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It has been shown that the presence of nonminimally coupled scalar fields giving rise to a fifth force can
noticeably alter dynamics on galactic scales. Such a fifth force must be screened in the Solar System but if
unscreened it can have similar observational effects as a component of nonbaryonic matter. We consider this
possibility in the context of the vertical motions of local stars in the Milky Way disk by reframing a
methodology used to measure the local density of dark matter. By attempting to measure the properties of the
symmetron field required to support vertical velocities we can test it as a theory of modified gravity and
understand the behavior of screened scalar fields in galaxies. In particular, this relatively simple setup allows
the symmetron field profile to be solved for model parameters where the equation of motion becomes highly
nonlinear and difficult to solve in other contexts. We update the existing Solar System constraints for this
scenario and find a regionof parameter space not already excluded that can explain theverticalmotionsof local
stars out to heights of 1 kpc. At larger heights the force due to the symmetron field profile exhibits a
characteristic turn over which would allow the model to be distinguished from a dark matter halo.
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I. INTRODUCTION

The era of precision cosmology has confirmed that the
ΛCDM paradigm is in exceptional accordance with obser-
vations from galactic scales up to the Hubble scale.
However, the nature of both of the eponymous components
of this model remains unknown. We do not understand why
the quantum vacuum energy contributes an effective
cosmological constant that is so much larger than the
observed value. The particle nature of cold dark matter has
also eluded all direct and indirect methods of detection. The
masses of proposed dark matter candidates range from
ultralight scalars, m ∼ 10−22 eV [1], to multiple solar mass
black holes m ∼ 1058 GeV [2].
The symmetron model [3,4] (see also earlier work

Refs. [5–10]) is a scalar-tensor theory proposed as a
way of understanding how new light degrees of freedom
could be present on the largest scales in the universe, and
yet remain undetected in laboratory and Solar System tests
of gravity [11]. While the cosmological constant problem
remains unsolved, it is important to understand what new
physics can be present on these scales [12].
The symmetron scalar field is nonminimally coupled so

it can be thought of as mediating a fifth force. To evade
stringent Solar System constraints on such a force the
model has a “screening mechanism” which means it can

give rise to observable deviations from general relativity
(GR) on some scales, while remaining undetectable on
others. This can be achieved through nontrivial self-
interactions that cause the properties of scalar perturbations
(which mediate fifth forces) to depend on the background
field configuration. As the scalar field is sourced by the
local matter density (or equivalently by the local scalar
curvature), screening ensures that the effects of the field
become small in regions of high density, including the local
environment, but can be larger in the cosmological vacuum.
For the symmetron model this occurs by making the
strength of the coupling between the scalar field and matter
dependent on the local matter energy density in such a way
that the theory has spontaneous symmetry breaking
between regions of high and low density.
The effects of the symmetron mechanism on cosmo-

logical scales is the source of much interest presently; see
e.g., Refs. [13–20]. It also was recently realized that, for a
particular choice of the mass of the scalar, the symmetron
fifth force could play a role on subgalactic scales [21]. In
fact, the presence of this force could explain the rotation
curves and stability of disk galaxies without the need for
any dark matter component.1 Additionally the symmetron
force provides a natural explanation of the observed radial

*ciaran.aj.ohare@gmail.com

1Galactic rotation curves were in fact explained in terms of
scalar-tensor theories much earlier in Ref. [6] but in this case with
the Higgs as the scalar.
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acceleration relation [22] and may resolve a tension in the
central velocity dispersions of globular clusters [23]
(although in this latter case a dark matter contribution is
also assumed). The efficacy of screening mechanisms may
also be affected if one permits scalar waves to propagate
through the galaxy by finding solutions beyond the
quasistatic approximation [24,25].
Other attempts have been made to replace cold dark

matter with a modification of gravity, including modified
Newtonian dynamics (MOND) [26,27], and its extension as
a tensor-vector-scalar (TeVeS) theory [28], and generally
covariant modified gravity (MOG) [29,30]. Other scalar
field theories have also been constructed to reproduce
galactic rotation curves [31]. The interest of the symmetron
is that it is a simple, well-defined, relativistic theory and yet
can still reproduce observed galactic dynamics while
functioning as a prototype for more complete descriptions
of similar models such as in Refs. [32,33].
Of course, simply explaining the rotation curves of disk

galaxies is an insufficient case for considering a model an
alternative to the cold dark matter paradigm. Nevertheless
the symmetron remains of interest for two reasons: First,
considering the symmetron as a modification of gravity, it
shows that such modifications can have significant, or even
dominant, effects on galactic scales and yet remain com-
patible with local tests. If such modifications of gravity are
present this would lead to significant corrections to
predictions of the amount of dark matter in our galaxy.
Hence we can gain insight into how these effects manifest
across the available model parameter space by considering
the extreme case where it completely substitutes the role of
dark matter. Second, since in the Einstein frame the
symmetron takes the form of a light-Higgs portal theory
with spontaneous symmetry breaking [33], we are able to
show that the inclusion of nonminimal couplings between a
light scalar and the standard model can give rise to fifth
forces playing a significant role on galactic scales. Light
scalars are currently considered as potential cold dark
matter particles, and yet their nonminimal couplings to
gravity are commonly neglected. Such couplings can be
tuned to be absent at one energy scale, but will be generated
by quantum corrections as the theory is allowed to run [34].
In this work we consider our own galaxy, and whether

the observed dynamics of local stars in the Milky Way
(MW) can be explained by the presence of a fifth force.
This has been attempted previously in the context of
MOND [35,36], but here, as in Ref. [21], we consider
the symmetron model. In this particular scenario rather than
finding a galactic solution in the radial direction we focus
on the vertical direction. Using the kinematics of stars
perpendicular to the plane of the galactic disk (z), one can
attempt to model the shape of the modified gravitational
potential provided by the symmetron field. As this is a
first exploratory analysis we reduce the problem to a
one-dimensional one, with idealized but, importantly,

self-consistent data. We do this because our desire is to
understand in particular the behavior of the symmetron in
the galactic disk and its impact on baryonic matter, while
also exploring the available model parameter space in
detail. As such we require that our methods are highly
efficient and that we are able to isolate the impact of the
symmetron. As well as lending insight into the behavior of
scalar fields on subgalactic scales, this simplification
allows us to find solutions in highly stiff and nonlinear
regimes, and demonstrate whether a follow-up analysis
with, for example, the recent full release of data from
the Gaia survey would be worthwhile. Using a one-
dimensional approximation does unfortunately set certain
limitations on the scales over which one may probe; for
example, one may use only the closest stars (z≲ 1 kpc) so
that the various approximations required are valid, for
ignoring the radial motions of stars and the gradient of the
MW rotation curve.
To begin in Sec. II we introduce the symmetron model

and its screening mechanism and describe existing con-
straints on the model parameters. Then in Sec. III we
describe the vertical motions of local stars and how they can
be used to measure the shape of the gravitational potential
in the disk. We then apply the symmetron model to this
astrophysical setting, and in Sec. IV we describe the
numerical routine used to solve for the symmetron field.
We present our results in Sec. V and summarize in Sec. VI.

