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1 Introduction

A Hamiltonian system with n degrees of freedom is called Liouville (or Liouville-Arnold) integrable if it
is endowed with n functionally independent integrals of motion in involution (including the Hamiltonian
itself). Some integrable systems, as the harmonic oscillator or the Kepler problem, admit more constants
of motion than degrees of freedom; they are called superintegrable. Therefore a Hamiltonian with two
degrees of freedom is said to be superintegrable if it admits two fundamentals integrals of motion, I1 and
I2, that Poisson commute and a third independent integral I3. The additional integral I3 has vanishing
Poisson bracket with H but not necessarily with I1 and I2.

It is known that if a system is separable (Hamilton-Jacobi separable in the classical case or Schrödinger
separable in the quantum case) then it is integrable with integrals of motion of at most second order
in momenta. Thus, if a system admits multiseparability (separability in several different systems of
coordinates) then it is endowed with “quadratic superintegrability” (superintegrability with linear or
quadratic integrals of motion).

Fris et al. studied [1] the two-dimensional Euclidean systems, which admit separability in more than one
coordinate systems and obtained four families of potentials Vr, r = a, b, c, d, possessing three functionally
independent integrals of motion (they were mainly interested in the quantum two-dimensional Schrödinger
equation but the results obtained are also valid at the classical level). Then other authors studied
similar problems on higher-dimensional Euclidean spaces [2]–[4], on two-dimensional spaces with a pseuo-
Euclidean metric (Drach potentials) [5]–[8], or on curved spaces [9]–[15] (see [16] for a recent review on
superintegrability that includes a long list of references).

For some time the studies on superintegrability were mainly concerned with “quadratic superinte-
grability” but recent studies have proved the existence of certain systems endowed with higher order
superintegrability, that is, with integrals of motion which are polynomials in the momenta of higher order
than two. We mention the Calogero-Moser system whose superintegrability is related with a Lax equation
[17]–[19] (this formalism is not considered in this paper) and three important systems that are separable
but in only one system of coordinates, the generalized SW system system (caged anisotropic oscillator)
[20]–[22], the Tremblay-Turbiner-Winternitz (TTW) system [23]–[37], and the Post–Winternitz (PW)
system [38]–[39]; in these three cases two of the integrals are quadratic but the third one is of higher
order.

One important point is that although the number of superintegrable systems can be considered as rather
limited, they are not however isolated systems but, on the contrary, they frequently appear grouped in
families; for example, everyone of the above mentioned potentials Vr, r = a, b, c, d, has structure of a
three-dimensional vector space. Now in this paper we consider the idea of one-parameter deformations
of a given Hamiltonian, that is, families of Hamiltonians depending of a real parameter κ that are
superintegrable for all the values of κ (in the domain of the parameter) and that for κ = 0 they reduce
to superintegrable Hamiltonians previously studied.

The main objective of this article is twofold. First, study the existence of superintegrable deforma-
tions of the four two-dimensional Euclidean systems (some of the results obtained are related with some
nonlinear systems studied in [40]–[43]) and, second, study the existence of superintegrable deformations
of the TTW and the PW systems. In these two cases we prove the superintegrability and we obtain the
explicit expression of the third integral (that we recall is of higher-order) as the product of powers of two
particular complex functions (this complex formalism is very similar to the approach presented in [30],
[37], for the TTW system and in [39] for the PW system)

The plan of the article is as follows: Sec. 2 is devoted to recall the main characteristics of the
four two-dimensional potentials whith separability in two different coordinate systems in the Euclidean
plane. Then Sec. 3 and 4 are concerned with quadratic superintegrability and Sec. 5 with higher order
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constants of motion. In Sec. 3 we first introduce the idea of deformation (depending of one parameter
κ) of a Hamiltonian and then we study four families of superintegrable families endowed with multiple
separability. Sec. 5 has two parts. In the first part we study a κ-dependent Hamiltonian related with the
harmonic oscillator, that can be considered as a deformation of the TTW system, and in the second part
a κ-dependent Hamiltonian related with the Kepler problem, that can be considered as a deformation of
the PW system. Finally in Sec. 6 we make some final comments.

2 Superintegrability with quadratic constants of motion in the
Euclidean plane

Let us denote by Vr, r = a, b, c, d, the four two-dimensional potentials whith separability in two different
coordinate systems in the Euclidean plane.

The two first potentials, Va y Vb, are related with the harmonic oscillator. They satisfy the equation
Vxy = 0 and correspond, therefore, to a direct sum of one-degree of freedom systems.

(a) The following potential

Va = (
1

2
)α2(x2 + y2) +

k2
x2

+
k3
y2

(1)

is separable in (i) Cartesian coordinates and (ii) polar coordinates. The three constants of motion,
Ia1, Ia2, y Ia3, are given by

Ia1 = p2x + α2x2 +
2k2
x2

,

Ia2 = p2y + α2y2 +
2k3
y2

,

Ia3 = (xpy − ypx)2 + 2k2
(y
x

)2
+ 2k3

(x
y

)2
.

(b) The following potential

Vb = (
1

2
)α2(4x2 + y2) +

k2
x2

+ k3x (2)

is separable in (i) Cartesian coordinates and (ii) parabolic coordinates. The three constants of
motion, Ib1, Ib2, y Ib3, are given by

Ib1 = p2x + 4α2x2 + 2k3x ,

Ib2 = p2y + α2y2 +
2k2
y2

,

Ib3 = (xpy − ypx)py − α2xy2 + k2
(2x

y2
)
− k3

2y2
.

The two other potentials, Vc y Vc, are related with the Kepler problem.

(c) The following potential

Vc =
k1√
x2 + y2

+
k2
y2

+
k3x

y2
√
x2 + y2

(3)
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is separable in (i) polar coordinates and (ii) parabolic coordinates. The first constant of motion is
the Hamiltonian itself, that is Ic1 = Hc, and the other two constants of motion, Ic2, and Ic3, are
given by

Ic2 = (xpy − ypx)2 +
2k2x

2

y2
+

2k3x
√
x2 + y2

y2
,

Ic3 = (xpy − ypx)py +
k1x√
x2 + y2

+
2k2x

y2
+
k3(2x2 + y2)

y2
√
x2 + y2

.

