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Genomic Selection (GS) has been a great success for the dairy cattle industry and 

its application in other species, like pigs, has been gradually growing. However, 

several factors impede its application in the beef cattle industry. Among those, the 

great number of breeds with limited census, the limited use of artificial insemination 

and the poor phenotyping strategies lead to low quality reference populations that 

produce less accurate predictions. The Autochthonous Spanish beef cattle 

populations have limited census but they play a crucial role in the maintenance of 

the economic activity of the human rural population and provide high quality 

products. Their breeding programs are based on BLUP genetic evaluations, while 

the use of DNA markers are restricted to major genes or paternity checks. The main 

objective of this study was to investigate the potential application of Genomic 

Selection in these populations under both single and multiple population 

approaches. 

The biological material used for the development of this thesis was 171 triplets 

(sire/dam/offspring) from seven Autochthonous Spanish beef cattle populations 

(Asturiana de los Valles -AV-, n=25; Avileña-Negra Ibérica -ANI-, n=24; Bruna dels 

Pirineus -BP-, n=25; Morucha -Mo-, n=25; Pirenaica -Pi-, n=24; Retinta -Re-, n=24; 

Rubia Gallega -RG-, n=24) that were genotyped for 777,962 SNP markers with the 

BovineHD BeadChip. Additionally, the genealogical data and phenotypic data of 

weaning weights were available for two of the populations (Pirenaica, -Pi-, and 

Rubia Gallega, -RG-). 

The first study analyzed the efficiency of the application of GS in two Autochthonous 

Spanish beef cattle populations (Pi and RG), under a single-step approach. Several 

genotyping strategies were tested, as well as, other factors like marker density, 
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effective population size, mutation rate and heritability of the trait. The results 

obtained showed gains in accuracy with respect to pedigree BLUP evaluation in all 

cases. The greatest benefit was obtained when the candidates to selection had their 

genotypes included in the evaluation. Moreover, genotypes from the individuals with 

the most accurate predictions maximized the gains but other suboptimal strategies 

also yielded satisfactory results. Further, the gains in accuracy increased with the 

marker density reaching a plateau around 50,000 markers. Likewise, the effective 

population size and the mutation rate showed to have an effect on the increase of 

accuracy, both increasing the accuracy with decreasing values. Finally, the results 

obtained from RG population showed greater gains with respect to Pi population for 

both traits because the wider implantation of artificial insemination.  

The second study investigated the potential application of GS under a multi-breed 

model. Purebred and combined reference sets were used for the genomic 

evaluation and several scenarios of different genetic architecture of the trait were 

investigated. The single breed evaluations yielded the highest within breed 

accuracies. Across breed accuracies were found low but positive on average 

showing the genetic connectedness of these populations. The admixed populations 

resulted in lower accuracies compared to single-breed evaluation but showed a 

small advantage over small-sized purebred reference sets over the accuracies of 

subsequent generations. The accuracies obtained when combining all populations 

together resulted lower than those obtained from simple individual selection. The 

genetic architecture of the trait showed no significant effect of the accuracy with the 

exception of rare variants which yielded slightly lower results and higher loss of 

predictive ability over the generations. 
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The success of the GS from a multi-breed reference population is linked to the 

persistency of the linkage disequilibrium (LD) between populations. The third study 

attempted to analyze the genetic architecture of the persistency of LD across the 

seven Spanish populations. The methods used were VarLD and CorLD which 

showed different results. The VarLD method was able to detect differences in the 

LD pattern between populations, but it cannot detect the genomic regions of high 

LD persistency between populations. On the other hand, CorLD highlighted several 

genomic regions of high LD persistency among all populations. The genes located 

in these regions participated in metabolic pathways that included processes of cell 

adhesion, synapse assembly and organization and nervous system development, 

all associated with the Protocadherin gene family. The incorporation of the 

information of local LD persistency into the GS model yielded similar to slightly lower 

accuracies both for within and across breed predictions.  

Finally, the haplotype diversity analysis along the genome of the seven Spanish 

populations showed genomic regions with substantially higher diversity, located 

near the telomeres and lower near the central part of the chromosome which are 

greatly conserved across populations. This strong concordance in the genomic 

regions of high haplotype diversity between populations suggest that they are mainly 

structural and caused probably by the higher mutation or recombination rate. 
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La Selección Genómica (SG) ha constituido un indudable éxito en la mejora 

genética de vacuno de leche, y su aplicación en otras especies, como el porcino, 

está siendo introducida gradualmente. Sin embargo, existen varios factores que han 

impedido su desarrollo en vacuno de carne. Entre otros, el gran número de 

poblaciones de censo limitado, la reducida implantación de la inseminación artificial 

y la insuficiente cantidad de fenotipos que permitan generar poblaciones de 

referencia. Las poblaciones autóctonas de vacuno de carne en España tienen un 

censo muy limitado, pero juegan un papel vital en el mantenimiento de la actividad 

económica rural y en la producción de productos de alta calidad. Hasta ahora, sus 

esquemas de mejora están basados en las evaluaciones genéticas mediante BLUP, 

y la utilización de la información molecular se restringe a escasos genes mayores, 

como la Miostatina, y a la aplicación de test de paternidad. Por lo tanto, el principal 

objetivo de esta tesis doctoral es investigar la potencial aplicación de la Selección 

Genómica en estas poblaciones, tanto a partir de una aproximación especifica en 

cada población, como mediante una aproximación conjunta de varias poblaciones.  

El material biológico que se ha utilizado en el desarrollo del trabajo ha consistido 

en 171 tripletes (padre/madre/descendiente) procedentes de siete poblaciones 

locales de vacuno de carne (Asturiana de los Valles -AV-, n=25; Avileña-Negra 

Ibérica -ANI-, n=24; Bruna dels Pirineus -BP-, n=25; Morucha -Mo-, n=25; Pirenaica 

-Pi-, n=24; Retinta -Re-, n=24; Rubia Gallega -RG-, n=24) que se genotiparon para 

777,962 marcadores SNP mediante el BovineHD BeadChip. Además, se utilizó la 

información genealógica y fenotípica procedente de dos de las poblaciones 

(Pirenaica –Pi- y Rubia Gallega – RG-).  
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El primer trabajo analizó la eficiencia de la aplicación de la SG en dos poblaciones 

(Pi y RG), bajo la aproximación “single-step”. Se analizaron varias estrategias de 

genotipado, así como otros factores, como la densidad de marcadores, el tamaño 

efectivo de la población, la tasa de mutación y la heredabilidad del carácter. Los 

resultados mostraron que la SG siempre proporciono un incremento de la precisión 

sobre la evaluación genética mediante BLUP. Pese a todo, el mayor beneficio se 

obtuvo cuando los candidatos a la selección estaban genotipados. Además, se 

probó que la estrategia de genotipado que muestreaba a los individuos con menor 

error de predicción maximizaba la precisión, pero que, a pesar de ello, estrategias 

sub-óptimas también ofrecieron resultados satisfactorios. Por otra parte, se observó 

un incremento de la precisión a mayor densidad de genotipado, pero que alcanzó 

un “plateau” en torno a 50,000 marcadores. Del mismo modo, valores menores de 

tamaño efectivo y de tasa de mutación proporcionaron un incremento en la 

precisión. Finalmente, los resultados obtenidos a partir de la población RG fueron 

superiores a los obtenidos en la población Pi, debido a la mayor implantación de la 

inseminación artificial.  

El segundo estudio abordo la potencial aplicación de la GS bajo un modelo multi-

población. Para ello, se definieron poblaciones de evaluación compuestas a partir 

de individuos de una y de varias poblaciones y se analizaron bajo varios escenarios 

de arquitectura genética de los caracteres.  Las evaluaciones en población única 

proporcionaron la mayor precisión dentro cada población. Las precisiones de la 

predicción entre poblaciones fueron muy bajas, aunque siempre positivas poniendo 

en evidencia la conexión genética entre poblaciones. Las poblaciones compuestas 

proporcionaron una precisión menor si se comparan con la evaluación en población 
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única, pero mostraron un ligero incremento sobre poblaciones de referencia de 

tamaño equivalente en una única población. Por otra parte, la arquitectura genética 

de los caracteres no mostro ningún efecto relevante, salvo el escenario de 

simulación que utilizó variantes raras para la generación de la variabilidad genética 

de los caracteres. En él, se observaron una menor precisión y una mayor pérdida 

de la misma a lo largo de las generaciones. 

El éxito de la SG a partir de una población de referencia compuesta está 

relacionado con la persistencia del desequilibrio de ligamiento (DL) entre 

poblaciones. El tercer estudio pretendió analizar la arquitectura genética de la 

persistencia de DL entre las siete poblaciones analizadas. Se utilizaron dos 

métodos (VarLD y CorLD) que mostraron resultados diferentes. El método VarLD 

permitió detectar diferencias entre los patrones de DL entre poblaciones, pero no 

pudo identificar las regiones de mayor persistencia de DL. Por el contrario, el 

método CorLD sí que fue capaz de detectarlas. Los genes localizados en estas 

regiones de mayor persistencia entre poblaciones participan en rutas metabólicas 

que incluyen procesos de adhesión celular, sinapsis, organización y desarrollo del 

sistema nervioso, asociadas, en general, con la familia génica de las protocaderinas 

(Protocadherin). Pese a todo, la incorporación de la información acerca de la 

persistencia de fase de DL en los modelos de evaluación genómica no proporcionó 

ningún incremento de precisión tanto dentro como entre poblaciones.  

Finalmente, se analizó la diversidad haplotípica a lo largo del genoma en las siete 

poblaciones y se mostró una notable heterogeneidad en la misma. En general, la 

diversidad fue mayor en la cercanía de los telómeros que en la parte central de los 

cromosomas. Es destacable que las regiones de alta diversidad haplotipica fueron 
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coincidentes entre poblaciones, sugiriendo que las causas de esta diversidad son 

estructurales, como pueden ser las tasas de mutación y recombinación locales. 
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Spanish beef cattle breeds 

The first signs of bovine domestication took place in the valleys of the rivers Euphrates 

and Tigris around 10,000 years ago (Helmer et al., 2005; Hongo et al., 2009). Later, 

the domestic livestock started appearing in western Anatolia and the south-east of 

Europe, south of Italy and Central Europe around 8,000 years ago, mainly due to the 

cattle’s growing economic importance for the production of milk and meat (Vigne and 

Helmer, 2007; Vigne, 2008). The domesticated cattle reached the Iberian Peninsula 

through two distinct routes. The first went through Central Europe while the second 

reached the Mediterranean coast through the African continent, Egypt specifically. 

These two migration flows and the effect of the Iberian environment gave birth to 3 

ethnic branches that classify traditionally the Spanish autochthonous cattle: B. Taurus 

ibéricus, B Taurus cantábricus and B. Taurus turdetanus (Sánchez-Belda, 1984). 

In May 2015 Spain possessed a population of more than 6 million bovine animals. 1.5 

million of them are registered in one of the 45 breeds officially recognised by the 

Ministry of Agriculture, Alimentation and Environment. There are 8 autochthonous 

breeds in development (Autóctona de Fomento), 31 autochthonous breeds in danger 

of extinction (Autóctona en Peligro de Extinción) and 6 foreign integrated (Integrada) 

breeds (Table 1). Up to 35% of the bovine population belongs to the autochthonous 

breeds in development (Lidia: 13.3%, Asturiana de los Valles: 6.4%, Parda de 

Montaña: 3.8%, Avileña-Negra Ibérica: 3.6%, Pirenaica: 2.7%, Rubia Gallega: 2.6%, 

Retinta: 1.9% and Morucha: 1.1%). Moreover, among the autochthonous breeds in 

danger of extinction Asturiana de la Montaña: 1.4%, Bruna dels Pirineus: 0.9% and 

Tudanca: 0.9%, stand out for their importance. 
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Table 1. Breed, Status, Evolutive Tendency and Number of Animals. 

Breed Classification Evolutive tendency of the 
population 

Total 
animals 

Asturiana de los Valles Autóctona de Fomento Expansión 94,682 
Avileña-Negra Ibérica Autóctona de Fomento Expansión 53,428 

Morucha Autóctona de Fomento Expansión 16,378 
Pirenaica Autóctona de Fomento Expansión 40,026 
Retinta Autóctona de Fomento Expansión 29,394 

Rubia Gallega Autóctona de Fomento Recesión 38,797 
Parda de la Montaña Autóctona de Fomento Expansión 55,509 

Lidia Autóctona de Fomento Recesión 195,967 
Albera Autóctona en vía de extinction Expansión 763 

Alistana-Sanabresa Autóctona en vía de extinction Recesión 3,351 
Asturiana de la Montaña Autóctona en vía de extinction Expansión 21,460 

Avileña-Negra Ibérica 
Variedad Bociblanca Autóctona en vía de extinction Expansión 813 

Berrenda en Colorado Autóctona en vía de extinction Expansión 5,791 
Berrenda en Negro Autóctona en vía de extinction Recesión 3,169 

Betizu Autóctona en vía de extinction Expansión 884 
Blanca Cacereña Autóctona en vía de extinction Recesión 1,049 

Bruna dels Pirineus Autóctona en vía de extinction Expansión 13,542 
Cachena Autóctona en vía de extinction Expansión 4,195 
Caldelá Autóctona en vía de extinction Recesión 1,304 
Canaria Autóctona en vía de extinction Expansión 1,314 

Cárdena Andaluza Autóctona en vía de extinction Expansión 1,001 
Frieiresa Autóctona en vía de extinction Expansión 673 

Limiá Autóctona en vía de extinction Expansión 852 
Mallorquina Autóctona en vía de extinction Expansión 499 
Marismeña Autóctona en vía de extinction Recesión 2,204 
Menorquina Autóctona en vía de extinction Expansión 1,514 
Monchina Autóctona en vía de extinction Expansión 2,060 

Morucha Variedad 
Negra Autóctona en vía de extinction Expansión 3,664 

Murciana-Levantina Autóctona en vía de extinction Expansión 37 
Negra Andaluza Autóctona en vía de extinction Expansión 2,417 

Pajuna Autóctona en vía de extinction Recesión 727 
Palmera Autóctona en vía de extinction Expansión 596 
Pasiega Autóctona en vía de extinction Expansión 447 

Sayaguesa Autóctona en vía de extinction Expansión 1,569 
Serrana de Teruel Autóctona en vía de extinción Expansión 411 

Serrana Negra Autóctona en vía de extinción Expansión 498 
Terreña Autóctona en vía de extinción Expansión 2,474 
Tudanca Autóctona en vía de extinción Expansión 13,075 
Vianesa Autóctona en vía de extinción Expansión 2,401 

Blonda de Aquitania Integrada Expansión 12,234 
Charolesa Integrada Recesión 13,200 
Fleckvieh Integrada Recesión 7,023 
Frisona Integrada Recesión 760,554 

Limusina Integrada Recesión 48,144 
Parda Integrada Expansión 10,967 

(Ministerio de Agricultura, Alimentación y Medio Ambiente, 2014) 
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Traditionally, a large part of these breeds were destined towards a triple production of 

meat, milk and workforce. Nonetheless, in present day, the autochthonous breeds are 

destined almost exclusively towards meat production except for the Lidia breed. The 

production systems of these populations are extensive or semi-extensive and are not 

homogeneous. In fact, at least 3 main production systems can be highlighted: 

- Pasture system: It is located in areas with infertile lands of low agricultural 

aptitude. These lands are found at the west and southwest of the Iberian 

Peninsula. The breeds that are used in such systems are rustic breeds, fully 

adapted to the difficult climatic conditions like Avileña-Negra Ibérica, Morucha 

and Retinta. 

- Mountain system: The mountainous areas, like the Pyrenees, were always 

associated with beef production. The breeds that are exploited under this type 

of system are Bruna dels Pirineus, Pirenaica, Parda de Montaña and Asturiana 

de la Montaña. During the winter the animals are kept in the valleys or near the 

villages and are feed with hay. In the spring and autumn the animals are taken 

to the mid-mountain pastures while in the summer the animals are taken higher 

to the mountains to benefit from the lower temperatures there and the local 

vegetation. 

- Humid not mountainous regions: The regions of Spain that apply this system 

are located mainly in Galicia, Asturias and Cantabria. These regions have 

pastures of excellent quality and are also suitable for the production of artificial 

pastures. The main autochthonous breeds that are used under this system are 

the Rubia Gallega and the Asturiana de los Valles (Revilla, 1997). 

The distribution pattern of the different production systems is related to the geographic 

distribution of these breeds in the country and the variability in the muscle 
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development, growth capacity (Piedrafita et al., 2003) and in the carcass and meat 

quality (Gil et al., 2001; Piedrafita et al., 2003; Serradilla et al., 2008). Therefore, 

Asturiana de los Valles, Rubia Gallega and Pirenaica show a higher muscle 

development, while Retinta, Avileña-Negra Ibérica and Morucha can be classified as 

rustic breeds. Bruna dels Pirineus and Parda de Montaña occupy an intermediate 

place. Equivalently, the populations with higher muscle development present better 

carcass conformation and greater percentage of lean meat, while the more rustic 

populations give carcasses with a higher degree of fatness and a poorer conformation. 

These populations present a higher degree of intramuscular fat infiltration that gives a 

better taste, aroma and tenderness of the meat.  

In general, the Spanish autochthonous breeds are characterized by high genetic 

variability that grants them the ability to adapt to climatic changes, and along with the 

process of evolution and selection have promoted their rusticity. As a result, these 

breeds are highly resistant to the local diseases and have a better capacity to take 

advantage of the low quality pasture resources (Hoffmann, 2010). Additionally, they 

play an important role in the maintenance and the development of the rural population 

covering around 30% of the human alimentation needs and contributing to food safety 

(Molina, 2010). The economic importance of the local breeds is based on the lower 

production costs and the higher quality of the products. The particular characteristics 

of the autochthonous breeds permit their use in an open range exploitation system 

and therefore reduce the production cost by avoiding the high-cost maintenance of the 

intensified exploitation and moreover deal with the health implications and the 

environmental burden of such systems (Ibañez and Mas 1997). Nowadays, the 

consumers are demanding products of distinguished quality, produced under the 

concept of environmental respect and consideration of the effect this procedure has 
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on climate change. Thus, the quality is one of the principal characteristics that 

distinguish the autochthonous breeds from the specialized ones.  

Most of the breeding programs of the Spanish Autochthonous beef cattle populations 

started in the late 80’s and the 90’s (Serradilla, 2008). Nowadays, their breeding 

schemes are based on the evaluation of the direct and maternal effects of growth 

related traits and morphology, and, in some cases, they also include carcass and meat 

quality traits (carcass conformation, degree of fatness or pH after sacrifice) and 

reproductive traits (calving ease, precocity or interval between parities). The breeding 

evaluation of these traits is performed using the mixed model BLUP (Henderson, 

1984) and the use of molecular information is only restricted to single genes of special 

interest, like the MTSN (Miostatin) gene in the Asturiana de los Valles population or to 

check paternity using a standard microsatellite set. (Serradilla, 2008)  
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Genomic Selection 

During the XXth Century, the advances of population and quantitative genetic theories 

provided tools for the prediction of breeding values for the candidates to selection. 

These techniques have allowed a remarkable increase of the genetic progress in all 

livestock populations. In particular, this “genetic” revolution started in the 40’s to 60’s 

with the application of selection indexes (Hazel, 1943) that allow to weight the 

information provided by related individuals and also to incorporate the phenotypic 

information that proceed from genetically correlated traits. Later on, the advent of new 

statistical developments allowed the use of mixed model procedures (Henderson, 

1973), such as BLUP (Best Linear Unbiased Prediction). The BLUP method improves 

the prediction provided by the selection indexes thanks to the joint prediction of 

breeding values and the estimation of some known systematic effects, such as sex, 

age of parity or contemporary groups. The application of the BLUP procedure spread 

out after the development of simple rules to compute the required inverse of the 

numerator relationship matrix (A), that were developed by Henderson (1976) and 

Quaas (1976). The BLUP method takes into account the effects of drift, selection and 

assortative mating (Kennedy and Sorensen, 1988) and it is easy to generalize into a 

multiple trait context (Henderson and Quaas, 1976). Until very recently, BLUP has 

been the method of choice to obtain predictions of breeding values for most of the 

livestock populations. 

Molecular Markers and Genomic Selection 

Since the 90’s, molecular information was made available due to the advances of 

techniques of molecular biology. This new source of information gave the opportunity 

to enhance the response to selection by incorporating it to traditional breeding 
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programs, especially for traits that present difficulties in their improvement by 

traditional selection (Dekkers et al., 2004). Such traits are those with low heritability 

(ex. Reproductive traits) and traits whose phenotypes are difficult to obtain (ex. 