II. THE SYMMETRON

Modifications of Einstein’s GR often involve the addi-
tion of a scalar field. Such scalar-tensor theories can be
written in two forms: in the Jordan frame where the scalar
couples nonminimally to gravity, and does not directly
couple to matter fields; and the Einstein frame where the
scalar couples nonminimally to matter and minimally to
gravity. The difference between these two frames is just a
series of field redefinitions so physical observables are
unaffected by the change of frame.
The general Einstein frame action for a conformal scalar-

tensor theory with a scalar field φ, coupled to matter via
some function AðφÞ, is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

PlR
2

−
1

2
∂μφ∂μφ − VðφÞ

�

þ Sm½A2ðφÞgμν;ψm�; ð1Þ

where R is the Ricci scalar, gμν is the Einstein frame metric,
VðφÞ is the potential for the field, and Sm is the action for
matter fields ψm. The equation of motion that follows from
varying this action is

□φ ¼ −
dVðφÞ
dφ

− ρ
dAðφÞ
dφ

; ð2Þ
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where the trace of the energy momentum tensor has been
written in terms of the conserved local density of non-
relativistic matter, ρ. The form of Eq. (2) suggests that we
might define an effective potential for the field as

ṼðφÞ ¼ VðφÞ þ ρAðφÞ: ð3Þ

Scalar-tensor theories of gravity then have an associated
“fifth force” felt by test particles that depends on spatial
gradients in the field2

Fφ ¼ −∇ lnAðφÞ: ð4Þ

The existence of fifth forces is tightly constrained by
tests of GR in the Solar System (see e.g., Ref. [37]). This
means that to function as a viable modification of gravity
they must be somehow screened locally. This screening can
proceed via a mass dependent on the local density such as
in the chameleon mechanism [38,39] or through a modi-
fication to the kinetic term of the scalar field used by the
Vainshtein mechanism [40]. The symmetron mechanism,
however [3,4], restores a spontaneously broken symmetry
in regions of high density in order to screen the fifth force.
To do this, the simplest symmetron model has a quartic
potential,

VðφÞ ¼ −
1

2
μ2φ2 þ 1

4
λφ4; ð5Þ

with quadratic coupling function,

AðφÞ ¼ 1þ φ2

2M2
; ð6Þ

such that the effective potential is

ṼðφÞ ¼ 1

2

�
ρ

M2
− μ2

�
φ2 þ 1

4
λφ4: ð7Þ

The dependence of the effective mass term on ρðxÞ means
that the theory can undergo spontaneous symmetry break-
ing between regions of high and low density. At high
densities when the mass term is positive, the potential has
one minimum at φ ¼ 0 and Z2 symmetry. In low enough
densities the sign of the mass term flips, and the symmetry
is broken around the new minima at φ ¼ �v where we
define v ¼ μ=

ffiffiffi
λ

p
as the field vacuum expectation value

(VEV) in the symmetry broken regime.
Using Eq. (4) the fifth force due to the symmetron felt by

a small test mass depends on the field profile as

Fφ ≈ −
φ

M
∇ φ

M
: ð8Þ

Since themodel has a nonzeroVEVin regions of lowdensity,
any spatial variation in the field due to the presence of matter
will induce a fifth force. In regions of high enough density,
since the symmetry restoration moves the VEV to 0, the
matter coupling vanishes and the fifth force is said to be
screened. The length scale for the force is the Compton
wavelength l ∼ 1=m where m is the symmetron mass. In
regions of high density this ism2

in¼ðρ=M2−μ2Þ>0, whereas
in lowdensities expanding the potential around the newVEV
φ¼�v gives a mass of m2

out¼2ðμ2−ρ=M2Þ≈2μ2.
The symmetron model has been designed specifically to

be compatible with local tests of gravity, so it should not be
surprising that constraints on the parameters of the theory,
fM; μ; λg, or equivalently fM; μ; vg, are weak [11]. The
tightest constraints on symmetrons that we consider here—
those which are light on galactic scales—come from
bounds on their two post-Newtonian (PPN) parameters
with nonvanishing deviations from GR in the Solar
System.3 In Ref. [32], following Ref. [4], constraints were
placed on the symmetron model using PPN parameter
estimates and the existing constraints from lunar laser
ranging as well as time-delay experiments performed with
the Cassini spacecraft [37,44]. These constraints assumed a
galactic density profile with dark matter so we must go back
to the approach taken by Ref. [4] but now using field values
updated for this dark matter-free context. First, Cassini and
lunar laser ranging data require that we have for the PPN
parameters γ and β, respectively,

jγ − 1j ≲ 10−5; ð9Þ
jβ − 1j≲ 10−4: ð10Þ

For a general scalar-tensor theory these parameters are
prescribed [44]

γ ¼ 1þ ωðφÞ
2þ ωðφÞ ; ð11Þ

β ¼ 1þ 1

ð3þ 2ωðφÞÞ2ð4þ 2ωðφÞÞ
dφ

dðA−2Þ ; ð12Þ

where ωðφÞ is the Brans-Dicke parameter,

ωðφÞ ¼ 1

2

�
1

2M2
Plðd lnA=dφÞ2

− 3

�
ð13Þ

≃
1

2

�
1

2

�
M2

MPlφ

�
2

− 3

�
: ð14Þ

in which we have substituted in the symmetron model
coupling function AðφÞ ¼ 1þ φ2=2M2. For small values

2This force can be derived by considering the form of the
geodesic equation for particles moving on the Jordan framemetric.

3More massive symmetrons, with Compton wavelengths of the
order ∼1 cm, can be constrained with laboratory searches for fifth
forces using atom interferometry [11,32,41–43].
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of φ (i.e., in the screened regime) one can simplify locally
to get

jγ − 1j0 ≃
�
φð0ÞMPl

M2

�
2 ≲ 10−5; ð15Þ

which in most cases is the more stringent of the two
constraints. Since we will solve the equation of motion in
terms of a dimensionless field value ϕ≡ φ=v, only then
rescaling the field to meet the required strength for the
force, we can define a maximum value that the rescaled v
can take while satisfying the constraint Eq. (9),

vmax

MPl
≃

ffiffiffiffiffiffiffiffiffi
10−5

p

2ϕð0Þ
�

M
MPl

�
2

: ð16Þ

For a given value of M the allowed range for v is bounded
from above by this value, but also for some regions by
another condition ensuring that v < M, as required for the
predictivity4 of an effective field theory (EFT) description
for the symmetron model [32]. We may also set a lower
limit by how weak we allow the fifth force to be. The
overall strength of the force relative to Newtonian gravity
can be expressed as

