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Abstract. In this paper, we present a complete spectral research of generalized Cesàro
operators on Sobolev-Lebesgue sequence spaces. The main idea is to subordinate such
operators to suitable C0-semigroups on these sequence spaces. We introduce that family of
sequence spaces using the fractional finite differences and we prove some structural properties
similar to classical Lebesgue sequence spaces. In order to show the main results about
fractional finite differences, we state equalities involving sums of quotients of Euler’s Gamma
functions. Finally, we display some graphical representations of the spectra of generalized
Cesàro operators.

Introduction

Given a sequence f = (f(n))∞n=0 of complex numbers, we consider its sequence of averages

Cf(n) := 1

n+ 1

n∑
j=0

f(j), n ∈ N ∪ {0},

often called Cesàro means. They were introduced by E. Cesàro in 1890, see for example [10],
and they have several applications, e.g. to (originally) the multiplication of series, in the
theory of Fourier series or in asymptotic analysis. Moreover, Cesàro means of natural order
m, Cmf , (C1 = C), where

Cmf(n) := m(n!)

(n+m)!

n∑
j=0

(n− j +m− 1)!

(n− j)!
f(j), n ∈ N ∪ {0},

were also introduced in [10].
In 1965 the (discrete) Cesàro operator, f �→ C(f) from �2 to �2, was originally introduced

in [8]. Authors showed that C is a bounded operator, ‖C‖ = 2, and the spectrum of C is the
closed disc {λ : |λ − 1| ≤ 1} ([8, Theorem 2]). In [20], authors proved that C is a bounded
linear operator from �p into itself and its spectrum is the closed disc centered in q/2 and
radius q/2, for 1 < p ≤ ∞ and 1

p
+ 1

q
= 1.

The boundedness of the Cesàro operator C from �p into itself is a straightforward conse-
quence of the well-known Hardy inequality, see a nice survey about this inequality in [19].
The following generalized Hardy inequality, see [18, Theorem 3.18, p.227], allows to show
the boundedness of Cesàro operators Cm from �p into itself: Let β > 0 and 1 < p < ∞, then( ∞∑

n=1

∣∣∣∣∣ 1nβ

n∑
j=0

(n− j)β−1f(j)

∣∣∣∣∣
p)1/p

≤ Γ(β)Γ(1− 1/p)

Γ(β + 1− 1/p)

( ∞∑
n=1

|f(n)|p
)1/p

, f ∈ �p.
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Also, the dual inequality holds,

(0.1)

( ∞∑
n=1

∣∣∣∣∣
∞∑
j=n

(j − n)β−1

jβ
f(j)

∣∣∣∣∣
p)1/p

≤ Γ(β)Γ(1/p)

Γ(β + 1/p)

( ∞∑
n=1

|f(n)|p
)1/p

, f ∈ �p.

For any complex number α, we denote by

kα(n) :=
α(α + 1) · · · (α + n− 1)

n!
for n ∈ N, kα(0) := 1,

the known Cesàro numbers which are studied deeply in [29, Vol. I, p.77] and denoted by
Aα−1

n . The kernels kα have played a key role in results about operator theory and fractional
difference equations, see [1, 2, 3, 21]. Note that the sequence kα can be written as

kα(n) =
Γ(n+ α)

Γ(α)Γ(n+ 1)
=

(
n+ α− 1

α− 1

)
= (−1)n

(−α

n

)
, n ∈ N0, α ∈ C\{0,−1,−2, . . .},

where Γ is the Euler Gamma function. Also, the kernel (kα(n))n∈N0 could be defined by the
generating function, that is,

(0.2)
∞∑
n=0

kα(n)zn =
1

(1− z)α
, |z| < 1.

Therefore, these kernels satisfy the semigroup property, kα ∗ kβ = kα+β for α, β ∈ C.
In this paper, we study the generalized Cesàro operators of order β (in some paper called

β-Cesàro operators, [27, 28]) and its dual operator of order β, Cβ and C∗
β respectively, given

by

Cβf(n) :=
1

kβ+1(n)

n∑
j=0

kβ(n− j)f(j),

C∗
βf(n) :=

∞∑
j=n

1

kβ+1(j)
kβ(j − n)f(j),

for n ∈ N0 and Reβ > 0, acting on a new family of Sobolev-Lebesgue spaces ταp , for α ≥ 0,
introduced in section 5. These families of sequence space include the classical Lebesgue
spaces �p for α = 0 and 1 ≤ p ≤ ∞, i.e, �p = τ 0p . The Banach algebras τα1 were introduced in
[3] to define bounded algebra homomorphisms linked to (C, α)-bounded operators. In [26,
Theorem 3.1 and Remark 3.3], it is shown that the generalized Cesàro operators Cβ and C∗

β

are bounded on �p for 1 < p < ∞; p = ∞ for Cβ and p = 1 for C∗
β.

The main idea of the paper is to represent the operators Cβ and C∗
β via C0-semigroups of

operators. In particular, we consider the C0-semigroups (Tp(t))t≥0 and (Sp(t))t≥0 acting on
ταp (section 6), given by

Tp(t)f(n) := e−
t
p

n∑
j=0

(
n

j

)
e−tj(1− e−t)n−jf(j),

Sp(t)f(n) := e−t(1− 1
p
+n)

∞∑
j=n

(
j

n

)
(1− e−t)j−nf(j),

for n ∈ N0 and t ≥ 0, and we will get

Cβf(n) = β

∫ ∞

0

(1− e−t)β−1e−t(1− 1
p
)Tp(t)f(n) dt, n ∈ N0, 1 < p ≤ ∞,

C∗
βf(n) = β

∫ ∞

0

(1− e−t)β−1e−
t
pSp(t)f(n) dt, n ∈ N0, 1 ≤ p < ∞,
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for Reβ > 0, see Theorem 7.2. These two equalities give additional information about the
connection between one-parameter semigroups and the operator Cβ, a question posed in [26,
Section 3].

The powerful theory of C0-semigroups of operators allows us to get bounds for norms of
operators (see proof of Theorem 7.2), and to describe the spectra of Cβ and C∗

β in Theorem
7.6 via a spectral mapping theorem for sectorial operators and functions which belong to the
extended Dunford-Riesz class, see [17, Chapter 2]. Note that these C0-semigroups, (Tp(t))t≥0

and (Sp(t))t≥0, are not holomorphic (see Remark 6.2), and the classical spectral mapping
theorem for holomorphic semigroups is not applicable. In the last section, we present some
pictures of the spectrum of Cβ for some particular β complex numbers.

The norms ‖ ‖α,p on the Sobolev-Lebesgue spaces ταp are defined involving fractional
finite (or Weyl) differences Wα and the kernels (kα(n))n∈N0 , i.e.,

‖f‖α,p :=
( ∞∑

n=0

|Wαf(n)|p(kα+1(n))p

)1/p

,

whenever this expression is finite for α ≥ 0 and 1 ≤ p ≤ ∞, see Definition 5.1. The spaces
ταp are module respect to the Banach algebras τα1 and the usual convolution product ∗ on
sequence spaces (Theorem 5.4). Note that the spaces ταp form scales on p and on α, see
Theorem 5.2.

We consider the finite difference W defined by Wf(n) := f(n)−f(n+1) and the iterative
finite difference Wm given by Wmf := Wm−1(Wf) for m ∈ N. For α ∈ R\N, the Weyl
difference Wα allows to obtain fractional finite difference of order α > 0 and

W αf(n) =
∞∑
j=n

k−α(j − n)f(j), n ∈ N0,

whenever both expressions make sense. This formula shows how deep the connection between
Wα and kernels kα is, see section 3 and Theorem 3.2.
Different theories of fractional differences have been developed in recent years with inter-

esting applications to boundary value problems and concrete models coming from biological
problems, see for example [7] and [16]. Note that the Weyl fractional difference Wα coincides
or is close to other fractional sums presented in [6, Section 1] or [9, Theorem 2.5].

We also give the following formulae which show the natural behavior between Wα and the
C0-semigroups (Tp(t))t≥0 and (Sp(t))t≥0,

WαTp(t)f(n) = e−tαTp(t)W
αf(n),

kα+1(n)W αSp(t)f(n) = Sp(t)(k
α+1Wαf)(n),

for α > 0, t ≥ 0, and n ∈ N0, as consequences of Lemmas 4.3 and 4.4. To obtain these
technical lemmas, fine calculations which involve sums of kernels kα (see Theorem 2.2) or
quotients of Gamma functions are needed. In particular, in Theorem 1.3, we show the
following nice identity which seems to be unknown until now,

Γ(m+ r + 1)

Γ(v +m+ r)

m∑
l=0

Γ(l − α)

Γ(l + 1)

Γ(v + α + r +m− l)

Γ(r + 1 +m− l)
=

Γ(α + r + v)

Γ(r)

m∑
l=0

Γ(l − α)

Γ(l + 1)

Γ(l + r)

Γ(v + l + r)
.

for v, r > 0, α ∈ R+\{0, 1, 2, . . .}, and m ∈ N ∪ {0}.
Cesàro operators and generalized Cesàro operators have been treated in several spaces and

with different techniques. In the bibliography, we present only a small part of this literature.
Applications of C0-semigroups of operators in the study of Cesàro operators was initialed by
C.C. Cowen in [11]. Cesàro operators on the Hardy space Hp defined on the unit disc are
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considered in [23] and on the Bergman space Ap(D) in [24]. However, as K. Stempak pointed
out in [26, Section 3], the generalized Cesàro operator is natural to consider (or even more
natural than on the Hardy spaces Hp) on the sequence spaces �p, and it could be interesting
to study spectral properties of Cβ from the point of view of operator theory and semigroups.
Our research completes several previous known results which have been obtained on the unit
disc, see Remarks 4.2 and 7.3.

Recently, in [5], Cesàro operators and semigroups on theHp space defined on the half-plane
are treated, and also on the Lebesgue-Sobolev spaces defined on the half-line R+ and on the
whole line R, see [22]. The continuous case presented in [22] is easier than the discrete case,
which we present in this manuscript. Although the philosophy of both papers is parallel,
many more technical difficulties arise in sequence spaces, see for example sections 1 and 2,
and Theorem 7.6.

Notation. We write as N the set of natural numbers and N0 := N∪{0}; R is the set of real
numbers and R+ is the set of non-negative real numbers; C is the set of complex numbers,
C+ and C− the set of complex numbers with positive and negative real part respectively and
D := {z ∈ C : |z| < 1}.
The sequence Lebesgue space �p is the set of complex sequences f = (f(n))n∈N0 such that

‖f‖p :=
( ∞∑

n=0

|f(n)|p
) 1

p

< ∞,

for 1 ≤ p < ∞, �∞ the set of bounded complex sequence with the suprem norm and c0,0
the set of vector-valued sequences with finite support. The usual convolution product ∗ of
sequences f = (f(n))n∈N0 and g = (g(n))n∈N0 is defined by

f ∗ g(n) =
n∑

j=0

f(n− j)g(j), n ∈ N0.