Disease resistance or meat quality). The first attempts of direct selection at DNA level 

came along with a method called Marker Assisted Selection (MAS). This method 

consists of locating the genes or the Quantitative Trait Loci (QTL) underlying the trait 

of interest and then incorporating that information in the procedure for the prediction 

of breeding values (Kennedy et al., 1992). Although, some major QTLs were detected 

for some traits in cattle (ex. DGAT1, fat content in milk -Grisart et al., 2001- and CDH1, 

affects infectious pancreatic necrosis virus -Moen et al., 2015-) and pigs (RYR1 -Fujii 

et al., 1991- causing the porcine stress syndrome, ESR- Rothschild et al., 1996-, 

related with prolificacy or IGF2- Van Laere et al., 2003- affecting fatness and growth), 

the majority of the traits of interest had very few QTLs located and less than 10% of 

the genetic variance explained. Therefore, the difficulty of detecting genes, the small 

portion of the genetic variance explained by the few genes detected and the fact that 

the traits of economic interest are controlled by many genes with small effect led to a 

low uptake of this method by the industry. 

More recently, the identification of a large number of Single Nucleotide Polymorphisms 

(SNPs) along the genome, as a by-product of the sequencing efforts (Daetwyler et al., 

2014), and the development of SNP-chip genotyping technology (Gunderson, et al., 

2005), that made affordable the genotyping of thousands of these markers at low cost, 

led Meuwissen et al. (2001) to propose a new method of selection denoted as 

Genomic Selection (GS). These authors proposed the use of a dense marker map for 

the prediction of total breeding values. The basic idea underlying the GS approach is 

that it is expected that some of the SNP markers are located near the QTLs of traits 
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of interest and due to linkage disequilibrium (LD) between them, they should be 

inherited jointly. In this way, all of the QTLs affecting a trait may be in LD with one or 

more markers. As a consequence, if there are enough markers to cover the whole 

length of the genome, the additive effects of the QTLs can be captured by the markers 

without the necessity of locating them. Initially, the GS procedures are based on 

estimating the effects associated to the markers in a reference population where 

genotypes and phenotypes are available for all individuals. These estimates are then 

combined with the genotypes of the selection candidates to produce genomic 

estimated breeding values (GEBV) of the candidates to selection. These candidates 

are usually young animals that do not have reliable trait records or no records at all. 

Moreover, with this approach of the GS methodology the genealogical information is 

not strictly needed.   

Genomic Selection Methods 

The statistical model used for the simultaneous estimation of the SNP effects in a 

reference population is: 

࢟ = ૚ߤ + ࢼࢄ +  , ࢋ

where ࢟ is the vector of phenotypes, ૚ is a vector of ones, ߤ is the trait’s mean, ࢼ is 

the vector of the effects associated to the markers, ࢄ is the genotype matrix and ࢋ is 

the vector of residual effects. The GEBVs are calculated as follows: 

࢙ࢂ࡮ࡱࡳ =  , ෡ࢼࢆ

where  ࢆ is the genotype matrix of the selection candidates and ࢼ෡ is a vector containing 

the estimated effects of the markers. The number of effects to estimate is usually 

greater than the number of available phenotypes and therefore the traditional 
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statistical methods that treat the SNP effects as fixed are unable to perform this task. 

The standard solution to this problem is to introduce some kind of regularization of the 

marker effects (Gianola, 2013). There are several methods to implement this 

regularization that could be classified as:  

Gaussian Regularization  

The most standard regularization is the Gaussian, proposed by Meuwissen et al. 

(2001) that provides BLUP estimates of the SNP marker effects by assuming that they 

follow a Gaussian distribution with equal variance for all SNPs. The procedure involves 

a quadratic penalization numerically equivalent to a ridge regression (Hoerl and 

Kennard, 1970). This method is denoted SNP-BLUP and the estimates are a lineal 

combination of the phenotypes. If the genotypes ࢄ are standardized in such way that 

they have mean 0 and standard deviation 1 for every SNP, the SNP-BLUP method is 

equivalent to the GBLUP method (Habier et al., 2007; VanRaden, 2008; Goddard, 

2009), that is similar to the traditional BLUP described by Henderson (1973), but it 

uses a genomic relationship matrix (G) instead of the standard pedigree relationship 

matrix (A). The genomic relationship matrix (VanRaden, 2008) is built from molecular 

information in a way that, individuals that share identical by state genotypes for a larger 

number of markers are more similar and therefore, have larger values in the 

corresponding cell of the matrix. The main advantages of this method are that 1). It is 

computationally faster, 2) the existing BLUP software can be used just by replacing 

the pedigree relationship matrix with the genomic relationship matrix, 3) it provides 

breeding values automatically and, 4), it is very easy to generalize to multiple trait 

analysis.  
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Further, in real populations, it is frequently not feasible for entire populations to be 

genotyped because of its high cost or logistical constrains (i.e. slaughtered or foreign 

animals). Thus, in order to use the phenotypic data of non-genotyped animals a 

multiple-step GS approach has to be implemented. With the traditional approach 

(Meuwissen et al., 2001), the first step is to create pseudo-phenotypes for the 

genotyped animals from the phenotypes of its ungenotyped relatives. An example of 

pseudo-phenotype is the average daughter production for a dairy bull. The second 

step comprises of a genomic prediction using the pseudo-data and their genotypes 

and finally, the third step combines the traditional EBV and the GEBV into a total EBV 

(e.g. VanRaden, 2008). The advantages of such system include no change to the 

regular evaluations and simple steps for predicting genomic values for young 

genotyped animals. However, the disadvantages include loss of information due to 

weights caused by different amount of information in the original data set and potential 

bias caused by selection. Moreover, in species like sheep, swine and beef cattle, or 

traits like maternal traits, pseudo-records are more difficult to compute or estimate. To 

cope with the loss of information of the multiple-step process, Legarra et al. (2009) 

suggested a simplification to this process by performing a joint evaluation using all 

phenotypic, pedigree and genomic information into a single step. To achieve this, 

these authors suggested to compute an H matrix that combines the numerator 

relationship matrix (A) for the non-genotyped animals with the genomic relationship 

matrix (G) for the genotyped animals. Additionally, Misztal et al. (2009) developed an 

efficient computing strategy to obtain solutions to mixed model equations in which the 

numerator relationship matrix is modified in order to account for genomic information. 

The idea behind this method is to include ungenotyped animals and take advantage 

of all sources of information available. 
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Non-Gaussian Regularization  

The Gaussian regularization assumes that all SNPs come from a normal distribution 

with constant variance and results in all the SNPs having some effect onto the 

analysed trait. Biologically, it seems more reasonable to assume that some of the 

thousands of markers are in LD with a QTL, and therefore can capture their effect and 

some markers are not in LD with any gene and cannot capture any effect. To achieve 

this basic idea, several methods have been developed to incorporate different prior 

assumptions using different distributions or mixtures of distributions. 

Bayes A  

Originally proposed by Meuwissen et al. (2001), this method assumes that all SNPs 

have an effect drawn from a normal distribution with zero mean and a variance 

associated to each marker. The prior distribution of the locus-specific variance is a 

scaled inversed Chi-squared distribution. Consequently, the prior distribution of SNP 

effects are t shaped. In this way, some markers are allowed to have larger variances 

than others and therefore have a larger effect.  

Bayes B  

As before, this method assumes a normal distribution on the marker-effects and 

variance associated to each marker just as Bayes A. However, Bayes B differs from 

Bayes A as to the assumptions made for the distribution of the variance. A mixture of 

distributions on the variance is used, where the variance is zero with probability π and 

distributed as in Bayes A with probability 1-π (Meuwissen et al., 2001). The election 

of π is arbitrary with no justification. 

Bayes Cπ & Dπ 
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To address some drawbacks of Bayes A and Bayes B, such as the prior probability of 

π and the hyper-parameters of the prior distribution of the variance, Habier et al. 

(2011) described the Bayes Cπ and Bayes Dπ methods. In Bayes Cπ a common 

variance to all markers is assumed with probability 1-π and variance zero with 

probability π. Additionally, the proportion π of markers is treated as unknown and is 

estimated from the data. Bayes Dπ imposes a prior on the scale parameter of the 

inverse chi-square distribution, which is the prior distribution of the variance of marker-

effects.  

Bayes R 

This method assumes a mixture of several normal distributions with different variances 

in order to allow for SNP effects from 0 to moderate or large. Thus, each SNP effect 

is assigned to one of the proposed distribution with a probability that is calculated from 

data (Erbe et al., 2012).  

Bayesian LASSO  

This method (Park and Casella, 2008) was proposed for genomic selection by De los 

Campos et al. (2009) and Usai et al. (2009). Here, a double exponential prior 

distribution is assumed for the marker-effects with parameter λ. This procedure 

performs a larger shrinkage on the marker-effects than previous methods in a way that 

a large number of markers are estimated with a very small effect, and only a few 

markers are allowed to have larger effects. The degree of shrinkage is determined by 

the parameter λ, which has to be estimated previously to the analyses. Park and 

Casella, (2008) proposed the use of Empirical Bayes by Marginal Maximum Likelihood 

using an appropriate hyper-prior for the estimation of λ and Legarra et al. (2011) 

proposed a modification of this method (BL2Var) which considers two different 



  
 Introduction 

15 

variances for the distribution of marker-effects and the residuals. Moreover, there is 

no need to pre-estimate the parameter λ as it is estimated from the data 

simultaneously with the marker effects. Up until now Bayesian LASSO has been 

widely applied for genomic evaluations as it provides accurate predictions for low 

density genotyping (Usai et al., 2009) and for traits that are regulated by many genes 

with a small effect (Cleveland et al., 2010).  

Machine Learning and non-parametric methods  

As an alternative to the above described regularization based on prior distributions, 

several machine learning or non-parametric procedures have been proposed. In this 

sense, Croiseau et al. (2011) suggested the implementation of the elastic net algorithm 

(Zou and Hastie, 2005). This is a combination of Ridge – BLUP- (Hoerl and Kennard, 

1970) and Lasso regression (Tibshirani, 1994) weighted by a parameter α which takes 

values from 0 to 1. When α=0, a BLUP model is defined whereas α=1 a LASSO model 

is chosen. Additionally, a pre-selection of markers can be applied prior to the analyses. 

The purpose of this method is to provide a more flexible tool to apply shrinkage on the 

SNP effects.  

With respect to non-parametric procedures, some methods that have been proposed 

are: 

- Reproducing Kernel Hilbert Spaces Regression (RKHS) (Gianola et al., 2006)  

- Support vector machines (Moser et al., 2009) 

- Random Forest (Sun, 2010)  

- Neural Networks (Gianola et al., 2011). 

- Boosting (Gonzalez-Recio et al., 2010) 
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All these methods resulted in accuracies similar or even higher than the ones obtained 

by the Bayesian methods (Gonzalez-Recio et al., 2010) and they give the possibility 

of capturing interactions between genes and between genes and environment (Sun, 

2010) or to capture non-linear relations (Gianola et al., 2011). 

In fact, these algorithms are more attractive for application to the complex situations 

found in biological systems, as they are able to accommodate additive, dominant or 

even epistatic effects. It is believed that these methods can approach the genetic 

architecture of a trait more than the linear models. However, all of them need a case-

specific tuning and sometimes they involve very strong computation efforts. Thus, their 

implementation in large populations is more difficult that methods based on a simple 

regularization of additive marker effects. 

Comparison of Methods 

In simulation studies the non-Gaussian methods outperform the Genomic BLUP 

methodology (Meuwissen et al., 2001; Habier et al., 2007; Clark et al., 2011). 

Nevertheless, in real data this does not always occur (Moser et al., 2009; Erbe et al., 

2012; Heslot et al., 2012). The reasons behind this phenomenon (Daetwyler et al., 

2010) might be the genetic architecture of some traits that renders true the assumption 

that all markers have an effect, the extent of LD over large genomic distances and 

therefore the higher number of SNPs associated to a gene, and finally the low marker 

density and the need for more SNPs in order to capture the QTL effect.  

Moreover, the Single Step approach (Aguilar et al., 2010) is a simpler method to 

combine all information in a straightforward way, with the additional advantage of 

requiring little changes to existing software. Further, there have been several studies 

(Aguilar et al., 2010; Chen et al., 2011; Aguilar et al., 2011; Baloche et al., 2014) that 
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showed that its accuracy is usually as high as any other method and sometimes even 

higher. Apart from the accuracy, some additional benefits of this method include: 

- the automatic accounting of all relatives of genotyped animals and their 

performance,  

- the simultaneous fit of genomic information and estimates of other effects (e.g. 

contemporary groups),  

- the extra accuracy in genotyped animals is transmitted to all their relatives,  

- any model using relationship matrices can be fit using combined relationship 

matrices,  

- It provides an analytical framework for alternative modelling of data (Legarra et 

al., 2014a). 

Genomic Selection in Livestock Populations 

According to a recent review by Meuwissen et al. (2016), the rate of implementation 

of Genomic Selection in livestock industries is variable. It has been very quick and 

successful for dairy cattle, while for other species the uptake has been slower, with 

less satisfying results. The genomic evaluation in dairy cattle populations has become 

a standard since almost 10 years. In fact, the first unofficial USDA evaluations based 

on SNP genotypes were released in April 2008 and became official for Holsteins and 

Jerseys in January 2009 and for Brown Swiss in August 2009. Genotyping of 

thousands of animals has been financed by research grants and contributions from AI 

and breed organizations. A key factor in the construction of these large reference 

populations is the collaboration between countries by establishing consortiums 

(Eurogenomics, The North American Consortium, “rest of the world” consortium). 

Worldwide, approximately 2 million dairy cattle have been genotyped for the purpose 
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of GS. More than half come from the USA from 4 dairy breeds: Holstein (934,780 

animals), Jersey (120,439 animals), Brown Swiss (19,588 animals) and Aryshire 

(4,767 animals) (Wiggans, https://www.cdcb.us/Genotype/cur_density.html). In fact, 

the majority of the genotyped animals in many countries are now heifer calves, 

because the cost of genotyping is low and allows to genotype heifer calves for the 

purpose of choosing which heifer to retain in the herd (Pryce and Hayes 2012; Weigel 

et al., 2012). The accuracy of genomic prediction in dairy cattle exceeds 0.8 for 

production traits and 0.7 for fertility, longevity, somatic cell count and other traits (e.g., 

Wiggans et al., 2011; Lund et al., 2011). These accuracies were possible to obtain 

due to the large reference populations of each breed that contain many progeny-tested 

bulls with highly accurate phenotypes and to the fact that the GEBVs are often used 

to predict close relatives of the animals in the reference population. The achievement 

of these high accuracies provides an alternative to traditional progeny test, leading to 

a very important reduction of the generation interval (Hayes et al., 2009a). 

In pig breeding the most important breeding step is the selection of elite boars in the 

nucleus herd (Ibañez-Escriche et al., 2014). In contrast with dairy cattle, the boar test 

recordings come generally before the selection and therefore extra gains due to a 

reduction of the generation interval are limited. The implementation of GS in pig 

breeding is therefore mainly directed at traits whose recording is invasive such as 

slaughter quality (Samore et al., 2015) or maternal traits that cannot be recorded on 

the boars (Lillehammer et al., 2011). However, the elite breeding nucleus animals are 

selected for purebred performance in a favourable environment but pork is produced 

by crossbred pigs in commercial environment. In this sense, Esfandyari et al. (2015) 

showed that by genotyping crossbred pigs and recording their performance can 

increase the response to selection and improve purebred nucleus animals for 

https://www.cdcb.us/Genotype/cur_density.html).
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crossbred performance. Further, pig breeding can obtain additional benefits by the 

implementation of alternative models that include dominance (Su et al., 2012; Vitezica 

et al., 2013) and epistatic effects (Muñoz et al., 2014) with the aim of predicting cross-

breeding performance (Vitezica et al., 2016) 

The poultry industry is investigating the use of GS and its implementation to the 

traditional breeding programs. In this sense, Wolc et al. (2015) conducted an 

experiment in layers to test the effectiveness of GS in genetic gain over traditional 

selection. The response to selection was greater for the GS line for most of the traits 

included in the index of selection, and in some cases even doubled. In broilers most 

traits can be recorded on both sexes at early age and therefore the application of GS 

is not as obvious as in layers. However, as in pig breeding, possible uses are for 

selection to improve crossbred performance in commercial environment and for traits 

that cannot be recorded in the nucleus such as disease challenge tests. 

The implementation of GS in sheep and goat breeding is still on preliminary steps in 

most of the populations although some pilot studies have been developed in dairy 

(Duchemin et al., 2012, Legarra et al., 2014b) or meat quality traits (Daetwyler et al., 

2012) and some studies have also reported evaluations of the potential 

implementation of such schemes (Shumbusho et al., 2015; Casellas and Piedrafita, 

2015). The main conclusions of these studies is that GS can accelerate the selection 

response, with special interest in dairy production, mimicking the dairy cattle scheme, 

or in meat production for traits of difficult recording. 

Finally, the implementation of genomic selection on other species (Ibañez-Escriche 

and González-Recio, 2011), such as rabbit or fish, is still under development, although 

there have been some studies that focused on the relevance of genomic selection on 
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disease resistance in fish (Villanueva et al., 2011; Yañez et al., 2014; Castillo-Juarez, 

2015). 
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Genomic Selection in beef cattle 

The beef cattle industry has been more reluctant on the uptake of this new technology. 

In a recent review, Berry et al. (2016) analysed the factors that have hindered the 

development and implementation of GS in beef cattle relative to dairy cattle: 

- Multiple breeds and crossbreds: One of the most important factors is that the 

beef cattle industry is comprised by multiple breeds and crossbreds. Unlike 

dairy cattle, where the predominant breed is Holstein-Freisian, a plethora of 

British and Continental beef breeds are used in temperate climates, each with 

effective population sizes greater than Holstein-Freisian, and each with their 

own breed-specific attributes. Moreover, in tropical climates the Bos indicus 

(Nellore and Brahman) and taurindicus (Brangus and Bradford) breeds are 

preferred. 

- Lack of artificial insemination: When compared to dairy cattle, a smaller 

proportion of beef calves are generated from artificial insemination (AI). This 

fact results in fewer bulls with highly accurate genetic evaluations and therefore, 

the need of larger reference populations, which are more difficult and expensive 

to assemble. 

- Poor international genetic connectedness: The lack of AI in beef cattle 

contributes to poor connectedness among populations in different countries 

and as a result collaborations between countries are more difficult to establish. 

- Low levels of phenotyping: Accurate genomic predictions are predicated on 

access to large quantities of phenotypic information (Daetwyler et al., 2008). 

However, phenotyping strategies in beef production systems tend to be poorer 

than those of dairy, especially in commercial populations. Sire recording is also 
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generally poor in many beef production systems especially where multi-sire 

mating is practised.  

- Lower-margin business model: The lower economic margins of beef production 

gives little motivation for investment that leads to poor adoption rates of 

genomic technologies to advance gain in beef. Reduced uptake, in turn, 

impedes the growth of the reference population necessary to improve the 

accuracy of predictions. The development of a genomic selection-based 

breeding program requires an initial investment in genotyping and phenotyping 

as well as in necessary infrastructure to deliver routine genomic evaluations. In 

contrast, the high accuracy of genomic prediction achieved in many dairy 

populations, coupled with it being a generally higher profit margin business, 

justifies the investment by the producers in genotyping to aid the selection of 

candidate female replacements (Weigel et al., 2012). 