α≡
�

v
MPl

�
2
�
MPl

M

�
4

: ð17Þ

Since we want the symmetron to support galactic dynamics,
we want it to be at least as strong as gravity when
unscreened, so we set vmin=MPl ¼ ðM=MPlÞ2. This con-
straint need not necessarily be imposed directly since it
should be recovered by the inability of the solution to
provide the needed force in the absence of dark matter.
We display the PPN constraints from measurements of

jγ − 1j and jβ − 1j on the three symmetron parameters in
Fig. 1. In theM − μplanewe show there is a region that gives
a value for vmax incompatible with the other bounds. Note
that computing these constraints requires the knowledge of
φð0Þ from the solution of the symmetron equation of motion
in the Galaxy which is the subject of later sections. In the
interest of clarity we introduce them here first. Figure 1
shows thevalue ofvmax fromEq. (16) that sets the upper limit
for the rescaled fifth force for a given pair of M and μ. The
regions delimited by the red lines show the boundaries above
which ðvmax=MPlÞ < ðM=MPlÞ2, or in other words there are
no values above each line for which the symmetron can

provide a fifth force stronger than gravity while also
satisfying the Solar System constraints jγ − 1j0 ≲ 10−5

and/or jβ − 1j0 ≲ 10−4. Below the lower line there are values
of v that can satisfy all the constraints, but are bounded by
the value vmax indicated by the shade of blue. In the white
region the value of vmax exceedsM so at this point the upper
limit is set instead by the requirement for the predictivity of
the EFT∶ v < M (in Planck units). As described earlier, the
bound set by Cassini for jγ − 1j is the most stringent for the
rangewe explore here.However, the line for jβ − 1j becomes
stronger when reaching down to smaller values of M since
jβ − 1j contains an enhancement of ðMPl=MÞ2 relative
to jγ − 1j.

III. THE MOTIONS OF LOCAL STARS

The growing velocity dispersion profile for stars at
increasing heights (z) above the plane of the MW galactic
disk demonstrates the need for a source of additional
gravitational potential beyond what can be supplied by
the observed distribution of baryonic matter. If we are to
replace dark matter with a screened fifth force as suggested
in Ref. [21], we must show that as well as for circular
motions it can mimic the role played by the dark matter
halo in explaining the observed dynamics of these local
stars as well. If it can, then the symmetron fits at least one
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FIG. 1. Constraints on the symmetron parameters fM; μ; vg
from a PPN analysis of Cassini data, expressed in analytic form in
Eq. (16). The blue shaded regions indicate the maximum value
that v may take to ensure that there is no measurable fifth force in
the Solar System. We also show as two red lines the boundary
above which no value of v that satisfies the constraints on jγ − 1j
and jβ − 1j can simultaneously provide a fifth force stronger than
gravity, i.e., vmax=MPl < ðM=MPlÞ2. The region below the lower
line is permitted but bounded from above by vmax. Note that on
the top horizontal axis we show the size of the Compton
wavelength in the symmetry broken regime where ρ ≈ 0 defined
as l∞ ∼ 1=

ffiffiffiffiffiffiffi
2μ2

p
.

4Although on this note one should keep in mind that for the
very small values of λ that must be considered for the symmetron
to act over galactic scales, the couplings are necessarily very fine-
tuned and radiative corrections to the theory must be carefully
considered. This is especially important if one wants to consider
the symmetron (and fifth forces in general) in terms of sensible
quantum field theories with standard model couplings. See for
example Ref. [33] for more discussion of this issue.
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more requirement to be a viable replacement for dark
matter on subgalactic scales, in which case we can compare
the ranges of required parameter values forM, μ, and vwith
those found through other means, e.g., in the Solar System,
galactic rotation curves, dwarf galaxies, or the cosmic
microwave background.
When describing local stellar kinematics, one generally

must start with the collisionless Boltzmann equation,

df
dt

¼ ∂f
∂t þ∇xf · v −∇vf ·∇xΦ ¼ 0; ð18Þ

where fðx; v; tÞ is the phase space distribution function
for the stellar field. In the Newtonian weak-field gravity
we also have Poisson’s equation which relates the
gravitational potential Φ to the total mass density
ρ ¼ ρstars þ ρgas þ ρdm þ � � � ,

∇2
xΦ ¼ 4πGρ: ð19Þ

In cylindrical coordinates, (R, θ, z), one can extract three
Jeans equations by integrating the Boltzmann equation over
all velocities. This requires that we express the phase space
distribution in terms of νðxÞwhich is just the positional part
of fðx; v; tÞ. Here we are interested in only one of these; the
z-direction (referred to as the vertical direction) which is

1

R
∂ðRνσRzÞ

∂R þ ∂ðνσ2zÞ
∂z þ ν

∂Φ
∂z ¼ 0; ð20Þ

where the relevant components of the velocity dispersion
tensor are,

σRzðxÞ ¼
1

νðxÞ
Z

d3vfðx; vÞðvR − hviRÞðvz − hvizÞ; ð21Þ

and

σ2z ¼
1

νðxÞ
Z

d3vfðx; vÞðvz − hvizÞ2: ð22Þ

The first term in Eq. (20) is known as the tilt term and
involves the coupling of radial and vertical motions of the
stars. For a first approximation, as long as we work close
enough to the disk plane we can suitably ignore this term.
The reason is because for a first order expansion around
R ¼ 8 kpc and z ¼ 0 the gravitational potential is separable
in R and z, and hence the cross term must vanish. In reality,
however, the tilt term is simply just smaller than the other
terms. In estimates of the local dark matter density, ignoring
the tilt term adds around a 10% uncertainty [45], which is
most important when the stellar density distribution is
sampled beyond ∼1 kpc [46]. Close enough to the center of
the disk it is satisfactory to use a one-dimensional approxi-
mation, and indeed this has been used frequently in the past
in test bed analyses such as this. Moreover this allows us to
assume the separability of the symmetron equation of

motion as we discuss in Sec. IV. Under the approximation,
the above equation is simplified to

∂ðνσ2zÞ
∂z þ ν

∂Φ
∂z ¼ 0; ð23Þ

which has a solution for the stellar density distribution,

ν

νð0Þ ¼
σ2zð0Þ
σ2z

exp

�
−
Z

z

0

1

σ2zðz0Þ
∂Φ
∂z dz0

�
: ð24Þ

We must also deal with Poisson’s equation. Expanding
first in cylindrical coordinates,

∂2Φ
∂z2 þ 1

R
∂
∂R

�
R
∂Φ
∂R

�
¼ 4πGρ; ð25Þ

where we ignore the azimuthal term since for local tracers
the density is essentially symmetric in this direction. The
second term on the left-hand side can be written in terms of
the rotation curve,

v2cðR; zÞ ¼ R
∂Φ
∂R : ð26Þ

Again, for stars sufficiently close to the plane of the disk,
and at R ≃ 8 kpc, the rotation curve is roughly flat which
means we can safely ignore the second term of Eq. (25)
leaving