(d) The following potential

Vd =
k1√
x2 + y2

+ k2

[√
x2 + y2 + x

]1/2√
x2 + y2

+ k3

[√
x2 + y2 − x

]1/2√
x2 + y2

(4)

is separable in (i) parabolic coordinates (a, b) and (ii) a second system of parabolic coordinares
(α, β) obtained from (a, b) by a rotation. The first constant of motion is the Hamiltonian itself,
that is Id1 = Hd, and the other two constants of motion, Id2, and Id3, are given by

Id2 = (xpy − ypx)py +
k1x√
x2 + y2

− k2
y
[√

x2 + y2 − x
]1/2√

x2 + y2
+ k3

y
[√

x2 + y2 + x
]1/2√

x2 + y2
,

Id3 = (xpy − ypx)px −
k1y√
x2 + y2

− k2
x
[√

x2 + y2 − x
]1/2√

x2 + y2
+ k3

x
[√

x2 + y2 + x
]1/2√

x2 + y2
.

3 Four new superintegrable families endowed with multiple sep-
arability

Suppose we are given a Hamiltonian H; then we can construct a new Hamiltonian H̃ as H̃ = λH where
λ is a certain function defined on the configuration space. This new Hamiltonian represents a new and
different dynamics; for example if H is defined on an Euclidean space then the new dynamics will be
nonEuclidean. More particularly, we are interested in multipliers λ that preserve certain properties of
H as integrability or separability. For example if H is defined in the Euclidean plane and is separable
in Cartesian coordinates (x, y) and λ is of the form λ = 1/µ, µ = f(x) + g(y), then H̃ is separable
in Cartesian coordinates as well, and if H is separable in polar coordinates (r, φ) and λ is of the form

λ = 1/µ, µ = f(r) + g(φ)/r2, then H̃ is also separable in polar coordinates. A more strong condition is
that λ must preserve not just separability but multiple separability; this requirement will strongly restrict
the form of the multiplier.

Another important property we wish to introduce is that the new Hamiltonian H̃ must be a deformation
of H. By deformation we mean that λ, and therefore H̃, will depend of a parameter κ in such a way that

(i) The new Hamiltonian H̃(κ) must be a continous function of κ (in a certain domain of the parameter).

(ii) When κ→ 0 we have λ→ 1 and then the dynamics of the Euclidean Hamiltonian H is recovered.

In this section we study the separability and the superintegrability of four Hamiltonians H̃r(κ) obtained
as deformations of the four Hamiltonians Hr, r = a, b, c, d.
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3.1 Hamiltonian H̃a(κ)

Let us consider the Hamiltonian Ha

Ha =
1

2

(
p2x + p2y

)
+

1

2
α2
(
x2 + y2

)
+
k2
x2

+
k3
y2

(5)

and denote by λa the following multiplier

λa =
1

µa
, µa(x, y) = 1− κ r2 , r2 = x2 + y2 .

Then the new κ-dependent Hamiltonian H̃a(κ) defined as H̃a(κ) = λaHa is given by

H̃a(κ) =
1

2

( p2x + p2y
1− κ r2

)
+

1

2
α2
( x2 + y2

1− κ r2
)

+
k2

(1− κ r2)x2
+

k3
(1− κ r2) y2

. (6)

The parameter κ can take both positive and negative values. In the κ < 0 case the H̃a(κ) dynamics is
correctly defined for all the values of the variables; nevertheless when κ > 0, the Hamiltonian (and the

associated dynamics) has a singularity at 1− κ r2 = 0, so in this case the H̃a(κ) dynamics is defined in
the interior of the circle r2 = 1/κ, κ > 0, that is the region in which kinetic term is positive definite.

(i) Cartesian separability

The Hamilton-Jacobi (H-J) equation takes the form

1

2

( 1

1− κ r2
)[(∂W

∂x

)2
+
(∂W
∂y

)2]
+

1

2
α2
( x2 + y2

1− κ r2
)

+
k2

(1− κ r2)x2
+

k3
(1− κ r2) y2

= E

so that if we assume that W can be written as W = Wx(x)+Wy(y) then we can perform a separation
of variables and arrive to the following two one-variable expressions[(∂Wx

∂x

)2
+ α2x2 +

2k2
x2

+ 2κEx2
]

= K + E ,[(∂Wy

∂y

)2
+ α2y2 +

2k3
y2

+ 2κEy2
]

= −K + E ,

where K denotes the constant associated to the separability. Everyone of these two expressions
determine a constant of motion. So the κ-dependent functions Ja1 and Ja2 given by

Ja1 = p2x + α2x2 +
2k2
x2

+ 2κH̃ax
2 ,

Ja2 = p2y + α2y2 +
2k3
y2

+ 2κH̃ay
2 ,

are constants of motion satisfying the following properties

(i) dJa1 ∧ dJa2 6= 0 , (ii) {Ja1 , Ja2} = 0 , (iii) H̃a(κ) =
1

2

(
Ja1 + Ja2

)
.

(ii) Polar separability

The Hamilton-Jacobi (H-J) equation takes the form

1

2m

[(∂W
∂r

)2
+

1

r2

(∂W
∂φ

)2]
+ α2 r2 +

k2
r2 cos2 φ

+
k3

r2 sin2 φ
= (1− κ r2)E
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so that if we assume that W is of the form W = Wr(r) + Wφ(φ) we can perform a separation of
variables and rewrite the equation as the sum of two one-variable summands[

r2
(∂Wr

∂r

)2
+ α2r4 − 2Er2(1− κ r2)

]
+
[(∂Wφ

∂φ

)2
+

2k2
cos2 φ

+
2k3

sin2 φ

]
= 0

so that the following function

Ja3 = p2φ +
2k2

cos2 φ
+

2k3

sin2 φ

is a constant of motion.

We summarize the results in the following proposition.