However, in some beef breeds, genomic selection in now applied on a large scale. In 

the USA, more than 52,000 Angus animals have been genotyped for GEBV evaluation 

(Lourenco et al., 2015), although the accuracies reported in are lower than those in 

dairy cattle ranging from 0.3 to 0.7 (Van Eenennaam et al., 2014). This comes as a 

result of the lower quality of the reference population of beef cattle compared to dairy 

cattle. In fact, the accuracy of genomic predictions is influenced by effective population 

size, number of animals with genomic and phenotypic information (Daetwyler et al., 

2008), and the relatedness of the reference population to the candidate animal 

population (Pszczola et al., 2012). Generally, the beef cattle reference populations 

contain fewer progeny tested animals within a breed and, in addition, the validation 

population may be less closely related to the reference population than in dairy cattle.  
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Following the Angus example, the American Hereford Association developed a 

training population and, in a similar way, other breed associations gradually followed 

(Saatchi et al., 2011). In Europe, genomic evaluations in beef cattle are currently not 

official. However, Ireland will launch official genomic proofs in early 2016 for all beef 

breeds, based on a one-step multi-breed genomic evaluation, which includes more 

than 100,000 animals with genotypes and phenotypes. Moreover, genomic 

evaluations for UK Limousin cattle were planned to be available in December 2015 

based on a reference population of 720 Limousin animals with high-density genotypes 

and an additional 1,700 animals with medium-density genotypes. In addition, in 

February 2015 unofficial French genomic evaluations were made available for 

Charolais, Limousin and Blonde d’Aquitaine based on a two-step approach blended 

with traditional genetic evaluation using a selection index approach. Finally, in 

Australia, genomic evaluations for Angus and Brahman populations are available, and 

in South America, some degree of implementation started on 2008 following the same 

approach used in North America (Barry et al., 2016).  
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Across breed Genomic Selection 

Until now, Genomic Selection has been implemented mainly in the dairy cattle 

industry, where the existence of a large enough reference population, permits to 

achieve highly accurate predictions (Hayes et al., 2009). However, the beef cattle 

industry does not follow the structure of dairy cattle industry and, in some populations, 

the construction of a large enough reference population presents serious difficulties, 

due to the existence of many and small populations. Therefore, the within-breed 

evaluation gives poor results due to the small size of the training sets. Moreover, the 

estimations obtained from one breed cannot be applied to other breeds as they usually 

give very low accuracies (Harris et al., 2008).  

To avoid this inconvenience, De Roos et al. (2009) proposed pooling animals from 

different populations to obtain a large training set. His results showed that adding 

individuals from the second population to the training set (composed only by the first 

population), had some effect on the reliability of the genomic breeding values in the 

first population and it was most beneficial when the heritability of the trait was low. 

Furthermore, when the two populations had diverged for only few generations and the 

marker density was high, the information from the second populations was most 

valuable. 

Since then, a number of studies have compared the predictive ability of genomic 

models trained in a joined reference population by combining populations of the same 

breed or populations of different breeds. In dairy cattle the predominant breed globally 

is Holstein-Freisian. Nonetheless, there are many smaller dairy breeds that are 

restricted by small reference populations of progeny tested bulls and therefore have 

low reliabilities of GEBV (Goddard et al., 2009). Table 2 presents the results from 
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several studies on combining different dairy cattle populations. Three categories of 

results can be noted: The first category includes the combination of same-breed 

populations were it is clear that increases the accuracies of GEBVs especially where 

the exchange of genetic material between populations is large. Large improvements 

are realized when combining populations in North America (Schenkel et al., 2009; 

VanRaden et al., 2012) and in the EuroGenomics collaboration (Lund et al., 2010). 

Similar results were obtained by Zhou et al. (2013) for genomic predictions for Chinese 

HF using a joint reference with Nordic HF.  

The second category of results comes from joining more distinct breeds that use 

common bulls. An example of such combination are the Nordic red breeds (Danish 

Red, Swedish Red, Finnish Ayrshire and Norwegian Red) where a high exchange of 

genetic material is occurring (Brøndum et al., 2011). The gain in the reliability of the 

GEBVs for these breeds is substantial, but smaller than combining populations of the 

same breed. 

Finally, a third group of studies attempted to join populations of more distantly related 

breeds. Among them, Karoui et al. (2012) combined Holstein, Normande and 

Montbeliard and found a slight increase in reliabilities for production traits of the breed 

with the smallest population size. There are several studies (Hayes et al., 2009b; 

Pryce et al., 2011; Olson et al., 2012; Erbe et al., 2012) that report on the effect of 

combining Holstein-Freisian and Jersey, two breeds with weak genetic relationships 

and, generally, no improvements are observed in the accuracies of GEBV for HF when 

Jersey animals are added to the reference populations, and for Jersey animals results 

are similar or worse when using 54k data and GBLUP methods (Hayes et al., 2009; 

Erbe et al., 2012). However, when using denser SNP panels, functional subset of 
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markers or Bayesian methods, increases in accuracy for the Jersey have been 

observed when adding HF animals to the reference population (Erbe et al., 2012). 

Also, Olson et al. (2012) studied the effect on reliabilities when combining Brown 

Swiss, Jersey and HF using single trait and multi-trait models showing that with the 

single trait model the GEBV reliabilities increased slightly for Brown Swiss but 

decreased for Jersey and HF. On the contrary, when the multi trait model was used 

the negative effects were not observed and a small positive effect was observed for 

Brown Swiss and HF.   

Few studies are available involving beef cattle populations. In general, beef cattle has 

more breeds, but smaller populations than dairy cattle within a country. Weber et al. 

(2012) investigated the accuracy of genomic predictions for six growth and carcass 

traits for populations including many breeds (crossed animals). The study reported 

that genomic predictions using multi-breed reference populations were more accurate 

than those obtained using a single-breed reference population. On the other hand, 

Kachman et al. (2013) reported that, for breeds in the reference data, genomic 

predictions from multi-breed and single-breed reference populations had similar 

accuracies. Moreover, Chen et al. (2013a) studying residual feed intake in Canadian 

Angus and Charolais beef cattle populations, found that when there is weak 

relationship between reference and test animals the combined reference data 

increased accuracies 1-2% in Angus and 3-4% in Charolais. Finally, Bolormaa et al. 

(2013) assessed the accuracy of genomic predictions for 19 traits including feed 

efficiency, growth, carcass and meat quality traits in Australian beef cattle populations. 

Using a GBLUP model, the combined reference population performed better than a 

single-breed reference population with a 4% increase in the accuracy averaged over 

traits and breeds.  
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The main conclusion of these studies is that across-breed genomic evaluation can 

provide useful results, depending on the genetic divergence of the involved 

populations and the marker density. However, the usefulness of this approach for a 

particular set of population should be evaluated before its practical implementation. 
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Table 2. Increase in accuracy/reliability when using joint dairy reference compared to a single reference population for milk-, protein and fat yield, fertility and Somatic Cell Score 
(SCS). All studies are performed using 54 k genotype data. Ref1 is the breed and country of origin for the single reference population, and Ref2 is the breeds and countries of 
origin for the joint reference. Reference sizes are given as number of bulls (+number of cows). R or R2 in column five states whether the original paper uses the correlation or 
squared correlation to measure the validation accuracy. Breed codes: HF=Holstein-Friesian, JE=Jersey, BS=Brown-Swiss, DR=Danish Red, SR=Swedish Red, FA=Finnish 
Ayrshire, NR=Norwegian Red, VR=Danish/Swedish/Finnish Red, MB=Montbéliarde, NM=Normande. Country Codes: US=United States, IT=Italy, CA=Canada, UK=United 
Kingdom, CH=Czech Republic, AT=Austria, DE=Germany, NL=Netherlands, FR=France, CI=China, NO=Nordic, AS=Australia. Trait codes: NRR=Non Return Rate, CR=Calving 
Rate, UHI=Udder Health Index, DPR=Daughter Pregnancy Rate, IFC=Interval between Calving and First insemination, FC=Fat Content. 

Ref1 Ref2 Ref1 size Ref2 size  Milk Protein Fat Fertility SCS Method Citation 
HF (US) HF (US+IT+CA+UK) 10,534+22,800 18,508+22,800 R2 2.1 2.3 2.3 3.8DPR 3.5 GBLUP VanRaden et al. (2012) 
BS (US) BS (CH+DE+AT) 812+374 1682+374 R2 5.3 2.7 1.1 -3DPR 0.8 GBLUP VanRaden et al. (2012) 
HF (CA) HF (US) 1,097 4,127 R2 9 8 12 3 10 GBLUP Schenkel et al. (2009) 
HF (NO) HF (NO+DE+FR+NL) 3,077 10,880 R2  13  5NRR 13 GBLUP Lund et al. (2011) 
HF (DE) HF (NO+DE+FR+NL) 3,676 14,479 R2  2  10NRR 15 GBLUP Lund et al. (2011) 
HF (FR) HF (NO+DE+FR+NL) 3,071 12,078 R2  4  10CR 8 QTL-BLUP Lund et al. (2011) 
HF (NL) HF (NO+DE+FR+NL) 3,472 9,618 R2  5  3IFC 8 Bayesian 2-mixture Lund et al. (2011) 
HF (CI) HF (CI+NO) 13+1,572 4,411+1,572 R2 29 32 25   Multitrait GBLUP Zhou et al. (2013) 
HF (CI) cows HF (CI+NO) 80+1,572 4,478+1,572 R2 11 5 5   Multitrait GBLUP Zhou et al. (2013) 
DR VR 929 3,735 R2 2 4 1 -3NRR 2UHI Bayesian Brøndum et al. (2011) 
SR VR 1,551 3,735 R2 9 18 7 9NRR 6UHI Bayesian Brøndum et al. (2011) 
FA VR 1,562 3,735 R2 12 13 6 5NRR 10UHI Bayesian Brøndum et al. (2011) 
VR VR+NR 3,367 5,717 R 1 1 2 0NRR 2UHI GBLUP Zhou et al. (2014a) 
NR VR+NR 2,076 5,433 R 5 8 5 2NRR  GBLUP Zhou et al. (2014a) 
VR VR+HF (NO) 3,437 6,552 R 1.4 1.1 1.0 0.4NRR 0.4 GBLUP Zhou et al. (2014b) 
DR VR+HF (NO) 3,437 6,552 R 5 3 2 2NRR 1 GBLUP Zhou et al. (2014b) 
SR VR+HF (NO) 3,437 6,552 R 2 2 2 0NRR 0 GBLUP Zhou et al. (2014b) 
FA VR+HF (NO) 3,437 6,552 R 1 0 0 0NRR 0 GBLUP Zhou et al. (2014b) 
HF (NO) VR+HF (NO) 3,115 6,552 R 0.6 0 0.4 -0.4NRR 0.4 GBLUP Zhou et al. (2014b) 
MB MB+NM+HF (FR) 950 4,896 R2 2  6FC 0CR  GBLUP Karoui et al. (2012) 
NM MB+NM+HF (FR) 970 4,896 R2 2  0FC 0CR  GBLUP Karoui et al. (2012) 
HF (FR) MB+NM+HF (FR) 2,976 4,896 R2 1  1FC 0CR  GBLUP Karoui et al. (2012) 
BS (US) BS+JE+HF (US) 506 7,168 R2 4 3 4 -1DPR -1 Non-linear GBLUP Olson et al. (2012) 
JE (US) BS+JE+HF (US) 1,361 7,168 R2 -3 -2 -4 0DPR 0 Non-linear GBLUP Olson et al. (2012) 
HF (US) BS+JE+HF (US) 5,331 7,168 R2 -4 -3 -3 0DPR 0 Non-linear GBLUP Olson et al. (2012) 
HF (AS) HF+JE (AS) 1,897 2,351 R -1 0 0   GBLUP Erbe et al. (2012) 
JE (AS) HF+JE (AS) 454 2,351 R -3 -2 -3   GBLUP Erbe et al. (2012) 

(Lund et al., 2014) 
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The main objective of this thesis is to evaluate the efficiency of the potential 

implementation of Genomic Selection in seven Autochthonous Spanish beef cattle 

populations (Asturiana de los Valles, Avileña-Negra Ibérica, Bruna dels Pirineus, 

Morucha, Pirenaica, Retinta and Rubia Gallega).  

This main objective can be disentangled in the following secondary goals:  

- Evaluate the potential improvement of the Single Step Genomic Selection 

within the genealogical and productive structure of the Spanish beef cattle 

populations. 

- Evaluate the ability of prediction across populations within the Spanish beef 

cattle populations. 

- Calculate the persistency of the haplotype phase across populations and 

evaluate its potential use for genomic selection across populations.  

- Study the haplotype diversity along the genome for the Spanish beef cattle 

populations. 
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The biological material used in this study was generated during the development of 

the AGL2010-15903 project. Biological samples of 171 triplets (sire/dam/offspring) 

were collected from 7 Spanish beef cattle populations (Asturiana de los Valles -AV-

, n=25; Avileña-Negra Ibérica -ANI-, n=24; Bruna dels Pirineus -BP-, n=25; Morucha 

-Mo-, n=25; Pirenaica -Pi-, n=24; Retinta -Re-, n=24; Rubia Gallega -RG-, n=24), 

whose geographic distribution within the Iberian peninsula is presented in Figure 1. 

Figure 1. Geographic distribution map of the Spanish breeds included in this 
study. 
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The animals were selected under the criteria of minimizing the genealogical 

relationship between them in order to capture as much of the variability as possible 

in each population. The individual samples were obtained through blood extraction 

from the caudal vein and were stored in tubes with EDTA anticoagulant according 

to the recommendations of Morton et al. (1993). Once the samples were collected 

they were processed according to the protocol described in Prefiler™ Forensic DNA 

Kit of Applied Biosystems, using Mag-Max™ Express 96-Magnetic Particle 

Processor automated equipment. 

These samples were genotyped in a commercial laboratory (Xenética Fontao, Lugo, 

España) with the Illumina BovineHD BeadChip (Illumina, 2012) that contains 

777,962 SNP markers. Further, the assembly of the genome was done using the 

Bovine UMD3.1 database (Zimin et al., 2009). 

Additionally, the SNPs that were located on the autosomal chromosomes were 

filtered and those found in repetitive positions were excluded. During the filtering the 

following requirements were applied: 1) a Mendelian error inferior than 0.05 and 2) 

SNP and individual call rates higher than 95%. The quality control was performed 

using the PLINK software (Purcell et al., 2007). At the end of the filtering process 

there were 703,707 SNP markers covering 2,510,350 kilobases (kb) of the 

autosomal chromosomes with a mean density of one marker per 3.57 kb. A more 

detailed description in presented in Table 3. The reconstruction of the parental 

haplotypes was conducted with the software Beagle (Browning and Browning, 2009) 

using the option of triplets (individual/sire/dam) analysis.  
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Table 3. Distribution of the SNP markers along the autosomal chromosomes. 
BTA Number of SNP BTA Number of SNP BTA Number of SNP 

1 44,495 11 30,843 21 20,294 
2 38,516 12 24,663 22 17,270 
3 34,199 13 22,842 23 14,364 
4 33,366 14 23,905 24 17,943 
5 33,301 15 23,399 25 12,441 
6 34,046 16 23,154 26 14,568 
7 31,605 17 21,131 27 12,545 
8 32,384 18 18,558 28 12,378 
9 29,633 19 18,167 29 13,924 

10 29,157 20 20,616   

 

Finally, along with the genotypic data, the genealogical and phenotypic data on birth 

weight were available for two populations, Pirenaica and Rubia Gallega. The data 

for Rubia Gallega comprised of 92,046 individuals in the genealogy and 64,030 birth 

weight data. The systematic effects considered for this trait were 1) sex with 2 levels, 

2) age of mother with 16 levels and 3) herd-year-season (HYS) with 10,160 levels. 

Likewise, the data for Pirenaica included 55,203 individuals in the genealogy and 

32,702 birth weight data. The systematic effects were the same with 2, 16 and 5,343 

levels respectively. 



  

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

CHAPTER 1 

 
Performance of Genomic Selection under a single-

step approach in Autochthonous Spanish beef 
cattle populations. 
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Introduction 

The Genomic Selection (GS) methodology (Meuwissen et al., 2001) has already 

been shown to be a promising development for animal breeding. In fact, the dairy 

cattle industry was quick to incorporate it in their selection schemes to produce 

highly accurate Genomic Breeding Values –GEBVs- (Hayes et al., 2009a; Loberg 

and Durr, 2009; VanRaden et al., 2009) and pig companies have started to used it 

regularly in elite populations (Forni et al., 2011; Ostersen et al., 2011).  

However, the beef cattle industry has been more reluctant in the implementation of 

this technology due to several reasons (Berry et al., 2016). On one hand, most of 

the beef cattle populations have a limited census, and on the other, the use of 

artificial insemination (AI) is lower than in dairy cattle. These phenomena restrict the 

presence of sires evaluated with high accuracy, and contribute to the poor 

connectedness among and within populations. As a consequence, the usual dairy 

cattle strategy to evaluate very young bulls, as an alternative of progeny testing 

(Hayes et al., 2009a), cannot be automatically mimicked. Thus, the potential 

efficiency of the implementation of GS should be specifically tested in each 

population. 

The first attempts to implement GS (Meuwissen et al., 2001) suggested a two-step 

approach that involved training and testing populations. Later on, Habier et al. 

(2007) probe that the standard mixed model equations (Hendenson, 1984) can be 

easily adapted to incorporate genomic information through a genomic relationship 

matrix (G) and lead to predictions of GEBVs equivalent to the Gaussian 

Regularization proposed by Meuwissen et al. (2001). Further, Legarra et al. (2009) 
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and Aguilar et al. (2010) developed an extension of this model denoted as Single-

Step GBLUP, which allows to predict at the same time the breeding values for 

genotyped and non-genotyped individual.  

This approach could be useful for populations that cannot support a broad 

genotyping effort, such as the Autochthonous Spanish beef cattle populations. Thus, 

the objective of this study is to investigate the potential application of genomic 

selection under a single-step approach in two Spanish Autochthonous populations 

(Pirenaica, - Pi -, and Rubia Gallega, - RG -), as representatives of alternative 

genealogical structures due to the wide utilization of AI in RG, in contrast to Pi.  

Materials and Methods 

Simulation 

An historical population of 100 individuals that evolved under random mating for 500 

generations was simulated. The genome simulated comprised of 30 chromosomes 

with 2,000 markers each, from which 100 were randomly selected as causative 

mutations (QTLs). The mutation rate for both markers and causative mutations was 

fixed at 2.5 × 10-3. These parameters were chosen in order to obtain genotypes of 

around 50,000 (50k) neutral markers mimicking the information provided by the 

BovineSNP50 BeadChip (Gunderson, et al., 2005; Steemers et al., 2006). The 

population of the last generation was used as the base population for the simulation 

over the available pedigree (see Material chapter) by gene-dropping providing 

simulated genotypes for markers and QTL for the pseudo-populations with the same 

genealogical structure as the real populations. Further, the QTL effects were drawn 

from a Gaussian distribution with mean zero and variance one. 



Chapter 1 

43 

After the simulation of the genotypes for all the individuals in the pedigree, pseudo-

phenotypes were simulated for each individual that had a recorded phenotype on 

the real data set. Phenotypes were simulated by summing a general mean (1,000), 

the effects for the QTLs weighted by their specific genotype and a residual drawn 

from a Gaussian distribution with zero mean and a variance adequate to create two 

traits with heritability 0.1 and 0.4. Finally, the breeding values and the genotypes for 

all individuals in the pedigree were recorded.  

Single step 

The data provided by the simulation study were analysed by the standard BLUP 

analysis (Henderson, 1984) and by the single-step GBLUP –ssGBLUP- (Aguilar et 

al., 2010). Both analyses were performed by the BLUPf90 program family (Misztal 

et al., 2014).  

The model used for all analyses was: 

࢟ = ࢈ࢄ + ࢓૚ࢆ + ૛࢛ࢆ +  , ࢋ

Where ࢟ is the vector of phenotypes, ࢈ is the vector of the systematic effects, sex 

with 2 levels and age of dam with 16 levels, ࢓ is the vector of the Herd-Year-Season 

random effect with 5,343 and 10,160 levels for Pi and RG respectively, ࢛ is the 

vector of additive genetic effects, and ࢋ is the vector of residuals. ࢆ ,ࢄ૚ and ࢆ૛ are 

the incidence matrices for ࢓ ,࢈ and ࢛, respectively. 

The only difference between ssGBLUP and BLUP is that in ssGBLUP the inverse 

of the numerator relationship matrix A-1 is replaced by matrix H-1 defined as:  
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૚ିࡴ = ૚ି࡭ + ൤૙ ૙
૙ ૚ିࡳ − ૛૛ି૚࡭

൨ , 

Where G is the genomic relationship matrix and A₂₂ is the numerator relationship 

matrix for the genotyped individuals.  

The default parameter options of the BLUPF90 software such as minor allele 

frequency of 0.05, individual and SNP call rate of 0.90 and H matrix scaling 

parameters (α=0.05 and β=0.95) were used in all cases. In addition, variance 

components were assumed to be known. 

Validation 

The procedures were validated through the accuracy of the predictions that was 

calculated as the Pearson correlation between the estimated breeding values and 

the simulated breeding values for the individuals born in last available year (2014) 

that served as candidates to selection (579 for Pi and 1,738 for RG). 

Simulation Scenarios 

First, we developed a base scenario of simulation where we evaluated the accuracy 

of the procedure with respect to the following variables: 

1) Heritability of the trait (h2 = 0.1 and 0.4) 

2) Number of historical individuals genotyped (4,000, 2,000, 1,000, 500 and 

250) 

3) Genotypes for sires and dams of candidates to selection (Yes or No) 

4) Genotypes for the proper candidates to selection (Yes or No). 