∂2Φ
∂z2 ¼ 4πGρ: ð27Þ

The baryonic part of ρ is composed of stars (⋆), gas (g),
and stellar remnants (•) with a total surface density of
roughly Σb ¼ Σ⋆ þ Σg þ Σ• ≃ ð28.9þ 18þ 7.2Þ M⊙pc−2,
with most of the uncertainty on the gas [47]. Since we
explore symmetron model parameters over many orders of
magnitude, varying the precise shape of the baryonic
density profile will not be a particularly enlightening
exercise for these first tests. So we use a simple two
parameter function that has been used in the past as an
approximate analytic model [45,46]

ρbðzÞ ¼
1

4πG

���� kbd2b
ðd2b þ z2Þ3=2

����; ð28Þ

where db ¼ 0.18 kpc and kb ¼ 1500 ðkm=sÞ2 kpc−1. As a
proxy for the inevitable uncertainty on the baryonic surface
density we allow errors of Δdb ¼ 0.02 kpc and Δkb ¼
150 ðkm=sÞ2 kpc on the two parameters of this model, and
we discuss the impact of these uncertainties in Sec. V. We
are only considering a smooth density profile. This too is an
approximation since at some level the density is composed
partly of discrete objects that the symmetron will respond
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to individually. However, even for our most massive
symmetrons their unscreened Compton wavelengths are
still larger than, or on the order of, the average separation
between stars in the MW. Next, the vertical force profile
is found by integrating the z-component of Poisson’s
equation,

Kb ¼ −
∂Φ
∂z ¼ 4πG

Z
dz ρb ¼ −

kbzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ d2b

p : ð29Þ

Using this model allows us to build a way of testing the
symmetron with simulated data that is entirely self-con-
sistent within the simplifying assumptions we have made.
Next we have the darkmatter contributionwhich serves as

our comparison. In an Navarro-Frenk-White halo and in the
absence of any dark disk, the dark matter density at our
galactic radius can be treated as constant up to z ∼ 1 kpc,
with a total integrated surface density in the region of
Σdm ∼ 16 M⊙pc−2. In our analysis, we add new physics
but rather than modifying Poisson’s equation with an addi-
tional contribution to ρðzÞ, we instead modify the Jeans
equation, with an additional contribution to the force felt by
the tracer stars. We must instead solve

∂
∂z ðνσ

2
zÞ þ ν

∂
∂z ðΦþ lnAðφÞÞ ¼ 0 ð30Þ

and

∂2Φ
∂z2 ¼ 4πGρb ð31Þ

with the profile for φðzÞ supplied by the solution to the
symmetron equation of motion,

∂2Φ
∂z2 −

�
ρ

M2
− μ2

�
φ − λφ3 ¼ 0: ð32Þ

The one-dimensional approximation is applied to the
equation of motion as well, where we have assumed
separability in z.
The data used for measurements of the local dark matter

density are populations of tracer stars of a given stellar class
that have enough phase space information to calculate their
vertical velocity dispersion from the Jeans equation, as a
function of z. The test of the symmetron is analogous and
takes the form of a consistency check between the gravi-
tational potential implied by the dynamics of the stars with
the dynamics of the stars implied by the symmetron field
profile. As a first step we can determine whether the
symmetron mechanism is capable of mimicking dark matter
in thisway by considering the idealized scenario. The tracers
we use are mock data based on this simplified model
presented in Ref. [45]. They therefore represent something
of a best case scenario, being entirely self-consistent within

this model and having no observational uncertainties on the
data itself which would make our conclusions less coherent.
In this first instance thiswill be the clearest way to determine
how successfully the symmetron can reproduce local stellar
kinematics. A measurement would, of course, then be
possible through the same treatment using a suitable
population of stellar tracers from the high statistics/high
quality Gaia data. We leave this for future work although
since we explore the symmetron model space over so many
orders of magnitude, the precise shape of the baryon surface
density profile and data uncertainties will have a subdomi-
nant impact. Hence we anticipate that many of the broad
conclusions we present here will hold.
The mock data set is generated assuming a constant dark

matter contribution to ρ, meaning the vertical force profile
is linear,

KdmðzÞ ¼ −2Fz; ð33Þ

where F ¼ 2πGρdm ¼ 267.65 ðkm=sÞ2 kpc−2. We assume
we have one isothermal tracer density profile,

νðzÞ ¼ νð0Þ exp
�
−

z
z0

�
; ð34Þ

where z0 ¼ 0.4 kpc is the scale height of the isothermal. In
general the data may be composed of a sum of many
different isothermal profiles. The dispersion velocity σz can
be calculated once the vertical force profiles have been
obtained,

σ2zðzÞ ¼
1

νðzÞ
Z

z

0

νðz0ÞðKbðz0Þ þ Ksymðz0ÞÞdz0

þ σ2zð0Þνð0Þ
νðzÞ : ð35Þ

We show the mock data along with the underlying model in
Fig. 2. We show both the contribution from the baryons
only and the baryonþ dark matter model used to create the
data. We require the symmetron to mimic this linearly
increasing dark matter contribution. However, since the
data depend upon the integral of the vertical force profiles,
the shape of Ksym may be significantly different from Kdm

while yielding similar shapes for σz. We also show the
small-z asymptotic behavior for a particular set of symme-
tron parameters. We show how these parameters and the
asymptotic solution is found in the next section.

IV. SYMMETRON IN THE DISK

A. Asymptotic solutions

To find the fifth force experienced by the stars we need to
know how the symmetron field responds to a given matter
density profile ρðzÞ. The field profile will be determined by
the equation of motion,
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∂2φ

∂z2 −
�
ρðzÞ
M2

− μ2
�
φ − λφ3 ¼ 0: ð36Þ

The full solution to this nonlinear equation must be found
numerically enforcing the relevant boundary conditions.
We wish to subject the equation to the conditions φ0ð0Þ ¼ 0
(by symmetry about z ¼ 0) as well as φðzÞjz→∞ ¼ v. We
can find the asymptotic behaviors of the solution at small
and large z by making a quadratic approximation of the
potential. This is valid because at very low densities the
field value will be close to φ ∼ v and at high densities close
to 0 allowing us to safely ignore the ðφ − vÞ4 and φ4 terms,
respectively, in an expansion of VðφÞ. For small z and high
densities this leads to

∂2φ

∂z2 −
�
ρðzÞ
M2

− μ2
�
φ ¼ 0; ð37Þ

whereas for large z and low densities we must solve

∂2φ

∂z2 − 2μ2φ ¼ 0; ð38Þ

assuming that the density profile decays toward large
values of z. Both equations yield exponential solutions.
For the z ∼ 0 case, the requirement that the gradient must
vanish leaves us with a solution with one free constant,

φðzÞ ¼ A cosh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðzÞ
M2

− μ2
r

zmin

�
: ð39Þ

On the other hand, the field at large zmust decay toward the
VEV so we have the solution

φðzÞ ¼ vþ Be−
ffiffiffiffiffi
2μ2

p
z: ð40Þ

We can eliminate these constants to end up with formulas at
some minimum and maximum z,