Note that (�1, ∗) is a Banach algebra and (�p, ∗) is a Banach module of �1 for 1 < p ≤ ∞.
We denote by Γ and B the usual Euler Gamma and Beta functions given by

Γ(z) =

∫ ∞

0

e−ttz−1dt, Re z > 0,

B(u, v) =
Γ(u)Γ(v)

Γ(u+ v)
=

∫ ∞

0

e−tv(1− e−t)u−1dt, Reu,Re v > 0.(0.3)

and Γ is extended to C\{0,−1,−2, . . .} using the identity Γ(z + 1) = zΓ(z).

1. Sums of quotients of Gamma functions

In this first section, we display technical lemmas involving Euler’s Gamma functions. They
are used in some main results along the paper and they are interesting by themselves.

Lemma 1.1. For v, u > 0, and α ∈ R+\{0, 1, 2, . . .}, the following equality holds
∞∑
l=0

Γ(l − α)

Γ(l + 1)

Γ(u+ l + 1)

Γ(v + u+ l + 1)
=

Γ(u+ 1)Γ(v + α)Γ(−α)

Γ(v)Γ(u+ α + v + 1)
.

Proof. By the generating formula (0.2), we get

Γ(v)

Γ(−α)

∞∑
l=0

Γ(l − α)

Γ(l + 1)

Γ(u+ l + 1)

Γ(v + u+ l + 1)
=

∞∑
l=0

k−α(l)
Γ(v)Γ(u+ l + 1)

Γ(v + u+ l + 1)
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=
∞∑
n=0

k−α(l)

∫ 1

0

(1− x)v−1xu+ldx =

∫ 1

0

(1− x)v−1xu

∞∑
n=0

k−α(l)xldx

=

∫ 1

0

(1− x)v+α−1xudx =
Γ(v + α)Γ(u+ 1)

Γ(u+ α + v + 1)
,

and the proof is completed. �

Lemma 1.2. For v, r > 0, α ∈ R+\{0, 1, 2, . . .}, and m ∈ N ∪ {0}, the following equality
holds

m∑
l=0

(αr + l(v + α))
Γ(l − α)

Γ(l + 1)

Γ(l + r)

Γ(v + 1 + l + r)
= −Γ(m+ 1 + r)

Γ(m+ 1)

Γ(m+ 1− α)

Γ(v +m+ r + 1)
.

Proof. We prove the equality by induction on m. For m = 0, the equality holds trivially. By
induction’s hypothesis, it is enough to check that

(αr + (m+ 1)(v + α)
Γ(m+ 1− α)

Γ(m+ 2)

Γ(m+ 1 + r)

Γ(v +m+ 2 + r)
− Γ(m+ 1 + r)

Γ(m+ 1)

Γ(m+ 1− α)

Γ(v +m+ r + 1)

=
Γ(m+ 1 + r)

Γ(m+ 1)

Γ(m+ 1− α)

Γ(v +m+ r + 1)

(
(αr + (m+ 1)(v + α)

(m+ 1)(v +m+ 1 + r)
− 1

)
= −Γ(m+ 1 + r)

Γ(m+ 1)

Γ(m+ 1− α)

Γ(v +m+ r + 1)

(
(m+ 1− α)(m+ 1 + r)

(m+ 1)(v +m+ 1 + r)

)
= −Γ(m+ 2 + r)

Γ(m+ 2)

Γ(m+ 2− α)

Γ(v +m+ r + 2)

and we conclude the proof. �

Theorem 1.3. For v, r > 0, α ∈ R+\{0, 1, 2, . . .}, and m ∈ N ∪ {0}, the following equality
holds

Γ(m+ r + 1)

Γ(v +m+ r)

m∑
l=0

Γ(l − α)

Γ(l + 1)

Γ(v + α + r +m− l)

Γ(r + 1 +m− l)
=

Γ(α + r + v)

Γ(r)

m∑
l=0

Γ(l − α)

Γ(l + 1)

Γ(l + r)

Γ(v + l + r)
.

Proof. We prove the equality by induction on m. For m = 0, the equality holds trivially.
Now we define functions Gm,r and Fm,r

Gm,r(v) :=
Γ(m+ r + 1)

Γ(v +m+ r)

m∑
l=0

Γ(l − α)

Γ(l + 1)

Γ(v + α + r +m− l)

Γ(r + 1 +m− l)
,

Fm,r(v) :=
Γ(α + r + v)

Γ(r)

m∑
l=0

Γ(l − α)

Γ(l + 1)

Γ(l + r)

Γ(v + l + r)
,

for v > 0 and we shall conclude that Gm,r = Fm,r for m ∈ N and r > 0. Note that

Gm+1,r(v) := Gm,r+1(v) + gm,r(v),
Fm+1,r(v) := Fm,r(v) + fm,r(v),

where

gm,r(v) =
Γ(m+ r + 2)

Γ(v +m+ r + 1)

Γ(v + α + r)

Γ(r + 1)

Γ(m+ 1− α)

Γ(m+ 2)
,

fm,r(v) =
Γ(v + α + r)

Γ(r)

Γ(m+ 1 + r)

Γ(v +m+ r + 1)

Γ(m+ 1− α)

Γ(m+ 2)
,
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for v > 0. By induction’s hypothesis we have that

Gm+1,r(v) = Gm,r+1(v) + gm,r(v) = Fm,r+1(v) + gm,r(v)
= Fm+1,r+1 − fm,r+1(v) + gm,r(v),

and to finish the proof it is enough to conclude that

Fm+1,r(v)− Fm+1,r+1(v) = −fm,r+1(v) + gm,r(v).

Now, in one hand, we have that

gm,r(v)− fm,r+1(v) =
Γ(v + α + r)

Γ(r + 1)

Γ(m+ 2 + r)

Γ(v +m+ r + 2)

Γ(m+ 2− α)

Γ(m+ 2)
.

In other hand, we have that

Fm+1,r(v)− Fm+1,r+1(v) = −Γ(α + r + v)

Γ(r + 1)

m+1∑
l=0

Γ(l − α)

Γ(l + 1)

Γ(l + r)

Γ(v + l + r + 1)
(αr + l(v + α))

and we apply Lemma 1.2 to obtain

Fm+1,r(v)− Fm+1,r+1(v) =
Γ(α + r + v)Γ(m+ 2 + r)Γ(m+ 2− α)

Γ(v +m+ r + 2)Γ(m+ 2)Γ(r + 1)
= gm,r(v)− fm,r+1(v)

proving the result. �

To conclude this section we obtain some particular cases in Theorem 1.3 for r ∈ {1, 2}.
We omit the proof which the reader may make by induction on m.

Theorem 1.4. Take v > 0, α ∈ R+\{0, 1, 2, . . .} and m ∈ N ∪ {0}. Then
m∑
l=0

Γ(l − α)

Γ(v + l + 1)
=

Γ(−α)

(α + v)Γ(v)
− Γ(m+ 1− α)

(α + v)Γ(v +m+ 1)
.

m∑
l=0

(l + 1)
Γ(l − α)

Γ(v + l + 1)
=

Γ(−α)

(α + v + 1)(α + v)Γ(v)

−(αm+mv + α +m+ 2v + 1)Γ(m+ 1− α)

(α + v + 1)(α + v)Γ(v +m+ 2)
.

Remark 1.5. For r ∈ N, v > 0, m ∈ N ∪ {0} and 0 < α < 1 we conjecture that

Γ(v + α + r)

Γ(r)

m∑
l=0

Γ(l + r)Γ(l − α)

Γ(v + l + r)Γ(l + 1)
= Γ(v + α)

(
Γ(−α)

Γ(v)
− Pr(α,m, v)Γ(m− α + 1)

Γ(m+ v + r)

)
where Pr(α,m, v) is a polynomial of degree r − 1 in the variables α,m and v.

2. New properties of Cesàro numbers

As a function of n, kα is increasing for α > 1, decreasing for 1 > α > 0 and k1(n) = 1
for n ∈ N ([29, Theorem III.1.17]). Furthermore, it is straightforward to check that kα(n) ≤
kβ(n) for β ≥ α > 0 and n ∈ N0.

In the following, we will use the asymptotic behaviour of the sequences kα. Note that for
α ∈ {0,−1,−2, . . .}, kα(n) = 0 for n > −α. In addition, for real α /∈ {0,−1,−2, . . .},

(2.1) kα(n) =
nα−1

Γ(α)
(1 +O(

1

n
)), n ∈ N.
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([29, Vol. I, p.77 (1.18)]). Moreover this property holds in a more general context. Let
α, z ∈ C, then

Γ(z + α)

Γ(z)
= zα(1 +

α(α + 1)

2z
+O(|z|−2)), |z| → ∞,

whenever z �= 0,−1,−2, . . . and z �= −α,−α − 1, . . . , see [14]. We are interested in the two
following particular cases,

(2.2) kα(n) =
nα−1

Γ(α)
(1 +O(

1

n
)), n ∈ N, α /∈ {0,−1,−2, . . .},

(2.3)
Γ(z + α)

Γ(z)
= zα(1 +O(

1

|z|)), z ∈ C+, Reα > 0.

Lemma 2.1. For α > 0, j > n ≥ 0 and q > 1, the following inequality holds:

∞∑
l=n+1

(
kα(l − n+ j)

kα+1(l)

)q

≤ Cα,qj

(
kα(j)

kα+1(n)

)q

.

Proof. We apply the estimation (2.1) in several places to get

∞∑
l=n+1

(
kα(l − n+ j)

kα+1(l)

)q

=
∞∑

m=1

(
kα(m+ j)

kα+1(m+ n)

)q

≤ Cα,q

∞∑
m=1

(
m+ j

m+ n

)αq
1

(m+ j)q

< Cα,q

(
j + 1

n+ 1

)αq ∞∑
m=1

1

(m+ j)q
≤ Cα,q

(
j + 1

n+ 1

)αq ∫ ∞

0

dt

(t+ j)q

= Cα,q

(
j + 1

n+ 1

)αq
1

jq−1
≤ Cα,qj

(
kα(j)

kα+1(n)

)q

,

and we conclude the result. �

Theorem 2.2. Take n, u ∈ N ∪ {0}, Re t > 0 or t = 0, and α ∈ R+\{0, 1, 2, . . .}. Then the
the following equality holds

e−tu

∞∑
j=max{u,n}

(
j

u

)
k−α(j − n)(1− e−t)j−u = e−tα

min{u,n}∑
j=0

(
n

j

)
k−α(u− j)e−tj(1− e−t)n−j.

Proof. The case t = 0 is clear. Let Re t > 0, by analytic prolongation, it is enough to show
the formula for t > 0. First we consider the case that 0 ≤ u ≤ n. We apply Laplace transform
and formula (0.3) in both parts to transform the formula into the equivalent expression

∞∑
j=n

(
j

u

)
k−α(j − n)

Γ(j − u+ 1)Γ(v + u)

Γ(v + j + 1)
=

u∑
j=0

(
n

j

)
k−α(u− j)

Γ(j + α + v)Γ(n− j + 1)

Γ(n+ α + v + 1)
.