5) Phenotypic records for the candidates to selection (Yes or No). 
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Thus, the number of cases of simulation was 80, plus 4 cases of standard BLUP 

evaluation (two heritabilities with and without phenotypic records for the candidates 

to selection). In this study, the historical individuals were selected according to the 

estimated prediction error variance –PEV- achieved from a standard BLUP 

evaluation. Thus, the individuals were ranked according to their PEV, and the 

bottom 4,000, 2,000, 1,000, 500 and 250 historical individuals were selected to be 

genotyped, regarding the case of simulation.  

In addition, we performed a sensitivity analysis by comparing the results of this base 

scenario with some other alternatives. These alternatives included 

1) Replacing the Top Historical (TH) individuals with the individuals with lower 

PEV, but born exclusively from 2010 to 2013 (Top Recent – TR).- 

2) Replacing the Top Historical individuals with a random sample between 2010 

to 2013 (Random Recent – RR-) 

3) Three combinations of the RR and TH strategies that included one quarter, 

one half or three quarters of TH individuals combined with RR individuals. 

4) Five alternative marker densities including: 4,000 (4k), 10,000 (10k), 23,000 

(23k), 100,000 (100k) and 200,000 (200k) neutral markers. 

5) Two alternative effective population sizes (Ne) in the simulation of the 

historical population (50 and 200) 

6) Two alternative mutation rates for markers and QTL (1×10-3 and 4×10-3.) 

Results and Discussion 

The datasets of the two populations used in this study differ significantly in their 

structure as it can be seen in Table 4. RG uses significantly more artificial 

insemination than Pi, as it is reflected on the pedigree structure. Thus, the number 
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of sires used for reproduction represents the 1.81% (1,669 animals) for RG while 

they represent the 5.45% (3,010) for the Pi. Moreover, the average number of 

offspring per sire is 47.82 (s.d. = 225) for RG and just 17.21 (s.d. = 39.64) for Pi. To 

reinforce this statement, Figure 2 shows the number of offspring born in the year 

2014 per sire for both populations. In RG 283 sires have 1738 offspring (average 

6.14 offspring per sire) while in Pi 145 sires have 579 (average 3.99 offspring per 

sire). 

Table 4. Comparison of the pedigree structures between the Rubia Gallega (RG) 
and Pirenaica (Pi) populations. 

 RG Pi 
№ of animals 92,046 55,203 
№ of generations 16 25 
Total № of sires 25,678 18,837 

- With offspring 1,669 3,010 
- Mean 

(s.d.) 
47.82  
(225) 

17.21  
(39.64) 

Total № of dams 66,368 36,366 
- With offspring 35,156 23,373 
- Mean 

(s.d.) 
2.27 

(1.68) 
2.24 
(1.8) 
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Figure 2. Number of offspring born in the year 2014 per sire. 

 

Standard BLUP evaluation 

First, we evaluated the performance of the standard BLUP evaluation in each 

population and for each trait in order to define a reference point to compare the 

results of the alternative genotyping strategies. The results are presented in Table 

5.  

Table 5. Accuracies (s.e) obtained from the BLUP evaluation. 

 Trait A h2=0.4 Trait B h2=0.1 
 Without 2014 data With 2014 data  Without 2014 data With 2014 data 

Pi 0.554 
 (0.011) 

0.724 
(0.004) 

0.446  
(0.013) 

0.515 
(0.011) 

RG 0.550  
(0.010) 

0.727 
(0.004) 

0.479 
(0.012) 

0.549 
(0.007) 

 

It can be observed that the accuracy of prediction for the individuals born in 2014 

was very similar between populations when the heritability is higher (h2=0.4), but 

there are remarkable differences between them for the low heritability (h2=0.10). 
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The reason for this difference can be attributed to the genealogical structure of the 

RG population, due to the higher presence of IA that implies a higher accuracy of 

the prediction of breeding values of sires. As a consequence, this higher accuracy 

of the sires is reflected on their sons and daughters. This effect is more evident with 

lower heritability, because more progeny is needed to achieve a higher accuracy 

(Falconer and McKay, 1996). In addition, and as it was expected, the accuracy of 

the cases of simulation that included the phenotypes of the candidates to selection 

is higher. Finally, as it was also expected, the accuracy is higher for the scenarios 

with h2=0.4 than with h2=0.1. 

Base Scenario 

The detailed results of the accuracy of prediction for all cases of simulation are 

presented in Tables 1.1 to 1.4 of the ANNEXE 1. Moreover, in Figure 3 is presented 

a summary of the relative accuracy with respect to the standard BLUP procedure. 
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Figure 3. Relative accuracy with respect to the standard BLUP procedure for the 
different alternatives of the base scenario. 

 
Relative accuracy with respect to standard BLUP evaluation. RG=Rubia Gallega, Pi=Pirenaica, 
ped=standard BLUP evaluation, TH-250=250 Top Historical genotypes, TH-500=500 Top Historical 
genotypes, TH-1000=1000 Top Historical genotypes, TH-2000=2000 Top Historical genotypes, TH-
4000=4000 Top Historical genotypes, none=no additional genotypes, sires+dams=parents of the 
selection candidates, 2014=selection candidates. 

 

One on hand, it can be observed that the accuracy of candidates to selection is 

always higher than the one provided by the standard BLUP procedure. This is a very 

important advantage of single-step (Aguilar et al., 2010) approach with respect to 
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the two-step approach of genomic selection (Meuwissen et al., 2001) that requires 

a minimum number of genotyped and phenotyped individuals to compete with the 

pedigree-based approaches. Thus, the appropriateness of the single-step approach 

for populations that cannot afford huge genotyping efforts, like the Spanish 

autochthonous beef cattle breeds, is very clear. 

As expected, the increase of accuracy is higher as the number of genotyped 

individuals increases. However, it should be noted that this gain could be only 

worthy when the candidates to selection are genotyped. In fact, the maximum gain 

obtained without genotyping the candidates to selection and their parents was just 

2.7 ± 0.4 % (Pi, 4000 genotyped individuals, h2=0.1) and this figure only increased 

up to 10.2 ± 1.0 % when genotypes of the sires and dams of the candidates to 

selection were added. On the contrary, and for the same scenario, the increase of 

accuracy goes up to 25.3 ± 2.2 % (4000 TH + candidates to selection genotyped) 

and 26.1 ± 2.2 % (4000 TH + sires and dams + candidates to selection). It should 

be noted that the sires and dams of the candidates to selection are frequently 

included within the TH individuals. So, only slight differences between both 

strategies were found. Genotyping of all candidate individuals could be an important 

effort for the breeders associations, although it is important to mention that the 

imputation technics work very efficiently (Khatkar et al., 2012; Mulder et al., 2012) 

even with low-density devices. Thus, a genotyping strategy that uses low density 

chips for candidate individuals can be appropriate. 

Further, if we compare the performance of the method with respect to the heritability 

of the trait, it can be observed that the rate of increase of accuracy is higher for 

h2=0.4 than for h2=0.1 when the candidates to selection are not phenotyped. This 
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means, that the number of genotyped individuals required for traits with lower 

heritability is greater, because of the lower information provided by the phenotypes 

when heritability is low. The well-established strategies of genomic selection in dairy 

cattle (Hayes et al., 2009a) involve the evaluation of genomic breeding values on 

sires with extremely high accuracies, overcoming the informativeness of each 

individual phenotype by averaging over a huge number of daughters. This strategy 

cannot be replicated with the population structure of smaller populations. However, 

this phenomenon is reverted when the candidates to selection are phenotyped, and 

the increase of accuracy is higher for the cases of simulation that involved a lower 

heritability. The cause of this difference can be attributed to scale effects due to the 

higher base accuracy for phenotyped individuals with a moderate or high heritability 

(h2=0.4). 

Moreover, and as it was expected, the increase of accuracy is much higher when 

the candidates to selection are not phenoyped. This specific scenario tries to 

represent traits that are measured late in life (e.g. maternal traits) or difficult and 

expensive to measure (e.g. Slaughter traits, Disease resistance). As an example, 

the maximum increase of accuracy for non-phenotyped candidates to selection was 

36.5 ± 1.7 % (RG, 4000 TH, + sires and dams + candidates to selection, h2=0.4) 

whereas in the same scenario but with own phenotype recorded, the percentage of 

increase was just 14.1 ± 0.4 %. This result confirms the appropriateness of the GS 

for traits that cannot be easily measured on the candidates to selection. 

Finally, it is relevant to note that the increase of accuracy is higher for RG than for 

Pi, even when both populations start with the same base level of accuracy (standard 

BLUP, h2=0.4). As before, the cause of this difference must be attributed to the 
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genealogical structure of the RG population due to the higher application of AI that 

provides a relevant number of individuals evaluated with very high accuracy. This 

highly accurate individuals contribute to the increase of the accuracy of the 

remaining individuals through the genomic relationship matrix, which can be 

considered as an improved estimate of the true genetic relationship between 

individuals, based on SNP markers instead of only on the pedigree information 

(Legarra et al., 2014a) and by the detection of older relationships hidden in the 

pedigree information. 

Sensitivity analysis 

The results of the base scenario analysis covered a wide range of variables. 

However, it should be noted that they are conditioned to a set of predefined 

simulation parameters. Thus, and in order to extract more general conclusion we 

performed a sensitivity analysis with respect to the following variables: 1) the 

method of choice of genotyped individuals, 2) the marker density, 3) the effective 

population size along the evolutionary history of the population and 4) the mutation 

rates for QTL and SNP markers. 

In first place, the results of the sensitivity analysis with respect to the method of 

choice of the genotyped individuals are presented in Figure 4. As it can be observed, 

there are no relevant differences in accuracy with respect to the method of choice 

of genotyped individuals when compared with the election of the TH individuals. It 

can be only noted a slight reduction of accuracy for lower heritabilities (h2=0.1) when 

the TH individuals are replaced by RT and RR, that disappear when just one quarter 

of TH individuals were included in the genotyped subset. The consequences of this 

result implies that, although the most informative individuals (with lower PEV) 
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provide a better accuracy, the results are robust enough to suboptimal genotyping 

strategies forced by the availability of biological samples of older individuals. 

Figure 4. Sensitivity analysis with respect to the genotyping strategies. 

Relative accuracy with respect to standard BLUP evaluation. RG=Rubia Gallega, Pi=Pirenaica, 
TH=Top Historical, TR=Top Recent, RR=Random Recent, size of reference sets=4,000, none=no 
additional genotypes, sires+dams=parents of the selection candidates, 2014=selection candidates. 
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The second sensitivity analysis was focused on the marker density, as the base 

simulation scenario tries to represent the density that can be obtained by the 

BovineSNP50 BeadChip. The results are presented in Figure 5. 

Figure 5. Sensitivity analysis with respect to the marker density. 

 
Relative accuracy with respect to standard BLUP evaluation. Genotype set used=TH 4,000 
genotypes, RG=Rubia Gallega, Pi=Pirenaica, 4k=4,000 SNPs, 10k=10,000 SNPs, 23k=23,000 
SNPs, 50k=50,000 SNPs, 100k=100,000 SNPs, 200k=200,000 SNPs, none=no additional 
genotypes, sires+dams=parents of the selection candidates, 2014=selection candidates. 
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The main conclusion of this analysis is that the accuracy of GS increases with 

marker density but it reaches a plateau around 50k, and further increases of 

accuracy are not obtained for higher densities. This result confirms the postulates 

of Cañas-Álvarez et al. (2016) that suggest that the Spanish autochthonous beef 

cattle populations need at least 38,000 segregating SNP markers. Thus, the 

potential increase that can be obtained from higher densities can be considered as 

negligible as also suggested by Solberg et al. (2008), even for unrelated individuals 

(Meuwissen, 2009).  

Further, the results of the sensitivity analysis with respect to effective size of the 

evolutionary historical population are presented in Figure 6. As it can be observed, 

there is a reduction in accuracy as the Ne increases as predicted by Solberg et al. 

(2008). These authors proposed that equivalent accuracies can be obtained as a 

function of Ne x L (number of markers). Thus, doubling or halving the effective size 

implies that double or half of the markers are needed to achieve the same accuracy. 

However, the Ne of the Spanish autochthonous populations has been estimated 

around 50-60 (Cañas-Álvarez et al., 2016) and, as a consequence, the results of 

the base simulation study presented earlier, can be considered as a conservative 

estimation of the potential increase of accuracy. 
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Figure 6. Sensitivity analysis with respect to effective population size. 

 
Relative accuracy with respect to standard BLUP evaluation. Genotype set used=TH 4,000 
genotypes, RG=Rubia Gallega, Pi=Pirenaica, Ne=50, Ne=100, Ne=200, none=no additional 
genotypes, sires+dams=parents of the selection candidates, 2014=selection candidates. 
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Finally, the last sensitivity analysis was devoted to mutation rate. The results are 

presented in Figure 7. 

Figure 7. Sensitivity analysis with respect to mutation rate. 

 
Relative accuracy with respect to standard BLUP evaluation. Genotype set used=TH 4,000 
genotypes, RG=Rubia Gallega, Pi=Pirenaica, mutation rates tested = 1×10-3, 2.5×10-3, 4×10-3, 
none=no additional genotypes, sires+dams=parents of the selection candidates, 2014=selection 
candidates. 

 

The results showed only small differences in the accuracy when the mutation rate 

varied. However, there was a clear tendency to produce higher accuracies for lower 
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mutation rates. The reason for those differences can be attributed to the fact that 

higher mutation rates provide lower LD between SNP markers and QTL. However, 

the assumed mutation rates were extremely high with respect to estimations in the 

literature (Kumar and Subramanian, 2002; Hodgkinson and Eyre-Walker, 2011), 

and, as before, this result ensures that the output of our base simulation study 

consists of a conservative estimation of the potential increase of accuracy that can 

be achieved with GS in the Spanish autochthonous beef cattle populations. 

Conclusions 

The results of this study probe the appropriateness of the implementation of GS in 

the Spanish autochthonous populations, even though the genotyping efforts that 

can be achieved by the breeders association are intermediate or low. This advance 

can be obtained thanks to the single-step genomic selection approach (Legarra et 

al., 2009; Aguilar et al., 2010) that combines genomic and pedigree based 

relationships into the same relationship matrix. Thus, the pedigree based 

relationship matrix sets the lower bound of accuracy, and it is improved as more 

individuals with genotypes are incorporated into the genomic evaluation. As 

expected, the GS approach has been found more relevant for traits with low 

heritability or without own phenotypic information for the candidates to selection, 

and only when the candidates to selection are genotyped.  

Finally, it is important to mention that the efficiency of GS is higher in RG than in Pi, 

because of the genealogical structure that is provided by the wider implantation of 

IA. So, a parallel increase of the rate of AI along with the genotyping efforts will lead 

to a greater success of GS in populations with a low percentage of AI. 
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Evaluation of the potential use of a meta-
population for Genomic Selection in the 

Autochthonous Spanish beef cattle populations. 
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Introduction 

The advances in the area of molecular genetics have allowed the development of 

genotyping SNP chips that provide information throughout the genome (Gunderson, 

et al., 2005). Along with the molecular advances, new statistical methods have been 

developed with the purpose of predicting the genomic breeding values of candidates 

to selection (Meuwissen et al., 2001). The potential applications of these methods 

have been tested through simulation (Meuwissen et al., 2001) and through cross-

validation techniques in different species such as mice (Legarra et al., 2008), dairy 

cattle (Luan et al., 2009), aquaculture (Sonesson and Meuwissen, 2009) and poultry 

(González-Recio et al., 2009).  

Currently, genomic selection is a reality in dairy cattle (Hayes et al., 2009a). 

Nevertheless, the implementation of such methods in the beef cattle industry is still 

questionable. The main limitations are the limited census of the beef populations, 

the great variability of the production systems, the narrower use of artificial 

insemination and the lower quality of phenotypic recording (Berry et al., 2016). 

To overcome these constraints, several authors (De Roos et al., 2009; Toosi et al., 

2010, Kizilkaya et al., 2010) have made efforts to increase the precision of the 

genomic predictions, in simulation studies, by using phenotypic and genomic 

information provided by several populations. Their results indicate that the use of a 

combined population is more helpful when the populations involved have diverged 

for a small number of generations, for populations of reduced size, and for traits of 

low heritability if high-density genotypes are available. However, with real data, 

some studies have obtained promising results (Weber et al., 2012) whereas, some 
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others reported almost any advantage of multi-population genomic evaluation 

(Kachman et al., 2013; Chen et al., 2013a, Bolormaa et al., 2013). Thus, the 

potential application of a meta-population approach should be studied in each 

specific case. 

The Spanish autochthonous cattle breeds have a Bos taurus ancestral origin and it 

is estimated that they have a recent common origin (Beja-Pereira et al., 2003; 

Cañas-Álvarez et al., 2015) and with a quite important persistency of haplotype 

phase between them (Cañas-Álvarez et al., 2016). These statements jointly with the 

small size of these populations and the limited economic resources available for 

genotyping suggest that these populations are good candidates for the use a meta-

population for genomic selection. Thus, the objective of this study is to evaluate the 

efficiency of the potential implementation of multi-breed genomic selection in the 

Spanish beef cattle populations. 

Material 

The data used in this study comprised of the genotypes with the BovineHD Beadchip 

for the 342 founder individuals of the triplets described in the MATERIAL chapter 

(Asturiana de los Valles – AV-, N=50, Avileña - Negra Ibérica – ANI-, N=48, Bruna 

dels Pirineus – BP-, N=50, Morucha –Mo-, N=50, Pirenaica –Pi-, N=48, Retinta – 

Re-, N=48 and Rubia Gallega –RG, N=48). Here, an additional quality control 

requirement applied was a minor allele frequency (MAF) of 0.01 resulting in 629,251 

SNPs. 
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Methods 

Simulation 

The simulation structure tries to mimic the linkage disequilibrium structure of the 

analysed populations. Thus, for each breed, we defined a base population from the 

available paternal haplotypes. Thereinafter, for each population, the 629,251 SNP 

markers of the individuals of the first generation of 500 individuals were simulated 

by gene-dropping and assuming a map distance of 1 cM every Mb. The parents of 

this generation were selected randomly from the previous generation and ignoring 

their sex. Based on this generation, 3 more generations of 1,000 individuals (100 

sires and 900 dams) were simulated with the same method, selecting the parents 

randomly but considering their sex this time. These three generations were used to 

establish the pseudo-populations for each initial population. A summary of this 

simulation structure is presented in Figure 8. 
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Figure 8. Structure of the simulation strategy for the generation of pseudo-
populations for each initial population. 

 

Further, in order to simulate the causative mutations of a trait, 3% of the SNP 

markers of each chromosome were randomly selected as QTLs, and they were 

attributed an additive effect sampled from a Gaussian distribution with zero mean 

and a standard deviation of one. Later on, for every individual, true genomic 

breeding values (TGBVs) were calculated as the sum of the effects of their genotype 

for the QTL polymorphisms. Moreover, phenotypes were simulated for all individuals 

summing to their TGBV, a trait mean (= 1,000) and a residual drawn from a 

Gaussian distribution with appropriate variance to generate two traits with heritability 

0.4 and 0.1. 

Additionally, and with the aim of defining a sensitivity analysis, 5 alternative 

scenarios of the genetic architecture of the quantitative traits were simulated beside 

the polygenic model followed above: 
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- 10G(20%): 10 randomly selected genes were added to the polygenic model which 

explained 20% of the total genetic variance. 

- 4G(50%): 4 randomly selected genes were added to the polygenic model 

explaining 50% of the total genetic variance. 

- Ex: the effects of the genes were drawn from an exponential distribution instead 

of a Gaussian distribution.  

- LMAF: markers with extreme frequencies (rare variants) were chosen to simulate 

genes. (MAF≤0.05) 

- 4MG: 4 QTLs were randomly selected to explain the 100% of the genetic variance 

with effects drawn from a normal distribution. 

Genomic evaluation 

The genomic evaluation was performed by means of solveSNP software (Legarra 

and Misztal, 2008) with the method RR BLUP (Meuwissen et al., 2001) and under 

the following model. 

௜ݕ = ߤ + ෍ݔ௜௝ ௝ܽ

௡

௝ୀଵ

+ ݁௜ 

where ݕ௜ is the phenotype of the ith individual, µ is the trait mean, n is the number of 

SNPs, ݔ௜௝ is the genotype of the ith individual for the jth marker codified as 0,1 and 2, 

௝ܽ is the substitution effect for the jth marker and ݁௜ is the residual effect of the ith 

individual. Further, the prior distribution for the marker effects was the following 

multivariate Gaussian distribution: 

,0)ࡺ~ࢇ  (௔ଶߪࡵ
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where ߪ௔ଶ is the marker variance whose prior distribution is assumed to be uniform 

within appropriate bounds. 