φ0ðzminÞ
φðzminÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðzminÞ
M2

−μ2
r

tanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðzminÞ
M2

−μ2
r

zmin

�
ð41Þ

and

φ0ðzmaxÞ
v − φðzmaxÞ

¼
ffiffiffiffiffiffiffi
2μ2

q
: ð42Þ

We can proceed now by recalling that wewant the fifth force
to mimic dark matter, i.e., Ksym ≃ −2Fz. This form for the
fifth force can be realized, but only for small enough z. Since
φ must increase with z and the gradient of the field
approaches 0 at both the center of the disk and at infinity,
thismeans that the fifth forcemust have an extremumat some
z. The location of this extremum will reflect the scale height
of the baryonic density profile but will also be controlled by
the length scale over which the symmetron responds to
changes in density, i.e., the Compton wavelength. Hence the
manner in which we can engineer the symmetron to best
mimic dark matter will be to tune the model parameters to
delay the onset of the turnover in the gradient of φ to a value
of z larger than the spatial extent sampled by the data.
Starting from the symmetron profile at small zwe can use the
desired scale for the force F to fix the constant A. From the
formula for the symmetron fifth force we find

Ksym ¼ −
c2A2

2M2
sinh

�
2z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

M2
− μ2

r �

×

�
zρ0

2M2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ
M2 − μ2

q þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

M2
− μ2

r �
: ð43Þ

So we require the symmetron coupling scale and Compton
wavelength at small z to roughly follow

F ≈
c2v2A2

2M2l2ðzÞ ; ð44Þ

for lð0 − 1 kpcÞ > 1 kpc, in order for the small-z solution
to persist out past the extent of the data. Assuming this
solution, the constant v can then be freely chosen to bring
the force up to the required strength. In Fig. 2 we showed
the resulting dispersion velocity from this field profile,

0 0.5 1 1.5 2
20

25

30

35

40

45

FIG. 2. Example data for the dispersion velocity (blue error
bars) under the three parameter baryon densityþ dark matter
model Eqs. (29) and (33). The solid line shows the underlying
model (baryonsþ dark matter) used in the simulation, and then
the dashed line shows the same model with the dark matter
component removed. We show as a shaded region a range of
velocity dispersion profiles that can be yielded by the small-z
asymptotic solution to the symmetron equation of motion, for
central Compton wavelengths between 3 and 100 kpc.
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assuming it extends over the full z range shown. The band
demonstrates the range of profiles for values of
lð1 kpcÞ ∈ ½3; 100� kpc, allowing a 50% uncertainty in
the initial gradient F. The regime of values where we
expect this solution to be found is shown in Fig. 3 where we
display how the Compton wavelength at 1 kpc varies with
M and μ.

B. Full solution

To solve the equation of motion numerically we work in
dimensionless units where ϕ ¼ φ=v and x ¼ z=1 kpc. By
substituting in λ ¼ μ2=v2 we see that v can be eliminated,
since this parameter only controls the scale of the field
value and not the profile. The equation is then in the form

1

ð1 kpcÞ2
∂2ϕ

∂x2 ¼ ρ

M2
ϕþ μ2ðϕ3 − ϕÞ: ð45Þ

The equation of motion contains a nonlinearity and a range
of length scales which can be separated by many orders of
magnitude, or can conspire to have ρðzÞ=M2 ≈ μ2 such that
the Compton wavelength diverges within the region of
interest. We also have an infinite integration domain. We
find that the most efficient and reliable way to solve the
equation over the large range of model parameters we need
to explore is by spatially discretizing the problem and
dynamically relaxing the equation from some initial guess.
The equation is a Laplace-Poisson partial differential

equation, which we have already greatly simplified by
moving to a one-dimensional version of the problem. The
second derivative can be computed after a suitable dis-
cretization of ϕi with the finite difference operator,

∂2ϕ

∂x2 ¼
−ϕiþ2þ16ϕiþ1−30ϕiþ16ϕi−1−ϕi−2

12Δx2
þOðΔx4Þ:

ð46Þ

Substituting this formula into the equation of motion and
rearranging for ϕi we can use neighboring points in one
particular solution for ϕ to evolve each point in the
discretization. There are three methods one can iterate to
evolve from some initial solution. The most aggressive way
is to evaluate a new ϕi at each point i using gradients
computed from the previous iteration. However, when the
equation is very stiff or if the initial input solution is far
from the true solution, this method is likely to diverge
quickly. A more stable method is to employ a Gauss-Seidel
sweep by beginning the evaluation at one end of the
integration regime and then computing updated gradients
for each point sequentially. We find that sweeping from
z ¼ 0 up to some zmax achieves faster convergence than the
reverse. However, for cases when zmax is much larger than
the inner 1 kpc we can adaptively find a finer solution for
small values z more quickly sweeping in the reverse
direction. We also implement an adaptive under-relaxation
where only a fraction of the updated ϕi values are
incremented if the routine begins to diverge.
Since the true integration domain is infinite in extent, we

must find a suitably large zmax such that the evolution at
smaller z is robust against changes to this value. We can
make a guess toward the size of the domain required from
the behavior of the Compton wavelength. For values of μ
and M for which l grows with z, we find that the final
solution is unaffected by changes in zmax so long as the
zmax ≳ lðzmaxÞ; this is demonstrated in Fig. 4. Since for
some choices ofM and μwe can have the situation in which
lðzÞ → ∞ for some z, this method for finding zmax does not
always give an integration domain large enough since there
will be an expanse of smaller values of z where the field
responds very slowly to changes in ρ. To rectify this we
perform the checks that zmax is large enough as we explore
the parameter space, ensuring that the domain always
captures the full evolution.
To begin the routine we also need an initial guess input

solution. We can quite comfortably interpolate between our
large and small z asymptotic solutions with a guess of the
form φ ¼ 1 − ð1 − AÞsechnðz=zgÞ. For much of the param-
eter space this function is a very good approximation to the
true solution, so using the partial differential equation to
perform a fit for some fA; n; zgg we can obtain some initial
conditions that are close to the true solutions. This saves on
the number of iterations needed as well as improves stability
in the early stages of the relaxation. Unfortunately, however,
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FIG. 3. Compton wavelength at z ¼ 1 kpc as a function of
model parameters M and μ. We limit the color scale to lengths
between 0.2 and 2 kpc where we expect the symmetron to be able
to mimic a linearly increasing vertical force in the range below
z ∼ 1 kpc. The dashed line shows the values ofM and μwhere the
Compton wavelength diverges at z ¼ 1 kpc; since l can grow
very large inside the disk in this region, we expect the small-z
asymptotic solution to appear here also.
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for some of the very stiff areas of the parameter space this
guess profile is insufficient because there can be a large
separation between the scale over which the field initially
increases from its central value and the scale needed for the
field to decay to v. This intermediate, highly nonlinear
regime is difficult to capture with the sech profile. However,
for the type of analysiswe are developing here,wemust solve
the equation of motion many times for a range of model

parameters. Sowhen we scan across the parameter space, we
can start from a point where the equation is unstiff and easy to
solve (at largeM and μ) with the aforementioned guess, and
then move gradually toward the stiff part of the parameter
space (smallM and small μ) using each previous solution as
the input for the next. This too greatly saves in terms of the
number of iterations required to find each individual solution
and also reduces the risk that the routine will diverge.
Another problematic region is for very small values M

when the ρðzÞ=M2 term dominates over a large range of z
forcing φ to be remain very close to 0, up to some height
much larger than usual where the field begins to decay
toward v. Generally this occurs for coupling scales below
M ≲ 10−6MPl. The numerical issue is due to the fact that
the method for finding zmax from the behavior of the
Compton wavelength does not account for this nonlinear
thin-shell effect. But by extending the integration domain
by the length over which this effect persists we can reach
accurate solutions as M decreases. Also since the field
approaches values extremely close to 0, we can resolve
precision issues in calculating gradients by fitting to the
analytic φ ∝ coshðz=lÞ solution which becomes an
extremely good approximation in this regime.

