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Protein dynamics promote hydride tunnelling in substrate 

oxidation by aryl-alcohol oxidase†  

Juan Carro,a Marta Martínez-Júlvez,b Milagros Medina,b Angel T. Martíneza* and Patricia Ferreirab* 

The temperature dependence of hydride transfer from the substrate to the N5 of the FAD cofactor during the reductive 

half-reaction of Pleurotus eryngii aryl-alcohol oxidase (AAO) is assessed here. Kinetic isotope effects on both the pre-

steady state reduction of the enzyme and its steady-state kinetics, with differently deuterated substrates, suggest an 

environmentally-coupled quantum-mechanical tunnelling process. Moreover, those kinetic data, along with the 

crystallographic structure of the enzyme in complex with a substrate analogue, indicate that AAO shows a pre-organized 

active site that would only require the approaching of the hydride donor and acceptor for the tunnelled transfer to take 

place. Modification of the enzyme’s active-site architecture by replacement of Tyr92, a residue establishing hydrophobic 

interactions with the substrate analogue in the crystal structure, in the Y92F, Y92L and Y92W variants resulted in different 

temperature dependence patterns that indicated a role of this residue in modulating the transfer reaction.  

Introduction 

Breakage of a C–H bond followed by H transfer is a key biochemical 

process in which many enzymes rely for their catalysis.1 Among 

them, flavin-containing oxidoreductases of the glucose-methanol-

choline oxidase/dehydrogenase (GMC) superfamily are known for 

their ability to catalyse the oxidative dehydrogenation of a diversity 

of alcohol compounds. Aryl-alcohol oxidase (AAO) is an extracellular 

GMC enzyme, widely identified in basidiomycetes genomes, that 

plays a role in lignocellulose degradation supplying H2O2 to both 

ligninolytic peroxidases (in white-rot decay) and Fenton attack to 

polysaccharides (in brown-rot decay).2-5 AAO shows a broad 

specificity oxidising aromatic lignin-related compounds and fungal 

metabolites with conjugated primary alcohols. Moreover, they are 

suitable biocatalysts in the production of bioplastic precursors and 

in the deracemization of chiral compounds.6,7 

At present, only the crystal structure of AAO from Pleurotus 

eryngii is available,8 which has been further characterised and used 

as a model AAO enzyme.9,10 This enzyme catalyses the oxidative 

dehydrogenation of a plethora of aromatic primary alcohols11,12 and 

gem-diols13 to their corresponding aldehydes and acids thanks to 

the (non-synchronous) concerted14: i) abstraction of a H+ by the 

catalytic base His502 conserved in other members of the GMC 

oxidoreductase superfamily9 and ii) stereoselective H– transfer (HT) 

from the pro-R position of the substrate during the reductive half-

reaction of the enzyme (Scheme 1).7,10 H– is afterwards transferred 

to the N5 of the FAD cofactor, thereby reducing it, and to O2 during 

AAO reoxidation. The high primary substrate kinetic isotope effect 

(KIE)7 observed during the reductive half reaction, together with a 

moderated secondary substrate KIE, suggest hydrogen tunnelling 

modulation during HT.7 This transfer is the rate-limiting step of the 

whole AAO catalysis, and its mechanism, the scope of this 

investigation. 

Hydrogen transfer is nowadays regarded as a fully quantum-

mechanical process governed by a hierarchy of enzyme motions.15 

This “environmentally coupled full tunnelling model” postulates 

two types of protein motions involved in enzyme catalysis: pre-

organisation and reorganisation. Pre-organisation involves large 

portions of protein that could be far from the active site. 

Reorganisation motions involve heavy atoms within the active site 

and include “passive” and “active” dynamics. “Passive” dynamics 

reorganise the active site in a way that create an appropriate 

ground-state structure for catalysis, while “active” dynamics, also 

known as gating, help sample donor-acceptor distances (DAD) 

between substrate and enzyme. Such sampling brings the reacting 

atoms together so that their wave functions overlap and, thus, 

particles can be transferred across the barrier width, which is the 

basic premise of tunnelling. These protein motions have gained 

momentum because of its involvement in catalysis and, especially, 

in hydrogen transfer tunnelling.16-20 

In this work, KIEs on isotopically mono- and di-substituted 

alcohol substrates, both in steady-state and transient-state kinetics, 

have been used to assess the temperature dependence of the HT. 

Then, disruption of the AAO active site by replacement of Tyr92, 
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involved in the stacking-stabilisation of the substrate at the active 

site,21 has been used to unveil the role that the conformation of the 

substrate binding pocket plays in promoting the HT. These studies 

are complemented with crystallographic data that shed light on the 

catalytically relevant position of the substrate into the active site 

and the distances over which the H– must be transferred. 