The markers selected as causal mutations were excluded from the marker panel 

during the genomic evaluation. Later on, Genomic Breeding Values (GEBV) were 

calculated as: 

ܤܧܩ ௜ܸ = ෍ݔ௜௝ ఫܽෝ
௡

௝ୀଵ

 

Several scenarios of genomic evaluation were considered depending on the 

reference population used. 

- Pure-bred: The reference population comprised of 3,000 individuals of one of the 

populations simulated. All seven populations were used as reference populations 

separately. 

- Admixed ×2: The reference populations comprised of 3,000 (1,500 + 1,500) 

individuals from 2 pure-bred populations. All possible combinations were used as 

reference populations. 

- Admixed ×7: One reference population comprised of 3,003 individuals with 429 

individuals from each of the seven populations. 

Additionally, reduced pure-bred populations of 1,500 and 429 individuals were used 

as reference populations with the goal of comparing them to the admixed scenarios 

under equal genotyping efforts within populations. 
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Validation 

The populations used to validate the predictions included the 7 pure-bred 

populations and 3 additional generations of 1,000 individuals each for every 

population. The accuracy of the predictions was calculated as the Pearson 

correlation between the simulated breeding values and the predicted values. Each 

case of simulation was replicated 5 times and the results were averaged. 

Results and Discussion 

Single-breed evaluation 

In the first scenario, the effects of the markers were estimated within each breed. 

Then, they were used to predict the GEBV within and across breeds. Figure 9 shows 

the results of the accuracies obtained for a trait with heritability 0.4 in all populations 

for generation 0 (where reference and validation populations are the same) and for 

3 subsequent generations.  

Within-breed accuracies at generation 0 were the highest, ranging from 0.785 (BP) 

to 0.754 (Mo). These results are slightly higher than those reported by Saatchi et al. 

(2011) and Van Eenennaam et al. (2014) from empirical field studies that ranged 

from 0.3 to 0.7 and from 0.22 to 0.69, respectively. The reason of the higher 

accuracies obtained in our study is probably the fact that the validation and the 

training sets have the maximum degree of relatedness. On the other hand, the 

across-breed accuracies were very low, with the highest value obtained when 

training in BP to predict over Pi (0.191) and the lowest when training in RG to predict 

over AV (0.112). These results confirm the postulate of Harris et al. (2008) that 

indicated that training in one population and validating in another is not effective. 
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However, it is remarkable that all the average estimates are positive and the results 

are coherent with the studies of persistence of LD phase by Cañas-Alvarez et al. 

(2016) in the same populations. 

Figure 9. Accuracy from single breed genomic evaluation (h2=0.4) 

AV=Asturiana de los Valles, ANI=Avileña-Negra Iberica, BP=Bruna dels Pirineus, Mo=Morucha, 
Pi=Pirenaica, Re=Retinta, RG= Rubia Gallega, generations 0, 1, 2, 3 = distance in generations 
between the training and validation sets. 
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Additionally, 3 more generations of 1,000 individuals each were simulated for each 

population and used for validation. When predicting the subsequent generations the 

within-breed accuracies resulted on average lower by 21.6% in generation 1 with 

values between 0.637 (RG) and 0.580 (AV), 34.5% in generation 2 with values 

between 0.545 (RG) and 0.475 (AV) and 40.7% in generation 3 with values between 

0.496 (Pi) and 0.420 (BP) regarding to generation 0. These results were expected 

and confirm the relevance of the relationship between the testing and training 

populations in the accuracy of genomic selection (Clark et al., 2012). Further, the 

across-breed accuracies showed a small random fluctuation around the values in 

generation 0, because the relationship between testing and training populations is 

not modified in these cases.   

The results of accuracy obtained when evaluating for a trait with heritability 0.1 

resulted lower with values ranging between 0.587 (Mo) and 0.512 (BP) for within-

breed predictions and between 0.125 (Mo over Re) and 0.045 (Pi over Re) for across 

breed predictions in generation 0. The loss of predictive ability over subsequent 

generations resulted to be higher than that of the previous case. The within-breed 

accuracies were 24.7% lower in generation 1 (0.440 (Mo) – 0.380 (Re)), 38.1% in 

generation 2 (0.377(Mo) – 0.292 (BP)) and 47.2% in generation 3 (0.312 (Mo) – 

0.249 (BP)) (Figure 10). The higher loss of accuracy as the relationship between 

testing and training populations weakens is related to the crucial relevance of the 

information from relatives for low heritability traits (Falconer and McKay, 1996). 
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Figure 10. Accuracy from single breed genomic evaluation (h2=0.1) 

 
AV=Asturiana de los Valles, ANI=Avileña-Negra Iberica, BP=Bruna dels Pirineus, Mo=Morucha, 
Pi=Pirenaica, Re=Retinta, RG= Rubia Gallega, generations 0, 1, 2, 3 = distance in generations 
between the training and validation sets. 
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Evaluation in admixed ×2 

The training sets used in this second scenario were set up by mixing data from two 

purebred populations with equal proportion of each. All possible combinations were 

considered which resulted in 21 different admixed populations. Table 6 contains the 

results of the predictive ability of these populations over the purebred populations 

for generation 0 for a trait with heritability of 0.4. When the purebred validation 

population was included in the admixed training set the accuracies ranged from 

0.680 (AV-BP over BP, BP-Pi over BP, BP-RG over RG, Re-RG over RG) and 0.639 

(BP-MO, Mo-Pi, Mo-Re over Mo). However, when the purebred validation 

population was not included in the training set the accuracies resulted similar to the 

previous scenario of single breed evaluation and ranging between 0.202 (AV-BP 

over Pi) and 0.114 (Pi-RG over AV).   
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Table 6. Accuracy from genomic evaluation in admixed ×2 populations in the 
generation 0 (h2=0.4) 

  Validation sets 
  AV ANI BP Mo Pi Re RG 

Tr
ai

ni
ng

 s
et

s 

AV-ANI 0.651 
(0.018) 

0.653 
(0.003) 

0.160 
(0.020) 

0.148 
(0.017) 

0.179 
(0.023) 

0.159 
(0.015) 

0.163 
(0.010) 

AV-BP 0.652 
(0.019) 

0.173 
(0.027) 

0.680 
(0.011) 

0.139 
(0.016) 

0.202 
(0.014) 

0.174 
(0.014) 

0.166 
(0.026) 

AV-Mo 0.651 
(0.020) 

0.154 
(0.015) 

0.147 
(0.011) 

0.640 
(0.013) 

0.174 
(0.017) 

0.163 
(0.010) 

0.146 
(0.016) 

AV-Pi 0.650 
(0.019) 

0.152 
(0.022) 

0.160 
(0.023) 

0.131 
(0.020) 

0.669 
(0.010) 

0.150 
(0.007) 

0.156 
(0.019) 

AV-Re 0.652 
(0.018) 

0.179 
(0.018) 

0.161 
(0.009) 

0.119 
(0.018) 

0.159 
(0.012) 

0.659 
(0.012) 

0.162 
(0.021) 

AV-RG 0.650 
(0.019) 

0.158 
(0.010) 

0.163 
(0.013) 

0.144 
(0.011) 

0.165 
(0.011) 

0.160 
(0.015) 

0.678 
(0.017) 

ANI-BP 0.139 
(0.020) 

0.654 
(0.004) 

0.678 
(0.0151) 

0.158 
(0.011) 

0.188 
(0.010) 

0.176 
(0.017) 

0.183 
(0.017) 

ANI-Mo 0.131 
(0.029) 

0.655 
(0.003) 

0.137 
(0.019) 

0.640 
(0.013) 

0.154 
(0.021) 

0.163 
(0.017) 

0.159 
(0.024) 

ANI-Pi 0.127 
(0.025) 

0.652 
(0.003) 

0.154 
(0.024) 

0.152 
(0.017) 

0.668 
(0.010) 

0.155 
(0.016) 

0.172 
(0.019) 

ANI-Re 0.146 
(0.007) 

0.654 
(0.002) 

0.146 
(0.018) 

0.144 
(0.018) 

0.147 
(0.012) 

0.660 
(0.012) 

0.172 
(0.009) 

ANI-RG 0.124 
(0.028) 

0.653 
(0.004) 

0.155 
(0.015) 

0.163 
(0.007) 

0.148 
(0.016) 

0.154 
(0.013) 

0.679 
(0.017) 

BP-Mo 0.127 
(0.029) 

0.172 
(0.009) 

0.677 
(0.012) 

0.639 
(0.012) 

0.179 
(0.018) 

0.175 
(0.013) 

0.156 
(0.019) 

BP-Pi 0.126 
(0.006) 

0.171 
(0.038) 

0.680 
(0.011) 

0.144 
(0.015) 

0.668 
(0.010) 

0.170 
(0.017) 

0.174 
(0.018) 

BP-Re 0.139 
(0.021) 

0.192 
(0.018) 

0.679 
(0.011) 

0.130 
(0.011) 

0.169 
(0.032) 

0.661 
(0.012) 

0.177 
(0.019) 

BP-RG 0.126 
(0.025) 

0.177 
(0.025) 

0.678 
(0.012) 

0.155 
(0.009) 

0.172 
(0.019) 

0.178 
(0.010) 

0.680 
(0.0018) 

Mo-Pi 0.120 
(0.012) 

0.156 
(0.010) 

0.138 
(0.024) 

0.639 
(0.013) 

0.667 
(0.011) 

0.156 
(0.015) 

0.152 
(0.036) 

Mo-Re 0.133 
(0.029) 

0.175 
(0.020) 

0.133 
(0.023) 

0.639 
(0.012) 

0.134 
(0.018) 

0.659 
(0.012) 

0.154 
(0.018) 

Mo-RG 0.115 
(0.034) 

0.155 
(0.014) 

0.139 
(0.021) 

0.640 
(0.012) 

0.139 
(0.017) 

0.160 
(0.013) 

0.679 
(0.018) 

Pi-Re 0.128 
(0.011) 

0.175 
(0.015) 

0.152 
(0.026) 

0.125 
(0.024) 

0.667 
(0.011) 

0.658 
(0.013) 

0.172 
(0.020) 

Pi-RG 0.114 
(0.011) 

0.154 
(0.016) 

0.159 
(0.014) 

0.148 
(0.009) 

0.667 
(0.011) 

0.154 
(0.004) 

0.679 
(0.017) 

Re-RG 0.126 
(0.025) 

0.174 
(0.009) 

0.154 
(0.017) 

0.134 
(0.014) 

0.124 
(0.015) 

0.659 
(0.013) 

0.680 
(0.017) 

 



Chapter 2 

73 

As an example, Figure 11 shows the results obtained from training in the AV-ANI 

population for all generations. As expected, the predictive ability of these 

populations over the subsequent generations, when the validation sets were 

included in the training set, was lower than that of generation 0. Though, the loss in 

predictive ability resulted slightly higher than that of the previous case. On average 

the accuracies resulted 23%, 35% and 43.2% for generations 1, 2 and 3 

respectively. The reason of this higher decrease of accuracy may be the limited 

number of individuals in the training population (1500 vs. 3000) with a direct 

relationship with the testing population. 

Figure 11. Accuracy from the admixed ×2 population (AV-ANI) genomic evaluation. 

 
AV=Asturiana de los Valles, ANI=Avileña-Negra Iberica, BP=Bruna dels Pirineus, Mo=Morucha, 
Pi=Pirenaica, Re=Retinta, RG= Rubia Gallega, generations 0, 1, 2, 3 = distance in generations 
between the training and validation sets. 

Moreover, the results with heritability 0.1 were similar, although the overall 

accuracies resulted lower than previously. Accuracies for the populations included 

in the training set ranged between 0.470 (AV-Mo and BP-Mo over Mo) and 0.401 

(BP-Pi over BP). On the other hand, the results for the populations not included in 
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the admixture were also lower, from 0.127 (ANI-Mo over Re) to 0.031 (AV-Re over 

RG). The loss of accuracy in the subsequent generations was 26.1%, 39.2% and 

48.4% for generations 1, 2 and 3 respectively.  

Evaluation in admixed ×7 

Finally, the last training set used for genomic evaluation was constructed by 

combining data from 429 individuals from each purebred population (total 3,003 

individuals). Figure 12 shows the results obtained for all populations and all 

generations. The accuracies were between 0.503 (Pi) and 0.436 (Mo) for the trait 

with h2=0.4 and between 0.302 (Mo) and 0.243 (BP) for the trait with h2=0.1, while 

the loss of accuracy with the generations was 25.7%, 37.7% and 42.2% for the first 

trait and 24.3%, 36.3% and 46.8% for the second trait.  The accuracies were lower 

than those in the previous scenarios and, as before, the loss of accuracy when 

training and testing populations are more distant is greater with lower heritability.  

Figure 12. Accuracy from admixed ×7 genomic evaluation. 

 
AV=Asturiana de los Valles, ANI=Avileña-Negra Iberica, BP=Bruna dels Pirineus, Mo=Morucha, 
Pi=Pirenaica, Re=Retinta, RG= Rubia Gallega, generations 0, 1, 2, 3 = distance in generations 
between the training and validation sets. 
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Admixed vs reduced purebred 

For each scenario, we also performed genomic evaluations using the groups of 

individuals selected (1,500 and 429 individuals) to make up the admixed populations 

separately for each purebred population in order to compare them with the admixed 

populations and evaluate the effect of adding individuals from other populations to 

increase the size of the training dataset. The figures 13 and 14 present the results 

of this comparison.  

Figure 13. Comparison between the results of the admixed ×2 and purebred 
genomic evaluation with 1,500 individuals per population. 

 
AV=Asturiana de los Valles, ANI=Avileña-Negra Iberica, BP=Bruna dels Pirineus, Mo=Morucha, 
Pi=Pirenaica, Re=Retinta, RG= Rubia Gallega, generations 0, 1, 2, 3 = distance in generations 
between the training and validation sets, ×2=admixed training set from 2 purebred populations 
(1,500+1,500 individuals), pure_1500=purebred training set with 1,500 individuals. 
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Figure 14. Comparison between the results of the admixed ×7 and purebred 
genomic evaluation with 429 individuals per population. 

 
AV=Asturiana de los Valles, ANI=Avileña-Negra Iberica, BP=Bruna dels Pirineus, Mo=Morucha, 
Pi=Pirenaica, Re=Retinta, RG= Rubia Gallega, generations 0, 1, 2, 3 = distance in generations 
between the training and validation sets, ×7=admixed training set from all 7 purebred populations 
(7×429 individuals), pure_429=purebred training set with 429 individuals. 

 

They show that adding information from another population to a small sized 

population is beneficial in all cases. The admixed ×2 populations performed slightly 

better than the reduced purebred populations with 1,500 individuals with 0.6%, 

1.8%, 3.1% and 4.3% higher accuracies for generations 0, 1, 2, and 3 respectively 

for a trait with h2=0.4 and 0.7%, 1.1%, 2.2% and 3.6% for a trait with h2=0.1. This 

superiority of the admixed population was more obvious between the admixed ×7 

and the reduced purebred populations of 429 individuals. Here, the gain in accuracy 

with the number of generations was 4.4%, 8.9%, 17% and 23.6% for the first trait 

(h2=0.4) and 4.3%, 7.4%, 11.9% and 16.8% for the second trait (h2=0.1). The most 

probable cause of this phenomenon is that as the relatedness between the training 

set and the validation set weakens the predictions are based more on the short 

range LD between the markers and the genes than on the pure genetic relationship 

between individuals. Thus, the admixed populations perform better because of the 
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higher number of data and the fact that mixing data breaks down the long distance 

LD created by relatedness and leaves the effects of the short range LD that persists 

through generations (Falconer and McKay, 1996). 

Genetic architecture of the trait 

Finally, we also compared the consequences of alternative genetic architecture of 

the traits. Thus, along with the polygenic traits (PG) simulated above, 5 more cases 

of genetic architecture were simulated as described earlier. In Figure 15, we present 

the average within breed accuracies for both traits (h2=0.4 and h2=0.1), obtained 

from training in purebred populations for all the populations simulated and for all 

generations. The values obtained resulted similar in all cases. Small differences can 

be observed only for the case that the traits are controlled by rare variants (LMAF) 

with MAF lower than 0.05, and where the loss was slightly greater with the number 

of generation. 

Figure 15. Accuracy from single-breed genomic evaluation under different genetic 
architecture scenarios. 

PG=Polygenic effects, 10G(20%)=Polygenic effects + 10 genes explaining 20% of the genetic 
variance, 4G(50%)=Polygenic effects + 4 genes explaining 50% of the genetic variance, 
Ex=Polygenic effects drawn from an exponential distribution, LMAF=polygenic effects with low allelic 
frequencies (≤0.05), 4MG=4 major genes. 
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Similarly, the results from the admixed ×2 and admixed x7 training sets showed little 

differences among cases (Figures 16 and 17, respectively). As before, only the 

LMAF case gives slightly lower accuracies. This phenomenon is coherent with the 

results obtained by Wientjes et al., (2015), that indicated that when the QTLs 

controlling the genetic variability of the traits have lower frequencies the ability of 

prediction of Genomic Selection in lower. However, although this has been 

suggested as the cause of the missing heritability (Gibson, 2012), the evidence for 

the percentage of genetic variation that rare variants produce is low and some 

authors have shown that these rare variants explain a small percentage of the 

missing heritability of complex traits in human (Gusev et al., 2014) or cattle 

(Gonzalez-Recio et al., 2015). 

Figure 16. Accuracy from admixed ×2 genomic evaluation under different genetic 
architecture scenarios. 

 
PG=Polygenic effects, 10G(20%)=Polygenic effects + 10 genes explaining 20% of the genetic 
variance, 4G(50%)=Polygenic effects + 4 genes explaining 50% of the genetic variance, 
Ex=Polygenic effects drawn from an exponential distribution, LMAF=polygenic effects with low allelic 
frequencies (≤0.05), 4MG=4 major genes. 
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Figure 17. Accuracy from admixed ×7 genomic evaluation under different genetic 
architecture scenarios. 

 
PG=Polygenic effects, 10G(20%)=Polygenic effects + 10 genes explaining 20% of the genetic 
variance, 4G(50%)=Polygenic effects + 4 genes explaining 50% of the genetic variance, 
Ex=Polygenic effects drawn from an exponential distribution, LMAF=polygenic effects with low allelic 
frequencies (≤0.05), 4MG=4 major genes. 

 

Moreover, when comparing the accuracies obtained from an admixed population 

and a reduced sized purebred population (Figures 18 and 19) the results follow 

those of the PG case with the only exception of the LMAF where the reduced 

purebred training sets yielded higher accuracies than those of the admixed training 

sets with the number of generations. In the LMAF case the markers selected to 

simulate the causal mutations where selected under the condition of having extreme 

frequencies (MAF≤0.05). As a consequence, the LD between the neutral markers 

and the genes is lower even at close distances and therefore, the reduced purebred 

training sets perform better than the admixed training sets because there is a larger 

proportion of family LD than sort range historical LD, although the family LD is 

decaying with the number of generations. 
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Conclusions 

The results obtained in this study indicate that the use of a meta-population provides 

reasonable but not completely satisfactory accuracies. Though, the admixed 

populations seem to have a small advantage when predicting individuals more 

distant from the training set because the across breed and multi-breed genomic 

predictions are based more on the LD between markers and QTLs than family 

relationships. 
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Introduction 

The advances in the area of molecular genetics have allowed the development of 

dense SNP genotyping devices (Gunderson et al., 2005) that have provided 

information throughout the genome of several livestock species. Along with these 

molecular advances, new statistical methods have been developed with the purpose 

of predicting the genomic breeding values of candidates to selection (Meuwissen et 

al., 2001). Genomic selection is a reality in dairy cattle (Hayes et al., 2009) and its 

implementation is consolidating in other livestock species, such as pig (Lillehammer 

et al., 2011; Samore et al., 2014; Esfandyari et al., 2015) or small ruminants 

(Shumbusho et al., 2015; Casellas and Piedrafita, 2015). Nevertheless, its 

introduction into the routine selection schemes of beef cattle has been considerably 

slower. Several causes can be argued for this delay (Berry et al., 2016). Among 

them, the limited census of the beef populations and the smaller implantation of 

artificial insemination (AI) as compared to dairy populations play a crucial role. 