Proposition 1 The κ-dependent Hamiltonian H̃a(κ) is H-J separable in Cartesian (x, y) and polar (r, φ)
coordinates and it is endowed with the following three quadratic constants of motion

Ja1 =
1

(1− κ r2)

(
(1− κy2)p2x + κx2p2y + α2x2 +

2k2(1− κy2)

x2
+

2k3x
2

y2

)
,

Ja2 =
1

(1− κ r2)

(
(1− κx2)p2y + κy2p2x + α2y2 +

2k2y
2

x2
+

2k3(1− κx2)

y2

)
,

Ja3 = (xpy − ypx)2 + 2k2
(y
x

)2
+ 2k3

(x
y

)2
.

We note that the two first functions satisfy the correct limit when κ → 0, that is limκ→0 Jai = Iai,
i = 1, 2. Concerning the third function Ja3 it is κ-independent and it coincides with the original constant
Ia3.

3.2 Hamiltonian H̃b(κ)

Let us consider the Hamiltonian Hb

Hb =
1

2

(
p2x + p2y

)
+

1

2
α2
(
4x2 + y2

)
+
k2
y2

+ k3x (7)

and denote by λb the following multiplier

λb =
1

µb
, µb(x, y) = 1− κx .

Then the new κ-dependent Hamiltonian H̃b(κ) is thus given by

H̃b(κ) =
1

2

(p2x + p2y
1− κx

)
+

1

2
α2
(4x2 + y2

1− κx

)
+

k2
(1− κx) y2

+
k3x

(1− κx)
. (8)

(i) Cartesian separability

The H-J equation takes the form

1

2

( 1

1− κx

)[(∂W
∂x

)2
+
(∂W
∂y

)2]
+

1

2
α2
(4x2 + y2

1− κx

)
+

k2
(1− κx) y2

+
k3x

(1− κx)
= E
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so that if we assume that the function W is of the form W = Wx(x) + Wy(y) we can perform a
separation of variables and arrive to[(∂Wx

∂x

)2
+ 4α2x2 + 2k3x+ 2κEx

]
+
[(∂Wy

∂y

)2
+ α2y2 +

2k2
y2

]
= 2E .

This means that the following two functions

Jb1 = p2x + 4α2x2 + 2k3x+ 2κxH̃b , Jb2 = p2y + α2y2 +
2k2
y2

,

are constants of motion satisfying the following properties

(i) dJb1 ∧ dJb2 6= 0 , (ii) {Jb1 , Jb2} = 0 , (iii) H̃b(κ) =
1

2

(
Jb1 + Jb2

)
.

(ii) Parabolic separability

If we introduce the following change

(x, y) → (a, b) , x = a2 − b2 , y = 2ab ,

then the κ-dependent Hamiltonian becomes

H̃b(κ) =
1

2

1

1− κ (a2 − b2)

(p2a + p2b
a2 + b2

)
+

1

1− κ (a2 − b2)

[1

2
α2
(a6 + b6

a2 + b2

)
+

k2
a2b2

+ k3
a4 − b4

a2b2

]
and the H-J equation

1

2

1

(a2 + b2)

[(∂W
∂a

)2
+
(∂W
∂b

)2]
+
[1

2
mα2

(a6 + b6

a2 + b2

)
+

k2
a2b2

+ k3
a4 − b4

a2b2

]
=
(
1− κ (a2 − b2)

)
E

also admits separation of variables[(∂Wa

∂a

)2
+α2a6+

2k2
a2

+2k3a
4−2(a2−κa4)E

]
+
[(∂Wb

∂b

)2
+α2b6+

2k2
b2
−2k3b

4−2(b2+κb4)E
]

= 0

The result is that the following function

Jb3 = p2a + α2a6 +
2k2
a2

+ 2k3a
4 − 2(a2 − κa4)H̃b(κ) ,

= −
[
p2b + α2b6 +

2k2
b2
− 2k3b

4 − 2(b2 + κb4)H̃b(κ)
]

is also a constant of motion.

The following proposition summarizes these results.

Proposition 2 The κ-dependent Hamiltonian H̃b(κ) is H-J separable both in Cartesian coordinates (x, y)
and in parabolic coordinates (a, b), and it is endowed with the following three quadratic constants of motion

Jb1 =
1

(1− κx)

(
p2x + κxp2y + α2(4x+ κy2)x+

2k2κx

y2
+ 2k3x

)
,

Jb2 = p2y + α2y2 +
2k2
y2

,

Jb3 = (xpy − ypx)py − κ
y2(p2x + p2y)

4(1− κx)
+

1

(1− κx)

(
− α2

4
y2(4x+ κy2) +

k2
2y2

(
4x− κ(4x2 + y2)

)
− k3

y2

2

)
.
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3.3 Hamiltonian H̃c(κ)

Let us consider the Hamiltonian Hc

Hc =
1

2m

(
p2x + p2y

)
+

k1√
x2 + y2

+
k2
y2

+ k3
x

y2
√
x2 + y2

(9)

and denote by λc the following multiplier

λc =
1

µc
, µc(x, y) = 1− κ

r
.

Then the new κ-dependent Hamiltonian H̃c(κ) is

H̃c(κ) =
1

2

( r

r − κ

)
(p2x + p2y) +

k1
r − κ

+
k2 r

(r − κ) y2
+

k3x

(1− κ r) y2
. (10)

(i) Polar separability

The H-J equation takes the form

1

2

( r

r − κ

)[(∂W
∂r

)2
+

1

r2

(∂W
∂φ

)2]
+

k1
r − κ

+
k2 r

(r − κ) r sin2 φ
+

k3 cosφ

(r − κ) r sin2 φ
= E

so that if we assume that W is of the form W = Wr(r) + Wφ(φ) we can perform a separation of
variables and rewrite the equation as the sum of two one-variable summands[

r2
(∂Wr

∂r

)2
+ 2k1r − 2 r(r − κ)E

]
+
[(∂Wφ

∂φ

)2
+

2k2

sin2 φ
+ 2k3

cosφ

sin2 φ

]
= 0

so that the following function

Jc2 = p2φ +
2k2

sin2 φ
+ 2k3

cosφ

sin2 φ

is a constant of motion.