Experimental 

Reagents 

Glucose oxidase type VII from Aspergillus niger, glucose and p-

methoxybenzyl alcohol (≥ 98%) were purchased from Sigma-Aldrich 

(Saint Louis, MO, USA). Dideuterated [α-2H2]-p-methoxybenzyl and 

monodeuterated (R)-[α-2H]-p-methoxybenzyl alcohol were 

synthesised in the Institute of Chemical Synthesis and 

Homogeneous Catalysis of Zaragoza University (Spain). 

Enzyme expression and purification 

Wild-type recombinant (hereinafter native) AAO from Pleurotus 

eryngii (GenBank accession number F064069) was heterologously 

produced in Escherichia coli W3110 using the pFLAG1 vector. Y92L, 

Y92F and Y92W mutated variants were prepared using the 

QuikChange® site-directed mutagenesis kit (Stratagene, Santa Clara, 

CA, USA), as described previously.21 The enzyme was over-

expressed as inclusion bodies, in vitro refolded in the presence of 

FAD and purified by ion-exchange chromatography.22 Enzyme 

concentration was determined spectrophotometrically using the 

molar absorption of native AAO and its Y92L, Y92F and Y92W 

variants (ε463 = 11,050 M-1·cm-1, ε463 = 11,240 M-1·cm-1, ε463 = 10,044 

M-1·cm-1 and ε457 = 10,693 M-1·cm-1, respectively). The molar 

absorption coefficients were calculated by heat denaturation and 

determination of the amount of FAD released.22 

Steady-state kinetics 

Steady-state kinetic constants were measured by following 

spectrophotometrically the oxidation of p-methoxybenzyl alcohol 

into p-anisaldehyde (Δε285 = 16,950 M-1·cm-1). Bi-substrate kinetics 

were analysed by varying both the alcohol and O2 concentrations in 

50 mM sodium phosphate, pH 6.0, at 10, 15, 20, 25 and 30 °C. 

These reactions were performed in screw-cap cuvettes in which 

buffer was equilibrated using different O2/N2 mixtures that were 

bubbled for 15 min in a thermostatic bath at the desired 

temperatures. O2 solubility in water strongly depends on 

temperature and, thus, actual concentrations were calculated for 

each gas mixture and temperature. Reactions were triggered by 

addition of the alcohol substrate and AAO (3-5 nM final enzyme 

concentrations) with syringes into the cuvette with a final volume 

of 1 mL. Initial rates were calculated as the ratio between 

absorbance and time from the linear phase of the oxidation of 

alcohol to aldehyde. Kinetic constants were obtained by fitting the 

observed rate constants to Eq. 1, describing a ternary mechanism: 

ν

e
=

�cat ��

	m(ox )�+	m(al )�+	d�+��
                                                             

 

where ν stands for the initial velocity; e is the enzyme 

concentration; kcat is the maximal turnover number; A is the alcohol 

concentration; B is the O2 concentration; and Km(ox) and Km(al) are the 

Michaelis-Menten constants for O2 and alcohol substrates, 

respectively. 

Rapid kinetics experiments 

Reduction rate constants were determined using a stopped-flow 

spectrophotometer from Applied Photophysics Ltd. (Surrey, United 

Kingdom), model SX17.MV, under anaerobic conditions. Solutions, 

buffers, substrates and enzymes (native AAO and mutated variants) 

were poured into glass tonometers, connected to an anaerobic 

train and subjected to 20–25 cycles of evacuation and Ar flushing. 

Glucose (10 mM final concentration) and glucose oxidase (10 U·mL-

1) were added after some vacuum-Ar cycles to all solutions to 

ensure anaerobiosis. The stopped-flow equipment was made 

anaerobic by flushing a solution of sodium dithionite that 

scavenged all traces of oxygen. Dithionite was then removed by 

rinsing the apparatus with anaerobic 50 mM sodium phosphate, pH 

Scheme 1. Scheme of the reductive half-reaction in AAO. The oxidised FAD abstracts a hydride (two electrons plus the pro-R H from Cα position of the 
alcohol). His502 acts as a catalytic base abstracting a proton from the hydroxyl group of the substrate. His546 contributes to forming a hydrogen bond with 
the oxygen atom of the hydroxyl group. This reaction gives rise to the oxidised product (an aldehyde), the reduced (hydroquinone) form of FAD, and the 
double-protonated His502. 