One possible alternative that minimizes these problems is the potential use of 

information from multiple populations for the genomic evaluation. Nonetheless, the 

results from simulation studies, as presented in the previous chapter, as well as from 

experimental data (Kachman et al., 2013) show little progress. Theoretically, the 

success of the genomic evaluation from multiple populations is linked to the 

persistency of the linkage disequilibrium (LD) between the populations in such way 

that the LD between markers and QTLs is maintained in all populations. Several 

authors have studied the persistency between populations as one more measure of 

genetic diversity (de Roos et al., 2008; Villa-Angulo et al., 2009; Cañas-Álvarez et 

al., 2016) but the genetic architecture of this persistency has been barely studied.  
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Therefore, the objective of this study is to analyse the pattern of the linkage 

disequilibrium persistency between seven Spanish beef cattle populations along the 

autosomal chromosomes. On one hand, the results will provide valuable information 

about the evolutionary history of these populations (Teo et al., 2009) and, on the 

other, they may be also used to improve the across population estimates of 

Genomic Breeding Values (GEBVs). 

Material 

The data used in this study comprised of the BovineHD Beadchip genotypes of the 

342 founder individuals of the triplets described in the MATERIAL section (Asturiana 

de los Valles – AV-, N=50, Avileña - Negra Ibérica – ANI-, N=48, Bruna dels Pirineus 

– BP-, N=50, Morucha –Mo-, N=50, Pirenaica –Pi-, N=48, Retinta – Re-, N=48 and 

Rubia Gallega –RG, N=48). Here, an additional quality control requirement was a 

minor allele frequency (MAF) of 0.05 in pairs of populations, resulting in around 

550,000 segregating markers for each pair of populations (see Table 7. for detailed 

results).  
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Table 7. Number of segregating SNP markers between all pairs of populations. 
Pairs of 

populations 
Nº SNP 
markers 

Pairs of 
populations 

Nº SNP 
markers 

AV-ANI 555,373 BP-Mo 543,305 
AV-BP 557,588 BP-Pi 534,336 
AV-Mo 555,769 BP-Re 535,997 
AV-Pi 540,390 BP-RG 544,350 
AV-Re 547,893 Mo-Pi 529,281 
AV-RG 553,868 Mo-Re 541,225 
ANI-BP 538,327 Mo-RG 542,682 
ANI-Mo 545,324 Pi-Re 522,670 
ANI-Pi 524,630 Pi-RG 529,577 
ANI-Re 536,595 Re-RG 535,677 
ANI-RG 537,882   

 

Methods 

Persistency of Linkage Disequilibrium 

Two measures of local persistency of linkage disequilibrium (LD) were used for 

sliding windows of 50, 100 and 200 SNP that cover an average size in physical 

distance of 226.85 kb (s.d. 110.2 kb), 457.85 kb (s.d. 175.3 kb) and 919.79 kb (s.d. 

279.4 kb), respectively. 

CorLD: The LD between all markers of each region was calculated as: 

ݎ = ஽
ඥ௣ಲ௣ೌ௣ಳ௣್

 ,  

where ܦ = ஻஻݌஺஺݌ −  ௕ are݌ ஻ and݌ ,௔݌,஺݌ ௔஻ (Falconer and Mackay, 1996), and݌஺௕݌

the allele frequencies ݌஺஺, ݌஻஻ are the homozygous haplotype frequencies and ݌஺௕, 

 .௔஻ are the heterozygous frequencies݌
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Finally, to compare the persistency of LD across populations the Pearson correlation 

was calculated between the values of LD (r) of all markers within each region for 

each pair of populations and for all sizes of windows. 

VarLD (Teo et al., 2009): The LD between all markers of each region was calculated 

as the signed ݎଶ: 

ଶݎ = (௣ಲಳି௣ಲ௣ಳ)మ

௣ಲ௣ೌ௣ಳ௣್
(−1)ூ(௣ಲಳழ௣ಲ௣ಳ) ,  

where ݌)ܫ஺஻ < ஺஻݌ ஻) denotes an indicator function taking a value of one when݌஺݌ <

 ஻, and zero otherwise. Once the correlation matrices between the markers of݌஺݌

each region are calculated, an eigen-decomposition is performed on each LD matrix 

in order to obtain a diagonal matrix with entries comprising of the sorted eigenvalues 

in descending order. The raw VarLD score is the absolute difference between the 

diagonal matrices of the two populations, and the magnitude of this score provides 

a measure for the extent of dissimilarity between the correlation matrices. This 

analysis was performed with the VarLD software (Ong et al., 2010). 

Identification of candidate genes and metabolic pathways 

Once the correlations of CorLD and the raw scores of VarLD were obtained, the 

regions with values of CorLD higher than the top 0.1% and the regions with values 

of VarLD lower than the bottom 0.1% of the empirical distributions were selected for 

each pair of populations separately. Finally, we used the Biomart tool of Ensembl 

(www.ensembl.org; Flicek, 2013) to detect the genes located in the selected regions 

and the Enrichr tool (Chen et al., 2013b) to identify the biological pathways in which 

these genes participate. The most significant pathways were selected under the 

http://www.ensembl.org;
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criteria of the adjusted p-value (< 0.05) as given by the Enrichr tool which uses the 

Benjamini-Hochberg method of correction for multiple hypotheses testing 

(Benjamini and Hochberg, 1995). 

Integration into across-breed genomic evaluation 

The results of the local patterns of linkage disequilibrium were used to define 

alternative models to perform across breed genomic evaluation. The base model 

was the GBLUP model that we consider in the previous chapter: 

௜ݕ = ߤ + ෍ݔ௜௝ ௝ܽ

௡

௝ୀଵ

+ ݁௜ 

where ݕ௜ is the phenotype of the ith individual, µ is the trait mean, n is the number of 

SNPs, ݔ௜௝ is the genotype of the ith individual for the jth marker codified as 0,1 and 2, 

௝ܽ is the substitutions effect for the jth marker and ݁௜ is the residual effect of the ith 

individual. Further, the prior distribution for the marker effects was the following 

multivariate Gaussian distribution: 

,0)ࡺ~ࢇ  (௔ଶߪࡵ

where ߪ௔ଶ is the marker variance whose prior distribution is assumed to be uniform 

within appropriate bounds. 

Later on, we defined alternative models by modifying the prior distribution of marker 

effects with the consideration of the local estimate of the persistency of LD 

disequilibrium between populations from corLD. Thus the identity matrix (I) of the 

prior distributions of markers was replaced by a T matrix. This matrix is diagonal but 
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with values that correspond to the measure of the local persistence of LD. Several 

alternatives of prior distribution were proposed: 

1. The local estimate of corLD that ranges between -1 and 1.  

2. The square of corLD. 

3. The cube of corLD. 

The aim of these alternative prior distributions was to assign a different intensity of 

regularization depending on the persistency of LD between a specific pair of 

populations. The procedure was tested in one of the scenarios of simulation 

described in the previous chapter (PG) and considering only two chromosomes and 

in one pair of populations (Avileña Negra-Ibérica –AV- and Asturiana de los Valles 

–ANI-), that included 71,329 SNP markers and 2,205 QTLs that describe two traits 

with heritabilities 0.4 and 0.1.   

Results and Discussion 

Architecture of Linkage Disequilibrium  

The analysis of the similarity of the LD patterns between populations was performed 

for sliding windows of 50, 100 and 200 SNP markers for both methods (CorLD and 

VarLD). After a visual inspection (see ANNEXE 2 for one example between ANI and 

AV), we decide to focus our study in the case of sliding windows of 100 SNPs, 

because the results from 50 SNPs were extremely noisy, whereas the results from 

windows of 200 SNPs were less variable as they include huge genomic regions of 

around 1 Mb.  
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In first place, we compared the results from both procedures (VarLD and CorLD) 

along every pair of populations and locations in the genome and we found that the 

raw correlation between them was positive, although very low (0.146 ± 0.050). Note 

that a positive correlation indicates that the signals of both methods tend to be in 

different sense. Thus, they indicate that the signals of persistency of phase were 

different. In fact, VarLD was designed (Teo et al., 2009) for detecting differences 

and it is more sensible to a strong divergence between r2 in a single, or few, pair of 

markers within a genomic region. Whereas, CorLD is more robust to few outlier 

correlations as it is calculated as a correlation of correlation estimates, that is less 

dependent on single estimates of LD. Thus, VarLD is probably more capable to 

detect genomic regions that diverge between populations, whereas CorLD is able 

to identify the ones where the persistency of the LD phase is maintained on average. 

However, if we analyse the average results of CorLD and VarLD for each pair of 

populations, which are presented in Figures 18 and 19 (respectively), it can be 

observed that the average pattern of divergence is similar for both procedures. 
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Figure 18. Heatmap the average CorLD signals between pairs of populations along 
the genome. 
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Figure 19. . Heatmap the average VarLD signals between pairs of populations along 
the genome. 

 

Note that in the case of CorLD, the greater the value between two populations, the 

more similar patterns they have. On the contrary, for the VarLD analysis, the higher 

values indicate greater dissimilarity between the populations. Both methods showed 

different pairs of populations for the highest and lowest similarity. For CorLD the 

most similar were AV and BP (0.797) while for VarLD they were ANI and Mo 

(13.751). Likewise, for the most distant populations the results were Pi and Re 
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(0.631), and AV and Pi (20.085), respectively. However, if we look the dendrograms 

calculated using a neighbour-joining algorithm (Saitou and Nei, 1987), the pattern 

of classification between populations was similar. Both methods clustered the 

populations in two groups: ANI, Mo and Re on one hand and RG, AV and BP on the 

other. The only difference is the location of the Pi population, though it is consistently 

the most separated population. These results are in strong agreement with the 

results of divergence between these populations calculated using principal 

components (Cañas-Álvarez et al., 2015) or phase persistency (Cañas-Álvarez et 

al., 2016). Moreover, the results are also in agreement with the traditional 

classification of the Spanish cattle populations (Sanchez-Belda, 1984) and with their 

geographical localization (Re, Mo and ANI are located in central and south of Spain 

while AV, RG and BP in the north). The divergence of Pi could be attributed to some 

degree of mixture with French populations given its localization close to the border 

between Spain and France. 

The detailed plots of VarLD and CorLD for each pair of populations are presented 

in the ANNEXE 3 and here, as an example, we present exclusively the results 

(Figures 20 and 21) for all genomic regions along the autosomal chromosomes for 

one pair of populations (AV and BP). 
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Figure 20. Manhattan plot of the CorLD estimates along the genome for the AV-BP 
comparison for regions of 100 SNPs. 

  

Figure 21. Manhattan plot of the VarLD estimates along the genome for the AV-BP 
comparison for regions of 100 SNPs. 

 

As it can be observed, with the VarLD method is easier to distinguish genomic 

regions with more divergence, whereas with the CorLD method it is possible to 

detect both similitude and divergence between the genomic regions. Moreover, it 
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can also be observed that the concordance between both methods is very low, as 

pointed out by the correlation between them. 

Identification of candidate genes and metabolic pathways 

Once the correlations of CorLD and the raw scores of VarLD were obtained, the 

regions with values of CorLD higher than the top 0.1% and the regions with values 

of VarLD lower than the bottom 0.1% were selected for each pair of populations 

separately. Finally, we used the Biomart tool of Ensembl (www.ensembl.org; Flicek, 

2013) to identify the genes located in the selected regions and the Enrichr tool (Chen 

et al., 2013) to identify the biological pathways in which these genes participate.  

The number of regions identified for each method differed significantly, with 120 

regions for CorLD and 1,323 regions for VarLD. Later on, the regions that appeared 

in at least 10 pairs of populations were selected for further analysis, resulting in 14 

regions for CorLD and just 6 for VarLD that are presented in Tables 8 and 9, 

respectively. As it can be seen, both methods revealed regions on different 

chromosomes, and without any region in common. Moreover, the size of the regions 

resulted significantly larger for VarLD than for CorLD.  

  

http://www.ensembl.org;
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Table 8. Genomic regions with values of CorLD higher than the 0.1% of the 
empirical distribution in at least 10 population pairs and the genes located there. 
Chromosome Start 

position 
(pb) 

End 
position 

(pb) 

Distance 
(pb) 

Nº of 
population 

pairs 

Genes 

1 66357406 66814280 456,874 21 STXBP5L, POLQ, 
ARGFX, FBXO40, 
HCLS1, GOLGB1 

1 103439187 104057596 618,409 12 -  
1 131212540 131860599 648,059 15 FOXL2, PIK3CB, FAIM, 

CEP70, ESYT3, MRAS, 
NME9 

1 139666464 140197279 530,815 10 CPNE4, MRPL3, 
NUDT16, NEK11, U6 

2 65221817 66070654 848,837 16 LYPD1, GPR39, 
SLC35F5, ACTR3 

6 81225864 81933084 707,220 14 5S_rRNA, TECRL 
7 53081367 54296580 1,215,213 17 CYSTM1, PFDN1, 

HBEGF, SLC4A9, U6, 
SRA1, APBB3, 

SLC35A4, CD14, 
TMCO6, IK, WDR55, 

DND1, HARS, HARS2, 
ZMAT, Vault, PCDHA3, 
PCDHA5, PCDHA11, 
PCDHA13, PCDHB1, 
PCDHB4, PCDHB6, 
PCDHB5, PCDHB7, 
PCDHB16, PCDHB9, 

PCDHB14, PCDHB15, 
TAF7, PCDHGA2, 

PCDHGB1, PCDHGB2, 
PCDHGA5, PCDHGA7, 

DIAPH1 
8 45936344 46523114 586,770 12 APBA1, PTAR1, 

C9orf135 
9 43672327 44358409 686,082 16 QRSL1, RTN4IP1, 

AIM1, ATG5, PRDM1 
9 94763755 95310973 547,218 11 ARID1B, 5S_rRNA, bta-

mir-2481 
11 60241338 60772988 531,650 14 FAM161A, CCT4, 

COMMD1 
12 41082553 42420488 1,337,935 21 -  
15 43737 1399526 1,355,789 12 OR9G1, Olfactory 

receptors (x10) 
21 28955131 29776774 821,643 11 TJP1, U4, TARSL2, 

TM2D3, PCSK6, 
SNRPA1 
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Table 9. Genomic regions with values of VarLD lower than the 0.1% of the empirical 
distribution in at least 10 population pairs and the genes located there. 

Chromosome Start 
position 

(pb) 

End 
position 

(pb) 

Distance 
(pb) 

Nº of 
population 

pairs 

Genes 

7 106727846 108064926 1,337,080 13 -  
13 80211353 83560269 3,348,916 14 ATP9A, SALL4, ZFP64, TSHZ2, 

snoU2_19, snoU2-30, ZNF217, 
BCAS1, CYP24A1, PFDN4, 

DOK5 
28 9764836 13048195 3,283,359 11 RYR2, SNORA25, ZP4, 

5S_rRNA, U6atac, U6, CHRM3, 
ZNF33B 

28 15127565 17033972 1,906,407 10 FAM13C, SLC16A9, bta-mir-
2403, CCDC6, ANK3, U6, 

CDK1, RHOBTB1 
29 44972462 46682401 1,709,939 10 RAB1B, YIF1A, TMEM151A, 

CD248, RIN1, BRMS1, B4GAT1, 
U6, SLC29A2, NPAS4, 
MRPL11, PELI3, DPP3, 

ZDHHC24, ACTN3, CTSF, 
CCDC87, CCS, RBM14, RBM4, 

RBM4B, SPTBN2, C11orf80, 
RCE1, PC, LRFN4, bta-mir-

2408, C11orf86, SYT12, RHOD, 
KDM2A, ADRBK1, ANKRD13D, 

SSH3, 
CLCF1, RAD9A, TBC1D10C, 

CARNS1, RPS6KB2, 
PTPRCAP, CORO1B, GPR152, 

CABP4, TMEM134, AIP, 
PITPNM1, CDK2AP2, CABP2, 

GSTP1, NDUFV1, DOC2G, 
NUDT8, TBX10, ALDH3B2, 

UNC93B1, ALDH3B1, NDUFS8, 
TCIRG1, CHKA, KMT5B, 

C11orf24, LRP5, 5S_rRNA, 
PPP6R3 

29 46862596 50768717 3,906,121 14 MRPL21, IGHMBP2, MRGPRF, 
TPCN2, SNORD14, CCND1, 

ORAOV1, FGF19, FGF4, FGF3, 
5S_rRNA, ANO1, FADD, CTTN, 
SHANK2, DHCR7, NADSYN1, 

MRGPRG, OSBPL5, U6, CARS, 
NAP1L4, PHLDA2, SLC22A18, 

CDKN1C, KCNQ1, TRPM5, 
TSSC4, CD81, TSPAN32, 

ASCL2, TH, INS 
IGF2, bta-mir-483, TNNT3, 

LSP1, TNNI2, SYT8, CRLF2, 
AP2A2, bta-mir-2409, IFITM10, 

7SK, CHID1, TSPAN4, POLR2L, 
CD151, CRACR2B, PNPLA2 
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The number of genes harboured in these regions resulted in 92 for CorLD and 147 

for VarLD. These gene sets were used for the enrichment analysis in order to reveal 

the most relevant biological pathways involved. The most significant pathways for 

the results obtained from CorLD are presented in Table 10. A total of 8 relevant 

pathways were revealed, that include processes of cell adhesion, synapse assembly 

and organization and nervous system development. The genes that participate in 

each of these pathways belong mainly to the Protocadherin gene family which are 

located on chromosome 7. This result is coincident with Su et al. (2014) that found 

that the haplotype diversity of this genomic region is reduced, and, as a 

consequence, the LD is increased consistently in all populations. On the other hand, 

the results obtained from VarLD yielded no significant pathways confirming that the 

procedure is more able to detect differences between populations than persistency 

of LD. 

Table 10. Main biological pathways that the genes found in the CorLD regions 
participate. 

Biological pathway Genes 
Homophilic cell adhesion via plasma 
membrane adhesion molecules 
(GO:0007156) 

PCDHGA7; PCDHGA5; PCDHGA2; PCDHGB2; PCDHB15; 
PCDHB14; PIK3CB; PCDHA13; PCDHA11; PCDHB1; PCDHB16; 
PCDHGB1; PCDHB6; PCDHA5; PCDHB5; PCDHB4; PCDHA3; 
PCDHB9; PCDHB7 

Cell-cell adhesion (GO:0098609) PCDHGA7; PCDHGA5; PCDHGA2; PCDHGB2; PCDHB15; 
PCDHB14; PIK3CB; PCDHA13; PCDHA11; PCDHB1; PCDHB16; 
PCDHGB1; PCDHB6; PCDHA5; PCDHB5; PCDHB4; PCDHA3; 
PCDHB9; PCDHB7 

Cell-cell adhesion via plasma-
membrane adhesion molecules 
(GO:0098742) 

PCDHGA7; PCDHGA5; PCDHGA2; PCDHGB2; PCDHB15; 
PCDHB14; PIK3CB; PCDHA13; PCDHA11; PCDHB1; PCDHB16; 
PCDHGB1; PCDHB6; PCDHA5; PCDHB5; PCDHB4; PCDHA3; 
PCDHB9; PCDHB7 

Calcium-dependent cell-cell adhesion 
via plasma membrane cell adhesion 
molecules (GO:0016339) 

PCDHB16; PCDHB6; PCDHB5; PCDHB14; PCDHB4; PCDHB9 

Synapse assembly (GO:0007416) PCDHB16; PCDHB6; PCDHB5; PCDHB14; PCDHB4; PCDHB9 
Synapse organization (GO:0050808) PCDHB16; PCDHB6; PCDHB5; PCDHB14; PCDHB4; PCDHB9 
Nervous system development 
(GO:0007399) 

PCDHB6; PCDHB15; PCDHA5; PCDHB4; APBA1; PCDHA3; 
PCDHA11; ARID1B 

Amino acid activation (GO:0043038) TARSL2; HARS; QRSL1; HARS2 
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Integration into across-breed genomic evaluation 

The results of the local patterns of linkage disequilibrium were used to define 

alternative models to perform across breed genomic evaluation by modifying the 

prior distribution of the marker effects with the consideration of the local estimate of 

the persistency of LD disequilibrium between populations from the results of CorLD. 

A reduced version of the base scenario (PG) from Chapter 2 was used considering 

two populations (AV and ANI) and just the two first chromosomes. The CorLD 

estimates were calculated for regions of 100 SNP markers and, as before, the 

results were averaged over 5 replicates of the analysis.  

The average correlation among the genomic regions along the two chromosomes 

ranged between 0.041 (±0.023) and 0.819 (±0.011). The T matrix was constructed 

by replacing the diagonal of the identity matrix with the estimates of CorLD (Cor) for 

each marker adding a constant of 0.1 in order to avoid convergence problems. 