Note that
∞∑
j=n

(
j

u

)
k−α(j − n)

Γ(j − u+ 1)Γ(v + u)

Γ(v + j + 1)
=

∞∑
j=n

Γ(j − n− α)

Γ(−α)Γ(j − n+ 1)

j!

u!

Γ(v + u)

Γ(v + j + 1)

=
Γ(v + u)

Γ(−α)Γ(u+ 1)

∞∑
l=0

Γ(l − α)

Γ(l + 1)

Γ(l + n+ 1)

Γ(v + l + n+ 1)
=

Γ(v + u)Γ(n+ 1)Γ(v + α)

Γ(u+ 1)Γ(v)Γ(n+ α + v + 1)
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where we have applied the Lemma 1.1. In the other hand, we have that
u∑

j=0

(
n

j

)
k−α(u− j)

Γ(j + α + v)Γ(n− j + 1)

Γ(n+ α + v + 1)
=

u∑
j=0

n!

j!
k−α(u− j)

Γ(j + α + v)

Γ(n+ α + v + 1)

=
Γ(n+ 1)Γ(α + v)

Γ(n+ α + v + 1)

u∑
j=0

k−α(u− j)kα+v(j) =
Γ(n+ 1)Γ(α + v)

Γ(n+ α + v + 1)
kv(u) =

=
Γ(n+ 1)Γ(α + v)Γ(u+ v)

Γ(n+ α + v + 1)Γ(v)Γ(u+ 1)
,

where we have applied the semigroup property, kγ ∗ kβ = kγ+β for γ, β ∈ C.
Now, we consider the case that 0 ≤ n < u. Again, we apply Laplace transform and

formula (0.3) to obtain the expression
∞∑
j=u

(
j

u

)
k−α(j − n)

Γ(j − u+ 1)Γ(v + u)

Γ(v + j + 1)
=

n∑
j=0

(
n

j

)
k−α(u− j)

Γ(j + α + v)Γ(n− j + 1)

Γ(n+ α + v + 1)
,

which is equivalent to show that

Γ(v + u)

Γ(u+ 1)

∞∑
j=u

Γ(j − n− α)Γ(j + 1)

Γ(j − n+ 1)Γ(j + v + 1)
=

Γ(n+ 1)

Γ(v + α + n+ 1)

n∑
j=0

Γ(u− j − α)Γ(v + α + j)

Γ(u− j + 1)Γ(j + 1)
.

Now we claim that

Γ(v + u)

Γ(u+ 1)

u−1∑
j=n

Γ(j − n− α)Γ(j + 1)

Γ(j − n+ 1)Γ(j + v + 1)
=

Γ(n+ 1)

Γ(v + α + n+ 1)

u∑
j=n+1

Γ(u− j − α)Γ(v + α + j)

Γ(u− j + 1)Γ(j + 1)
,

which is equivalent to

Γ(v + u)

Γ(u+ 1)

u−n−1∑
l=0

Γ(l − α)Γ(n+ l + 1)

Γ(l + 1)Γ(l + n+ v + 1)
=

Γ(n+ 1)

Γ(v + α + n+ 1)

u−n−1∑
l=0

Γ(l − α)Γ(v + α + u− l)

Γ(u− l + 1)Γ(l + 1)

and we apply Theorem 1.3 to conclude the equality.
Then, we have to prove

Γ(v + u)

Γ(u+ 1)

∞∑
j=n

Γ(j − n− α)Γ(j + 1)

Γ(j − n+ 1)Γ(j + v + 1)
=

Γ(n+ 1)

Γ(v + α + n+ 1)

u∑
j=0

Γ(u− j − α)Γ(v + α + j)

Γ(u− j + 1)Γ(j + 1)
,

which is equivalent to

Γ(v + u)

Γ(u+ 1)

∞∑
l=0

Γ(l − α)Γ(l + n+ 1)

Γ(l + 1)Γ(l + n+ v + 1)
=

Γ(n+ 1)

Γ(v + α + n+ 1)

u∑
j=0

Γ(u− j − α)Γ(v + α + j)

Γ(u− j + 1)Γ(j + 1)
,

and this identity was proved in the first considered case. �

3. Fractional finite differences

The usual finite difference of a sequence, (f(n))n∈N0 , is defined by Δf(n) := f(n+1)−f(n)
for n ∈ N0; we iterate, Δm+1 = ΔmΔ, to get

Δmf(n) =
m∑
j=0

(−1)m−j

(
m

j

)
f(n+ j), n ∈ N0,

for m ∈ N. Now we consider W = −Δ, i.e., Wf(n) = W 1f(n) = f(n)− f(n+1), for n ∈ N0

and Wmf(n) = (−1)mΔm for m ∈ N. In [3, Definition 2.2] the authors have extended this
concept of finite difference of a sequence to the fractional (non integer) case. We recall it:
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Definition 3.1. Let f : N0 → C and α > 0 be given. The Weyl sum of order α of f , W−αf ,
is defined by

W−αf(n) :=
∞∑
j=n

kα(j − n)f(j), n ∈ N0,

whenever the right hand side makes sense. The Weyl difference of order α of f , W αf , is
defined by

W αf(n) = WmW−(m−α)f(n) = (−1)mΔmW−(m−α)f(n), n ∈ N0,

for m = [α] + 1, whenever the right hand side makes sense. In particular Wα : c0,0 → c0,0
for α ∈ R.

The following theorem shows an equivalent definition of the fractional Weyl differences.

Theorem 3.2. Let f : N0 → C and α > 0 be given. Then

Wαf(n) =
∞∑
j=n

k−α(j − n)f(j), n ∈ N0,

whenever both expressions make sense.

Proof. If α ∈ N, then

Wαf(n) =
α∑

j=0

(−1)j
(
α

j

)
f(n+ j) =

∞∑
j=0

k−α(j)f(n+ j) =
∞∑
j=n

k−α(n− j)f(j).

Now let m− 1 < α < m with m ∈ N. Then

W αf(n) = WmW−(m−α)f(n) =
m∑
j=0

(−1)j
(
m

j

) ∞∑
l=n+j

km−α(l − n− j)f(l)

=
n+m∑
l=n

f(l)
l−n∑
j=0

(−1)j
(
m

j

)
km−α(l − n− j) +

∞∑
l=n+m+1

f(l)
m∑
j=0

(−1)j
(
m

j

)
km−α(l − n− j)

=
n+m∑
l=n

f(l)(k−m ∗ km−α)(l − n) +
∞∑

l=n+m+1

f(l)(k−m ∗ km−α)(l − n)

=
∞∑
l=n

f(l)k−α(l − n),

and we conclude the result. �

The fractional difference
∞∑
j=n

k−α(j−n)f(j) has been studied recently in �p and in discrete

Hölder spaces, see [2]. For example, observe that for 0 < α < 1 and the sequence k1, the

series
∞∑
j=n

k−α(j − n)k1(j) is convergent, meanwhile Wαk1 is not defined.

Now, we present a technical (and interesting) result which we will need in the proofs of
the main theorems..

Proposition 3.3. If α ∈ R and f ∈ c0,0, then

Wα(jf(j))(n) = (n+ α)Wαf(n)− αW α−1f(n), n ∈ N0.
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Proof. Let α > 0, then

W−α(jf(j))(n) =
∞∑
j=n

kα(j − n)(j + α− n)f(j) +
∞∑
j=n

kα(j − n)(n− α)f(j)

= αW−α−1f(n) + (n− α)W−αf(n),

for n ∈ N0, and the proposition is proved for negative α. Note that

W−α(jW αf(j)− αW α−1f(j)) = αW−1f(n) + (n− α)f(n)− αW−1f(n) = (n− α)f(n),

we apply W α to the above identity, and we get the result. �

Example 3.4. (i) Let λ ∈ C\{0}, and rλ(n) := λ−(n+1) for n ∈ N0. Note that rλ are
eigenfunctions for the operator W α for α ∈ R and |λ| > 1, i.e.,

Wαrλ =
(λ− 1)α

λα
rλ, |λ| > 1,

see details [3, Example 2.5(i)]
(ii) Let α ∈ R and m ∈ N, then

Wmkα(n) = (−1)mkα−m(n+m), n ∈ N0.

Note that kα(0)− kα(1) = 1− α = −kα−1(1). Let n ∈ N, we have

Wkα(n) = kα(n)− kα(n+ 1) =
α(α + 1) · · · (α + n− 1)

n!

(
1− α + n

n+ 1

)
= −kα−1(n+ 1).

Then we iterate to show that Wmkα(n) = (−1)mkα−m(n+m) for m,n ∈ N0.

4. Semigroups on sequence spaces and fractional finite differences

In this section we study the fractional Weyl differences of the one-parameter operator
families (T (t))t≥0 and (S(t))t≥0 given by

T (t)f(n) :=
n∑

j=0

(
n

j

)
e−tj(1− e−t)n−jf(j),

S(t)f(n) := e−tn

∞∑
j=n

(
j

n

)
(1− e−t)j−nf(j),

for n ∈ N0, t ≥ 0, and (f(n))n∈N0 a sequence where the above operator families are defined.
They will play a key role in Section 6. It is a simple check that (T (t))t≥0 and (S(t))t≥0 have
the semigroup property.

Let f : N0 → C be a scalar sequence. We recall that the Z-transform of f is defined by

(4.1) f̃(z) =
∞∑
n=0

f(n)zn,

for all z such that this series converges. The set of numbers z in the complex plane for which
the series (4.1) converges is called the region of convergence of f̃ .

By (0.2), note that k̃α(z) =
1

(1− z)α
, for |z| < 1. We check the Z-transform of semigroups

(T (t))t≥0 and (S(t))t≥0.
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Theorem 4.1. Take f : N0 → C such that f̃(z) exists for |z| < 1. Then

T̃ (t)f(z) =
1

1− z(1− e−t)
f̃

(
e−tz

1− z(1− e−t)

)
,

S̃(t)f(z) = f̃
(
e−t(z − 1) + 1

)
,

for |z| < 1 and t > 0.