(1) 

His546

His502

Alcohol

pro-R

pro-S Aldehyde

His546

His502

FAD FADH2
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6.0. Reactions were followed with the photodiode array detector, 

and baseline was made with anaerobic 50 mM sodium phosphate, 

pH 6.0. Kinetic constants were measured by mixing ~ 20 μM AAO 

with increasing concentrations of p-methoxybenzyl, [α-2H2]-p-

methoxybenzyl and (R)-[α-2H]-p-methoxybenzyl alcohols using the 

single-mixing mode at temperatures of: i) 6, 8, 10, 12 and 14 °C for 

native, Y92F and Y92L; and ii) 12, 16, 20 and 25 °C for Y92W. 

Temperature was maintained constant with a thermostatic bath, 

and enzyme and substrate were equilibrated for 10 min prior to 

measurements. Observed rate constants (kobs) were estimated by 

global fitting of the reduction spectra of the enzyme to a two-

species model using the ProKineticist software from Applied 

Photophysics. Reduction rate constants were estimated by 

nonlinear fitting of the observed rate constants at different 

substrate concentrations to Eq. 2: 

where kobs is the observed rate for flavin reduction at a given 

substrate concentration (A); kred and krev are the limiting rates for 

HT from the substrate to flavin N5 and its reverse reaction, 

respectively, at saturating substrate concentration; and Kd stands 

for the dissociation constant of the enzyme-substrate complex.  

Data analysis 

Data analysis was performed using SigmaPlot software (Systat 

Software Inc., San Jose, CA, USA). Temperature dependence of the 

calculated rate constants (kcat, kcat/Km and kred) was estimated by 

fitting to the Arrhenius equation (Eq. 3). This allowed the estimation 

of the Arrhenius pre-exponential factors for protium and deuterium 

isotopes (AH and AD respectively) and their corresponding activation 

energies (EaH and EaD). Primary KIE values (D
k) (i.e., the ratios of the 

rate with protium over the rates with deuterium) were determined 

using Eq. 4. Secondary KIE values (D2k) were estimated as the ratio 

between the rate constants of mono-deuterated and di-deuterated 

substrates. Combination of Eqs. 3 and 4 led to the graphic 

representation of the temperature dependence of the KIE. 

Crystallization, data collection and AAO:p-anisic acid structure  

AAO was crystallized in complex with its final product and inhibitor 

p-anisic acid. Crystallization was achieved from a protein solution at 

6 mg·mL-1 mixed with p-anisic acid (1.35 mM), both in 150 mM NaCl 

and 100 mM NaK2PO4, pH 7.0. 0.5 µL of this mixture were added to 

0.5 µL of mother liquor consisting of 0.1 M sodium acetate, pH 4.5, 

and 1.0 M di-ammonium hydrogen phosphate. Crystals were 

cryoprotected with reservoir solution containing 20% of glycerol. 

Diffraction data sets were collected on the I24 beamline at the 

Diamond Synchrotron (Oxfordshire, UK) at 100 K using a 

wavelength of 0.96862 Å. Data were processed, scaled and reduced 

with XDS23 and SCALA24 from the CCP4 package.25 MOLREP26 from 

CCP4 was used to solve all the structures with the native AAO 

structure (pdb 3FIM) as search model. Refinements were 

performed automatically by REFMAC 527 from CCP4 and manually 

by COOT28. PROCHECK29 and MOLPROBITY30 were used to assess 

and validate the final structures.  

Crystals belonged to the P6422 hexagonal space group with one 

AAO:p-anisic acid complex in the asymmetric unit. Residues lacking 

electron density were not included in the final models. Statistics for 

data collection and refinement are shown in Table S1. Coordinates 

are deposited in the PDB with accession number 5OC1.  

Results 

Crystal structure of AAO:p-anisic acid complex 

The crystal structure of AAO in complex with p-anisic acid was 

resolved at a resolution of 2.3 Å. p-Anisic acid acts as a competitive 

inhibitor of AAO that binds to the enzyme active site.11 It is also the 

product of the AAO reaction with the hydrated gem-diol form of p-

anisaldehyde.13 

The structural model of AAO:p-anisic acid complex comprises 

residues 2-566, 1 FAD, 1 p-anisic acid, 5 glycerol and 280 water 

molecules. Structural superposition of the complex with the ligand-

free AAO (pdb 3FIM) shows a root-mean-square deviation value of 

0.21 Å (superimposing 565 Cα atoms) (Fig. 1A) concluding that their 

overall structures are pretty similar. The crystal structure shows the 

p-anisic acid tightly bound with distances from its carboxylic O 

atoms to the Nε atom of His502 (the catalytic base during the AAO 

reductive half reaction), the Nδ atom of His546 and the N5 atom of 

the FAD isoalloxazine ring of 2.55, 2.72 and 2.99 Å respectively (Fig. 

1B). This binding mode is compatible with redox catalysis, although 

in this structure it is the acid, instead of the alcohol, what is found 

as a ligand in the active site. Several other residues located at the 

active site, Phe397 and Tyr92, as well as the FAD itself, can establish 

hydrophobic interactions with atoms of the ligand molecule (Fig. 

