1	Furfural, 5-HMF, acid-soluble lignin and sugar contents in C. ladanifer
2	and E. arborea lignocellulosic biomass hydrolysates obtained from
3	microwave-assisted treatments in different solvents
4	
5	Paula Carrión-Prieto ^a , Pablo Martín-Ramos ^{b,*} , Salvador Hernández-Navarro ^a , Luis F. Sánchez-
6	Sastre ^a , José L. Marcos-Robles ^a and Jesús Martín-Gil ^a
7	
8	^{<i>a</i>} Agriculture and Forestry Engineering Department, ETSIIAA, Universidad de Valladolid,
9	Avda. Madrid 44, 34004, Palencia, Spain.
10	^b Department of Agricultural and Environmental Sciences, EPS, Instituto de Investigación en
11	Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Carretera de Cuarte s/n,
12	22071, Huesca, Spain. Phone: +34 (974) 292668; Fax: +34 (974) 239302; E-mail:
13	pmr@unizar.es
14	
15	Abstract
16	Cistus ladanifer L. and Erica arborea L. are the two most representative shrub species from
17	the Iberian Peninsula. With a view to their valorization, their biomass hydrolysate components,
18	obtained from microwave-assisted treatments with choline chloride/urea - HNO ₃ 10 %, N,N-
19	dimethylacetamide/NaHCO3 and N,N-dimethylacetamide/CH3OK as solvents, have been
20	measured using a spectrophotometric method. Concentrations of furfural and 5-
21	(hydroxymethyl)furfural (5-HMF) in the filtrate have been determined after reduction with
22	NaBH ₄ . The production of total sugars, reducing sugars and non-reducing sugars contents has
23	also been assessed. The obtained results support the choice of MW-assisted choline
24	chloride/urea deep eutectic solvent in acid media as the preferred method (over the polar aprotic
25	solvent-based solvents) for the extraction of lignin, furfural, 5-HMF and sugars from C.
26	ladanifer and E. arborea biomass, attaining the best production yields for 60 min exposure
27	times. Another is the case if the aim of the treatments is to recovery sugars from both shrubs for

28 subsequent enzymatic saccharification: the very low 5-HMF contents resulting from the

29 dimetylacetamide systems (especially is association with CH₃OK) make them highly

30 advantageous as compared to the traditional method using NaOH.

31

32 Keywords: deep eutectic solvents; furan compounds; hydrolysis; microwave; polar aprotic
33 solvents; sugars.

34

35 **1. Introduction**

36 Lignin, interlaced with cellulose and hemicellulose, forms a complex crystal structure called 37 lignocellulose that provides support and protection to plant cells [1]. This matrix is difficult to 38 degrade, requiring treatments that break down its structure, hydrolyze the hemicellulose and 39 increase the exposed surface to favor the enzymatic hydrolysis of cellulose [2]. For this purpose, 40 different approaches may be used: physical processes, such as grinding or heating; chemical 41 methods, such as the addition of acids or bases; physical-chemical treatments, such as self-42 hydrolysis or thermo-hydrolysis; and biological ones, such as the use of enzymes capable of 43 degrading lignin (ligninases or lignin-modifying enzymes, LMEs). 44 In conventional biomass treatments, thermochemical pretreatments are generally carried out 45 at high temperatures or high operating pressures in order to achieve high cellulose conversion.

46 An alternative to conventional heating is the application of microwave radiation [3-5], in which

47 the direct contact between the product and the electromagnetic field generated by the

48 microwaves results in a volumetric heating that causes an instantaneous temperature increase [6,

49 7], resulting in an acceleration of the process and higher yields under milder reaction conditions

50 with significant energy-savings [8].

51 The composition of the liquid phase of the treatments includes organic acids (mainly acetic

52 acid, formic acid and levulinic acid), furan derivatives (2-furfuraldehyde, furfural and 5-

53 (hydroxymethyl)-2-furaldehyde), and phenolic compounds (mainly coumaric acid,

54 syringaldehyde and vanillin) [9, 10]. Under acidic conditions, and especially at high

55 temperatures, furfural is readily produced from pentoses and 5-HMF is formed from hexoses.

56 Because both furfural and 5-HMF are formed from carbohydrates, they interfere with the

57 accuracy of sugar analysis of any biomass materials. Furthermore, both are harmful to the

58 fermentation of sugars if their concentrations exceed certain thresholds [11].

