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1Smart Material Solutions, Inc., Raleigh, North Carolina 27607, USA
2ARAID, Government of Aragon, 50018 Zaragoza, Spain
3Institute of Nanoscience of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain

(Received 21 February 2018; accepted 11 June 2018; published online 22 June 2018)

In this Research Update, we briefly summarize some of the bismuth materials that
have been investigated for their use in photovoltaic solar cells. We focus on bismuth-
based perovskites and bismuth halides, as alternatives to lead-halide perovskites, and
bismuth-based sulfides (Bi2S3, CuxBiySz, and AgBiS2), as alternatives to lead sulfide
quantum dots. These materials fulfill the requirements of being composed of abundant
and non-toxic elements. Moreover, they exhibit adequate properties for photovoltaics
like high absorption coefficients and suitable bandgaps, plus additional attractive char-
acteristics in terms of robustness and stability. However, they have not been extensively
studied and therefore their efficiencies are still far from those reported for their toxic
counterparts. Here we collect some of the most promising results, point at possible
limiting factors, and suggest some routes to improve performance. © 2018 Author(s).
All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1063/1.5026541

I. INTRODUCTION

Perovskites and inorganic quantum dot solar cells offer the highest efficiencies among the “emerg-
ing PV” technologies.1 They also have the potential to be flexible and less expensive, thinner, and
efficient over a wider range of light intensities than traditional or other emerging technologies. Fur-
thermore, they can be composed of abundant elements, which is important both for reducing costs
and assuring future production.2,3

However, the best performing devices have been fabricated using materials that have lead (Pb)
in their composition: PbS or CsPbI3 in quantum dot solar cells4,5 or APbI3 (A = methylammonium
or formamidinium) in perovskite solar cells.6 Although the concept and extent of toxicity can be
discussed, the fact is that lead is listed among the 10 chemicals of major public health concern by the
World Health Organization7 and its use is restricted under several legislations worldwide, therefore
compromising the future commercialization of solar cells based on these materials.8

In this sense, bismuth-based materials can be interesting alternatives for replacing lead-containing
compounds. Bismuth is a quite abundant metal on the earth crust; moreover, it is a by-product of
Pb, Cu, and Sn refining and has few significant commercial applications, resulting in the price of
Bi being relatively low and stable (Fig. 1).2,3,9 Additionally, despite being a heavy metal, bismuth is
considered non-toxic and is even used in common medicines such as Pepto-Bismol.10 Furthermore,
Bi3+ has been suggested as an excellent candidate for defect tolerant compounds, i.e., materials with
good optoelectronic properties despite the presence of defects. Supposedly, the active ns2 lone pair
tends to create antibonding interactions at the valence band maximum, and as a result, defects are
confined to shallow states at the band edges.11,12

In this Research Update, we will briefly summarize some of the bismuth materials that have been
investigated for their use in photovoltaic solar cells. We will focus on bismuth-based perovskites
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FIG. 1. Price evolution of bismuth compared to other elements relevant for photovoltaics. Main figure: comparison with
indium, gallium, tellurium, or selenium. Inset: comparison with iodine, cadmium, lead, and copper. Data extracted from the
2018 Mineral Commodity Summaries (https://minerals.usgs.gov/minerals/pubs/mcs/).

and bismuth halides, as alternatives to lead-halide perovskites, and bismuth-based sulfides (Bi2S3,
CuxBiySz, and AgBiS2), as alternatives to lead sulfide quantum dots.

II. BISMUTH-BASED PEROVSKITES AND BISMUTH HALIDES

Lead-based perovskite solar cells have attracted a huge amount of attention due to their rapid rise
in efficiency, with CH3NH3PbI3 solar cells recently achieving certified efficiencies in excess of 22%.6

These materials can be solution processed and have a variety of promising characteristics including
high absorption coefficients, large charge-carrier diffusion lengths, and relatively low exciton-binding
energies,13,14 closer to the binding energies reported for inorganic materials (6–15 meV), than those
reported for organic solar cells (0.5 eV or larger).15

Still, commercialization of lead perovskite solar cells is hindered by their short lifetimes and
the use of toxic lead.16 Some hope that these limitations can be overcome by replacing lead with
other elements like tin,17 antimony,18 or bismuth.11,16,19 Bismuth-based analogs to lead perovskite
photovoltaic materials offer great promise for future development, although they have been scarcely
explored.