1B).  

Tyr92, which is mutated in this work to unveil its involvement in 

the HT reaction, is located in a triad of residues —with Phe397 and 

Phe501— that acts as a hydrophobic bottleneck separating the 

active site of the enzyme from the outer environment. Moreover, it 

has been suggested that it establishes aromatic stacking 

interactions that help the substrate attain a catalytically competent 

position inside the active site.21 As depicted in Fig. 1B, the Tyr92 

position does not seem altered upon the p-anisic acid binding, since 

it stabilises it through a T-stacking aromatic contact. 

Temperature dependence of AAO rate constants 

To investigate the temperature dependence of AAO catalysis, 

especially of HT during the reductive half reaction, bi-substrate 

steady-state and transient state kinetics were analysed for native 

AAO at different temperatures using deuterated forms of its 

physiological alcohol substrate.31 α-Protiated and two different α-

deuterated p-methoxybenzyl alcohols were employed: i) the 

monodeuterated substrate, in which only the pro-R H is substituted 

((R)-[α-2H]-p-methoxybenzyl alcohol); and ii) its dideuterated 

counterpart, where both H atoms bound to the α carbon are 

isotopically substituted ([α-2H2]-p-methoxybenzyl alcohol).  

 

�obs =
�red�

	d + �
+ �rev  (2) 

(3) 

(4) 

� = � × �
��
��  

KIE =
�H

�D
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Previous studies have described that AAO turnover (kcat) is 

limited by the rate of HT, reflecting only this chemical step.10 The 

temperature dependences of kcat values, together with the 

temperature dependence of the primary KIE values obtained, are 

shown in Fig. 2A and B (the kinetic constants estimated every 5 ºC 

between 10 ºC and 30 ºC for the α-protiated and [α-2H2]-p-

methoxybenzyl alcohols are shown in Table S2). The turnover 

dependences were fitted to the Arrhenius equation to estimate the 

Arrhenius pre-exponential factors (A) and the activation energy (Ea), 

which allowed calculation of the differences in activation energies 

(ΔEa(D-H) = EaD – EaH) as well as the ratio between pre-exponential 

factors (AH/AD) (Table 1). The Ea for turnover with α-deuterated 

substrate was higher than that obtained with the α-protiated 

substrate, obtaining a large temperature-dependent KIE (ΔEa(D-H)) 

and a value for the isotope effect on the Arrhenius pre-exponential 

factor below unity (AH/AD<< 1).  

Table 1. Arrhenius parameters from the temperature dependence 
of the turnover (kcat) and hydride transfer (kred) reactions in the 
oxidation of α-protiated and (di- and [R]mono-) α-deuterated p-
methoxybenzyl alcohols by native AAO. 

 kcat  kred 

 α-protiated  α-protiated 
AH (s-1) 9.8 × 106  2.5 × 108 
EaH(kcal·mol-1) 6.4  8.3 

 [α-2H2]  [α-2H2]  (R)-[α-2H] 

AD (s-1) 2.3 × 1013  3.6 × 108  4.2 × 1010 
EaD (kcal·mol-1) 16.2  9.8  12.2 
AH/AD 4.3 x 10-7  0.694  0.006 
ΔEa(D-H)(kcal·mol-1) 9.9  1.5  3.9 
Measurements in 50 mM phosphate, pH 6, 10–30 °C (every 5 °C) and 6–14 
°C (every 2 °C) for steady and pre-steady state assays, respectively. kcat, and 
kred at different temperatures were  fitted to the Arrhenius equation. 

The high D
kcat values observed clearly indicated that the 

breakdown of Cα-H/D is limiting the flavin reduction step, and 
hence, the overall AAO catalysis. In contrast, the catalytic efficiency 
(kcat/Km(al)) estimated using the α-deuterated substrate showed a 
temperature dependence pattern similar to that for the α-protiated 
substrate, leading to a KIE that is temperature independent 
(average 4.3 ± 1.3) (Fig. 2C and D, and Table S2). This D(kcat/Km(al)) 
value was lower than the D

kcat values (Table 2), indicating that the 
cleavage of CH bond becomes masked by other processes during 
overall AAO catalysis. 