V. RESULTS

We show the partial evolution of the symmetron field in
the left-hand panel of Fig. 5 for a range of values of μ and,
simply for visual clarity, a single value of M. Then in the
right-hand panel of Fig. 5 we show the profile of the fifth
force Eq. (4), as a function of z for the same parameter
ranges as in the previous figure. We also display as black
lines the vertical force due to the baryonic density alone,
and the fifth force from baryons and a constant dark matter
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FIG. 4. Main: Field profile (scaled by v) forM ¼ 10−5 MPl and
μ ¼ 10−35 GeV. Lines are shaded from light to dark in order of
increasing values of zmax marking the upper limit of the
integration domain. Inset: The value of φ=v at z ¼ 0 for this
same range, and we indicate the value corresponding to the
solution to the equation lðzmaxÞ ¼ 1

10
zmax with a vertical grey

dashed line. This condition approximately marks the point at
which the solution is no longer sensitive to the choice of zmax, as
utilized in later results.
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FIG. 5. Left: A small subset of field profiles φðzÞ for a range of logarithmically spaced values of μ between 10−35 GeV (blue curves) to
10−34 GeV (red curves). The coupling scale is set to M ¼ 10−5 MPl. Right: The profile of the fifth force KzðzÞ up to z ¼ 1 kpc for the
same set of inputs. The upper black line indicates the force due to baryons alone and the lower black line the force from baryons plus the
dark matter model used in generating the data.
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contribution, which was used in generating the data that
serve as our comparison.
The result of the fit to dispersion velocity data is shown

in Fig. 6. The fit is performed by first solving the
symmetron equation of motion for a given set of
fM; μg. We then use the symmetron field profile to
calculate the vertical force according to Eq. (4). Then
inserting this into Eq. (35) we calculate the expected
dispersion velocities; however, we need to set the scale
of the strength of the force by choosing v. We do this by
implementing a simple χ2 test comparing the calculated
σzðzÞ with the data from Fig. 2. We minimize the χ2 value
as a function of v. In the left-hand panel we display the
reduced χ2 value as a function of M and μ, with regions
with a fitted value of v incompatible with the constraints
overlain. We emphasize not to place too much weight on
the numerical value of χ2 here since the fit takes the values
of kb and db as perfectly known; we simply wish to visually
display how the shapes of the symmetron induced velocity
dispersion profiles compare across the model space and
which are incompatible with the bounds. In addition, we
show the resulting fits for σzðzÞ in the right-hand panel, not
including the solutions for parameter values ruled out
(indicated by the grey regions). There is a band of
symmetron parameters that can reproduce the dispersion
velocity data up to around z ∼ 1 kpc; importantly one can
notice that this band has values of φ at the solar position
that allow the model to escape the PPN bounds for the fitted
value of v. It was suggested in Ref. [32] that this degenerate
band of solutions might be present, and indeed one could
exploit this to find solutions for symmetrons with even

smaller Compton wavelengths.5 There will be a limitation
on this from the quickly decreasing constraint on jβ − 1j for
very small values ofM. The model that provides the best fit
we indicate with a white triangle in the left-hand panel, and
a white line on the right-hand side. These values are
M ¼ 10−4.8 MPl, μ ¼ 10−34.9 GeV, and v ¼ 10−8.3 MPl,
which only just escapes the bound; however, all values
within the darkest blue region provide a similar shape at
these heights. Interestingly the symmetron can provide a
decent fit at the level of σzðzÞ even though the dark matter
and symmetron vertical forces have quite different profiles,
as shown in Fig. 5. We anticipate that including the shape of
the baryon density in r and using stars at larger heights
above the disk including the tilt term may allow the two
models to be distinguished, if this characteristic turn over in
the vertical force can be measured (or otherwise).
Although we do not discuss this idea in detail, one might

add a further constraint on the parameter space here by
enforcing the stability of the galactic disk. Thiswas shown in
Ref. [21] and amounts to a bound of (very approximately)
v≳ 6 × 10−3 M which our best fit region partly satisfies.
However, the precise numerical factor is uncertain and
depends upon an integral of the field over the full Galaxy
which is not provided in our results. Nevertheless since our
field profiles vary over a significantly larger range of values
of φ than the assumption used in calculating this constraint,
the numerical factor would be much larger, bringing our
results much more into consistency with disk stability.
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FIG. 6. Left: Reduced χ2 value for the fit to σz data, as a function of the symmetron parameters M, μ, and v. The grey regions mask
values of μ and M for which the best fit value of v results in a fifth force that is weaker than gravity, α < 1, or is incompatible with the
predictivity of the EFT description, v > M. We also show as a dashed black line the boundary above which v will always lead to a
measurable fifth force in the Solar System, with the region below this line being permitted by the Cassini measurement. Right: Fit
velocity dispersion profiles for the same range of values ofM, μ, and v. The colors correspond to χ2 values according to the same scale.
The white line is the dispersion velocity profile for the point labeled by a white triangle in the left-hand panel.

5However, the symmetron response to individual stars may
become important for larger values of μ than displayed here.
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The above results hold for a specific input baryon density
model, and finally for comparison we demonstrate the
effect of uncertainties in this profile by varying the two
parameters kb and db within approximate 68% uncertainties
of Δkb ∼ 150 ðkms−1Þ2 kpc−1 and Δdb ∼ 0.02 kpc, respec-
tively. We show how this affects the field profile and
resulting best fit dispersion profile in Fig. 7, when values of
kb and db are set as unknown parameters and fit with the
above uncertainties. Allowing the baryon density to vary
we are able to recover a similar fit but with the addition of
an uncertainty in the recovered σzðzÞ equivalent to a change
of factor of a few in the parameters M or μ describing the
shape of the profile, or up to a factor of 2 in v setting the
strength of the force. We find that if one has a sharper
decrease in ρðzÞ due to a smaller value of db or a higher
peak density due to a larger value of kb, then these both
have the effect of increasing the strength of the force and
hence lowering the required value of v. Thus we expect that
one may permit a widening of our best fit region (as well as
a weakening of the Solar System constraint) by up to a
factor of 2 if one treats the baryonic density profile as not
perfectly well known. Although we have implemented this
uncertainty in a rather simplistic way (a full likelihood fit
including these parameters would be a more appropriate
method when using a real data set), it nevertheless serves as
a heuristic indicator for the effect of changing the baryon
density. As suggested earlier we see that this uncertainty
plays a subdominant role when exploring over many orders
of magnitude in the symmetron parameter space.