Bismuth perovskites generally have the chemical formula A3Bi2X9, where A is a monovalent
cation (i.e., Cs+ or CH3NH3

+) and X is a halogen anion (i.e., Cl−, Br−, and/or I−). (CH3NH3)3Bi2I9 and
Cs3Bi2I9 are two bismuth perovskite materials that have been investigated thanks to their similarities
to their high-efficiency lead counterparts CH3NH3PbI3 and CsPbI3, respectively.

The crystal structure of Cs3Bi2I9 was initially studied in the 1960s.20 Almost 50 years later, Park
et al. first incorporated bismuth perovskite materials into solar cells, demonstrating power-conversion
efficiencies of 1.09% for Cs3Bi2I9 and 0.12% for (CH3NH3)3Bi2I9.21 These modest efficiencies
were attributed to high exciton binding energies (70-300 meV compared to 8-20 meV for lead
perovskites22–24), significant non-radiative recombination due to defect states,25 non-optimal charge-
extraction layers, and high bandgaps (2.1-2.2 eV). Despite their modest efficiencies, these materials
exhibited high absorption coefficients and were much more air-stable than their lead counterparts.

The good stability of bismuth perovskites in both dry and humid air has since been repeat-
edly demonstrated. For instance, (CH3NH3)3Bi2I9 exhibited stable photovoltaic performance during

https://minerals.usgs.gov/minerals/pubs/mcs/
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FIG. 2. (a) Photographs of methylammonium bismuth iodide (MBI) and methylammonium lead iodide (MAPbI3) over-
time in ambient air. [(b) and (c)] Normalized XRD patterns of MBI over time with air exposure. (d) The relative change
in the normalized intensity of the diffraction peaks of MBI (day 25 vs. day 1). Reproduced with permission from Hoye
et al., “Methylammonium bismuth iodide as a lead-free, stable hybrid organic-inorganic solar absorber,” Chem. - Eur. J. 22,
2605–2610 (2016). Copyright 2016 Wiley-VCH Verlag GmbH and Co. KGaA.

10 weeks in ambient air26 and 21 days in air with an average humidity of ∼50%.27 In another study,
x-ray diffraction of (CH3NH3)3Bi2I9 after 25 days in ambient air demonstrated almost no change
other than the formation of a thin, protective oxidation layer that likely prevents further degradation
(Fig. 2).28 This is in stark contrast to the lead analog, CH3NH3PbI3, which almost fully converted to
PbI2 during the same time period. Likewise, the bismuth perovskite exhibited only minimal visual
changes after 26 days, whereas the lead analog changed from dark brown to light yellow after
5 days.

Further investigation of these and other bismuth perovskites has led to improvements in the
material properties. In particular, many studies have attempted to tune the bandgaps of bismuth
perovskites since unaltered bismuth perovskites tend to have bandgaps above 2 eV, which is higher
than desirable for optimal solar-cell performance. For example, one study demonstrated the ability to
tune the bandgap of Cs2AgBiBr6 through pressure-induced changes in its crystal structure.29 Others
have shown that sulfur doping can decrease the bandgap of Cs3Bi2I9 to a much more desirable value
of 1.45 eV.30,31

Several groups have also improved the film quality and consequently the solar-cell performance
of (CH3NH3)3Bi2I9 by replacing standard solution-processing methods with alternative deposition
methods that result in smoother, more compact films with fewer pinholes. For instance, Ran et al.
used a two-step method that combines evaporation and spin coating to push the power conversion
efficiency of (CH3NH3)3Bi2I9 solar cells to 0.39%.32 Zhang et al. later employed a two-step vacuum
deposition method to fabricate (CH3NH3)3Bi2I9 solar cells with a power conversion efficiency of
1.64% (0.83 V open-circuit voltage, 3.0 mA/cm2 short-circuit current, and 0.79 fill factor).33 The
vacuum-processed solar cells exhibited charge-carrier diffusion lengths, trap densities, and absorption
coefficients on par with many lead perovskite materials.