Moreover the square (Cor2) and the cube (Cor3) of these estimates were tested with 

the goal of maximizing the difference between the most similar and most dissimilar 

regions.  

The results from both populations and for both traits (trait A with h2=0.4 and trait B 

with h2=0.1) are presented in Figure 22. As it can be noted, the model using the 

identity matrix performed slightly better than the Cor model, for both within and 

across breed predictions. Additionally, the Cor2 and the Cor3 models showed a 

further reduction of the accuracy compared to the previous model indicating that the 

parameterization of the prior distribution is not adequate. In fact, these results are 

in accordance with the results of Zhou et al. (2014) where they constructed a 
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weighted G matrix using the local persistency of LD across populations, calculated 

in the same way as CorLD but for genomic regions of just 5, 10 and 15 SNP markers. 

Figure 22. Accuracy of prediction within and between populations under genomic 
prediction models that use of local phase persistency.  

I matrix = Identity matrix, Cor, Cor2 and Cor3 matrix = diagonal matrices containing the CorLD 
estimates, the square and the cube of those estimates, respectively, gen 0, 1, 2 and 3 = distance of 
the validation set from the training set in generations. AV= Asturiana de los Valles, ANI= Avileña-
Negra Iberica. 
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Conclusions 

From this study it is clear that the two procedures of estimating the local persistency 

of LD between populations (CorLD and VarLD) yielded dissimilar results. That is 

because these methods are designed for different purposes. On one hand, the 

VarLD method is more efficient in detecting the differences between LD persistency 

and it is more sensible to a strong divergence between r2 in a single, or few, pairs 

of markers within a genomic region, whereas, the CorLD method is less dependent 

on single estimates of LD and thus it is able to identify the ones where the 

persistency of the LD phase is maintained on average. Some genomic regions 

detected by the CorLD methodology were coincident between populations. The 

metabolic pathways identified for these regions were associated with the 

Protocadherin gene family on chromosome 7. The integration of the estimates of 

local LD persistency into the across-breed genomic evaluation showed no 

improvement in the accuracies indicating that the use of this information is not as 

straightforward.  
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Introduction 

The advent of massive genotyping technology has allowed the use of genomic 

information for genome-wide association studies –GWAS- (Bush and Moore, 2011) 

and genomic prediction of breeding values denoted as Genomic Selection –GS- 

(Meuwissen et al., 2001). Both procedures make use of the linkage disequilibrium 

(LD) between causative mutations and neutral SNP markers. However, there is 

plentiful evidence that the structure of linkage disequilibrium is not homogeneous 

along the genome (Ardlie et al., 2002; Mckay et al., 2007). In fact, the genome can 

be parsed into haplotype blocks of variable length, as described in human (Daly et 

al., 2001, Gabriel et al., 2002) and cattle (Mokry et al., 2014), caused by the 

presence of variability in the recombination rate across the genome (Myers et al., 

2005). 

In general, the recombination rate is higher in the telomere regions of the 

chromosomes and lower near the centromere (Coop and Przeworski, 2007), but 

there is strong evidence of the presence of well-defined regions with a higher rate 

of recombination, denoted as recombination hotspots (Paigen and Petkov, 2010), 

that are regulated by molecular mechanisms like the protein coded by the PR 

domain-containing 9 (PRDM9) gene (Baudat et al., 2010). The analysis of the 

haplotype diversity is a classical measure of genetic diversity that is reduced in 

genomic regions that harbor genes under selection (Garud et al., 2015).  

The objective of this study in to analyze the haplotype diversity along the genome 

of the Spanish Autochthonous beef cattle populations using the BovineHD Beadchip 

with the aim of identifying genome regions with higher haplotype diversity. 
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Material 

The data used in this study comprised of the BovineHD Beadchip genotypes of the 

342 founder individuals of the triplets described in the MATERIAL section (Asturiana 

de los Valles – AV-, N=50, Avileña - Negra Ibérica – ANI-, N=48, Bruna dels Pirineus 

– BP-, N=50, Morucha –Mo-, N=50, Pirenaica –Pi-, N=48, Retinta – Re-, N=48 and 

Rubia Gallega –RG, N=48). 

Methods 

The haplotypes of the parental chromosomes were established using two alternative 

software: BEAGLE (Browning and Browning, 2009) using the “TRIO” option, and 

SHAPEIT v2 (Delaneau et al., 2013). Once the paternal and maternal haplotypes 

were defined for each genomic region, we calculated the number of haplotypes as 

the number of distinct haplotypes for a region, after phase reconstruction, defined 

by a given number of SNP or a map distance. In fact, the number of haplotypes was 

calculated for genomic regions defined by the number of SNPs (25, 50, 100 and 

250) or by the genomic distance in kb (100, 250, 500 and 1,000). 

Results and Discussion 

The concordance between phases generated by BEAGLE and SHAPE-IT programs 

was very high (over 99.9% for all populations and chromosomes). Thus, we decided 

to present the analysis using exclusively the results provided by BEAGLE. This 

strong coincidence between software outputs confirms the robustness of haplotype 

phase reconstruction for trio families (Marchini et al., 2006). 
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The results of the haplotype diversity along the genome for a meta-population 

composed by the seven Autochthonous beef cattle populations are presented in 

Figures 23 and 24 for regions of constant size (Figure 23) and fixed number of SNPs 

(Figure 24).  

Figure 23 Haplotype diversity along genomic regions of constant size for the meta-
population of the seven autochthonous beef cattle populations. 
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Figure 24. Haplotype diversity along genomic regions of constant number of SNPs 
for the meta-population of the seven autochthonous beef cattle populations. 
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As it can be observed, the results were similar. However, when the size (100 kb or 

250 kb) or the number of SNPs (25 or 50 SNPs) were smaller, the results do not 

allow to identify clearly the variability in the number of haplotypes. On the other 

hand, the results from the analysis of wider genomic regions (1 Mb or 250 SNPs) 

provide a higher number of haplotypes with averages of 398.84 and 316.15 and 

standard deviations of 63.32 and 58.79, respectively. In fact, we think that 

intermediate windows (500 kb or 100 SNPs) provided a clearer picture of haplotype 

diversity, because the analysis of wider genomic regions can blur local signals. Both 

strategies have been used in the literature, although reconstruction of haplotypes 

using a constant number of SNPs is more frequent in simulation studies (Calus et 

al., 2008). In fact, the results of both procedures were quite similar, with a correlation 

of 0.65 between the estimates of the number of haplotypes centered at each SNP 

marker. However, as the aim of this study is to analyze the haplotype diversity along 

the genome, we think that the use of a constant size of genome would provide a 

more accurate picture of haplotype diversity, caused by both modifications of 

mutation or recombination rate, and by the presence of selection processes. Thus, 

since now we will refer exclusively to the results generated by the analysis of a 

constant map segment (500 kb).  

 In first place, we analyzed the distribution of the number of SNPs present within 

these genomic regions of 500 kb (Figure 25, upper graph). We found that they follow 

an almost perfect Gaussian distribution with an average of 149.21 and standard 

deviation of 33.22, confirming the appropriateness of the SNP selection when the 

BovinedHD Beadchip was constructed. 
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Figure 25. Distribution of the number of SNPs and Haplotypes and the relationship 
between them. 

 

 

On the contrary, the distribution of the number of haplotypes within those genomic 

regions presents a clear asymmetry, as it has a long positive tail (Figure 25, middle 

graph). This fact indicates that the haplotype diversity is substantially higher in some 

regions of the genome. As expected, we found a positive relationship between the 

number of haplotypes and SNPs present in each specific region of the genome. 
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However, as it can be observed in Figure 25 (bottom graph), the genomic regions 

associated with a higher degree of haplotype diversity are not those with a higher 

number of SNPs, indicating that the presence of a large number of haplotypes is not 

a consequence of the overrepresentation of SNP markers.  

Further, we analyzed the distribution of the haplotype diversity across the relative 

position within a chromosome (Figure 26, upper graph). As it can be observed, the 

results were as expected, and the haplotype diversity was higher in the genomic 

regions closer to the telomeres and lower in the central part of the chromosomes. 

The shape of the figure is almost equivalent to the one presented by Ma et al. (2015) 

for the male recombination rate. However, these authors found a decline of the 

female recombination rate at the distal part of the chromosomes.   
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Figure 26. Haplotype diversity across the relative physical position within a 
chromosome 

 

Further, the results of the haplotype diversity within genomic regions of 500 kb for 

each of the seven analyzed population are presented in Figure 27, and the regions 

with a haplotype diversity within the top 1% are represented in Figure 28 and in 

Table 4.1 of ANNEXE 4. 
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Figure 27. Haplotype diversity along the autosomal genome of seven Spanish 
autochthonous beef cattle populations for regions of 500 kb. 
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Figure 28. Genomic regions identified with a number of haplotypes over an 
empirical top 1% for each of the populations. 
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The location of these highly diverse regions is most frequent close to the telomeres, 

but some regions within the central part of the chromosomes can be also observed, 

such as in BTA1, BTA9, BTA11 and BTA29. As it can be observed, genomic regions 

with higher haplotype diversity are highly conserved across populations suggesting 

that the reason for that haplotype diversity is mainly structural, and probably 

associated with the recombination or mutation rate, because the higher the 

recombination or the mutation rate, the higher haplotype diversity is expected.  As 

an example of this haplotype diversity, the specific haplotype configuration within a 

genomic region of the chromosome 3 is presented in Figure 29. 

Figure 29. Haplotype configuration of the 342 analysed phases in the genomic 
region of the chromosome 3 (119233792-119700584). 

 

Another probe of the concordance between populations can be observed in Figure 

30, where the correlation between the number of haplotypes identified at each 

population is presented. These correlations ranged between 0.66 and 0.77. 
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However, the correlations are slightly higher between Re, Mo and AVI, that were 

previously identified as more genetically related by Cañas-Álvarez et al. (2015). 

Figure 30. Correlations between the number of haplotypes in the seven analyzed 
populations. 

 

 

The haplotype diversity is strongly related with the LD, and the results here 

presented confirm a strong heterogeneity of haplotype diversity along the genome. 

The applications that most frequently use genomic information, like GWAS (Bush 

and Moore, 2011) or GS (Meuwissen et al., 2001), are based on the presence of 

linkage disequilibrium between SNP markers and QTLs. The aim of the procedures 

is to identify genomic regions associated with the variability of traits or to predict the 

breeding value of candidates of selection, respectively. However, the genomic 

regions with higher haplotype diversity are associated with a lower LD and thus, 



 Chapter 4 

115 
 

genes of interest potentially located in those regions could be blurred by the 

standard procedures. Further research must be done to modify current procedures 

of GWAS or GS to incorporate the structural information of the haplotype diversity 

in each specific region of the genome.  

Conclusions 

The results of this study confirm that the haplotype diversity is strongly variable 

along the cattle genome. Further, the comparison of the haplotype diversity among 

the seven analyzed populations suggest that the causes of this variability are mainly 

structural and probably associated with a higher recombination or mutation rate. The 

consequences of this variability in the application of genomic analysis, like genome-

wide association studies or genomic selection should be studied in further research. 
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Genomic Selection has been a great success for the dairy cattle industry (Hayes et 

al., 2009) and its application in other species, like pigs (Brune, 2011; Forni et al., 

2011; Ostersen et al., 2011), has been gradually growing during the last decade. 

However, its introduction in the beef cattle industry is not as straightforward as 

previously thought. Several factors exist that impede the uptake of this methodology 

by the breeders. Firstly, numerous breeds and crossbreds exist, each with limited 

census and with their own breed-specific attributes. Secondly, the restricted use of 

artificial insemination in these populations has as a result the poor connectedness 

among populations across countries, which, in turn, impedes the establishment of 

international collaborations. Thirdly, phenotyping strategies and sire recording tend 

to be poorer than those of dairy cattle, especially for commercial populations, and 

where multi-sire mating is practiced. And finally, the low-margin business model of 

the beef cattle industry gives little motivation for investment leading that way to poor 

adoption and low gains. In turn, this fact impedes the growth of the reference 

population necessary to improve the accuracy of the predictions and, thereinafter, 

to advance gain in beef (Berry et al., 2016).  

The autochthonous Spanish beef cattle populations have a limited census, and their 

effective sizes range between 50 and 60 (Cañas-Álvarez et al., 2016). However, 

these populations play a crucial role in the maintenance of the economic activity of 

the rural population and, generally, provide high quality products of protected 

geographical indication or designation of origin. Nowadays, their breeding programs 

(Serradilla, 2008) are based on BLUP genetic evaluations of direct and maternal 

effects for growth traits and morphology, and, only in some cases, they also include 

carcass, meat quality or reproductive traits. Finally, the use of molecular information 
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is restricted to major genes, like MTSN in Asturiana de los Valles or for paternity 

checks. Thus, the main objective of this study was to investigate the potential 

application of Genomic Selection in these populations under both single and multiple 

population approaches. 

In the first chapter we investigated the efficiency of the application of GS in two 

Autochthonous Spanish beef cattle populations (Pirenaica -Pi- and Rubia Gallega -

RG-), as representatives of alternative genealogical structures, due to the wider 

implantation of artificial insemination in RG. The method of choice was the single-

step approach (Aguilar et al., 2010), because it’s plausible that only a small 

percentage of the population could be genotyped in a short or medium range of 

time. Other kind of procedures, such as Bayes Cπ (Habier et al., 2011), Bayesian 

Lasso (De los Campos et al., 2009) and non-parametric procedures (González-

Recio et al., 2014) require the establishment of a huge reference population that 

cannot be achieved by the local populations due to both limited census and 

economical limitations. 

 The first result of this study probes the appropriateness of the implementation of 

GS in the Spanish autochthonous populations, although the genotyping efforts that 

can be achieved by the breeders associations are intermediate or low. This is a very 

important advantage of the single-step approach as it combines genomic and 

pedigree based relationships into the same relationship matrix (Legarra et al., 2009; 

Aguilar et al., 2010), with respect to the two-step approach of genomic selection 

(Meuwissen et al., 2001) that requires a minimum number of genotyped and 

phenotyped individuals to compete with the pedigree-based approaches.  
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Secondly, and with respect to the genotyping strategies, the accuracy improved with 

the number of individuals with genotypes introduced into the genomic evaluation, 

but the gains were worthy only in the case where the candidates to selection were 

genotyped. This fact implies that genotyping must be implemented routinely for the 

new candidates to selection, and that a single genotyping effort but not continuous 

in subsequent years cannot provide barely any increase in the accuracy of future 

individuals. 

Moreover, although the most informative individuals (with lower PEV) provided 

better accuracies, the results showed that suboptimal genotyping strategies, due to 

limitations of the availability of biological samples or older individuals, are robust 

enough to achieve similar gains. Some of the Spanish local beef cattle populations 

(Asturiana de los Valles, Avileña Negra-Ibérica and Retinta) have been making a 

systematic collection of biological samples, while for other populations, the 

availability of biological samples of historical individuals is sparse and only restricted 

to sires used in AI. The main consequence of this result is that even when samples 

from older individuals are not available, substantial benefits from GS can be 

achieved similarly. 

However, and although the genealogical information and the structure of phenotype 

information is considered in the simulation, the results of this study are constricted 

to the parameters of the simulation. It is not possible to consider in a simulation 

study all the possible variations or effects that may affect the output. Nevertheless, 

in order, to provide a broader view to the results of the study, a sensitivity analysis 

was performed. This analysis included the effects of the marker density, the effective 

size of the historical population and the mutation rate. As expected, the accuracy 
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increased with the marker density but reached a plateau around 50,000 SNPs 

confirming the postulates of Cañas-Álvarez et al., (2016) that suggest that the 

Spanish autochthonous beef cattle populations need at least 38,000 segregating 

SNP markers. Thus, the potential increase that can be obtained from higher 

densities can be considered negligible as suggested also by Solberg et al., (2008), 

even for unrelated individuals (Meuwissen, 2009).  

The effective population size also showed to have an effect on the gains of accuracy 

as predicted by Solberg et al. (2008). The Ne of the Spanish autochthonous 

populations has been estimated around 50-60 (Cañas-Álvarez et al., 2016). 

Therefore, and since our base scenario assumed a Ne of 100, the results obtained 

can be considered as a conservative estimate of the potential increase of accuracy. 

Likewise the mutation rate assumed in this study was extremely higher than 

estimations in the literature (Kumar and Subramanian, 2001; Hodgkinson and Eyre-

Walker, 2011), which also leads to conservative estimates of gains.  

Finally, it is important to mention that the efficiency of GS is higher in RG than in Pi, 

because of the genealogical structure that is provided by the broader implantation 

of AI in the RG breed. Consequently, a parallel increase of the rate of AI with the 

genotyping efforts will lead to a greater success of GS in populations with a low 

percentage of AI. Hence, in our view, the implementation of GS in the Spanish 

Autochthonous populations can be achieved by genotyping the candidates to 

selection of each generation and building gradually a reference population which 

will eventually include the most informative individuals. Finally, 50,000 SNP markers 

are sufficient to achieve high accuracies but the expansion of the application of AI 

is essential in order to maximize the gains.  
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The second study of this thesis intended to investigate the potential application of 

GS under a multi-breed model. The local Spanish beef cattle populations do not 

have the ability to construct a genotyped reference population similar to those 

obtained in international dairy or beef cattle populations and some authors (de Roos 

et al., 2009) have proposed to pool animals from different populations in order to 

increase the size of that reference population and therefore improve the accuracy 

of the predictions. The cases of simulation studied here included single breed and 

multi breed genomic evaluations under several scenarios of alternative genetic 

architectures of the traits. The within breed predictions obtained from single breed 

evaluations resulted in the highest accuracies which are in concordance with the 

results of other studies (Saatchi et al., 2011; Van Eenennaam et al., 2014), The 

across breed predictions, though, resulted very low confirming the postulate of 

Harris et al. (2008) indicating that training in one population and validating in another 

is not effective. However, it is remarkable that all the average estimates are positive 

and the results are coherent with the studies of persistence of LD phase by Cañas-

Alvarez et al. (2016) in the same populations. The accuracy dropped in the 

subsequent generations up to 40% (generation 3) for the within breed predictions 

as expected confirming the relevance of the relationship between the testing and 

training populations on the accuracy of GS (Clark et al., 2012).  

Moreover, the results obtained from the admixed reference populations yielded 

accuracies lower than those from single breed evaluation when the size of the 

training sets was equal (0.639 - 0-680 for the admixed x2 sets and 0.436 – 0.503 

for the admixed x7 set). Note that the results from the admixed x7 training set in 

generation 0 were even lower than those that can be obtained using simple 
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individual selection (0.632 for h2=0.4 and 0.316 for h2=0.1), confirming that genomic 

selection requires a large reference population to be effective (Daetwyler et al., 

2008). Nonetheless, the admixed populations showed a small advantage in their 

predictive ability over the generations when compared to reduced pure-bred training 

sets. The most probable cause of this phenomenon is that as the relatedness 

between the training set and the validation set weakens, the predictions are based 

more on the short range LD between the markers and the genes than on the pure 

genetic relationship between individuals. Thus, the admixed populations perform 

better because of the higher number of data and the fact that mixing data breaks 

down the long distance LD created by relatedness and leaves the effects of the short 

range LD that persists through generations (Falconer and McKay, 1996).  

In addition, when alternative genetic architectures of the traits were tested, the 

scenarios yielded similar results for all training sets with the exception of the case 

of rare variants. The rare variants controlling the trait of interest resulted in slightly 

lower accuracies in all cases and slightly higher loss of accuracy with the number of 

generations. This phenomenon is coherent with the results obtained by Wientjes et 

al. (2015), that indicated that when the QTLs controlling the genetic variability of the 

traits have lower frequencies the ability of prediction of Genomic Selection in lower. 

However, although this situation has been suggested to be the cause of the missing 

heritability (Gibson, 2012), the evidence of the percentage of genetic variation that 

rare variants produce is low and some authors have shown that these rare variants 

explain a small percentage of the missing heritability of complex traits in human 

(Gusev et al., 2014) or cattle (Gonzalez-Recio et al., 2016). 
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Theoretically, the success of the genomic evaluation from multiple populations is 

linked to the persistency of the linkage disequilibrium (LD) between populations in 

such way that the LD between markers and QTLs is maintained. Different 

populations may have different linkage phases for each specific genomic region, 

and therefore, it might be beneficial to include information about the persistency of 

the linkage phase between populations in the model of genomic evaluation. The 

third chapter of this thesis attempted to analyse the genetic architecture of the 

persistency of LD across the seven Spanish beef cattle populations. The two 

methods tested (CorLD and VarLD) yielded dissimilar results with a correlation 

between them of only 0.146 ± 0.050. This low correlation indicates that the signals 

of persistency of phase were clearly different. In fact, VarLD was designed (Teo et 

al., 2009) for detecting differences and it is more sensible to a strong divergence 

between r2 in a single, or few, pair of markers within a genomic region. Whereas, 

CorLD is more robust to few outlier correlations as it is calculated as a correlation 

of correlation estimates, that is less dependent on single estimates of LD. Thus, 

VarLD is probably more capable to detect genomic regions that diverge between 

populations, whereas CorLD is able to identify the ones where the persistency of 

the LD phase is maintained on average. 