To reinforce the above results, the effect of temperature 
dependence on the rate constant for flavin reduction and the 
associate KIE effect were investigated to directly probe the HT of 
AAO (kred and Kd values estimated with each substrate, every 2 ºC 
between 6 ºC and 14 ºC, are provided in Table S3). Arrhenius plots 
of the estimated kred for native AAO with each substrate are shown 
in Fig. 3A, and the thermodynamic parameters estimated by fitting 
to the Arrhenius equation are provided in Table 1. The activation 
energy for D– abstraction with (R)-[α-2H]-p-methoxybenzyl alcohol is 
higher than that obtained with [α-2H2]-p-methoxybenzyl alcohol. As 
a consequence, the KIE estimated with the monodeuterated 
substrate is more temperature-dependent than that calculated for 
the dideuterated substrate (3.9 and 1.5 kcal·mol-1 for ΔEa(D-H), 
respectively), opposite to the pattern of primary Dkred (Table S4).  

Table 2. KIEs determined from the temperature dependence of the 
steady-state kinetic parameters in native AAO reduction.  

T (°C) D
kcat 

D
(kcat/Km) 

10 15.6 ± 0.6 3.5 ± 0.5 
15 17.4 ± 0.6 4.9 ± 0.6 
20 9.1 ± 0.2 4.3 ± 0.7 
25 7.9 ± 0.1 3.9 ± 0.2 
30 5.4 ± 0.4 4.9 ± 0.8 

KIE values are the ratio between activities from bi-substrate kinetics on [α-
H2]/[α-2H2]-alcohols (value ± S.D.). 

Fig. 1. Crystallographic structures of the AAO:p-anisic acid complex (pdb 5OC1, wheat) and ligand-free AAO (pdb 3FIM, green). A. Backbone 
superimposition. B. Detail of the superimposed active sites (CPK coloured, complex C atoms in wheat and free form C atoms in green) with distances (in Å)
from both carboxylic O to flavin N5 and Nε of His502.

A B

F397

F501

Y92

H502

H546

p-anisic 

acid

2.99 2.55

2.72

FAD

p-anisic
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Besides, the values for AH/AD were very close to zero and unity for 

(R)-[α-2H] and [α-2H2]-p-methoxybenzyl alcohols, respectively. The 

highest D
kred values obtained for the [α-2H2]-p-methoxybenzyl 

alcohol with respect to those found for the R isomer (Table 3) 

indicated a secondary KIE (D2kred) that increases with temperature 

(Table S4), opposite to the behaviour of the primary Dkred. 

 Temperature dependence of the HT reaction in Tyr92 variants 

The role that the AAO binding pocket plays in HT modulation was 

investigated through the kinetic characterisation of the HT reaction 

of several Tyr92 variants (Y92F, Y92L and Y92W). The reductive half- 

Table 3. KIEs determined from the temperature dependence of the 
HT reaction (kred) in native AAO reduction by (di- and [R]-mono-) α-
deuterated alcohols. 

T (°C) [α-
2
H2]  (R)-[α-

2
H] 

6 9.9 ± 0.3 6.7 ± 0.3 
8 9.9 ± 0.1 6.9 ± 0.5 

10 9.6 ± 0.2 6.0 ± 0.3 
12 9.1 ± 0.2 5.7 ± 0.2 
14 8.9 ± 0.3 5.8 ± 0.3 

kred constants were calculated for α-protiated and α-deuterated-[α-2H2] and 
(R)-[α-2H]-p-methoxybenzyl alcohols. KIE values for kred (

D
kred) are the ratio

between HT constants on α-protiated/α-deuterated alcohols (value ± S.D.). 

reactions were analysed by using α-protiated and [α-2H2]-p-

methoxybenzyl alcohols every 2 ºC between 6 ºC and 14 ºC for Y92F 

and Y92L, and at 12, 16, 20 and 25 ºC for Y92W. The spectral 

evolutions of these Y92 variants with α-deuterated substrate were 

similar to those previously reported with α-protiated substrate,21  

indicating a full two-electron flavin reduction (Fig. S1). The Y92F and 

Y92L variants showed similar reduction rates and affinity to those 

reported for native AAO, while Y92L showed 2-fold lower affinity 

(kred and Kd values in Tables S5 and S6). Moreover, the 

incorporation of a bulkier residue in the Y92W variant produced a 

strong decrease in HT efficiency (7- and 200-fold lower reduction 

rate and affinity, respectively (Table S7). 

Arrhenius plots for all Tyr92 variants are provided in Fig. 4, and 

their Arrhenius parameters are shown in Table 4. Regarding the 

Y92F variant, its overall behaviour resembles very closely that of the 

native AAO (Table 1), with similar activation energy for D– versus H– 

abstraction. Therefore, their thermodynamic parameters were 

virtually identical to those calculated for the native (ΔEa(D-H) ≈ 1.5 

and AH/AD ≈ 0.6). 