Likewise, new deposition techniques have resulted in improved Cs2AgBiBr6 film quality and
consequently higher efficiencies. Cs2AgBiBr6 and its precursors exhibit low solubility in most com-
mon solvents, resulting in porous films full of cracks and pinholes. Dimethylsulfoxide (DMSO), on
the other hand, has proven to be a good solvent for Cs2AgBiBr6 and its precursors: AgBr, CsBr, and
BiBr3. Gruel et al. therefore dissolved the precursors in DMSO, heated the solution, and spin coated
it onto a heated substrate.34 A subsequent annealing step at 250 ◦C was required to complete the
formation of Cs2AgBiBr6 and maximize solar-cell performance. The best devices exhibited power-
conversion efficiencies approaching 2.5% and an open-circuit voltage of 1.06 V, the highest value
reported thus far for a bismuth-based perovskite. In a subsequent experiment, Gao et al. demonstrated
the ability to deposit smooth films by dissolving Cs2AgBiBr6 in DMSO and spin coating the solution
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using the anti-solvent dropping method with isopropanol (IPA) as the anti-solvent.35 Films deposited
without the anti-solvent were rough and frosted in appearance, whereas Cs2AgBiBr6 films deposited
using the anti-solvent dropping method were very smooth and achieved efficiencies up to 2.2% and
open-circuit voltages in excess of one volt. Again, a post-annealing treatment at 250 ◦C was required
to produce high-quality, crystalline films.

Several related bismuth halides have also been explored as promising photovoltaic materials.
For example, Kim et al. created dense, pinhole-free AgBi2I7 films by spin coating silver and bismuth
precursors and subsequent annealing. The resulting air-stable material exhibited a bandgap of 1.87 eV
and solar-cell efficiencies up to 1.22%.36 Bismuth triiodide (BiI3) has also been shown to be air-stable,
to have a bandgap of ∼1.8 eV, and to exhibit efficiencies up to 1.0%.37–39

One important distinction between bismuth perovskite and halide absorbers and their lead coun-
terparts is the dimensionality of their octahedral networks. Figure 3 shows illustrations of 0D, 1D,
2D, and 3D octahedral networks and a few examples of bismuth perovskites and halides with each
type of network. The octahedral network dimensionality can affect solar-cell performance by altering
relevant material properties. Although there are notable exceptions, lower dimensional perovskites
are usually associated with larger bandgaps, higher exciton binding energies, lower carrier mobilities,
and better moisture stability due to more spatial confinement.40–45

The CH3NH3PbI3 perovskite structure contains a 3D network of PbI6 octahedra that share corners
in all three octahedral directions.46 Bi3+ cannot directly replace Pb2+ in this 3D-perovskite structure
due to its higher charge.47 Charge neutrality forces the bismuth counterpart (CH3NH3)3Bi2I9 into a
0D structure with face-sharing octahedra of (Bi2I9)3 dimers that are separated by (CH3NH3)+ ions.48

The lack of a network between the (Bi2I9)3 dimers has been blamed for lower carrier mobilities
and a larger bandgap of (CH3NH3)3Bi2I9 and Cs3Bi2I9.42 Double perovskites, which contain two
different cations, offer one route to forming higher dimensional bismuth perovskites.34,49 For example,
Cs2AgBiBr6 has a 3D octahedral network and has demonstrated power-conversion efficiencies up to
2.43% as discussed previously.

FIG. 3. Illustrations and examples of some bismuth perovskite and halide absorbers with 0D, 1D, 2D, and 3D octahedral
networks.
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Although the efficiencies of bismuth perovskites and halides are currently modest, their demon-
strated stability in humid air and their avoidance of toxic lead encourage further investigation. As
many of these materials have yet to be extensively investigated, there remains considerable hope that
the efficiencies can be significantly improved.

III. BISMUTH SULFIDE (Bi2S3)

Bi2S3 is an n-type semicondcutor,50 with a high absorption coefficient (in the range of
105 cm−1), and an absorption onset in the infrared. The reported bandgaps lie in the adequate region for
photovoltaics and vary from 1.3 eV, for example in the bulk, to 1.7 eV, thanks to quantum confinement
effects and/or stoichiometry variations.51,52

The first reports demonstrating the use of colloidal Bi2S3 nanocrystals (NCs) as an absorbing
material in bilayer heterojunction solar cells employed as a p-type material either PbS quantum
dots that had been exposed to ambient conditions (QDs)53 or a conductive organic polymer like
poly(3-hexylthiophene) (P3HT).54 Both studies succeeded at demonstrating the Bi2S3 contribu-
tion to photocurrent by fabricating solar cells with ultra-small PbS QDs, with an absorption onset
at 800 nm, or P3HT, with an absorption onset at 700 nm. The maximum efficiency obtained,
1.61% with PbS and 0.46% with P3HT, was modest but promising for a new material. More-
over, these studies already pointed to some factors limiting efficiency like high doping of the
Bi2S3 films, poor electron mobility, and high recombination, most likely due to surface electron
traps.