(ii) Parabolic separability

The Hamiltonian H̃c takes the following form in parabolic coordinates

H̃c(κ) =
1

2

1

(a2 + b2)− κ

(
p2a + p2b

)
+

1

(a2 + b2)− κ

[
2k1 + k2

a2 + b2

a2b2
+ k3

a2 − b2

a2b2

]
so that the H-J equation becomes[(∂W

∂a

)2
+
(∂W
∂b

)2]
+ 2
[
2k1 + k2

a2 + b2

a2b2
+ k3

a2 − b2

a2b2

]
= 2((a2 + b2)− κ)E

and it leads to [(∂Wa

∂a

)2
+ 2k1 +

2k2
a2
− 2k3

a2
− 2a2E

]
= −κE +K[(∂Wb

∂b

)2
+ 2k1 +

2k2
b2

+
2mk3
b2
− 2b2E

]
= −κE −K

so that the following two functions

Jc3a = p2a + 2k1 +
2k2
a2
− 2k3

a2
− 2a2H̃c(κ) ,
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Jc3b = p2b + 2k1 +
2k2
b2

+
2k3
b2
− 2b2H̃c(κ) ,

are two constants of motion representing two different κ-deformations of Ic3

(i) dJc3a ∧ dJc3b 6= 0 , (ii) {Jc3a , Jc3b} = 0 , (iii) lim
κ→0

Jc3a = lim
κ→0

Jc3b = Ic3 .

Nevertheless, as the only difference between them is a term proportional to H̃c(κ) (with κ as
coefficient), we consider as a more appropiate third constant the following function

Jc3 = p2a + 2k1 +
2k2
a2
− 2k3

a2
− 2a2H̃c(κ) + κH̃c(κ)

= −
[
p2b + 2k1 +

2k2
b2

+
2k3
b2
− 2b2H̃c(κ) + κH̃c(κ))

]
that in a more detailed way is as follows

Jc3 =
1

a2 + b2 − κ

[
(a2p2b − b2p2a) +

κ

2
(p2a − p2b) + 2k1 (a2 − b2)

+
k2
a2b2

(
2(a4 − b4)− κ(a2 − b2)

)
+

k3
a2b2

(
2(a4 + b4)− κ(a2 + b2)

)]
.

Proposition 3 The κ-dependent Hamiltonian H̃c(κ) is H-J separable in polar coordinates (r, φ) and
parabolic coordinates (a, b) and it is endowed with the Hamiltonian as the first constant, that is Jc1 =

H̃c(κ), and the following two additional quadratic constants of motion

Jc2 = (xpy − ypx)2 +
2k2x

2

y2
+

2k3x
√
x2 + y2

y2
,

Jc3 =
1

r − κ

[
r (xpy − ypx)py +

κ

2
(xp2x − xp2y + 2ypxpy) + k1 x

+
k2x

y2
(2r − κ) +

k3
y2
(
2x2 + y2 − κ r

)]
.

The function Jc2 it is κ-independent and it coincides with the original constant Ic2 (the same situation
we found in the case (a) with Ja3). Concernig Jc3, it is clear that it satisfies the limit Jc3 → Ic3 when
κ→ 0.

3.4 Hamiltonian H̃d(κ)

Let us consider the Hamiltonian Hd

Hd =
1

2

(
p2x + p2y

)
+
k1
r

+ k2

√
r + x

r
+ k3

√
r − x
r

, r2 = x2 + y2 , (11)

and denote by λd the following multiplier

λd =
1

µd
, µd(x, y) = 1− κ

r
.

Thus, the κ-dependent Hamiltonian we will study is

H̃d(κ) =
1

2

( r

r − κ

)
(p2x + p2y) +

k1
r − κ

+
k2
√
r + x

r − κ
+
k3
√
r − x

r − κ
. (12)
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(i) Parabolic separability I

The Hamiltoniano H̃d(κ) takes the following form when written in parabolic coordinates

H̃d(κ) =
1

2

1

(a2 + b2)− κ

(
p2a + p2b

)
+

1

(a2 + b2)− κ

(
k1 + k2a+ k3b

)
so that the corresponding H-J Equation

1

2

1

(a2 + b2)− κ

[(∂W
∂a

)2
+
(∂W
∂b

)2]
+

1

(a2 + b2)− κ

(
k1 + k2a+ k3b

)
= E

admits separation of variables and it reduces to[(∂Wa

∂a

)2
+ k1 + 2k2a− 2a2E

]
+
[(∂Wb

∂b

)2
+ k1 + 2k3b− 2b2E

]
= −2κE .

Thus, the following two functions

Jd2a = p2a + k1 + 2k2a− 2a2H̃d(κ) ,

Jd2b = p2b + k1 + 2k3b− 2b2H̃d(κ) ,

that written with more detail are as follows

Jd2a =
1

(a2 + b2)− κ

[
a2p2b − b2p2a + κp2a + k1(a2 − b2 + κ)− 2k2a(b2 − κ) + 2k3a

2b
]

Jd2b =
1

(a2 + b2)− κ

[
a2p2b − b2p2a − κp2b + k1(a2 − b2 − κ)− 2k2ab

2 + 2k3b(a
2 − κ)

]
are two independent constants of motion. Nevertheless as the only difference between them is just a
term proportional to the Hamiltonian, that is Jd2b−Jd2a = 2κ H̃d(κ), we consider more convenient
to choose the following function

Jd2 = Jd2b − κ H̃d(κ) = Jd2a + κ H̃d(κ)

that takes the form

Jd2 =
1

a2 + b2 − κ

(
(a2p2b−b2p2a)+

κ

2
(p2a−p2b)

)
+

1

a2 + b2 − κ

(
k1 (a2−b2)−k2 a(2b2−κ)+k3 b(2a

2−κ)
)

as the integral representing the κ-dependent version of Id2.