Substitution of Tyr92 with leucine, a non-aromatic residue that 

probably produces some stacking interaction with the alcohol 

substrate, led to a slightly different behaviour. This variant has a 

sharpest temperature-dependent KIE than the native protein. The 

Fig. 2. Temperature dependences of steady-state kinetic parameters for native AAO reduction. A. Arrhenius plots of kcat with [α-H2]-p-methoxybenzyl 
alcohol (filled circles) and [α-2H2]-p-methoxybenzyl alcohol (open circles) B. Temperature dependence of the KIE of kcat (

D
kcat). C. Arrhenius plots of kcat/Km

with [α-H2]-p-methoxybenzyl alcohol (filled triangles) and [α-2H2]-p-methoxybenzyl alcohol (open triangles). D. Temperature dependence of the KIE of 
catalytic efficiency D(kcat/Km). Vertical bars represent standard deviations. All data represented here are listed in Tables 2 and S2.
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 Y92L variant showed more temperature-dependent rates for D– 

abstraction than for H– abstraction (ΔEa(D-H) is larger than that for 

native AAO). As a consequence, the Y92L variant isotope effect on 

the Arrhenius pre-exponential factor is very close to zero.  

Substitution of Tyr92 with tryptophan seems to disrupt the 

behaviours analysed so far with p-methoxybenzyl and [α-2H2]-p-

methoxybenzyl alcohols. The activation energy for D– abstraction by 

the Y92W variant shows a temperature dependence that is similar 

to that for H– abstraction (ΔEa(D-H) is below unity), leading to a 

virtually temperature independent KIE and a AH/AD value greater 

than unity.  

Discussion 

AAO structure fosters HT 

Unlike other crystal structures from the GMC superfamily, the 

structure of P. eryngii AAO shows a buried active site with a unique 

Gln395-Thr406 loop that restricts the access of substrates.8  

 

Table 4. Arrhenius parameters from the temperature dependence 
of the hydride transfer (HT) and deuteride transfer (DT) reaction 
(kred) in oxidation of [α-H2] and (R)-[α-2H]-p-methoxybenzyl alcohols 
by Tyr92 variants. 

  Y92F Y92L Y92W 

 

HT 
  kred (s

-1) 108.4 ± 0.8 90.1 ± 0.4 13.9 ± 0.8 
  AH (s

-1) 3.1 × 108 9.7 × 106 7.7 × 107 

  EaH (kcal·mol-1) 8.3 6.6 8.8 
     

DT 
  kred (s

-1) 12.3 ± 0.1 11.0 ± 0.2 1.5 ± 0.1 
  AD (s

-1) 4.8 × 108 3.4 × 109 1.5 × 107 
  EaD (kcal·mol-1) 9.9 11.1 9.1 

                  AH/AD 0.591 0.003 5.260 
ΔEa(D-H) (kcal·mol-1) 1.6 4.5 0.3 

Measurements in 50 mM phosphate, pH 6, every 2 °C between 6 and 14 °C 
for Y92F and Y92L and at 12, 16, 20 and 25 °C for Y92W. kred constants at 
different temperatures were fitted to the Arrhenius equation to obtain the 
parameters shown above. 

 

Therefore, the catalytic N5 of FAD is only accessible through a 

hydrophobic funnel-shaped channel with a bottleneck delimited by 

lateral side chains of Tyr92, Phe397 and Phe501. Diffusion 

simulations of the p-methoxybenzyl alcohol substrate into the AAO 

active site described motion reorganization of the Gln395-Thr406 

loop, including Phe397 side chain oscillations to allow the entrance 

of substrates.14 Once in the active site, the alcohol substrate would 

adopt a catalytically competent position suitable for a concerted 

proton abstraction from its α-hydroxyl by the His502 catalytic base 

and HT from the pro-R hydrogen to the flavin N5 at a distance of 

2.4–2.5 Å.  

In this work, the AAO crystal structure complexed with p-anisic 

acid closely resembles that of the previously theoretical model of 

AAO:p-methoxybenzyl alcohol complex with the Cα atom of ligand 

and the FAD N5 atom at a distance of 2.8 Å (Fig. S3).14 Remarkably, 

the AAO active-site cavity is already pre-formed to attain the 

catalytically competent geometry and does not undergo any 

conformational changes upon inhibitor binding. Moreover, overall 

comparison of this complex structure with the ligand-free AAO 

structure shows minimal rearrangements at the fold level, which 

cannot explain how alcohol substrate is completely embedded 

inside an inaccessible active site. 

Burial of substrates is a common feature developed by a large 

number of flavooxidases involved in HT reactions.32-35 Some of 

them, as D-amino acid oxidase and cholesterol oxidase, show open 

and closed conformations with active-site gates controlling the 

entrance of ligands into the biding pocket. Others, such as the 

vanillyl-alcohol oxidase (VAO) involved in the oxidation of phenolic 

benzyl alcohols, do not show any apparent structural elements 

involved in such conformational changes and bind ligands without 

modifying the conformation of its catalytic residues.36 Thus, AAO 

and VAO show a highly pre-organized active site able to oxidize a 

broad range of benzyl alcohols.  