Proof. By Fubini theorem, we have that

T̃ (t)f(z) =
∞∑
n=0

(
n∑

j=0

(
n

j

)
e−tj(1− e−t)n−jf(j)

)
zn

=
∞∑
j=0

e−tjf(j)zj

( ∞∑
l=0

(
j + l

j

)
(1− e−t)lzl

)
=

∞∑
j=0

e−tjf(j)zj

( ∞∑
l=0

kj+1(l)((1− e−t)z)l

)

=
1

1− z(1− e−t)

∞∑
j=0

f(j)

(
e−tz

1− z(1− e−t)

)j

=
1

1− z(1− e−t)
f̃

(
e−tz

1− z(1− e−t)

)
,

where we have applied the formula (0.2).
Now, again by Fubini theorem, one gets

S̃(t)f(z) =
∞∑
n=0

(
e−tn

∞∑
j=n

(
j

n

)
(1− e−t)j−nf(j)

)
zn

=
∞∑
j=0

(1− e−t)jf(j)

(
j∑

n=0

(
j

n

)(
e−tz

1− e−t

)n
)

=
∞∑
j=0

(1− e−t)jf(j)

(
1 +

e−tz

1− e−t

)j

= f̃
(
e−t(z − 1) + 1

)
,

and we conclude the proof. �
Remark 4.2. Semigroups of analytic self maps on the unit disc D have been considered in
detail in the survey [25]. In particular, the image of the semigroups (T (t))t≥0 and (S(t))t≥0

via the Z-transform are (ψt)t>0 and (φt)t>0, given by

ψt(z) :=
e−tz

1− z(1− e−t)
, φt(z) := e−t(z − 1) + 1,

for t > 0 and z ∈ D, which have been also introduced in previous papers. In [23, Section
3], the semigroup (ψt)t>0 is introduced to study the Cesàro operator on the space Hp on the
disc D an on the Bergman space in [24], see also [28, Theorem 3.2].

Lemma 4.3. Let α ≥ 0 and f ∈ c0,0. Then the following equality holds

(4.2) WαS(t)f(n) = e−tn

∞∑
j=n

(
j + α

n+ α

)
(1− e−t)j−nWαf(j) t ≥ 0, n ∈ N0.

As a consequence, we have that

kα+1Wα(S(t)f) = S(t)(kα+1W αf), t ≥ 0.

Proof. First we suppose that α = 1. Then

WS(t)f(n) = e−tn

∞∑
j=n

(
j

n

)
(1− e−t)j−nf(j)− e−t(n+1)

∞∑
j=n+1

(
j

n+ 1

)
(1− e−t)j−n−1f(j)
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= e−tn

∞∑
j=n

(
j

n

)
(1− e−t)j−nf(j) + e−tn

∞∑
j=n+1

(
j

n+ 1

)
(1− e−t)j−nf(j)

−e−tn

∞∑
j=n+1

(
j

n+ 1

)
(1− e−t)j−n−1f(j),

where we have used that e−t(n+1) = e−tn − e−tn(1− e−t). Note that
(
j
n

)
+
(

j
n+1

)
=

(
j+1
n+1

)
, and

then we get

WS(t)f(n) = e−tn

(
f(n) +

∞∑
j=n+1

(
j + 1

n+ 1

)
(1− e−t)j−nf(j)

−
∞∑

j=n+1

(
j

n+ 1

)
(1− e−t)j−n−1f(j)

)

= e−tn

∞∑
j=n

(
j + 1

n+ 1

)
(1− e−t)j−n(f(j)− f(j + 1)),

where we have done a change of variable in the last step.
Now we proceed by induction. Let m ∈ N, and we suppose (4.2) true for α ∈ N with

α < m. Then using that Wm = WWm−1 and the same arguments that in the above case we
have

WmS(t)f(n) = Wm−1S(t)f(n)−Wm−1S(t)f(n+ 1)

= e−tn

∞∑
j=n

(
j +m− 1

n+m− 1

)
(1− e−t)j−nWm−1f(j)

+e−tn

∞∑
j=n+1

(
j +m− 1

n+m

)
(1− e−t)j−nWm−1f(j)

−e−tn

∞∑
j=n+1

(
j +m− 1

n+m

)
(1− e−t)j−n−1Wm−1f(j)

= e−tn

∞∑
j=n

(
j +m

n+m

)
(1− e−t)j−n(Wm−1f(j)−Wm−1f(j + 1)).

Finally we prove the general case. Let m < α < m+ 1 with m = [α]. We write

W αS(t)f(n) = W α−mWmS(t)f(n)

=
∞∑
j=n

k1+m−α(j − n)WmS(t)f(j)−
∞∑

j=n+1

k1+m−α(j − n− 1)WmS(t)f(j)

=
∞∑
j=n

(−1)j−n

(
α−m

j − n

)
WmS(t)f(j)

=
∞∑
j=n

(−1)j−n

(
α−m

j − n

)
e−tj

∞∑
v=j

(
v +m

j +m

)
(1− e−t)v−jWmf(v)

= e−tn

∞∑
j=n

(
α−m

j − n

) j−n∑
u=0

(−1)u
(
j − n

u

) ∞∑
v=j

(
v +m

j +m

)
(1− e−t)v−n−uWmf(v),
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where we have applied Wα = W α−mWm ([3, Remark 2.3, Proposition 2.4]), Example 3.4

(ii) and the equality e−tj = e−tn
∑j−n

u=0(−1)j−n−u
(
j−n
u

)
(1−e−t)j−n−u. Applying twice Fubini’s

Theorem and a change of variable we have

W αS(t)f(n) = e−tn

∞∑
u=0

(−1)u
∞∑

v=n+u

(1− e−t)v−n−uWmf(v)
v∑

j=n+u

(
α−m

j − n

)(
j − n

u

)(
v +m

j +m

)
= e−tn

∞∑
u=0

(−1)u
∞∑

v=n+u

(1− e−t)v−n−uWmf(v)
v−n−u∑
l=0

(
α−m

l + u

)(
l + u

u

)(
v +m

l + u+ n+m

)
.

It is a simple check that
(
α−m
l+u

)(
l+u
u

)
=

(
α−m
u

)(
α−m−u

l

)
. Then using the Chu-Vandermonde’s

identity, Fubini’s Theorem and a change of variable we have

W αS(t)f(n) = e−tn

∞∑
u=0

(−1)u
(
α−m

u

) ∞∑
v=n+u

(1− e−t)v−n−uWmf(v)

(
v − u+ α

n+ α

)

= e−tn

∞∑
u=0

(−1)u
(
α−m

u

) ∞∑
j=n

(1− e−t)j−nWmf(j + u)

(
j + α

n+ α

)

= e−tn

∞∑
j=n

(1− e−t)j−n

(
j + α

n+ α

) ∞∑
u=0

(−1)u
(
α−m

u

)
Wmf(j + u)

= e−tn

∞∑
j=n

(1− e−t)j−n

(
j + α

n+ α

)
Wαf(j),

and we conclude the equality.

As kα+1(n)

(
j + α

n+ α

)
= kα+1(j)

(
j

n

)
with j ≥ n and α ≥ 0, we have that

kα+1(n)W α(S(t)f)(n) = e−tn

∞∑
j=n

(1− e−t)j−nkα+1(n)

(
j + α

n+ α

)
Wαf(j)

= e−tn

∞∑
j=n

(
j

n

)
(1− e−t)j−nkα+1(j)Wαf(j) = S(t)(kα+1Wαf)(n)

for n ∈ N0 and the proof is finished. �

Lemma 4.4. Let α ≥ 0 and f ∈ c0,0. The the following equality holds

(4.3) WαT (t)f(n) = e−tαT (t)Wαf(n), t ≥ 0, n ∈ N0.

Proof. First we suppose that α = 1. Then

WT (t)f(n) =
n∑

j=0

(
n

j

)
e−tj(1− e−t)n−jf(j)− e−t

n+1∑
j=0

(
n+ 1

j

)
e−tj(1− e−t)n+1−jf(j)

=
n∑

j=0

(
n

j

)
e−tj(1− e−t)n−jf(j)− (1− e−t)n+1f(0)

−
n∑

j=1

(
n

j

)
e−tj(1− e−t)n+1−jf(j)
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−
n∑

j=1

(
n

j − 1

)
e−tj(1− e−t)n+1−jf(j)− e−t(n+1)f(n+ 1),

where we have used that
(
n+1
j

)
=

(
n
j

)
+

(
n

j−1

)
. Note that (1 − e−t)n+1−j = (1 − e−t)n−j −

e−t(1− e−t)n−j, and then we get

WT (t)f(n) =
n∑

j=0

(
n

j

)
e−tj(1− e−t)n−jf(j)− (1− e−t)n+1f(0)

−
n∑

j=1

(
n

j

)
e−tj(1− e−t)n−jf(j) +

n∑
j=1

(
n

j

)
e−t(j+1)(1− e−t)n−jf(j)

−
n∑

j=1

(
n

j − 1

)
e−tj(1− e−t)n+1−jf(j)− e−t(n+1)f(n+ 1)

= (1− e−t)nf(0)− (1− e−t)n+1f(0) +
n∑

j=1

(
n

j

)
e−t(j+1)(1− e−t)n−jf(j)

−
n−1∑
j=0

(
n

j

)
e−t(j+1)(1− e−t)n−jf(j + 1)− e−t(n+1)f(n+ 1)

=
n∑

j=0

(
n

j

)
e−t(j+1)(1− e−t)n−jWf(j) = e−tT (t)Wf(n),

where we have done a change of variable.
Now we proceed by induction. Let m ∈ N, and we suppose (4.3) true for α ∈ N with

α < m. Then one gets

WmT (t)f(n) =
n∑

j=0

(
n

j

)
e−t(j+m−1)(1− e−t)n−jWm−1f(j)

−
n+1∑
j=0

(
n+ 1

j

)
e−t(j+m−1)(1− e−t)n+1−jWm−1f(j)

=
n∑

j=0

(
n

j

)
e−t(j+m−1)(1− e−t)n−jWm−1f(j)− e−t(m−1)(1− e−t)n+1Wm−1f(0)

−
n∑

j=1

(
n

j

)
e−t(j+m−1)(1− e−t)n+1−jWm−1f(j)

−
n∑

j=1

(
n

j − 1

)
e−t(j+m−1)(1− e−t)n+1−jWm−1f(j)− e−t(n+m)Wm−1f(n+ 1)

=
n∑

j=0

(
n

j

)
e−t(j+m−1)(1− e−t)n−jWm−1f(j)− e−t(m−1)(1− e−t)n+1Wm−1f(0)

−
n∑

j=1

(
n

j

)
e−t(j+m−1)(1− e−t)n−jWm−1f(j)



GENERALIZED CESÀRO OPERATORS ON SOBOLEV-LEBESGUE SEQUENCE SPACES 15

+
n∑

j=1

(
n

j

)
e−t(j+m)(1− e−t)n−jWm−1f(j)

−
n∑

j=1

(
n

j − 1

)
e−t(j+m−1)(1− e−t)n+1−jWm−1f(j)− e−t(n+m)Wm−1f(n+ 1)

= e−t(m−1)(1− e−t)nWm−1f(0)− e−t(m−1)(1− e−t)n+1Wm−1f(0)

+
n∑

j=1

(
n

j

)
e−t(j+m)(1− e−t)n−jWm−1f(j)

−
n−1∑
j=0

(
n

j

)
e−t(j+m)(1− e−t)n−jWm−1f(j + 1)− e−t(n+m)Wm−1f(n+ 1)

= e−tm

n∑
j=0

(
n

j

)
e−tj(1− e−t)n−jWmf(j) = e−tmT (t)Wmf(n).