(ii) Parabolic separability II

We can introduce a new system of parabolic coordinates by rotating the original system

(a, b)→ (α, β) ; a =
1√
2

(α+ β), b =
1√
2

(α− β) ,

in such a way that the Hamiltonian H̃d(κ), when written in this new system, it takes the following
form

H̃d(κ) =
1

2

1

(α2 + β2)− κ

(
p2α + p2β

)
+

1

(α2 + β2)− κ

[
k1 + k2

1√
2

(α+ β) + k3
1√
2

(α− β)
]
.

The H-J equation H̃d(∂W/∂α, ∂W/∂α, α, β) = E is separable as well, and it leads to the following
two functions

Jd3a = p2α + k1 +
√

2k2α+
√

2k3α− 2α2H̃d(κ) ,
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Jd3b = p2β + k1 +
√

2k2β −
√

2k3β − 2β2H̃d(κ) ,

that recovering the coordinates (a, b) appear as follows

Jd3a =
1

(a2 + b2)− κ

[
(apb−bpa)(apa−bpb)−

κ

2
(pa+pb)

2−k1(2ab+κ)+k2(a+b)(b2−ab−κ)+k3(a+b)(a2−ab−κ)
]

Jd3b =
1

(a2 + b2)− κ

[
(apb−bpa)(apa−bpb)+

κ

2
(pa−pb)2−k1(2ab−κ)−k2(a−b)(b2+ab−κ)+k3(a−b)(a2+ab−κ)

]
This situation is similar to the previous one, that is, they are independent but the only difference
between them is κ times de Hamiltonian, that is Jd3b − Jd3a = 2κ H̃d(κ); therefore we choose the
following function Jd3 as the integral of motion associated to the system (α, β)

Jd3 =
1

a2 + b2 − κ

(
(apb−bpa)(apa−bpb)−κ papb

)
+

1

a2 + b2 − κ

(
−2k1 ab−k2 b(a2−b2+κ)+k3 a(a2−b2−κ)

)
.

Proposition 4 The κ-dependent Hamiltonian H̃d(κ) is H-J separable in two different systems of parabolic
coordinates, the origial system (a, b) and the rotated system (α, β), and it is endowed with three quadratic

constants of motion; the Hamiltonian as the first constant, that is Jd1 = H̃d(κ), and the following two
additional integrals

Jd2 =
1

r − κ

[
r (xpy − ypx)py +

κ

2

(
xp2x − xp2y + 2ypxpy

)
+ k1 x

− k2

(
y
√
r − x− κ

√
r + x

)
+ k3

(
y
√
r + x− κ

√
r − x

) ]
,

Jd3 =
1

r − κ

[
r (xpy − ypx)px +

κ

2

(
yp2x − yp2y − 2xpxpy

)
− k1 y

− k2(x+ κ)
√
r − x+ k3(x− κ)

√
r + x

]
.

3.5 Comments

The previous paragraphs can be considered as rather technical; so now we comment some of the char-
acteristics of these new families of Hamiltonians and we analyze to what physics systems they seem to
correspond.

(i) All these “new Hamiltonians” are of the form of the original Hamiltonian multiplied by a factor.
How was this factor found ? The answer is that every λr is obtained by imposing separability in
two different systems of coordinates and this property determines λr with the only ambiguity of
the appropriate position and sign of the parameter κ.

It is clear that the factors λr introduce a change in the geometry of the configuration space. The
new deformed Hamiltonians H̃r(κ) describe dynamics in Riemannian manifolds (a particle moving
in a curved space); the negative sign in front of κ has been chosen in order that the sign of κ
coincides with the sign of the curvature.

(ii) The expressions of the four Hamiltonians H̃r(κ) can be considered as rather involved mainly because
the nonlinearity affects to both the kinetic term and the potential. Nevertheless the fundamental
point is that, in spite of their complex aspect, they are directly related with the two fundamental
superintegrable systems, that is, harmonic oscillators and Kepler problems.

11



The two first Hamiltonians, H̃a(κ) and H̃b(κ), are related with the harmonic oscillator. More

specifically, they are deformations of the nonlinear oscillators Ha and Hb. Therefore H̃a(κ) and

H̃b(κ) describe nonlinear oscillators in non-Euclidean spaces.

The other two Hamiltonians, H̃c(κ) and H̃d(κ), are deformations of the nonlinear Hamiltonians Hc

and Hd and therefore they are related with the Kepler problem. For that reason H̃c(κ) and H̃d(κ)
describe two different versions of the Kepler problem in two different non-Euclidean spaces.

The following section studies these questions with more detail.

4 The harmonic oscillator and the Kepler problem on curved
spaces

In differential geometric terms, the four Hamiltonians H̃r(κ), r = a, b, c, d, describe dynamics on non-

Euclidean spaces. The two first Hamiltonians, H̃a(κ) or H̃b(κ), are related with the harmonic oscillator

and the other two, H̃c(κ) or H̃d(κ), with the Kepler problem. Now in this section we analyze these two
important κ-dependent systems from a geometric perspective.

4.1 The harmonic oscillator on curved spaces

The following two equations

d2x

dt2
+

κx

1− κx2

(
dx

dt

)2

+
α2x

1− κx2
= 0 , (13)

d2x

dt2
− κx

1− κx2

(
dx

dt

)2

+
α2x

(1− κx2)3
= 0 , (14)

represent two one-dimensional nonlinear oscillators that can be considered as arising from the Lagrangians

L1 =
1

2

v2x
1− κx2

− 1

2

α2 x2

1− κx2
and L2 =

1

2
(1− κx2) v2x −

1

2

α2 x2

1− κx2
,

with associated Hamiltonians

H1 =
1

2
(1− κx2)p2x +

1

2

α2 x2

1− κx2
, (15)

and

H2 =
1

2

p2x
1− κx2

+
1

2

α2 x2

1− κx2
. (16)

That is, the two potentials are the same (see Figure 1) but the kinetic terms are different (these two
oscillators are studied in [44]– [49]).