Fig. 3. Temperature dependences of the HT reaction for the reduction of 
native AAO A. Arrhenius plots of kred with [α-H2]-p-methoxybenzyl alcohol 
(filled circles), (R)-[α-2H]-p-methoxybenzyl alcohol (open circles) and [α-2H2]-
p-methoxybenzyl alcohol (triangles). B. Temperature dependence of the KIE 
of kred (

D
kred) with (R)-[α-2H]-p-methoxybenzyl alcohol (triangles) and [α-2H2]-

p-methoxybenzyl alcohol (open circles). Vertical bars represent standard 
deviations. All data represented here are listed in Tables 3 and S3.
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Environmentally-modulated tunnelling in AAO HT reaction 

We also studied the effect of temperature on the KIEs with 

deuterated p-methoxybenzyl alcohol to further investigate whether 

HT proceeds through tunnelling in AAO. Previous studies indicated 

that the AAO overall turnover is limited by the H– or D– transfer 

from p-methoxybenzyl alcohol to the N5 of FAD.10 The obtained 

temperature effects on the kcat and D
kcat values suggest that 

tunnelling plays a role in HT during AAO catalysis. Evidence for this 

assumption is provided by the temperature-dependence of D
kcat 

with values higher than expected in a semiclassical approach, as 

well as with the AH/AD ratio very close to zero. However, the lower 
D(kcat/Km(al)) values when compared to the D

kcat and D
kred indicated 

kinetic complexity for p-methoxybenzyl alcohol oxidation. In the 

catalytic mechanism of AAO, the D(kcat/Km(al)) value is given as 

follows: 

 

 

where, D
k2 ~

 D
kred, is the intrinsic isotope effect for the cleavage of 

the p-methoxybenzyl alcohol CH bond, Cf and Cr are the forward 

and reverse commitments to catalysis on catalytic efficiency, 

respectively; and D
Eq is the equilibrium isotope effect, which has a 

value of 1.24 for the conversion of an alcohol to an aldehyde.37  

The irreversibility of the AAO HT process and the lack of effect 

of oxygen concentration on the D(kcat/Km(al)) (KIE ~ 4 between 0.05–

1.3 mM O2 at 20 °C) are consistent with a negligible reverse 

commitment to catalysis. As a consequence, any decrease in the 

observed D(kcat/Km(al)) must be due to the forward commitment to 

catalysis, which is given by the ratio of the rate constant for the HT 

step on the rate constant for the dissociation of enzyme:substrate 

complex (k2/k-1).  

To avoid this kinetic complexity, the involvement of tunnelling 

in the HT reaction was directly investigated on the AAO reductive-

half reaction by transient kinetic assays. In this regard, the 

temperature dependence of Dkred with p-methoxybenzyl alcohol and 

(R)-[α-2H]-p-methoxybenzyl alcohol agrees well with the steady-

state parameters, suggesting that tunnelling plays a role in the HT. 

Fig. 4. Temperature dependences of the HT reaction for the reduction of AAO Y92 variants: A. Arrhenius plots for the reduction of Y92F with p-
methoxybenzyl alcohol (filled triangles) and [α-2H2]-p-methoxybenzyl alcohol (open triangles). B. Arrhenius plots for the reduction of Y92L with [α-
H2]-p-methoxybenzyl alcohol (filled squares) and [α-2H2]-p-methoxybenzyl alcohol (open squares). C. Arrhenius plots for the reduction of Y92W 
with [α-H2]-p-methoxybenzyl alcohol (filled diamonds) and [α-2H2]-p-methoxybenzyl alcohol (open diamonds). D. Temperature dependence of
D
kred for Y92F (triangles), Y92L (squares) and Y92W (diamonds). Vertical bars represent standard deviations. All data presented here are listed in 

Tables 4 and S5-S7.