Finally we prove the case that α ∈ R+\(N ∪ {0}). By Theorem 3.2 and Theorem 2.2 we
write

WαT (t)f(n) =
∞∑
j=n

k−α(j − n)T (t)f(j) =
∞∑
j=n

k−α(j − n)

j∑
u=0

(
j

u

)
e−tu(1− e−t)j−uf(u)

=
∞∑
u=0

f(u)e−tu

∞∑
j=max{u,n}

(
j

u

)
k−α(j − n)(1− e−t)j−u

=
∞∑
u=0

f(u)e−tα

min{u,n}∑
j=0

(
n

j

)
k−α(u− j)e−tj(1− e−t)n−j

=
n∑

j=0

(
n

j

)
e−t(α+j)(1− e−t)n−j

∞∑
u=j

k−α(u− j)f(u)

=
n∑

j=0

(
n

j

)
e−t(α+j)(1− e−t)n−jW αf(j) = e−tαT (t)Wαf(n),

and we conclude the result. �

5. Sobolev-Lebesgue sequence spaces

In this section we introduce a family of subspaces ταp which are contained in �p for α ≥ 0
and 1 ≤ p ≤ ∞. Note that this definition includes the usual Lebesgue sequence space �p as
limit case for α = 0. For p = 1 these spaces have been considered in [3, Theorem 2.11] and
[1, Section 2].

Definition 5.1. For α > 0 and 1 ≤ p < ∞ let ταp be the Banach space formed by the set of
complex sequences vanishing at infinity such that the norm

‖f‖α,p :=
( ∞∑

n=0

|Wαf(n)|p(kα+1(n))p

)1/p
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converges. For p = ∞, we denote by τα∞ the Banach space obtained as the complex functions
vanishing at infinity such that the norm

‖f‖α,∞ := sup
n∈N0

|Wαf(n)|kα+1(n)

converges.

Theorem 5.2. Let α > 0 and 1 ≤ p ≤ ∞. Then

(i) The operator Dα : ταp → �p defined by

Dαf(n) := kα+1(n)W αf(n), n ∈ N0, f ∈ ταp ,

is an isometry whose inverse operator (Dα)−1 : �p → ταp is given by

(Dα)−1f(n) = W−α((kα+1)−1f)(n), n ∈ N0, f ∈ �p.

(ii) The following embeddings hold: τα1 ↪→ ταp ↪→ ταq ↪→ τα∞, for 1 < p < q < ∞.

(iii) The following embeddings hold: τβp ↪→ ταp ↪→ �p, for β > α > 0.

(iv) For p ≥ 1 and 1
p
+ 1

p′ = 1, (with p′ = ∞ for p = 1) the space ταp′ is the dual space of

ταp , and the duality is given by

〈f, g〉α :=
∞∑
n=0

Wαf(n)W αg(n)
(
kα+1(n)

)2
, f ∈ ταp , g ∈ ταp′ .

Proof. (i) By definition, we have

‖Dαf‖p =
( ∞∑

n=0

(kα+1(n))p|Wαf(n)|p
)1/p

= ‖f‖α,p.

Now, we use part (i) to show (ii). As �1 ↪→ �p ↪→ �q ↪→ �∞, for 1 < p < q < ∞, we have
that

‖f‖α,∞ = ‖Dαf‖∞ ≤ ‖Dαf‖q = ‖f‖α,q ≤ ‖Dαf‖p = ‖f‖α,p ≤ ‖Dαf‖1 = ‖f‖α,1.
(iii) Let f ∈ c0,0 and 0 ≤ α < β. For p = 1 see [3, Theorem 2.11]. For p = ∞,

‖f‖α,∞ ≤ sup
n∈N0

∞∑
j=n

kβ−α(j − n)|W βf(n)|kα+1(n)

≤ sup
n∈N0

|W βf(n)|
∞∑
j=n

kβ−α(j − n)kα+1(j) = ‖f‖α,∞,

since kα+1 is increasing. Let 1 < p < ∞, then

‖f‖α,p ≤
(
|Wαf(0)|p +

∞∑
n=1

( ∞∑
j=n

kβ−α(j − n)|W βf(j)|kα+1(n)

)p)1/p

≤ Cβ,α

(( ∞∑
j=0

kβ−α(j)

kβ+1(j)
kβ+1(j)|W βf(j)|

)p

+
∞∑
n=1

( ∞∑
j=n

(j − n)β−α−1

Γ(β − α)
|W βf(j)|kα+1(j)

)p)1/p

≤ Cβ,α,p

(
‖f‖pβ,p +

∞∑
n=1

(
nβ−α|W βf(n)|kα+1(n)

)p)1/p

≤ Cβ,α,p‖f‖β,p,
where we have used (2.1), Hölder’s inequality, Hardy’s inequality (0.1) and kα+1 is increasing.
(iv) Combine that the operator Dα is an isometry and (�p)′ ∼= �p

′
for p ≥ 1. �
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Lemma 5.3. Let α ≥ 0.

(i) For 1 < p < ∞, the function kβ ∈ ταp if and only if Reβ < 1 − 1
p
. Furthermore

kβ ∈ τα1 if and only if Reβ < 0 or β = 0, and kβ ∈ τα∞ if and only if Reβ ≤ 1.
(ii) For 1 ≤ p < ∞ and |λ| > 1, the sequence rλ ∈ ταp and

‖rλ‖α,p ≤ Cα,p

( |λp − λp−1|
|λ|p − 1

)α
1

(|λ|p − 1)
1
p

.

Finally rλ ∈ τα∞ for |λ| > 1 and

‖rλ‖α,∞ ≤ αα |λ− 1|α
|λ|2α+1

.

Proof. (i) Let 1 < p < ∞. First note that for Re β ≥ 1, kβ /∈ �p by the estimation (2.2), and
then kβ /∈ ταp . Secondly observe that for β ∈ {0,−1,−2, . . .}, kβ ∈ c0,0, then kβ ∈ ταp . Finally
for Reβ < 1 with β /∈ {0,−1,−2, . . .}, using Proposition 5.2 (iii) it is enough to prove the
result for α ∈ N0. Let α ∈ N0, then

∞∑
n=0

|Wαkβ(n)|p(kα+1(n))p =
∞∑
n=0

|kβ−α(n+ α)|p(kα+1(n))p < ∞

if and only if Reβ < 1 − 1
p
, where we have applied Example 3.4 (ii) and (2.2). The cases

p = 1 and p = ∞ use the same arguments than the previous one. (ii) It is similar to the
case (i) using Example 3.4 (i). �

Theorem 5.4. Let α > 0 and 1 ≤ p ≤ ∞. Then

‖f ∗ g‖α,p ≤ Cα,p‖f‖α,p‖g‖α,1, f ∈ ταp , g ∈ τα1 .

Proof. Let f ∈ ταp and g ∈ τα1 . The case p = 1 was proved in [3, Theorem 2.10]. Let us

consider p > 1 and q > 1 such that 1
p
+ 1

q
= 1. By [3, Lemma 2.7] (see also [15, Lemma 4.4]),

Wα(f∗g)(n) =
n∑

j=0

W αg(j)
n∑

u=n−j

kα(u−n+j)W αf(u)−
∞∑

j=n+1

Wαg(j)
∞∑

u=n+1

kα(u−n+j)W αf(u).

Then, by Minkwoski’s inequality ([18, Theorem 25, p.31]),

‖f ∗ g‖α,p =

( ∞∑
n=0

|Wα(f ∗ g)(n)|p(kα+1(n))p

)1/p

≤
( ∞∑

n=0

(
n∑

j=0

|Wαg(j)|
n∑

u=n−j

kα(u− n+ j)|Wαf(u)|
)p

(kα+1(n))p

)1/p

+

( ∞∑
n=0

( ∞∑
j=n+1

|Wαg(j)|
∞∑

u=n+1

kα(u− n+ j)|Wαf(u)|
)p

(kα+1(n))p

)1/p

.(5.1)

Now, we apply a inequality of Minkwoski type ([18, Theorem 165, p.123]) to the second
summand of (5.1) and we obtain( ∞∑

n=0

(kα+1(n))p

( ∞∑
j=n+1

|Wαg(j)|
∞∑

u=n+1

kα(u− n+ j)|Wαf(u)|
)p)1/p
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≤
∞∑
j=1

|Wαg(j)|
(

j−1∑
n=0

(kα+1(n))p

( ∞∑
u=n+1

kα(u− n+ j)|Wαf(u)|
)p)1/p

.

By using Hölder’s inequality ([18, Theorem 13, p.24]),

∞∑
u=n+1

kα(u−n+j)|Wαf(u)| ≤
( ∞∑

u=n+1

(
kα(u− n+ j)

kα+1(u)

)q
)1/q ( ∞∑

u=n+1

(
kα+1(u)|Wαf(u)|)p)1/p

,

where ( ∞∑
u=n+1

(
kα+1(u)|Wαf(u)|)p)1/p

≤ ‖f‖α,p.

By Lemma 2.1 with 0 ≤ n < j and (2.1) one gets
∞∑

u=n+1

kα(u− n+ j)|Wαf(u)| ≤ Cα,p‖f‖α,p k
α+1(j)

kα+1(n)

1

j1/p
,

and then (
j−1∑
n=0

(kα+1(n))p

( ∞∑
u=n+1

kα(u− n+ j)|Wαf(u)|
)p)1/p

≤ Cα,p‖f‖α,pkα+1(j)

(
j−1∑
n=0

1

j

)1/p

= Cα,p‖f‖α,pkα+1(j).

Again, applying a inequality of Minkwoski type to the first summand of (5.1) we have( ∞∑
n=0

(kα+1(n))p

(
n∑

j=0

|Wαg(j)|
n∑

u=n−j

kα(u− n+ j)|Wαf(u)|
)p)1/p

≤
∞∑
j=0

|Wαg(j)|
( ∞∑

n=j

(kα+1(n))p

(
n∑

u=n−j

kα(u− n+ j)|Wαf(u)|
)p)1/p

≤
∞∑
j=0

|Wαg(j)|
⎡⎣( 2j∑

n=j

(kα+1(n))p

(
n∑

u=n−j

kα(u− n+ j)|Wαf(u)|
)p)1/p

+

( ∞∑
n=2j+1

(kα+1(n))p

(
n∑

u=n−j

kα(u− n+ j)|Wαf(u)|
)p)1/p

⎤⎦ .