The two-dimensional versions of these Lagrangians are

L1(κ) =
1

2

(
v2r

1− κ r2
+ r2v2φ

)
− α2

2

( r2

1− κ r2
)

=
1

2

( 1

1− κ r2
)[
v2x + v2y − κ (xvy − yvx)2

]
− α2

2

( x2 + y2

1− κ r2
)
,
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and

L2(κ) =
1

2
(1− κ r2) (v2x + v2y)− α2

2

( x2 + y2

1− κ r2
)
.

It is known that a symmetric bilinear form in the velocities (vx, vy) can be considered as associated to
a two-dimensional metric ds2 in IR2. In this particular case, the kinetic term in the Lagrangian L1(κ)
considered as a bilinear form determines the following κ-dependent metric

ds2κ =
( 1

1− κ r2
) [

(1− κ y2) dx2 + (1− κx2) dy2 + 2κxy dx dy
]
.

The second Lagrangian L2(κ) represents the harmonic oscillator in a two-dimensional space with a metric
ds2κ conformally flat

ds2κ = (1− κ r2)(dx2 + dy2) .

The two-dimensional versions of these Hamiltonian are

H1(κ) =
1

2

(
(1− κ r2)(p2x + p2y) + κJ2

)
+

1

2
α2
( x2 + y2

1− κ r2
)
, (17)

and

H2(κ) =
1

2

( p2x + p2y
1− κ r2

)
+

1

2
α2
( x2 + y2

1− κ r2
)
, (18)

where J denotes the angular momentum. They satisfy the correct Euclidean limit

lim
κ→0

H1(κ) = lim
κ→0

H2(κ) =
1

2

(
p2x + p2y

)
+

1

2
α2
(
x2 + y2

)
,

and represent two different harmonic oscillators in two-dimensional curved spaces.

(i) The Hamiltonian H1(κ), that has been studied in Refs. [48, 50, 51, 52] (although in some cases
with a trigonometric-hyperbolic notation), represents the harmonic oscillator in a space of constant
curvature κ (sphere S2

κ with κ > 0, and Hiperbolic plane H2
κ with κ < 0). We note that the kinetic

term includes not only the factor (1 − κ r2) but also a contribution of the angular momentum J
with the curvature κ as coefficient.

(ii) The second Hamiltonian H2(κ), that is just H̃a(κ) with k2 = k3 = 0, represents an harmonic
oscillator in a curved space (two-dimensional space of nonconstant curvature) [40]–[43]. In two
dimensions the tensor Rabcd only has one independent component which can be taken R1212

R1212 =
1

2

(
∂2∂1g21 − ∂22g11 + ∂1∂2g12 − ∂21g22

)
− gef

(
Γe11Γf22 − Γe12Γf21

)
.

The result is

R1212 =
2κ

1− κ r2

and the scalar Gaussian curvature is given by

K =
R1212

det[g]
=

2κ

(1− κ r2)3
.
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4.2 The Kepler problem on curved spaces

The following two κ-dependent Hamiltonians

HK1(κ) =
1

2

(
(1− κ r2)(p2x + p2y) + κJ2

)
− g
(√1− κ r2

r

)
(19)

and

HK2(κ) =
1

2

( r

r − κ

)
(p2x + p2y)− g

r − κ
(20)

represent two different versions of the Kepler problem on curved spaces. They satisfy the correct Euclidean
limit

lim
κ→0

HK1(κ) = lim
κ→0

HK2(κ) =
1

2

(
p2x + p2y

)
− g

r
.

(i) The Hamiltonian HK1(κ), that has been studied in Refs. [53, 54], represents the Kepler problem
in the three spaces of constant curvature κ; that is, sphere S2

κ (κ > 0), Euclidean plane E2 (κ = 0),
and Hiperbolic plane H2

κ (κ < 0). Also in this case, when κ > 0, the dynamics is restricted to the
interior of the bounded region x2 + y2 < 1/κ.

(ii) The Hamiltonian HK2(κ) is just the Hamiltonian of the Kepler problem in H̃c(κ) or H̃d(κ). In this
case if κ is negative then the Hamilltonian is well defined for all the values κ < 0, but when κ > 0
then the dynamics is only well defined in the region r > κ in such a way that when κ→ 0 then the
dynamics is defined in the whole space. This system is endowed with the following two integrals of
motion

J2 =
1

r − κ

[
r (xpy − ypx)py − g x

]
+

κ

2(r − κ)

(
xp2x − xp2y + 2ypxpy

)
J3 =

1

r − κ

[
r (xpy − ypx)px + g y

]
+

κ

2(r − κ)

(
yp2x − yp2y − 2xpxpy

)
that represent the κ-dependent version of the (two-dimensional) Runge-Lenz vector. In fact, it can
be verified that their Poisson bracket is given by{

J2 , J3
}

= 2(xpy − ypx)HK2(κ)

that is the same relation characterizing the Runge-Lenz vector in the Euclidean case.

The metric ds2κ, that is also conformal, is given by

ds2κ =
(

1− κ

r

)
(dx2 + dy2) .

We note the factor (1− κ/r) shows a certain similarity with the coefficient (related with the singularity)
in the Schwarzschild metric. The curvature tensor R1212 takes the value

R1212 =
κ

2 r2 (r − κ)

and the Gaussian curvature (scalar) is given by

K =
R1212

det[g]
=

κ

2 (r − κ)3
.
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5 Superintegrabilty with higher orden constants of motion

We have proved that the two Hamiltonians H̃a(κ) (related to the harmonic oscillator) and H̃c(κ) (related
to the Kepler problem) are superintegrable with quadratic constants of motion. Now, in this section, we
will prove that they can be considered as particular cases of a more general situation; that is, they admit
superintegrable generalizations that are separable but in only one system of coordinates (two quadratic
constants) and are endowed with an additional constant of higher order.

At this point (as a previous comment to the next two subsections) we notice that a Hamiltonian of the
form

H(κ) =
1

2

( 1

1− κ r2
)(

p2r +
p2φ
r2

)
+

1

2
α2
( A(r)

1− κ r2
)

+
1

2

1

1− κ r2
B(φ)

r2
,

where A(r) and B(φ) are arbitrary functions, is H-J separable in polar coordinates (r, φ) and it is endowed
with the following constant of motion

J = p2φ +B(φ) = −
[
r2p2r + α2r2A(r)− 2r2(1− κ r2)H(κ)

]
.