10
3
/T (K

-1
)

3.30 3.35 3.40 3.45 3.50 3.55 3.60

ln
 D
k
re
d

1.2

1.6

2.0

2.4

2.8

10
3
/T (K

-1
)

3.32 3.36 3.40 3.44 3.48 3.52

ln
 k

re
d

0

1

2

3

4

10
3
/T (K

-1
)

3.46 3.48 3.50 3.52 3.54 3.56 3.58 3.60

ln
 k

re
d

1

2

3

4

5

10
3
/T (K

-1
)

3.46 3.48 3.50 3.52 3.54 3.56 3.58 3.60

ln
 k

re
d

1

2

3

4

5B

C D

A

Page 16 of 23Physical Chemistry Chemical Physics



ARTICLE PCCP 

8 | PCCP, 2017, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

Moreover, the AH/AD value very close to zero and the more 

favourable HT compared to DT (large value for ΔEa(D-H) with protium 

than with deuterium) indicate that DAD sampling is critical to reach 

the optimal tunnelling conformation. This gating model agrees well 

with the p-anisic binding observed in our AAO complexed structure, 

where, by similarity the reducing substrate is predicted to bind in a 

catalysis-ready conformation. It is worth mentioning that a 

combination of passive and active dynamics tunnelling is observed 

when using [α-2H2]-p-methoxybenzyl alcohol (AH/AD ∼1). The D2kred 

observed reflects a contribution of the vibrations of the pro-S 

hydrogen to those of the pro-R hydrogen at the ground state and 

the tunnelling ready state during HT with p-methoxybenzyl alcohol. 

Thus, the gating contribution is the one already observed with (R)-

[α-2H]-p-methoxybenzyl alcohol. On the other hand, the passive 

component is due to the secondary isotope effects expressing 

isotopic differences in zero point energy that change along the 

reaction coordinate of the motion assisted-activated hydrogen 

tunnelling model (appearing as isotopic differences in the 

reorganisation energy and the reaction driving force).38-40 

Tyr92 contributes to environmentally-modulated HT in AAO 

The crystal structure of the AAO:p-anisic complex agrees very well 

with previous studies indicating that the stacking-stabilising 

interaction of the aromatic substrate with the Tyr92 active site 

residue is essential for HT in alcohol oxidation by AAO.21 Therefore, 

disruption of these interactions could have even deleterious effects 

on AAO active site configuration and HT process. In this study, the 

contribution of this residue to the alcohol oxidation has been 

evidenced using the Y92F, Y92L and Y92W AAO variants. 

Replacement of Tyr92 with phenylalanine did not show any 

significant difference in HT efficiency with regard to native AAO. 

Analogously the effects on the temperature dependence for HT and 

DT with [α-H2] and [α-2H2]-p-methoxybenzyl alcohols were similar 

to those observed for the native protein, suggesting that gating is 

the main force acting during tunnelling.  

The Y92L and Y92W variants showed, in contrast, critical 

changes from the behaviour of the native enzyme. In this regard, 

the reduced isotope effect on AH/AD observed with Y92L together 

with its higher temperature dependence for DT indicate that DAD 

sampling is more relevant in this variant than in native AAO. Such 

an increase in gating contribution suggests that the Y92L active site 

is more flexible than that of the native AAO. Moreover, Y92L 

compromises the optimal disposition of the reacting atoms, as 

deduced from its higher Kd and lower HT efficiency, what can be 

compensated for increasing the DAD sampling. Similar results were 

reported for soybean lipoxygenase upon reduction in size of the 

side chain of an active-site residue.41 

Regarding the Y92W mutant, the introduction of a bulkier 

residue increases the rigidity of the active site, thereby impairing 

the gating contribution to catalysis. This assumption is a 

consequence of the temperature-independent D
kred and the large 

AH/AD ratio. These results do not indicate, however, that the 

mutation improves the configuration of the active site by 

eliminating the need for the gating contribution during catalysis, 

since HT efficiency for this variant is reduced by almost 100-fold 

with regard to native AAO. Therefore, the introduction of this 

tryptophan in the AAO active site might result in a different stacking 

interaction with the alcohol substrate at a less favourable position 

for HT21, thus hampering its efficient orientation for gating. 

Consequently, the variant is forced to rely on passive dynamics to 

attain a tunnelling relevant position for HT, which could be the 

reason why catalysis is impaired. 

Conclusions 

Results herein reported point towards HT taking place through 

quantum-mechanical tunnelling in AAO as deduced from the 

temperature dependence of the reaction parameters. Fast active 

protein motions, also known as gating, proved to play a key role in 

the HT from substrate to the FAD cofactor of the enzyme. Structural 

data reinforce the hypothesis by offering insight into the distances 

over which the particle is transferred. Structural and kinetic data 

suggest that the AAO active site is highly pre-organised to 

accommodate the substrate in a catalytically relevant position that 

only requires thermally-activated DAD sampling for the HT. Motions 

within the substrate molecule proved to be essential for DAD 

sampling, as suggested by the secondary KIE using differently-

deuterated substrates, and the different behaviour in the reduction 

of the enzyme with these substrates. Disruption of the AAO active 

site structure, by replacement of a residue directly involved in 

substrate positioning into the active site, shows that the enzyme 

commitment to catalysis is changed and other protein motions, i.e. 

passive dynamics, might be involved in compensating for this 

alteration. 
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