Efficiency was improved close to 5% by blending Bi2S3 NCs and PbS QDs to form a bulk
nano-heterojunction structure.55 The intimate mixing of the n- and p-type nanocrystalline semi-
conductors favors carrier transfer between materials, separating them more efficiently and reduc-
ing recombination. All these result in a prolonged lifetime and a threefold improvement in the
short-circuit current. Similarly, when Bi2S3 NCs were blended with P3HT, or thiol-functionalized
P3HT, an improvement in the short-circuit current provided an efficiency up to 1%.56,57 Exploit-
ing this same idea, performance was further improved when P3HT was blended with Bi2S3/Au
Schottky diodes to fabricate hybrid bulk-heterojunction solar cells. The semiconductor-metal nanos-
tructure augmented separation of charge carriers upon photogeneration and yielded an efficiency
of 2%.58

Modifications in the solar cell structure is not the only strategy possible to improve efficiency.
Changes in the synthesis enabled the production of Bi2S3 nanocrystals with different shapes and sizes,
from 14 × 19 nm nanorods to spherical particles with a diameter of 2.6 nm; their performance in
P3HT–Bi2S3 bilayer solar cells was studied.52 The efficiency of the devices fabricated with the smaller
nanocrystals was similar to analogous bilayer structures (0.43%),54 but they showed an improved
open-circuit voltage (Voc), indicating reduced recombination, most likely due to a better surface
passivation and a reduction of traps.

The ns2 lone pair of Bi3+ tends to be stereochemically active and produce highly anisotropic
crystalline structures.59,60 Indeed, Bi2S3 crystallizes in the orthorhombic system where tightly con-
nected chains create layers that are connected through weak van der Waals forces that stack to form
the final structure. This asymmetric structure produces preferential directions for electronic transport,
enhanced along the c axis.61

In the examples mentioned above, nanocrystals are randomly oriented in the films (Fig. 4).
Therefore, some of the NCs will be properly placed for conducting charges, while others
will not, limiting charge transport and device efficiency. Considering this, strategies to create
aligned Bi2S3 1D structures like nanowires (NWs) or nanoribbons have been developed.62,63

Bi2S3 NWs were vertically grown on a TiO2-coated substrate, and spiro-OMeTAD was used as
a hole transport layer. This structure suffered from high interfacial charge recombination, so a
Bi2S3/Ag2S core-shell structure was developed and an efficiency of 2.5% was achieved.62 In a
different approach, Bi2S3 NWs were engineered to form percolated networks, where the inter-
connected nanowires provide a continuous path for electron transport. These porous networks
were infiltrated with P3HT, forming a bulk-heterojunction and achieving a maximum efficiency
of 3.3%.63
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FIG. 4. Illustrations and examples of some bismuth-based sulfides used in different solar cell structures.

IV. COPPER BISMUTH SULFIDES (CuBiS2, Cu3BiS3, AND Cu4Bi4S9)

Despite their potential application in many different areas, not only photovoltaics, the group of
copper-bismuth sulfides has been scarcely explored. This is quite surprising, considering that all the
elements are abundant and non-toxic and that analogous materials like CuInS2, the copper-antimony
family, and the copper-tin family have been the focus of several studies.64–66

Ternary Cu–Bi sulfides can show different stoichiometries and different properties. The three
most studied compounds—CuBiS2, Cu3BiS3, and Cu4Bi4S9—crystallize in an orthorhombic struc-
ture and exhibit high absorption coefficients (104–105 cm−1) and p-type character. These materials
differ in their absorption onsets, and the reported bandgaps lie between 1.5 and 2.62 eV for CuBiS2,
1.2 and 1.84 eV for Cu3BiS3, and 0.88–1.14 eV for Cu4Bi4S9.64,67

A. CuBiS2

CuBiS2 (emplectite) has been mostly studied from the theoretical point of view;68–70 there are
very few reports demonstrating the use of this material in photovoltaic solar cells (Fig. 4). In one
experimental study, CuBiS2 nanoparticles were deposited on TiO2 using a chemical bath deposition
method and used as sensitizers in dye sensitized solar cells (DSSCs) with a maximum efficiency of
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0.62%.71 More recently, CuBiS2 was used a p-type material in planar heterojunction solar cells, sand-
wiched between TiO2 and P3HT acting as hole and electron blocking layers, respectively. A maximum
efficiency of 0.68% was achieved after doping the CuBiS2 active layer with indium chloride.72