VI. SUMMARY

We have found solutions for the symmetron field profile
in the Milky Way disk in a simplified one-dimensional
system which allows us to explore regimes of coupling

values not already explored in previous work. This also
allows us to update Solar System PPN constraints for the
symmetron dark matter model and find viable parameter
space not already ruled out. In previous analyses this region
was left unexplored due to significant numerical challenges
found in solving the extremely stiff nonlinear equation of
motion containing a wide range of length scales. However,
with a specialized dynamical relaxation method detailed in
Sec. IV we have shown that exploring this region is
beneficial since solutions here can allow the symmetron
fifth force to replicate the effects of a roughly constant dark
matter density with regards to the vertical kinematics of
nearby stars. This is one step in constructing a model for
scalar field dark matter as has already been initiated by
previous groups. However, we must emphasize there are a
number of additional follow-up questions that must be
answered.
The next step will be to extend beyond the one-

dimensional system. This is crucial for two reasons.
First, for the symmetron parameter μ which controls the
exponential decay of the field to the unscreened VEV, we
are forced to not explore much smaller values because one
cannot trust the one-dimensional approximation when the
field decays so far away from the scale height of the disk.
Already here for values of μ≲ 10−36 GeV it is likely that
the three-dimensional shape of the disk and the stellar bulge
will begin to become important in computing the relevant
field values at our location. However, our results already
identify an interesting part of the parameter space in which
to look when extending to a multidimensional solver, and
indeed many of our viable solutions act over short enough
scales for this to not be an important issue. However, the
second reason we should look toward this extension is the
fact that at large values of z the data become sensitive to
the correlations between the radial and vertical motions
with the increasing importance of the tilt term in the Jeans
equation. Modeling the tilt term is required for accuracy
below the ∼10% level in measurements of the dark matter
density [45], and ignoring it is responsible for a large
underestimate in the values of σzðzÞ at heights above
∼1 kpc. Given that the recent Gaia-DR2 possesses very
high statistics for local stellar kinematics, we anticipate
strong constraints to comewhen folding these new data into
these types of analyses. Finally, we note that although the
symmetron can be shown to mimic dark matter within the
scope of the sample data presented here, there are notable
differences in the predictions of the dispersion profile out to
larger z that distinguish it as a model. In particular, the
symmetron model exhibits a turnover in the fifth force at
some z as the field decays back toward the VEV at low
densities, and with kinematic data at large distances
combined with a multidimensional solution and analysis
it will certainly be possible to distinguish this prediction for
galactic dynamics, further excluding more of the parameter
space. Our numerical solving routine is easily extendible to
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FIG. 7. Main: Range of dispersion velocity profiles when
varying the two baryon density parameters kb and db within
68% and 95% uncertainties as described in the text. Inset:
Corresponding field profiles φ=v.
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more than one dimension, it simply requires some compu-
tational power and a suitable region of parameter space in
which to look, such as the region we have discovered here.
Additionally we hope that analyses can take place in other
astronomical contexts, for instance in other galaxies, as
well as in dark matter dominated dwarfs. Evidence from the
cosmic microwave background and large scale structure
notwithstanding, solutions in other environments will also
be essential for the symmetron to evolve into a usable
model of dark matter, and may indeed be the simplest
method to rule it out.

ACKNOWLEDGMENTS

C. B. is supported by a Leverhulme Trust Research
Leadership Award and a Royal Society University
Research Fellowship. C. A. J. O. has received support from
a Leverhulme Trust Research Leadership Award and Grant
No. FPA2015-65745-P from the Spanish MINECO and
European FEDER. The authors are grateful for guidance
from P. Millington in the early stages of the project as well
as enlightening discussions and correspondence with E. J.
Copeland, B. Elder, C. Llinares, and D. Saadeh.

[1] W. Hu, R. Barkana, and A. Gruzinov, Phys. Rev. Lett. 85,
1158 (2000).

[2] N. Bellomo, J. L. Bernal, A. Raccanelli, and L. Verde,
J. Cosmol. Astropart. Phys. 01 (2018) 004.

[3] K. Hinterbichler and J. Khoury, Phys. Rev. Lett. 104,
231301 (2010).

[4] K. Hinterbichler, J. Khoury, A. Levy, and A. Matas, Phys.
Rev. D 84, 103521 (2011).

[5] H. Dehnen, H. Frommert, and F. Ghaboussi, Int. J. Theor.
Phys. 31, 109 (1992).

[6] E. Gessner, Astrophys. Space Sci. 196, 29 (1992).
[7] T. Damour and A. M. Polyakov, Nucl. Phys. B423, 532

(1994).
[8] M. Pietroni, Phys. Rev. D 72, 043535 (2005).
[9] K. A. Olive and M. Pospelov, Phys. Rev. D 77, 043524

(2008).
[10] P. Brax, C. van de Bruck, A.-C. Davis, and D. Shaw, Phys.

Rev. D 82, 063519 (2010).
[11] C. Burrage and J. Sakstein, Living Rev. Relativity 21, 1

(2018).
[12] A. Joyce, B. Jain, J. Khoury, and M. Trodden, Phys. Rep.

568, 1 (2015).
[13] C. Llinares and L. Pogosian, Phys. Rev. D 90, 124041

(2014).
[14] M. Gronke, D. F. Mota, and H. A. Winther, Astron. As-

trophys. 583, A123 (2015).
[15] E. Carlesi, D. F. Mota, and H. A. Winther, Mon. Not. R.

Astron. Soc. 466, 4813 (2017).
[16] M. Gronke, A. Hammami, D. F. Mota, and H. A. Winther,

Astron. Astrophys. 595, A78 (2016).
[17] R. Voivodic, M. Lima, C. Llinares, and D. F. Mota, Phys.

Rev. D 95, 024018 (2017).
[18] H. Desmond, P. G. Ferreira, G. Lavaux, and J. Jasche,

arXiv:1802.07206.
[19] T. A. S. Ellewsen, B. Falck, and D. F. Mota, Astron. As-

trophys. 615, A134 (2018).
[20] D. F. Mota, Int. J. Mod. Phys. D 27, 1830003 (2018).
[21] C. Burrage, E. J. Copeland, and P. Millington, Phys. Rev. D

95, 064050 (2017); 95, 129902(E) (2017).
[22] S. McGaugh, F. Lelli, and J. Schombert, Phys. Rev. Lett.

117, 201101 (2016).