For j ≤ n ≤ 2j we write(
2j∑
n=j

(kα+1(n))p

(
n∑

u=n−j

kα(u− n+ j)|Wαf(u)|
)p)1/p

= kα+1(2j)

(
j∑

l=0

(
l+j∑
u=l

kα(u− l)|Wαf(u)|
)p)1/p

≤ kα+1(2j)

(( ∞∑
u=0

kα(u)|Wαf(u)|
)p

+
∞∑
l=1

( ∞∑
u=l

kα(u− l)|Wαf(u)|
)p)1/p
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≤ Cαk
α+1(j)

(( ∞∑
u=0

kα(u)

kα+1(u)
kα+1(u)|Wαf(u)|

)p

+Cα,p

∞∑
l=1

( ∞∑
u=l

(u− l)α−1

uα
uα|Wαf(u)|

)p)1/p

≤ Cα,pk
α+1(j)‖f‖α,p,

by using [3, Lemma 2.1], Hölder’s inequality, (2.1) and Hardy’s inequality (0.1). For n > 2j,( ∞∑
n=2j+1

(kα+1(n))p

(
n∑

u=n−j

kα(u− n+ j)|Wαf(u)|
)p)1/p

=

( ∞∑
l=j+1

(kα+1(l + j))p

(
l+j∑
u=l

kα(u− l)|Wαf(u)|
)p)1/p

≤
( ∞∑

l=j+1

(kα+1(2l))p

(
l+j∑
u=l

kα(u− l)|Wαf(u)|
)p)1/p

≤ Cα

( ∞∑
l=j+1

(kα+1(l))p

(
j∑

m=0

kα(m)|Wαf(m+ l)|
)p)1/p

≤ Cα

j∑
m=0

kα(m)

( ∞∑
l=j+1

(kα+1(l))p|Wαf(m+ l)|p
)1/p

≤ Cα

j∑
m=0

kα(m)

( ∞∑
l=j+1

(kα+1(m+ l))p|Wαf(m+ l)|p
)1/p

≤ Cα‖f‖α,pkα+1(j),

by using [3, Lemma 2.1] and a Minkwoski type inequality. So, we conclude the result. �

6. C0-Semigroups on ταp

In this section we study, for 1 ≤ p ≤ ∞, the C0-semigroup structure of the two one-
parameter operator families on the sequence spaces ταp , (Tp(t))t≥0 and (Sp(t))t≥0, given by

Tp(t)f(n) := e−
t
pT (t)f(n), Sp(t)f(n) := e−t(1− 1

p
)S(t)f(n), n ∈ N0.

Theorem 6.1. Take 1 ≤ p ≤ ∞ and α ≥ 0. The one-parameter operator families (Tp(t))t≥0

and (Sp(t))t≥0 are contraction C0-semigroups on ταp , whose generators A and B respectively
are given by

Af(0) := −1

p
f(0), Af(n) := −nΔf(n− 1)− 1

p
f(n), n ∈ N,

Bf(n) := (n+ 1)Δf(n) +
1

p
f(n), n ∈ N0,

with f ∈ D(A) = D(B) = τα+1
p .

The C0-semigroup (Sp(t))t≥0 intertwines with the operator Dα given in Theorem 5.2 (i),
i.e., Sp(t) ◦Dα = Dα ◦ Sp(t) for t ≥ 0.
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Proof. First of all we prove that T1(t) is a bounded operator on �1 and �∞. Let f ∈ �1 and
t > 0, then

∞∑
n=0

|T1(t)f(n)| ≤ e−t

∞∑
j=0

e−tj|f(j)|
∞∑
n=j

(
n

j

)
(1− e−t)n−j

= e−t

∞∑
j=0

e−tj|f(j)|
∞∑
n=0

(
n+ j

j

)
(1− e−t)n = ‖f‖1,

where we have used (0.2) (the case t = 0 is easy). Now let f ∈ �∞, then

sup
n∈N0

|T1f(n)| ≤ e−t‖f‖∞ sup
n∈N0

n∑
j=0

(
n

j

)
e−tj(1− e−t)n−j = e−t‖f‖∞.

Applying the Riesz-Thorin Theorem we get that ‖T1(t)‖p ≤ e−t p−1
p , and consequently ‖Tp(t)‖p ≤

1.
Similarly, for α > 0, let f ∈ τα1 , then

∞∑
n=0

|WαT1(t)f(n)|kα+1(n) ≤
∞∑
n=0

e−tkα+1(n)
n∑

j=0

(
n

j

)
e−t(j+α)(1− e−t)n−j|Wαf(j)|

= e−t

∞∑
j=0

|Wαf(j)|e−t(j+α)kα+1(j)
∞∑
n=j

(
n+ α

j + α

)
(1− e−t)n

= e−t

∞∑
j=0

|Wαf(j)|e−t(j+α)kα+1(j)
∞∑
n=0

(
n+ j + α

j + α

)
(1− e−t)n = ‖f‖α,1,

where we have applied Lemma 4.4, and the identities kα+1(n)
(
n
j

)
= kα+1(j)

(
n+α
j+α

)
and (0.2)

(the case t = 0 is easy). Now let f ∈ τα∞ and t > 0, then

supn∈N0
|WαT1(t)f(n)|kα+1(n) = supn∈N0

e−t|
n∑

j=0

(
n

j

)
e−t(j+α)(1− e−t)n−j|Wαf(j)||kα+1(n)

≤ ‖f‖α,∞ supn∈N0
e−t

n∑
j=0

(
n+ α

j + α

)
e−t(j+α)(1− e−t)n−j = e−t‖f‖α,∞,

where we have used again Lemma 4.4, and the equality kα+1(n)
(
n
j

)
= kα+1(j)

(
n+α
j+α

)
. So, we

have that T1(t) is a bounded operator on τα1 and τα∞, with

‖T1(t)‖α,1 ≤ 1, ‖T1(t)‖α,∞ ≤ e−t.

Using Theorem 5.2 (i), DαT1(D
α)−1 is a bounded operator on �1 and �∞ with

‖DαT1(t)(D
α)−1‖1 ≤ 1, ‖DαT1(t)(D

α)−1‖∞ ≤ e−t.

Applying the Riesz-Thorin theorem we get that ‖DαT1(t)(D
α)−1‖p ≤ e−t p−1

p , and therefore
Tp(t) is a bounded operator on ταp with

‖Tp(t)‖α,p ≤ 1.

On the other hand, we will prove that S1(t) is a bounded operator on �1 and �∞. Let
f ∈ �1, then

∞∑
n=0

|S1(t)f(n)| ≤
∞∑
j=0

|f(j)|
j∑

n=0

(
j

n

)
e−tn(1− e−t)j−n = ‖f‖1.



GENERALIZED CESÀRO OPERATORS ON SOBOLEV-LEBESGUE SEQUENCE SPACES 21

Now let f ∈ �∞ and t > 0, by (0.2) one gets

sup
n∈N0

|S1(t)f(n)| ≤ ‖f‖∞ sup
n∈N0

e−tn

∞∑
j=n

(
j

n

)
(1− e−t)j−n

= ‖f‖∞ sup
n∈N0

e−tn

∞∑
j=0

(
j + n

n

)
(1− e−t)j = et‖f‖∞.

The case t = 0 is clear. Applying the Riesz-Thorin theorem we get that ‖S1(t)‖p ≤ et
p−1
p ,

and consequently ‖Sp(t)‖p ≤ 1.
Similarly, for α > 0, let f ∈ τα1 , then
∞∑
n=0

|WαS1(t)f(n)|kα+1(n) ≤
∞∑
n=0

e−tnkα+1(n)
∞∑
j=n

(
j + α

n+ α

)
(1− e−t)j−n|Wαf(j)|

=
∞∑
j=0

|Wαf(j)|kα+1(j)

j∑
n=0

e−tn(1− e−t)j−n

(
j

n

)
= ‖f‖α,1,

where we have applied Lemma 4.3 and the equality kα+1(n)
(
j+α
n+α

)
= kα+1(j)

(
j
n

)
. Now let

f ∈ τα∞ and t > 0, then

sup
n∈N0

|WαS1(t)f(n)|kα+1(n) = sup
n∈N0

e−tn|
∞∑
j=n

(
j + α

n+ α

)
(1− e−t)j−n|Wαf(j)||kα+1(n)

≤ ‖f‖α,∞ sup
n∈N0

e−tn

∞∑
j=n

(
j

n

)
(1− e−t)j−n = et‖f‖α,∞,

where we have used again Lemma 4.3, and the identities kα+1(n)
(
j+α
n+α

)
= kα+1(j)

(
j
n

)
and

(0.2) (the case t = 0 is easy). So, we have that S1(t) is a bounded operator on τα1 and τα∞
with

‖S1(t)‖α,1 ≤ 1, ‖S1(t)‖α,∞ ≤ et.

By Theorem 5.2 (i), DαS1(D
α)−1 is a bounded operator on �1 and �∞ with

‖DαS1(t)(D
α)−1‖1 ≤ 1, ‖DαS1(t)(D

α)−1‖∞ ≤ et.

Applying the Riesz-Thorin theorem we get that ‖DαS1(t)(D
α)−1‖p ≤ et

p−1
p , and therefore

Sp(t) is a bounded operator on ταp with

‖Sp(t)‖α,p ≤ 1.

The strong continuity follows from the ideas developed in [25, Section 4, Example 7.1 and
7.2], using properties of the operator Wα ([3, Section 2]). It is a simple check that A and B
are the generators.

Finally we prove that D(A) = D(B) = τα+1
p . Let f ∈ τα+1

p be given, then f ∈ ταp since

τα+1
p ↪→ ταp . Using Proposition 3.3 we have that

(6.1) Wα((j + 1)Δf(j))(n) = −(n+ α + 1)W α+1f(n) + αW αf(n), n ∈ N0,

then (j + 1)Δf(j) ∈ ταp and therefore f ∈ D(B). Conversely, if f ∈ D(B), then f ∈ ταp and
(j + 1)Δf(j) ∈ ταp . The identity (6.1) implies that

(α + 2)W α+1f(n)kα+2(n) = −Wα((j + 1)Δf(j))(n)kα+1(n) + αW αf(n)kα+1(n), n ∈ N0,

whence f ∈ τα+1
p . The case D(A) = τα+1

p is similar.
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The equality Sp(t) ◦Dα = Dα ◦ Sp(t) for t ≥ 0 is a direct consequence of Lemma 4.3 and
the definition of the C0-semigroup (Sp(t))t≥0. �
Remark 6.2. The above semigroups are not holomorphic. First we see that (Tp(t))t≥0 are
not holomorphic: we take k0, which belongs to ταp for all α ≥ 0 and 1 ≤ p ≤ ∞. For z ∈ C,
it is easy to see that

sup
n∈N0

|WαT1(z)k
0(n)|kα+1(n) = e−(α+1)Re z sup

n∈N0

|1− e−z|nkα+1(n).

In the following we prove that there is not 0 < δ < π
2
such that |1− e−z| ≤ 1 on Σδ := {z ∈

C : z �= 0 and |Argz| < δ}. Then (T1(t))t≥0 is not holomorphic on τα∞, and therefore not on
ταp for 1 ≤ p ≤ ∞. Observe that

|1− e−z| =
√
1− 2e−Re z cos(Im z) + e−2Re z ≤ 1

if and only if

2 cos(Im z)− e−Re z ≥ 0.