According to theoretical calculations, CuBiS2 presents an indirect bandgap at 1.4–1.7 eV, how-
ever, the difference between indirect and direct bandgap energies is only 0.1–0.3 eV due to the rather
flat lowest conduction band (CB); therefore, the direct transition is still accessible, and indeed the
material exhibits high absorption coefficients (0.93–1.5 × 105 cm−1).70,73 Interestingly, the CuBiS2

density of states indicates that the formation of hole carriers will involve oxidation of Cu(i)–Cu(ii).
This may have implications for hole transport in CuBiS2 and suggests that some Cu deficiencies may
be beneficial, like in analogous photovoltaic materials such as CZTS.69

B. Cu3BiS3

Cu3BiS3 (wittichenite) is of interest because it contains abundant non-toxic elements and presents
p-type conductivity, a high absorption coefficient (1× 105 cm−1), and reported experimental bandgaps
between 1.2 and 1.84 eV.64,74 Again, theoretical studies have calculated that the material exhibits a
fundamental indirect bandgap at 1.5–1.7 eV, but the direct gap is close in energy (1.6–1.8 eV),
showing promise as a solar absorber.75 Cu3BiS3 nanocrystals were synthesized, and the corresponding
nanocrystal-film showed a clear photoresponse in I–V measurements;76 however, there are few studies
reporting its incorporation in photovoltaic devices.

The first report on the efficiency of Cu3BiS3 employed nanosheets, obtained by a solvothermal
route, that were used as a sensitizer on TiO2 nanorods. The reported energy conversion efficiency of
the Cu3BiS3/TiO2 thin-film solar cell was a promising 1.281%.77

More recently, a Cu3BiS3 thin film was deposited by a dimethyl sulfoxide (DMSO)-based solu-
tion coating process and subsequent annealing in a nitrogen atmosphere. A solar cell combining
wittichenite as a p-type material and CdS as an n-type semiconductor was fabricated, achieving a
power conversion efficiency of 0.17%.78 The authors attribute the quite low short-circuit current to
an inadequate band alignment between the two semiconductors, indicating that improved efficiencies
could be expected with a more appropriate n-type material.

C. Cu4Bi4S9

To date the highest efficiencies using copper-bismuth sulfides have been obtained employing
Cu4Bi4S9 (Fig. 4). As commented in Sec. III, the anisotropic orthorhombic structure can be respon-
sible for the limited efficiency. Indeed, most of the studies on Cu4Bi4S9 focus on the preparation of
1D structures (nanoribbons or nanobelts) and their incorporation in solar cells.

High conversion efficiencies, over 6%, have been observed for Cu4Bi4S9 when nanoribbons
obtained through a solvothermal method were used as p-type materials combined with n-type oxides,
like In2O3 or TiO2, and using In2S3 as a buffer layer.79 Later the efficiency was increased to 6.4%
by using n-type ZnO nanowires coated with an In2O3 buffer layer and Cu4Bi4S9 as the absorber and
hole transport layer.80 More recently, efficiencies have approached 7% for bulk heterojunctions of
Cu4Bi4S9 and graphene oxide deposited on a α-Fe2O3 layer.81

V. AgBiS2

In contrast to Bi2S3 and the copper-bismuth sulfide family, AgBiS2 crystallizes in symmetrical
crystalline structures: hexagonal at low temperatures, and a pseudo-cubic rock salt structure at high
temperatures and as nanocrystals (Fig. 4). This fact enables possible omnidirectional transport of
carriers.82 Initial reports described AgBiS2 as an n-type material with a favorable direct bandgap
between 1.0 and 1.4 eV.83,84

As a first approach, AgBiS2 nanocrystals were used as a sensitizer or counter-electrode in dye
sensitized solar cells (DSSCs). The first AgBiS2 nanoparticles were synthesized on TiO2 using
a sequential ionic layer adsorption reaction (SILAR) process. The liquid-junction semiconductor-
sensitized solar cells fabricated with the photoanode showed a power conversion efficiency of 0.53%
under 1 sun, and of 0.76% at a reduced light intensity of 0.148 sun.85 More recently, a TiO2 nanorod
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array was decorated with AgBiS2 nanocrystals electrochemically deposited, reaching a maximum effi-
ciency of 0.95%.86 Using a related approach, AgBiS2 nanocrystals were synthesized by a solvothermal
process and used as a contra-electrode in a polysulfide electrolyte DSSC. The overall power conver-
sion efficiency was 2.09%, higher than the reference device using platinum as a counter-electrode
(1.73%).87

