iron, in Pfn2-/- mice erythropoiesis is supported exclusively 

by splenic iron where we have detected a substantial increase in ferroportin (Fpn1) 

production. In Pfn2-/- mice hepcidin (Hamp1) production in liver is inappropriately normal 

despite low iron levels, which should down-regulate hepcidin production in order to 
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increase dietary iron absorption and restore liver iron content. Hepcidin inappropriately 

normal levels in liver of Pfn2-/-mice are caused by a mild increase in the release of IL6 pro-

inflammatory cytokine that can over-rule opposite inhibitory signals. 
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