For simplicity, we write z = ρeiϕ with 0 ≤ ρ and |ϕ| ≤ δ, and we define

F (ρ, ϕ) = 2 cos(ρ sin(ϕ))− e−ρ cos(ϕ).

Then for all 0 < δ0 < δ and ρ0 =
π

2 sin(δ0)
one gets

F (ρ0, δ0) = −e
−π cos(δ0)

2 sin(δ0) < 0,

so |1− e−z| > 1 in some points of Σδ for any 0 < δ < π
2
.

Secondly, we see that for all 0 < δ < π
2
, there exist points z ∈ Σδ such that Sp(z) is not

defined on ταp . It is suffices to take z = π
2 sin(δ0)

eiδ0 with 0 < δ0 < δ. Then, the sequence

f(n) = 1
(1−e−z)n

, n ∈ N0, belongs to ταp since |1− e−z| > 1, but it is easy to see that

Sp(z)f(n) = e−z(n+1− 1
p
)(1− e−z)n

∞∑
j=n

(
j

n

)
= ∞.

The proof of the following result it follows easily from Proposition 5.2(iv).

Proposition 6.3. The semigroups (Tp(t))t≥0 and (Sp′(t))t≥0 are dual operators of each other
on ταp and ταp′ respectively with 1

p
+ 1

p′ = 1.

Proposition 6.4. Let A and B the generators of (Tp(t))t≥0 and (Sp(t))t≥0 on ταp with 1 ≤
p ≤ ∞. Then

(i) The point spectrum of A and B are:
(a) σpoint(A) = ∅ and σpoint(B) = C−, for 1 < p < ∞.
(b) σpoint(A) = ∅ and σpoint(B) = C− ∪ {0}, for p = 1.
(c) σpoint(A) = {0} and σpoint(B) = C− ∪ iR, for p = ∞.

(ii) The spectrum of B is σ(B) = C− ∪ iR.

Proof. (i) First we consider the operator A. For the case (a) and (b), we take 1 ≤ p < ∞.
Let λ ∈ C and f ∈ τα+1

p such that Af = λf. Then the nonzero solutions of this difference

equation are f(n) = c with c �= 0, which do not belong to τα+1
p . For the case (c), let p = ∞.

If λ �= 0, Af = λf if and only if f is the null sequence. On the other hand, if λ = 0, the
nonzero solutions of Af = λf are f(n) = c with c �= 0, which belong to τα+1

∞ , see Lemma
5.3(i).
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Now let Bf = λf. The nonzero solutions of this difference equation are f(n) = ckλ+1− 1
p (n)

with c �= 0, which are on τα+1
p for Reλ < 0 if 1 < p ≤ ∞, for Reλ < 0 and λ = 0 for p = 1,

and for Reλ ≤ 0 if p = ∞, see Lemma 5.3(i).
(ii) We know that (Sp(t))t≥0 is a contraction C0-semigroup on ταp , then by the spectral

mapping theorem ([13, Chapter IV, Theorem 3.6]) we have

etσ(B) ⊆ σ(Sp(t)) ⊆ {z ∈ C : |z| ≤ 1},
therefore σ(B) ⊆ {Reλ ≤ 0}. Conversely, note that

σpoint(B) ⊆ σ(B) ⊆ {Reλ ≤ 0}.
For p = ∞ we conclude the result. If 1 ≤ p < ∞, then it suffices to prove that the points
{Reλ = 0} are in σ(B). Let μ ∈ iR and we suppose that μ ∈ ρ(A). Let ξ = μ − 1

p
+ 2 and

f ∈ ταp . Using that (μ−B)−1 is a bounded operator, the sequence g := (μ−B)−1f ∈ ταp . So

g is the solution of g(n + 1) = (ξ+n−1)g(n)−f(n)
n+1

for n ∈ N0. It easy to prove that g(n + 1) =

ckξ−1(n + 1) −
n∑

j=0

Γ(ξ + n)(n− j)!f(n− j)

Γ(ξ + n− j)(n+ 1)!
where c is a constant. If we take f(n) = 0 for

all n ∈ N0 and c = 1, then g = kξ−1 �∈ ταp for 1 < p < ∞, and g = kξ−1 �∈ τα1 except for the
case ξ = 1 (this last case is not relevant because for p = 1 and ξ = 1 we have μ = 0, and we
know that 0 ∈ σpoint(B)), see Lemma 5.3. �

Remark 6.5. The operator −B is sectorial of angle π/2 in the sense of [17, Chapter 2, Section
2.1].

7. Cesàro discrete operators on spaces defined on N0

In this section, we expose the results which contain the main aim of the paper. Let
Reβ > 0, we consider the Cesàro operator of order β given by

Cβf(n) = 1

kβ+1(n)

n∑
j=0

kβ(n− j)f(j) n ∈ N0,

and the dual Cesàro operator of order β given by

C∗
βf(n) =

∞∑
j=n

1

kβ+1(j)
kβ(j − n)f(j) n ∈ N0.

Remark 7.1. (i) Let |λ| > 1. We consider the sequence rλ(n) = λ−(n+1), n ∈ N0. Note
that

C1rλ(n) = 1− rλ(n)

(n+ 1)(λ− 1)
, C2rλ(n) = 2((n+ 1)(λ− 1)− 1 + rλ(n))

(n+ 1)(n+ 2)(λ− 1)2
, n ∈ N0.

On the other hand,

C2
1rλ(n) =

1

(n+ 1)(λ− 1)

n∑
j=0

1− rλ(j)

j + 1
, n ∈ N0.

Then C2
1rλ �= C2rλ (it suffices to evaluate the above sequence in n = 0). Then C2

1 �= C2.
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(ii) Let p = 1, Reβ > 0, α ≥ 0 and f(n) = k−β(n+ 1), n ∈ N0. Note that

Cβf(n) = 1

kβ+1(n)

n+1∑
j=1

kβ(n+ 1− j)k−β(j) = −kβ(n+ 1)

kβ+1(n)
= − β

n+ 1
, n ∈ N0,

where we have used that kβ ∗ k−β(n+1) = k0(n+1) = 0 for n ∈ N0. The sequence f
belongs to τα1 (Lemma 5.3(i)) and Cβf /∈ �1, therefore Cβ is not a bounded operator
on τα1 .

(iii) Let p = ∞, Reβ > 0, α ≥ 0 and f(n) = 1 for all n ∈ N0. By Lemma 5.3(i), the
sequence f ∈ τα∞. The equivalence (2.2) implies that C∗

βf(n) diverges for each n ∈ N0.
So, C∗

β is not a bounded operator on τα∞.

Theorem 7.2. Let α ≥ 0 and Reβ > 0. Then

(i) The operator Cβ is a bounded operator on ταp , for 1 < p ≤ ∞.
(ii) The operator C∗

β is a bounded operator on ταp , for 1 ≤ p < ∞.

In addition, for f ∈ ταp the following subordination identities hold,

Cβf(n) = β

∫ ∞

0

(1− e−t)β−1e−t(1− 1
p
)Tp(t)f(n) dt, n ∈ N0, 1 < p ≤ ∞,

and

C∗
βf(n) = β

∫ ∞

0

(1− e−t)β−1e−
t
pSp(t)f(n) dt, n ∈ N0, 1 ≤ p < ∞.

Proof. Let α ≥ 0, Reβ > 0 and f ∈ ταp . Then

Cβf(n) =
1

kβ+1(n)

n∑
j=0

kβ(n− j)f(j) = β
n∑

j=0

(
n

j

)
Γ(j + 1)Γ(n+ β − j)

Γ(n+ β + 1)
f(j)

= β
n∑

j=0

(
n

j

)
f(j)

∫ 1

0

(1− x)n+β−j−1xj dx

= β
n∑

j=0

(
n

j

)
f(j)

∫ ∞

0

(1− e−t)n+β−j−1e−t(j+1) dt

= β

∫ ∞

0

(1− e−t)β−1e−t(1− 1
p
)Tp(t)f(n) dt,

and

C∗
βf(n) =

∞∑
j=n

1

kβ+1(j)
kβ(j − n)f(j) = β

∞∑
j=n

(
j

n

)
Γ(n+ 1)Γ(j + β − n)

Γ(j + β + 1)
f(j)

= β
∞∑
j=n

(
j

n

)
f(j)

∫ 1

0

(1− x)j+β−n−1xn dx

= β
∞∑
j=n

(
j

n

)
f(j)

∫ ∞

0

(1− e−t)j+β−n−1e−t(n+1) dt

= β

∫ ∞

0

(1− e−t)β−1e−
t
pSp(t)f(n) dt.
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Using these identities and the contractivity of the semigroups we get

‖Cβf‖α,p ≤ |β|‖f‖α,p
∫ ∞

0

(1− e−t)Reβ−1e−t(1− 1
p
) dt

= |β|Γ(Re β)Γ(1− 1
p
)

Γ(Re β + 1− 1
p
)
‖f‖α,p, 1 < p ≤ ∞,

and

‖C∗
βf‖α,p ≤ |β|‖f‖α,p

∫ ∞

0

(1− e−t)Reβ−1e−
t
p dt

= |β|Γ(Re β)Γ(1
p
)

Γ(Re β + 1
p
)
‖f‖α,p, 1 ≤ p < ∞,

and we conclude the proof �

Remark 7.3. Let Hp be the usual Hardy space on the unit disc D for 1 ≤ p ≤ ∞. The
generalized Cesàro operators (or β-Cesàro operators) Cβ and C∗

β are defined by

Cβ(F )(z) :=
β

zβ

∫ z

0

F (w)
(z − w)β−1

(1− w)β
dw, z ∈ D,

C∗
β(F )(z) :=

β

(z − 1)β

∫ z

1

F (w)(z − w)β−1dw, z ∈ D.

Then Cβ is a bounded operator for 1 ≤ p < ∞ and C∗
β is a bounded operator for 1 < p ≤ ∞,

see [28] and [26]. Moreover by [28, Formula (3.3) and Formula (2.1)], we have that

Cβ(F )(z) = β

∫ ∞

0

e−t

1− (1− e−t)z
F (ψt(z))(1− e−t)β−1dt, z ∈ D,

C∗
β(F )(z) := β

∫ ∞

0

e−tF (φt(z))(1− e−t)β−1dt, z ∈ D,

where the composition semigroups (ψt)t>0 and (φt)t>0 are considered in Remark 4.2. In the

case that F = f̃ (for suitable f) we get

Cβ(F )(z) = β

∫ ∞

0

e−tT̃ (t)f(z)(1− e−t)β−1dt = C̃β(f)(z), z ∈ D,

C∗
β(F )(z) := β

∫ ∞

0

e−tS̃(t)f(z)(1− e−t)β−1dt = C̃∗
β(f)(z), z ∈ D.

The following result states the duality between the generalized Cesàro operators. The
proof is a simple check and we omit it.