This property is true for all the values of the parameter κ.

5.1 A κ-dependent Hamiltonian related with the harmonic oscillator and the
TTW system

The following potential

Vttw(r, φ) =
1

2
ω0

2r2 +
1

2 r2

( α

cos2(mφ)
+

β

sin2(mφ)

)
, (21)

was studied by Tremblay, Turbiner, and Winternitz [23]–[24] and also by other authors [25]–[37]. In
the general m 6= 1 case it is only separable in polar coordinates (r, φ) (m must be an integer or rational
number) and therefore the third integral is not quadratic but a polynomial of higher order in the momenta
(the degree of the polynomial depends of the value of m).

Let us consider the κ-dependent Hamiltonian

H̃am(κ) =
1

2

( 1

1− κ r2
)(

p2r +
p2φ
r2

)
+ Uam(r, φ) , Uam(r, φ) =

1

2
α2
( r2

1− κ r2
)

+
1

2

Fm(φ)

(1− κ r2) r2
, (22)

where Fm(φ) denotes the following angular function

Fm(φ) =
ka

cos2(mφ)
+

kb

sin2(mφ)

and ka and kb are arbitrary constants. It represents a generalization of the Hamiltonian H̃a(κ) in the

sense that if m = 1 then we have H̃a1(κ) = H̃a(κ). It is clear that this more general Hamiltonian is
separable but only in polar (r, φ) coordinates. Therefore it is integrable with the Hamiltonian itself as
the first integral and a second quadratic constant of motion J2 associated to the Liouville integrability

J1(κ) =
( 1

1− κ r2
)(

p2r +
p2φ
r2

)
+ α2

( r2

1− κ r2
)

+
Fm(φ)

(1− κ r2)r2
,

J2 = p2φ + Fm(φ) .
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Let us denote by Ar and Bφ be the complex functions Ar = Ar1 + i Ar2 and Bφ = Bφ1 + i Bφ2 with
real and imaginary parts, Ara and Bφa, a = 1, 2, be defined as

Ar1 =
2

r
pr
√
J2 , Ar2 =

1

(1− κ r2) r2

(
r2 p2r + α2 r4 − (1− 2κ r2)J2

)
= J1 −

2

r2
J2 ,

and
Bφ1 = J2 cos(2mφ) + (kb − ka) , Bφ2 = pφ

√
J2 sin(2mφ) .

First, let us comment that the moduli of these two complex functions, that are constant of motion of
fourth order in the momenta, are given by

| Ar |2 = J2
1 − 4κJ1J2 − 4α2J2

| Bφ |2 = J2
2 − 2(ka + kb)J2 + (kb − ka)2

The Poisson bracket of the function Ar1 with H̃am(κ) [time-derivative] is proportional to Ar2 and the
time-derivative of the Ar2 is proportional to Ar1 but with the opposite sign{

Ar1 , H̃am(κ)
}

= − 2λκAr2 ,
{
Ar2 , H̃am(κ)

}
= 2λκAr1 ,

and this property is also true for the functions Bφ1 and Bφ2{
Bφ1 , H̃am(κ)

}
= −2mλκBφ2 ,

{
Bφ2 , H̃am(κ)

}
= 2mλκBφ1 ,

where the common factor λκ takes the value

λκ =
1

(1− κ r2) r2

√
J2 , λ0 =

1

r2

√
J2 .

Therefore, the time-evolution of the complex functions Ar and Bφ is given by

d

dt
Ar = i 2λκAr ,

d

dt
Bφ = i 2mλκBφ .

Thus if we denote by Km the complex function Amr B
∗
φ then we have

d

dt
Km =

d

dt

(
Amr B

∗
φ

)
= mA(m−1)

r Ȧr B
∗
φ +Amr Ḃφ

∗

= A(m−1)
r

(
m (i 2λκAr)B

∗
φ +Ar (− i 2mλκB

∗
φ)

)
= 0 .

We summarize this result in the following proposition.

Proposition 5 The κ-dependent Hamiltonian H̃am(κ)

H̃am(κ) =
1

2

( 1

1− κ r2
)(

p2r +
p2φ
r2

)
+

1

2
α2
( r2

1− κ r2
)

+
1

2

Fm(φ)

(1− κ r2) r2
(23)

representing a generalization of the Hamiltonian H̃a(κ), and also a κ-deformation of the Euclidean TTW
Hamiltonian Httw, is superintegrable with two quadratic constants of motion and a third constant of
motion of higher order.
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(i) H̃am(κ) is separable in polar coordinates (r, φ) and it possesses therefore two quadratic constants of
motion associated to the Liouville integrability

J1(κ) =
( 1

1− κ r2
)(

p2r +
p2φ
r2

)
+ α2

( r2

1− κ r2
)

+
Fm(φ)

(1− κ r2) r2
,

J2 = p2φ + Fm(φ) .

(ii) H̃am(κ) admits a complex constant of motion Km defined as

Km = Amr B
∗
φ .

The function Km can be written as Km = J3 + iJ4 with J3 and J4 real constants of motion. One of them
can be chosen as the third fundamental integral of motion.

5.2 A κ-dependent Hamiltonian related with the Kepler problen and the PW
system

Let us first note that the potential Vc, that in polar coordinates becomes

Vc = − g

r
+

1

r2

( k2

sin2 φ
+
k3 cosφ

sin2 φ

)
,

can also be written as follows

Vc = − g

r
+

1

r2

( α

cos2(φ/2)
+

β

sin2(φ/2)

)
, k2 = 2(α+ β) , k3 = 2(β − α) .

Therefore, the angular-dependent functions in the potentials Va and Vc appear as two particular cases,
m = 1 and m = 1/2, of the general function Fm(φ). It seems therefore natural to conjecture that any
integrable generalization (or deformation) of the potential Va must determine a similar generalization (or
deformation) of the potential Vc.