[23] C. Llinares, Mon. Not. R. Astron. Soc. 476, L29 (2018).
[24] R. Hagala, C. Llinares, and D. F. Mota, Phys. Rev. Lett. 118,

101301 (2017).
[25] H. Y. S. Ip and F. Schmidt, J. Cosmol. Astropart. Phys. 06

(2018) 035.
[26] M. Milgrom, Astrophys. J. 270, 371 (1983).
[27] D. V. Bugg, Can. J. Phys. 93, 119 (2015).
[28] C. Skordis, Classical Quantum Gravity 26, 143001 (2009).
[29] J. W. Moffat, J. Cosmol. Astropart. Phys. 03 (2006) 004.
[30] J. W. Moffat and S. Rahvar, Mon. Not. R. Astron. Soc. 436,

1439 (2013).
[31] J. Khoury, Phys. Rev. D 91, 024022 (2015).
[32] C. Burrage, E. J. Copeland, and P. Millington, Phys. Rev.

Lett. 117, 211102 (2016).
[33] C. Burrage, E. J. Copeland, P. Millington, and M.

Spannowsky, arXiv:1804.07180.
[34] M. Herranen, T. Markkanen, S. Nurmi, and A. Rajantie,

Phys. Rev. Lett. 113, 211102 (2014).
[35] O. Bienayme, B. Famaey, X. Wu, H. S. Zhao, and D.

Aubert, Astron. Astrophys. 500, 801 (2009).
[36] B. Margalit and N. J. Shaviv, Mon. Not. R. Astron. Soc.

456, 1163 (2016).
[37] B. Bertotti, L. Iess, and P. Tortora, Nature (London) 425,

374 (2003).
[38] J. Khoury and A. Weltman, Phys. Rev. Lett. 93, 171104

(2004).
[39] J. Khoury and A. Weltman, Phys. Rev. D 69, 044026

(2004).
[40] A. I. Vainshtein, Phys. Lett. 39B, 393 (1972).
[41] C. Burrage, A. Kuribayashi-Coleman, J. Stevenson, and B.

Thrussell, J. Cosmol. Astropart. Phys. 12 (2016) 041.
[42] P. Brax and A.-C. Davis, Phys. Rev. D 94, 104069 (2016).
[43] M. Jaffe, P. Haslinger, V. Xu, P. Hamilton, A. Upadhye,

B. Elder, J. Khoury, and H. Mller, Nat. Phys. 13, 938
(2017).

[44] C. M. Will, Living Rev. Relativity 9, 3 (2006).
[45] J. I. Read, J. Phys. G 41, 063101 (2014).
[46] H. Silverwood, S. Sivertsson, P. Steger, J. I. Read, and G.

Bertone, Mon. Not. R. Astron. Soc. 459, 4191 (2016).
[47] C. Flynn, J. Holmberg, L. Portinari, B. Fuchs, and H.

Jahreiss, Mon. Not. R. Astron. Soc. 372, 1149 (2006).

CIARAN A. J. O’HARE and CLARE BURRAGE PHYS. REV. D 98, 064019 (2018)

064019-12

https://doi.org/10.1103/PhysRevLett.85.1158
https://doi.org/10.1103/PhysRevLett.85.1158
https://doi.org/10.1088/1475-7516/2018/01/004
https://doi.org/10.1103/PhysRevLett.104.231301
https://doi.org/10.1103/PhysRevLett.104.231301
https://doi.org/10.1103/PhysRevD.84.103521
https://doi.org/10.1103/PhysRevD.84.103521
https://doi.org/10.1007/BF00674344
https://doi.org/10.1007/BF00674344
https://doi.org/10.1007/BF00645239
https://doi.org/10.1016/0550-3213(94)90143-0
https://doi.org/10.1016/0550-3213(94)90143-0
https://doi.org/10.1103/PhysRevD.72.043535
https://doi.org/10.1103/PhysRevD.77.043524
https://doi.org/10.1103/PhysRevD.77.043524
https://doi.org/10.1103/PhysRevD.82.063519
https://doi.org/10.1103/PhysRevD.82.063519
https://doi.org/10.1007/s41114-018-0011-x
https://doi.org/10.1007/s41114-018-0011-x
https://doi.org/10.1016/j.physrep.2014.12.002
https://doi.org/10.1016/j.physrep.2014.12.002
https://doi.org/10.1103/PhysRevD.90.124041
https://doi.org/10.1103/PhysRevD.90.124041
https://doi.org/10.1051/0004-6361/201526611
https://doi.org/10.1051/0004-6361/201526611
https://doi.org/10.1051/0004-6361/201628644
https://doi.org/10.1103/PhysRevD.95.024018
https://doi.org/10.1103/PhysRevD.95.024018
http://arXiv.org/abs/1802.07206
https://doi.org/10.1051/0004-6361/201731938
https://doi.org/10.1051/0004-6361/201731938
https://doi.org/10.1142/S0218271818300033
https://doi.org/10.1103/PhysRevD.95.064050
https://doi.org/10.1103/PhysRevD.95.064050
https://doi.org/10.1103/PhysRevD.95.129902
https://doi.org/10.1103/PhysRevLett.117.201101
https://doi.org/10.1103/PhysRevLett.117.201101
https://doi.org/10.1093/mnrasl/sly021
https://doi.org/10.1103/PhysRevLett.118.101301
https://doi.org/10.1103/PhysRevLett.118.101301
https://doi.org/10.1088/1475-7516/2018/06/035
https://doi.org/10.1088/1475-7516/2018/06/035
https://doi.org/10.1086/161131
https://doi.org/10.1139/cjp-2014-0057
https://doi.org/10.1088/0264-9381/26/14/143001
https://doi.org/10.1088/1475-7516/2006/03/004
https://doi.org/10.1093/mnras/stt1670
https://doi.org/10.1093/mnras/stt1670
https://doi.org/10.1103/PhysRevD.91.024022
https://doi.org/10.1103/PhysRevLett.117.211102
https://doi.org/10.1103/PhysRevLett.117.211102
http://arXiv.org/abs/1804.07180
https://doi.org/10.1103/PhysRevLett.113.211102
https://doi.org/10.1051/0004-6361/200809978
https://doi.org/10.1093/mnras/stv2721
https://doi.org/10.1093/mnras/stv2721
https://doi.org/10.1038/nature01997
https://doi.org/10.1038/nature01997
https://doi.org/10.1103/PhysRevLett.93.171104
https://doi.org/10.1103/PhysRevLett.93.171104
https://doi.org/10.1103/PhysRevD.69.044026
https://doi.org/10.1103/PhysRevD.69.044026
https://doi.org/10.1016/0370-2693(72)90147-5
https://doi.org/10.1088/1475-7516/2016/12/041
https://doi.org/10.1103/PhysRevD.94.104069
https://doi.org/10.1038/nphys4189
https://doi.org/10.1038/nphys4189
https://doi.org/10.12942/lrr-2006-3
https://doi.org/10.1088/0954-3899/41/6/063101
https://doi.org/10.1093/mnras/stw917
https://doi.org/10.1111/j.1365-2966.2006.10911.x