Proposition 7.4. Let α ≥ 0 and Reβ > 0. The Cesàro operators Cβ and C∗
β are dual

operators of each other ταp and τα
p
′ respectively with 1

p
+ 1

p′ = 1 and 1 < p ≤ ∞.

Remark 7.5. Let f ∈ ταp and β = 1. Then

C1f(n) =

∫ ∞

0

e−t(1− 1
p
)Tp(t)f(n) dt = (1− 1

p
− A)−1f(n), 1 < p ≤ ∞,

C∗
1f(n) =

∫ ∞

0

e−t/pSp(t)f(n) dt = (
1

p
− B)−1f(n), 1 ≤ p < ∞
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for n ∈ N0. By the spectral resolvent theorem for the resolvent operator ([13, Chapter IV,
Theorem 1.13]), one gets

σ(C∗
1) = {z ∈ C : |z − p/2| ≤ p/2} .

A novel proof of the equality σ(C1) = {z ∈ C : |z − p′/2| ≤ p′/2} for the Cesàro operator C1
on �p, with 1 < p < ∞, is given in [12]. Also, in [4], the authors study the spectrum of C1
on weighted �p spaces. Some of these results are particular cases of the following theorem.

Theorem 7.6. Let α ≥ 0 and Reβ > 0. Then

(i) The operator Cβ : ταp → ταp satisfies σ(Cβ) =

{
Γ(β+1)Γ(z+1− 1

p
)

Γ(β+z+1− 1
p
)

: z ∈ C+ ∪ iR

}
, for

1 < p ≤ ∞.

(ii) The operator Cβ∗ : ταp → ταp satisfies σ(Cβ∗) =

{
Γ(β+1)Γ(z+ 1

p
)

Γ(β+z+ 1
p
)

: z ∈ C+ ∪ iR

}
, for

1 ≤ p < ∞.

Proof. (ii) Let 1 ≤ p < ∞. The family (Sp(t))t≥0 is an uniformly bounded C0-semigroup on ταp
generated by (B,D(B)). Then we consider the Hille-Phillips functional calculus L(·)(−B) :
L1(R+) → B(X) given by

L(h)(−B)f =

∫ ∞

0

h(t)Sp(t)f dt, h ∈ L1(R+), f ∈ ταp .

By Theorem 7.2, for 1 ≤ p < ∞, we have that C∗
β = L(hβ,p)(−B), that is,

C∗
βf = β

∫ ∞

0

(1− e−t)β−1e−
t
pSp(t)f dt =

∫ ∞

0

hβ,p(t)Sp(t)f dt,

with hβ,p(t) := β(1− e−t)β−1e−
t
p for t > 0. Observe that hβ,p ∈ L1(R+),

L(hβ,p)(z) =
Γ(β + 1)Γ(z + 1

p
)

Γ(β + z + 1
p
)

:= gβ,p(z), z ∈ C+, 1 ≤ p < ∞,

where L denotes the Laplace transform, and L(hβ,p) ∈ C0(R+) ∩H0(C+).
Observe that we can extend in an holomorphic way the function gβ,p to Σϕ0 := {z ∈ C :

z �= 0 and |Argz| < ϕ0}, where ϕ0 ∈ (π
2
, π − ϕ1) with ϕ1 := arctan(Imβ

Reβ
) (see figure below):

since Γ is a meromorphic function with poles in {0,−1,−2, · · · }, we could have problems
of holomorphy in points z ∈ C− ∩ Σϕ0 such that Re (β + z + 1/p) ∈ {0,−1,−2, · · · } and
Im (β + z + 1/p) = Im (β + z) = 0. It is easy to see that the above does not take place.
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ϕ0

π − ϕ1 ϕ1

βz

Σϕ0

In addition, note that gβ,p(0) =
Γ(β+1)Γ( 1

p
)

Γ(β+ 1
p
)

and gβ,p is holomorphic in a neighborhood of 0,

then gβ,p has finite polynomial limit at 0. Also, by (2.3), lim
|z|→∞

gβ,p(z) = 0 with z ∈ Sϕ0 , so

gβ,p has finite polynomial limit at ∞. Using [17, Lemma 2.2.3] we have that gβ,p ∈ Eϕ0 , where
Eϕ0 denotes the extended Dunford-Riesz class. Therefore, since −B is a sectorial operator
of angle π

2
and B is injective (0 /∈ σp(B)) we can apply the spectral mapping theorem [17,

Theorem 2.7.8] and we get

σ(C∗
β) = σ(gβ,p(−B)) = gβ,p(σ(−B)) =

{
Γ(β + 1)Γ(z + 1

p
)

Γ(β + z + 1
p
)

: z ∈ C+ ∪ iR

}
.

(i) The proof is consequence of the part (ii) and the duality between Cβ and Cβ∗. �

Remark 7.7. Observe that for p = 2, we have σ(Cβ) = σ(C∗
β) for all β > 0. If 1 < p ≤ ∞,

then σ(Cβ) (where Cβ is considered on ταp ) is equal to σ(C∗
β), with C∗

β on ταp′ , with
1
p
+ 1

p′ = 1.

8. Spectral pictures, Final comments

The main aim of this last section is that the reader visualizes the spectrum of the Cesàro
operators on some particular cases. We will use Mathematica in order to draw the desired
sets.

First of all, it is interesting to observe that the following pictures show the border in the
values {z = it : t ∈ R} of the spectral sets, since it provides a better view of the behaviour
of such sets. Note that this subset of the spectrum may not be the mathematical boundary
as shown in the Figures. For each 1 < p ≤ ∞ and β > 0, we consider the border of the
spectrum of Cβ on ταp as the curve

Γp,β :=

{
Γ(β + 1)Γ(it+ 1− 1

p
)

Γ(β + it+ 1− 1
p
)

: t ∈ R

}
.

Note that this curve degenerates in the point 1 as β → 0+. In [22], the authors study the
spectrum of the generalized Cesàro operators for the continuous case on Sobolev spaces.
Precisely, their spectrums coincide with the curves Γp,β in the discrete case.
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As we mention in Remark 7.5, for 1 ≤ p < ∞, the spectrum of C∗
1 on ταp is the closed disc

centered in p/2 and radius p/2. Therefore, we have that

σ(C1) =
{
z ∈ C : |z − p

2(p− 1)
| ≤ p

2(p− 1)

}

on ταp for 1 < p ≤ ∞, see Remark 7.7. This comment can be observed in the Figure 1 and
Figure 3.

First, we will show cases where β > 0. For each 1 < p ≤ ∞ and β > 0, the curve Γp,β

takes the point Γ(β+1)Γ(1−1/p)
Γ(β+1−1/p)

on the complex plane (doing t = 0). In addition, when p �= ∞,

the point Γ(β+1)Γ(1−1/p)
Γ(β+1−1/p)

→ ∞ as β → ∞, see (2.3). This last comment is appreciated very

well in the Figure 2. On the other hand, by (2.3)
Γ(β+1)Γ(it+1− 1

p
)

Γ(β+it+1− 1
p
)

→ 0 as t → ±∞, for all

1 < p ≤ ∞ and β > 0.

The Figure 1 shows the curve Γ2,β for β = 0.5, 1, 2, 3, 5. It seems that for β < 1, Γ2,β is a
curve contained in the circle centered in 1 and radius 1. Such curve only cuts the real axis on

0 and Γ(β+1)
√
π

Γ(β+1/2)
. We conjecture that the last statement is true for 0 < β ≤ 1 and 1 < p ≤ ∞.

On the other hand, for β > 1, Γ2,β has points on C−. In fact, the curve cuts the imaginary
axis at least in two points. Also, for β = 3 and 5, the curve Γ2,β cuts the real negative axis.
For β = 2, it can not be appreciated the last statement.

Figure 1
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3

Imaginary axis
Spectrum p = 2

=0.5=1=2=3=5

The Figure 2 shows the curve Γ1.5,β for β = 100 and β = 200. For these values, it cuts
several times the real and imaginary axes. It would be interesting to know such points, or
at least, how many times each axis is cut.
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Figure 2
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In the Figure 3, we consider the particular case p = ∞, with β = 1, 10, 100, 1000, 10000.
First, observe that for all β > 0, Γ∞,β cuts to the real axis in the point 1 (t = 0). In
addition, this case seems to have a very special particularity; the envelope to the family of
curves {Γp,β}β>0 is the unit circle.

Figure 3
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So, we establish the following open questions:

(i) Let 1 < p < ∞ and 0 < β ≤ 1. The curves Γp,β do not cut the imaginary axis, and

only cut the real axis in 0 and Γ(β+1)Γ(1−1/p)
Γ(β+1−1/p)

.

(ii) Let 1 < p < ∞ and β > 1. Study how many times the curves Γp,β cut the real and
imaginary axes and where they do it.

(iii) For p = ∞, study if the envelope of the family of curves {Γp,β}β>0 is the unit circle.

Now, we show some pictures about the cases with Reβ > 0 and Im β �= 0. In these cases,
the behaviour of Γp,β is more difficult to predict. However, we will observe particularities
and nice curves.
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The Figure 4 shows that Γ2,1−i and Γ2,1+i are symmetrical with respect to the real axis.
In fact, it is easy to see that Γp,β and Γp,β are symmetrical.

Figure 4
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The Figure 5 shows that Γ1.5,100+i and Γ1.5,100+20i are very close to Γ1.5,100 (compare to
Figure 3), and Γ1.5,100+100i is considerably different.

Figure 5
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The Figure 6 represents a case where the gap between the real and imaginary part of β is
large. This allows us to observe that we are getting spirals centered at the origin.
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Figure 6
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For p = ∞ and large values of |β|, the Figure 7 shows how similar variations on the growing
of the real and imaginary parts of β allow to control the curves Γ∞,β in similar regions of
the complex plane. However, the same variations only on the imaginary part imply large
variations on the region where the curves are.

Figure 7
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[5] A. G. Arvanitidis and A. G. Siskakis. Cesàro operators on the Hardy spaces of the half-plane. Canad.
Math. Bull. 56 (2013), 229–240.

[6] F. M. Atici and P. W. Eloe. Initial value problems in discrete fractional calculus. Proc. Amer. Math.
Soc. 137 (3), (2009), 981-989.

[7] F. M. Atici and S. Sengül. Modeling with fractional difference equations. J. Math. Anal. Appl. 369
(2010), 1-9.

[8] A. Brown, P. R. Halmos and A. L. Shields. Cesàro operators. Acta Sci. Math. 26 (1965), 125–137.
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[20] G. Leibowitz. Spectra of discrete Cesàro operators. Tamkang J. Math. 3 (1972), 123—132.
[21] C. Lizama. The Poisson distribution, abstract fractional difference equations, and stability. Proc. Amer.

Math. Soc. 145 (2017), no. 9, 3809—3827.
[22] C. Lizama, P. J. Miana, R. Ponce, L. Sánchez-Lajusticia. On the boundedness of generalized Cesàro
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y Aplicaciones, 50090 Zaragoza, Spain.

E-mail address : labadias@unizar.es
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