Finally, AgBiS2 nanocrystals were used as an active layer in solution-processed solar cells. The
effect of treating the nanocrystals with different ligands was studied, observing that treatment with
tetramethylammonium iodide generates films with intrinsic behavior. In the optimized device (6.3%
certified efficiency), the AgBiS2 layer was sandwiched between an electron transport/hole blocking
substrate made from a thin layer of ZnO and an ultrathin electron blocking/hole transport PTB7
polymer layer. The promise of AgBiS2 as a lead-free photovoltaic material is highlighted by a high
short-circuit current of 22 mA/cm2, with an active layer of only 35-nm thick. Furthermore, all the
materials in the solar cell are non-toxic, and excluding the ITO layer and the metal contacts, all the
layers are solution processed under ambient conditions and low temperatures.88

This study already identified some of the factor limiting performance: inefficient extraction of
carriers at higher light intensities (especially for devices thicker than 50 nm), trap-assisted recombina-
tion processes, poor carrier transport, and incomplete extraction before recombination. Some possible
solutions could be improvements in the synthesis, better nanocrystal passivation (ligand/surface
treatments), introduction of light-trapping schemes, or nanostructuring of the active layer.

In another study, AgBiS2 nanocrystals were obtained using an improved amine-based synthesis
route.89 Films fabricated with these nanocrystals showed improved carrier mobility, reduced carrier
concentration, and improved photosensitivity, as compared to nanocrystals synthesized with oleic
acid. This allowed us to fabricate solar cells with thicker active layers leading to improved efficiencies.
Indeed, the optimal thickness of a champion solar cell was increased from 35 nm to 65 nm yielding
a maximum efficiency of 4.3% using P3HT as a hole transport layer. This value compares well with
previously reported values of 3.9% for a 35 nm thick device88 and 2.6% for a 65 nm thick device
fabricated with the oleic acid synthesis.

Recently, AgBiS2 films were fabricated by spray pyrolysis.90 In the optimized device, a
60–70 nm AgBiS2 layer was integrated between a ZnO electron transport layer and a MoO3-modified
spiro-OMeTAD hole transport layer. Devices exhibited a maximum power-conversion efficiency of
1.5% with an aperture of 0.16 cm2 and 1.2% for a larger area of 1 cm2. Again, significant short-
circuit currents were observed (18 mA/cm2). When fabricating devices with active layers thicker
than 70 nm, an enhancement in open-circuit voltage and field factor was observed but short-circuit
current dramatically decreased. Interestingly, solar cells showed no degradation when stored for
1 month under diffuse light under ambient conditions at approximately 50% relative humidity and
24 ± 2 ◦C.

These studies point to the fact that with further work on AgBiS2 efficiencies approaching those
of the toxic counterparts could be achieved.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this Research perspective, we have summarized some of the bismuth-based materials that
could serve as alternatives to the best performing, but highly toxic, materials used in perovskite or
quantum dot solar cells. These materials fulfill the requirements of being composed of abundant and
non-toxic elements. Moreover, they exhibit adequate properties for photovoltaics like high absorption
coefficients and suitable bandgaps, plus additional attractive characteristics in terms of robustness
and stability.

Apparently, one of the main limiting factors of these bismuth-based materials seems to be the
anisotropy of the crystalline structures, forced by the presence of the ns2 lone pair. This points to two
routes to improve efficiency. On the one hand, take advantage of the anisotropic, low-dimensional
crystalline structures by optimizing carrier transport through the growth of properly aligned and
connected 1D structures (nanorods, nanowires, nanoribbons, etc.). On the other hand, identify more
ternary compounds like AgBiS2 which crystallize in symmetrical crystalline structures or perovskites
that form higher dimensional octahedral networks. In this sense, a study explaining the difference in
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crystalline structures for materials with alternate cations would be extremely interesting, especially
if it could predict the crystalline structure of these compositions.

Even more, these materials have surprisingly received little attention. As a result, strategies
that have proven successful in analogous systems—including alloying, doping, surface treatments
with ligands, adequate alignment of semiconductors, or formation of bulk heterojunctions—remain
largely unexplored.91–94 These areas would be of interest in future studies and could further improve
the efficiency of devices based on these abundant, non-toxic materials.

Finally, bismuth-based materials find applications in other optoelectronic devices like photode-
tectors,95–97 photocatalytic processes like solar-driven hydrogen production or light degradation of
pollutants,98–100 other clean-energy devices like batteries or thermoelectric devices,82,101–104 and as
theragnostic agents (bioimaging + photothermal therapy).105–107 All these areas will benefit from a
better understanding and improvement of the properties of bismuth-based materials.
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