In fact there is another interesting system rather similar to the TTW system but that is related, not
with the harmonic oscillator, but with the Kepler problem (hydrogen atom in the quantum case)

Vpw(r, φ) = − g

r
+

1

r2

( α

cos2(mφ)
+

β

sin2(mφ)

)
. (24)

The first study of the superintegrability of this new potential was presented by Post and Winternitz [38]
by relating Vpw with Vttw making use of the so-called coupling constant metamorphosis transformation
(Stäckel transform) [55].

Let us now consider the κ-dependent Kepler-related potential

H̃cm(κ) =
1

2

( r

r − κ

)(
p2r +

p2φ
r2

)
+ Ucm(r, φ) , Ucm(r, φ) = − g

r − κ
+

Fm(φ)

(r − κ) r
, (25)

where Fm(φ) is the same angular function as in the oscillator H̃am(κ) (and also in this case ka and kb are

arbitrary constants). It represents a generalization of the Hamiltonian H̃c(κ) in the sense that if m = 1/2

then we have H̃cm(κ)|m=1/2 = H̃c(κ). It is clear that this more general Hamiltonian is separable but
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only in polar (r, φ) coordinates. Therefore it is integrable with the Hamiltonian itself as the first integral
and a second quadratic constant of motion J2 associated to the Liouville integrability

J1(κ) =
( r

r − κ

)(
p2r +

p2φ
r2

)
− 2g

r − κ
+

2Fm(φ)

(r − κ) r
,

J2 = p2φ + 2Fm(φ) .

We will prove the superintegrability of H̃cm(κ) using as an approach the existence of a complex factor-
ization for the additional constant of motion. The method, that is in fact a deformation of the formalism
introduced in [39] for the superintegrability of the PW system, is similar to the one presented in the

previous section for the Hamiltonian H̃am(κ) (introducing the appropriate changes).

Now we denote by Ar and Bφ be the complex functions Ar = Ar1 + i Ar2 and Bφ = Bφ1 + i Bφ2 with
real and imaginary parts, Ara and Bφa, a = 1, 2, be defined as

Ar1 = pr
√
J2 , Ar2 =

( 1

r − κ

)(
− g r + J2 +

κ

2

(
rp2r −

J2
r

))
,

and
Bφ1 = J2 cos(2mφ) + 2(kb − ka) , Bφ2 = pφ

√
J2 sin(2mφ) .

First, we note that the moduli of these two complex functions are integrals of motion of fourth order
in the momenta given by

| Ar |2 = J1J2 +
(κ

2

)2
J2
1 − κ gJ2 + g2

| Bφ |2 = J2
2 − 4(ka + kb)J2 + 4(ka − kb)2

The time-derivative [Poisson bracket with H̃cm(κ)] of the function Ar1 is proportional to Ar2 and the
time-derivative of the Ar2 is proportional to Ar1 but with the opposite sign{

Ar1 , H̃cm(κ)
}

= −λκAr2 ,
{
Ar2 , H̃cm(κ)

}
= λκAr1 ,

and this property is also true for the angular functions{
Bφ1 , H̃cm(κ)

}
= − 2mλκBφ2 ,

{
Bφ2 , H̃cm(κ)

}
= 2mλκBφ1 ,

where the common factor λκ takes the value

λκ =
1

(r − κ) r

√
J2 , λ0 =

1

r2

√
J2 .

Therefore, the time-evolution of the complex functions Ar and Bφ is given by

d

dt
Ar = i λκAr ,

d

dt
Bφ = i 2mλκBφ .

Thus, if we denote by Km the complex function Km = A
(2m)
r B∗φ, then we have

d

dt
Km =

d

dt

(
A(2m)
r B∗φ

)
= 2mA(2m−1)

r Ȧr B
∗
φ +A(2m)

r Ḃφ
∗

= A(2m−1)
r

(
2m (i λκAr)B

∗
φ +Ar (− i 2mλκB

∗
φ)
)

= 0 .

We summarize this result in the following proposition.
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Proposition 6 The κ-dependent Hamiltonian H̃cm(κ)

H̃cm(κ) =
1

2

( r

r − κ

)(
p2r +

p2φ
r2

)
− g

r − κ
+

Fm(φ)

(r − κ) r
(26)

Fm(φ) =
ka

cos2(mφ)
+

kb

sin2(mφ)

representing a generalization of the Hamiltonian H̃c(κ), and also a κ-deformation of the Euclidean PW
Hamiltonian Hpw, is superintegrable with two quadratic constants of motion and a third constant of
motion of higher order.

(i) H̃cm(κ) is separable in polar coordinates (r, φ) and it possesses therefore two quadratic constants of
motion associated to the Liouville integrability

J1(κ) =
( r

r − κ

)(
p2r +

p2φ
r2

)
− 2g

r − κ
+

2Fm(φ)

(r − κ) r
,

J2 = p2φ + 2Fm(φ) .

(ii) H̃cm(κ) admits a complex constant of motion Km defined as

Km = A2m
r B∗φ .

6 Final comments

We observed in the introduction that although the number of superintegrable systems can be considered
as rather limited, they are not however isolated systems but, on the contrary, they frequently appear
as grouped in families. Now we have proved the existence of four families of Hamiltonians H̃r(κ), r =
a, b, c, d, associated to previously known super-separable Hamiltonians Hr. The important point is that
the multipler λ (that is a function defined in the configuration space) is a continous function of a parameter
κ so that the superintegrability is preserved for all the values of κ and the integrals of motion (and
therefore the associated symmetries) depend in a smooth way of the parameter. The fact that this
continous deformations also lead to generalizations of the TTW and the PW systems is certainly a very
remarkable property.

We conclude with the following two comments. First, the κ-dependent constants of motion are con-
sequence of the existence of κ-dependent symmetries; so it would be convenient to study the properties
of these symmetries from a geometric approach (that is, symplectic formalism and Lie algebra of vector
fields). Second, it is also convenient to study the quantum versions of these these systems. It is clear that
these Hamiltonians are systems with a position dependent mass (PDM) and therefore the quantization of
these systems is not an easy matter. These two points are interesting questions deserving to be studied.

Figures
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