However, both procedures classified the populations in a similar way, and in 

agreement with the results of divergence between these populations calculated 

using principal components (Cañas-Álvarez et al., 2015) or phase persistency 

(Cañas-Álvarez et al., 2016). These results are also in concordance with the 

traditional classification of the Spanish cattle populations (Sanchez-Belda, 1984) 
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and with their geographical localization (Re, Mo and ANI in central and south of 

Spain and AV, RG and BP in the north).  

Moreover, the main metabolic pathways associated to the genes located in regions 

with higher persistency for CorLD, included processes of cell adhesion, synapse 

assembly and organization and nervous system development, all associated with 

the Protocadherin gene family, which was also detected previously by Su et al., 

(2014) in a haplotype diversity analysis. On the contrary, no significant pathways 

were found for VarLD, confirming that the procedure is more able to detect 

differences between populations than persistency of LD.  

Finally, the information on the local persistency of LD obtained from CorLD was 

incorporated in the GS model in order to check its effects on the accuracy of the 

across breed predictions. All alternative models tested resulted in slightly lower 

accuracies than those obtained from the model using the identity matrix indicating 

that the parameterization of the prior distribution of the marker effects was not 

adequate. Similar results were obtained by Zhou et al. (2014) after introducing local 

estimates of LD persistency as weights to build an alternative G matrix. These 

results indicate that further research must be done in order to incorporate this kind 

of information in GS models. 

Finally, as a side result, we also performed a haplotype diversity analysis along the 

genome of the Spanish populations. From the results of the study, we observed that 

the haplotype diversity is substantially higher in some regions of the genome and, 

as expected, is higher near the telomeres and lower in the central part of the 

chromosome, as previously reported by Ma et al. (2015) in cattle populations. 

Nevertheless, it is important to mention that the genomic regions with the highest 
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haplotype diversity are greatly conserved across populations. This probably 

suggests that the reason for that haplotype diversity is mainly structural, and 

associated with the recombination or mutation rate. The most used applications of 

genomic information, like GWAS (Bush and Moore, 2011) or GS (Meuwissen et al., 

2001), are based on the presence of linkage disequilibrium between SNP markers 

and QTLs. The aim of the procedures is to identify genomic regions associated with 

the variability of traits or to predict the breeding value of candidates to selection, 

respectively. However, the genomic regions with higher haplotype diversity are 

associated with lower LD and thus, genes of interest potentially located in those 

regions could be blurred under the standard procedures. Further research must be 

done to modify current procedures of GWAS or GS to incorporate structural 

information of the haplotype diversity in each specific region of the genome. 

The main conclusion of this study is that GS is feasible in the Spanish local cattle 

populations. In fact, the application of single step procedures of GS makes its 

implementation beneficial for the accuracy of predictions from the first genotyping 

effort and even when the distribution of genotyped individuals is suboptimal. 

Moreover, the use of information from other populations can also increase the 

accuracy of prediction, especially for the individuals with loose genetic links to the 

phenotyped individuals. These results suggest that this procedure can be more 

beneficial for traits whose recording is made only in research experiments and not 

regularly in the standard development of the breeding programs. Finally, the last two 

studies indicate that there is a lot of additional information about the persistency of 

LD or the haplotype diversity that have the potential of being incorporated into the 

procedures of GS. Nevertheless, their integration in GS methods is not an easy task, 
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as we probed with the straightforward approximation that was tested in this thesis 

and further research is required.  
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1. The implementation of Genomic Selection under the single-step approach 

increases the accuracy of prediction over the standard BLUP even when few 

individuals were genotyped. 

2. The increase of accuracy is worthy only when the candidates to selection are 

genotyped.  

3. The results of accuracy are robust to variations in the genotyping strategy.   

4. The efficiency of Genomic Selection is higher when the implantation of 

artificial insemination is broader. 

5. The use of admixed populations for Genomic Selection provides a small 

advantage over a single population genomic evaluation when predicting 

individuals that are more genetically distant from the training set.  

6. The VarLD method is more efficient in detecting the differences between LD, 

whereas the CorLD detect better the persistency of haplotype phase. 

7. The metabolic pathways identified for genomic regions with high persistency 

were associated with the Protocadherin gene family  

8. Haplotype diversity is strongly variable along the cattle genome, though the 

comparison among the seven analyzed populations suggests that the causes 

of this variability are mainly structural and probably associated with a higher 

recombination or mutation rate.  
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1. La implementación de la Selección Genómica bajo la aproximación “Single-

Step” incrementa la precisión sobre la valoración BLUP incluso cuando se 

genotipa un conjunto pequeño de individuos. 

2. El incremento de precisión es relevante exclusivamente para los candidatos 

a la selección genotipados. 

3. Los resultados de precisión son robustos ante diseños alternativos de 

genotipado. 

4. La eficiencia de la selección genómica es mayor a medida que se incrementa 

la implantación de la inseminación artificial. 

5. La utilización de meta-poblaciones  proporciona una ligera ventaja sobre el 

análisis en población única, que es más evidente cuando a medida que los 

candidatos a la selección están más alejados de los individuos utilizados en 

la valoración genómica. 

6. El procedimiento VarLD es más eficiente para detectar diferencias de 

desequilibrio de ligamiento entre poblaciones, mientras que el método CorLD 

identifica mejor la persistencia de la fase haplotípica. 

7. Las rutas metabólicas asociadas a las regiones genómicas con mayor 

persistencia de la fase haplotípica están asociadas con la familia génica de 

las Protocaderinas. (Protocadherin). 

8. La diversidad haplotípica es muy variable a lo largo del genoma, aunque la 

comparación entre las siete poblaciones analizadas sugieren que las causas 

de esta variabilidad son en mayor medida estructurales, y asociadas 

probablemente a las tasas de mutación y recombinación. 
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ANEXXE 1 

Table 1.1. Accuracies (s.e.) obtained in Pi for traits A (h2=0.4) and B (h2=0.1) 
without 2014 data 

Pi Trait A (h2=0.4) Trait B (h2=0.1) 
 +none +sires 

+dams 
+2014 +sires 

+dams 
+2014 

+none +sires 
+dams 

+2014 +sires 
+dams 
+2014 

TH-
250 

0.555 
(0.011

) 

0.571 
(0.010

) 

0.598 
(0.010

) 

0.619 
(0.009

) 

0.447 
(0.013

) 

0.467 
(0.012

) 

0.488 
(0.011

) 

0.500 
(0.011

) 
TH-
500 

0.555 
(0.011

) 

0.575 
(0.011

) 

0.615 
(0.010

) 

0.632 
(0.009

) 

0.449 
(0.013

) 

0.472 
(0.013

) 

0.503 
(0.011

) 

0.511 
(0.011

) 
TH-
100

0 

0.556 
(0.011

) 

0.581 
(0.011

) 

0.641 
(0.009

) 

0.651 
(0.008

) 

0.451 
(0.013

) 

0.479 
(0.012

) 

0.521 
(0.010

) 

0.526 
(0.010

) 
TH-
200

0 

0.558  
(0.011

) 

0.589 
(0.011

) 

0.673 
(0.009

) 

0.680 
(0.008

) 

0.454  
(0.013

) 

0.484 
(0.013

) 

0.536 
(0.011

) 

0.540 
(0.011

) 
TH-
400

0 

0.563 
(0.011

) 

0.599 
(0.011

) 

0.704 
(0.008

) 

0.709 
(0.007

) 

0.458 
(0.013

) 

0.490 
(0.013

) 

0.554 
(0.010

) 

0.558 
(0.010

) 
 

Table 1.2. Accuracies (s.e.) obtained in RG for traits A (h2=0.4) and B (h2=0.1) 
without 2014 data 

RG Trait A (h2=0.4) Trait B (h2=0.1) 
 +none +sires 

+dams 
+2014 +sires 

+dams 
+2014 

+none +sires 
+dams 

+2014 +sires 
+dams 
+2014 

TH-
250 

0.550 
(0.010

) 

0.578 
(0.009

) 

0.615 
(0.009

) 

0.651 
(0.007

) 

0.480 
(0.012

) 

0.506 
(0.011

) 

0.535 
(0.011

) 

0.552 
(0.010

) 
TH-
500 

0.551 
(0.010

) 

0.583 
(0.009

) 

0.637 
(0.009

) 

0.665 
(0.007

) 

0.482 
(0.012

) 

0.510 
(0.011

) 

0.549 
(0.011

) 

0.562 
(0.010

) 
TH-
100

0 

0.552 
(0.010

) 

0.589 
(0.009

) 

0.661 
(0.007

) 

0.684 
(0.006

) 

0.484 
(0.012

) 

0.514 
(0.011

) 

0.561 
(0.010

) 

0.572 
(0.009

) 
TH-
200

0 

0.555  
(0.010

) 

0.599 
(0.009

) 

0.698 
(0.007

) 

0.713 
(0.006

) 

0.487 
(0.012

) 

0.522 
(0.010

) 

0.583 
(0.009

) 

0.591 
(0.008

) 
TH-
400

0 

0.558 
(0.010

) 

0.608 
(0.008

) 

0.739 
(0.006

) 

0.747 
(0.005

) 

0.490 
(0.012

) 

0.528 
(0.010

) 

0.604 
(0.009

) 

0.609 
(0.008

) 
  



Annexes  

164 

Table 1.3. Accuracies (s.e.) obtained in Pi for traits A (h2=0.4) and B (h2=0.1) with 
2014 data 

Pi Trait A (h2=0.4) Trait B (h2=0.1) 
 +none +sires 

+dams 
+2014 +sires 

+dams 
+2014 

+none +sires 
+dams 

+2014 +sires 
+dams 
+2014 

TH-
250 

0.724 
(0.005

) 

0.728 
(0.005

) 

0.748 
(0.004

) 

0.756 
(0.004

) 

0.515 
(0.011

) 

0.526 
(0.011

) 

0.551 
(0.010

) 

0.526 
(0.011

) 
TH-
500 

0.724 
(0.005

) 

0.730 
(0.005

) 

0.755 
(0.004

) 

0.762 
(0.004

) 

0.516 
(0.011

) 

0.530 
(0.011

) 

0.562 
(0.010

) 

0.568 
(0.010

) 
TH-
100

0 

0.725 
(0.005

) 

0.732 
(0.005

) 

0.765 
(0.004

) 

0.770 
(0.004

) 

0.519 
(0.011

) 

0.535 
(0.011

) 

0.574 
(0.009

) 

0.578 
(0.009

) 
TH-
200

0 

0.727  
(0.005

) 

0.736 
(0.005

) 

0.779 
(0.004

) 

0.781 
(0.004

) 

0.523 
(0.011

) 

0.540 
(0.011

) 

0.587 
(0.009

) 

0.589 
(0.009

) 
TH-
400

0 

0.730 
(0.005

) 

0.740 
(0.005

) 

0.795 
(0.004

) 

0.796 
(0.004

) 

0.529 
(0.011

) 

0.546 
(0.010

) 

0.602 
(0.009

) 

0.603 
(0.009

) 
 

Table 1.4. Accuracies (s.e.) obtained in RG for traits A (h2=0.4) and B (h2=0.1) 
with 2014 data 

RG Trait A (h2=0.4) Trait B (h2=0.1) 
 +none +sires 

+dams 
+2014 +sires 

+dams 
+2014 

+none +sires 
+dams 

+2014 +sires 
+dams 
+2014 

TH-
250 

0.727 
(0.004

) 

0.738 
(0.004

) 

0.782 
(0.003

) 

0.795 
(0.003

) 

0.549 
(0.007

) 

0.568 
(0.007

) 

0.614 
(0.006

) 

0.626 
(0.006

) 
TH-
500 

0.728 
(0.004

) 

0.739 
(0.004

) 

0.789 
(0.003

) 

0.799 
(0.003

) 

0.550 
(0.007

) 

0.570 
(0.007

) 

0.623 
(0.006

) 

0.632 
(0.006

) 
TH-
100

0 

0.728 
(0.004

) 

0.741 
(0.004

) 

0.797 
(0.003

) 

0.805 
(0.003

) 

0.551 
(0.007

) 

0.572 
(0.007

) 

0.631 
(0.006

) 

0.639 
(0.005

) 
TH-
200

0 

0.728 
(0.004

) 

0.744 
(0.004

) 

0.809 
(0.003

) 

0.815 
(0.003

) 

0.553 
(0.007

) 

0.576 
(0.006

) 

0.643 
(0.005

) 

0.649 
(0.005

) 
TH-
400

0 

0.730 
(0.004

) 

0.748 
(0.004

) 

0.826 
(0.002

) 

0.830 
(0.002

) 

0.557 
(0.007

) 

0.582 
(0.006

) 

0.661 
(0.005

) 

0.665 
(0.005

) 
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ANNEXE 2 

Figure 2.1. Manhattan plot of the CorLD estimates along the genome for the AV-
ANI for regions of 50 SNPs.  

 
 

Figure 2.2. Manhattan plot of the VarLD estimates along the genome for the AV-
ANI for regions of 50 SNPs.  
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Figure 2.3. Manhattan plot of the CorLD estimates along the genome for the AV-
ANI for regions of 100 SNPs.  

 
 

Figure 2.4. Manhattan plot of the VarLD estimates along the genome for the AV-
ANI for regions of 100 SNPs.  
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Figure 2.5. Manhattan plot of the CorLD estimates along the genome for the AV-
ANI for regions of 200 SNPs.  

 

 

Figure 2.6. Manhattan plot of the VarLD estimates along the genome for the AV-
ANI for regions of 200 SNPs.  
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Annexe 3 

Figure 3.1. Manhattan plot of the CorLD estimates along the genome for the AV-
ANI for regions of 100 SNPs.  

 
 
Figure 3.2. Manhattan plot of the VarLD estimates along the genome for the AV-
ANI for regions of 100 SNPs.  
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Figure 3.3. Manhattan plot of the CorLD estimates along the genome for the AV-
Mo for regions of 100 SNPs.  

 

 

Figure 3.4. Manhattan plot of the VarLD estimates along the genome for the AV-
Mo for regions of 100 SNPs.  
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Figure 3.5. Manhattan plot of the CorLD estimates along the genome for the AV-
Pi for regions of 100 SNPs.  

 

 

Figure 3.6. Manhattan plot of the VarLD estimates along the genome for the AV-
Pi for regions of 100 SNPs.  
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Figure 3.7. Manhattan plot of the CorLD estimates along the genome for the AV-
Re for regions of 100 SNPs.  

 
 

Figure 3.8. Manhattan plot of the VarLD estimates along the genome for the AV-
Re for regions of 100 SNPs.  
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Figure 3.9. Manhattan plot of the CorLD estimates along the genome for the AV-
RG for regions of 100 SNPs.  

 
 

Figure 3.10. Manhattan plot of the VarLD estimates along the genome for the 
AV-RG for regions of 100 SNPs.  
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Figure 3.11. Manhattan plot of the CorLD estimates along the genome for the 
ANI-BP for regions of 100 SNPs.  

 
 

Figure 3.12. Manhattan plot of the VarLD estimates along the genome for the 
ANI-BP for regions of 100 SNPs.  
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Figure 3.13. Manhattan plot of the CorLD estimates along the genome for the 
ANI-Mo for regions of 100 SNPs.  

 
 

Figure 3.14. Manhattan plot of the VarLD estimates along the genome for the 
ANI-Mo for regions of 100 SNPs.  
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Figure 3.15. Manhattan plot of the CorLD estimates along the genome for the 
ANI-Pi for regions of 100 SNPs.  

 
 

Figure 3.16. Manhattan plot of the VarLD estimates along the genome for the 
ANI-Pi for regions of 100 SNPs.  
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Figure 3.17. Manhattan plot of the CorLD estimates along the genome for the 
ANI-Re for regions of 100 SNPs.  

 
 

Figure 3.18. Manhattan plot of the VarLD estimates along the genome for the 
ANI-Re for regions of 100 SNPs.  
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Figure 3.19. Manhattan plot of the CorLD estimates along the genome for the 
ANI-RG for regions of 100 SNPs.  

 
 

Figure 3.20. Manhattan plot of the VarLD estimates along the genome for the 
ANI-RG for regions of 100 SNPs.  
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Figure 3.21. Manhattan plot of the CorLD estimates along the genome for the 
BP-Mo for regions of 100 SNPs.  

 
 

Figure 3.22. Manhattan plot of the VarLD estimates along the genome for the 
BP-Mo for regions of 100 SNPs.  
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Figure 3.23. Manhattan plot of the CorLD estimates along the genome for the 
BP-Pi for regions of 100 SNPs.  

 
 

Figure 3.24. Manhattan plot of the VarLD estimates along the genome for the 
BP-Pi for regions of 100 SNPs.  
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Figure 3.25. Manhattan plot of the CorLD estimates along the genome for the 
BP-Re for regions of 100 SNPs.  

 
 

Figure 3.26. Manhattan plot of the VarLD estimates along the genome for the 
BP-Re for regions of 100 SNPs.  
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Figure 3.27. Manhattan plot of the CorLD estimates along the genome for the 
BP-RG for regions of 100 SNPs.  

 
 

Figure 3.28. Manhattan plot of the VarLD estimates along the genome for the 
BP-RG for regions of 100 SNPs.  
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Figure 3.29. Manhattan plot of the CorLD estimates along the genome for the 
Mo-Pi for regions of 100 SNPs.  

 
 

Figure 3.30. Manhattan plot of the VarLD estimates along the genome for the 
Mo-Pi for regions of 100 SNPs.  
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Figure 3.31. Manhattan plot of the CorLD estimates along the genome for the 
Mo-Re for regions of 100 SNPs.  

 
 

Figure 3.32. Manhattan plot of the VarLD estimates along the genome for the 
Mo-Re for regions of 100 SNPs.  
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Figure 3.33. Manhattan plot of the CorLD estimates along the genome for the 
Mo-RG for regions of 100 SNPs.  

 
 

Figure 3.34. Manhattan plot of the VarLD estimates along the genome for the 
Mo-RG for regions of 100 SNPs.  
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Figure 3.35. Manhattan plot of the CorLD estimates along the genome for the Pi-
Re for regions of 100 SNPs.  

 
 

Figure 3.36. Manhattan plot of the VarLD estimates along the genome for the Pi-
Re for regions of 100 SNPs.  
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Figure 3.37. Manhattan plot of the CorLD estimates along the genome for the Pi-
RG for regions of 100 SNPs.  

 
 

Figure 3.38. Manhattan plot of the VarLD estimates along the genome for the Pi-
RG for regions of 100 SNPs.  
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Figure 3.39. Manhattan plot of the CorLD estimates along the genome for the 
Re-RG for regions of 100 SNPs.  

 
 

Figure 3.40. Manhattan plot of the VarLD estimates along the genome for the 
Re-RG for regions of 100 SNPs.  
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ANNEXE 4 

Table 4.1. Genomic Regions with higher haplotype diversity. 
BTA Start End Populations Genes 
1 44485300 45386640 BP, Mo, AV, ANI, Pi, RG EFHB, RAB5A, 

PP2D1, KAT2B, 
SGOL1 

1 94927808 95300080 AV, BP, Mo SPATA16, 
GPX5, 
ZSCAN23 

2 104618864 105209704 BP, Pi, Mo, AV, RG, Re TMEM196, 
PECR, XRCC5, 
MARCH4, 
SHOX, 
SMARCAL1, 
RPL37A 

3 119233792 119700584 ANI, Pi, RG, AV, BP, Re, Mo HDAC4, 
CSF2RA 

6 116787544 117371128 BP, Re, AV, ANI, Mo, Pi LDB2 
11 5549297 5882842 RG, Pi, ANI PDCL3 
17 40887700 41123088 Pi, AV, RG FNIP2 
21 59640020 59962772 AV, BP, Mo, RG, ANI, Pi SERPINA4, 

SERPINA5, 
SERPINA11, 
SERPINA12 

29 50132888 50641688 Re, BP, ANI, Mo, AV TNNT3, LSP1, 
TNNI2, SYT8, 
CRLF2, AP2A2, 
IFITM10, 
CHID1, 
TSPAN4 

 