59 In the study presented herein, the suitability of various MW-assisted treatments in different 60 eco-friendly reaction media has been investigated with a view to breaking the intricate structure 61 of the lignocellulosic biomass obtained from two Mediterranean shrubs (viz. C. ladanifer and E. 62 *arborea*). One of the proposed treatments involves an innovative solvent category: the so-called 63 deep eutectic solvents (DESs), which consist of a hydrogen bond donor and a hydrogen bond 64 acceptor, associated with each other by means of hydrogen bond interactions, resulting in a 65 eutectic mixture with a melting temperature much lower than that of its constituents. DESs have 66 advantages over conventional ionic liquids (ILs), characterized by the formation of strong ionic 67 bonds, since the later are more expensive and toxic [12]. The other two assayed solvents have 68 been mixtures of a polar aprotic solvent (N,N-dimethylacetamide, DMAc) with weak and strong 69 bases (namely sodium bicarbonate (NaHCO₃) and potassium methoxide (CH₃OK), 70 respectively). Both categories of solvents can be used as environmentally friendly replacements 71 of conventional solvents and processes with a view to optimizing biorefineries, aiming at a 72 greener and more sustainable industry. The efficiencies of these three reaction media (a DES 73 mixture of choline chloride: urea and HNO₃ 10 %, DMAc/NaHCO₃ and DMAc/CH₃OK) have 74 been compared in terms of lignin, furfural, 5-HMF and sugars extraction. 75

76 2. Materials and methods

77 2.1. Samples and reagents

78 The study was carried out on a plot located in the municipality of Ayoó de Vidriales (42° 07'

10" N, 6° 06' 59" W), in the province of Zamora, Castilla y Leon, Spain. The chosen area (>1.2

80 ha) is a mixed shrubland in which the dominant shrub species are *Erica arborea* L. subsp.

81 angustifolius (Daveau) Sennen & Pau, and Cistus ladanifer L. cultivar 'Spanish Lime'. Details

82	on the sampling procedure, analogous to that described by Ruiz-Peinado, et al. [13], have been
83	reported in a previous paper [14]. There were no size fractionation processes, which are
84	common in annual and perennial species. Selected samples corresponded to healthy individuals
85	and featured similar characteristics to the rest of the population.
86	Samples of biomass (mainly from the stem) were dried in a stove and crushed in a knife mill.
87	Their chemical composition (elemental analysis, summative constituent analysis, and moisture
88	content) can be found in Table 1:
89	
90	[Table 1 here]
91	
92	Furfural (CAS No. 98-01-1), 5-HMF (CAS No. 67-47-0), lignin (CAS No. 8068-05-1) and
93	D-(+)-glucose analytical standards (CAS No. 50-99-7) were purchased from Sigma-Aldrich
94	Quimica SL (Madrid, Spain). The standard solutions were prepared with deionized water.
95	Sodium borohydride (CAS No. 16940-66-2), 3-amino-5-nitrosalicylic acid (DNS, CAS No.
96	831-51-6), phenol (CAS No. 108-95-2), choline chloride (ChCl, CAS No. 67-48-1), urea (CAS
97	No. 57-13-6), titanium dioxide (CAS No. 13463-67-7), N,N'-dimethylacetamide (DMAc, CAS
98	No. 127-19-5), sodium bicarbonate (CAS No. 144-55-8), potassium methoxide (CAS No. 865-
99	33-8), sodium hydroxide (CAS No. 1310-73-2) and potassium sodium tartrate (CAS No. 6381-
100	59-5) were also supplied by Sigma Aldrich.
101	
102	2.2. Methods
103	2.2.1. Microwave-assisted deep eutectic solvent
104	A deep eutectic solvent system based on choline chloride-urea (Figure 1) was assessed for
105	the hydrolysis of C. ladanifer and E. arborea biomass. Choline chloride/urea DES was prepared
106	by stirring the mixture of choline chloride and urea (mole ratio 1:2) at 80 °C until a
107	homogeneous colorless liquid was formed, which was then stored in a vacuum dryer.
108	Subsequently, biomass samples (200 mg) were treated by a mixture (1 cm ³) of choline

109	chloride/urea and HNO $_3$ 10 %, with TiO $_2$ (20 mg) as a catalyst, in a microwave digestion system
110	-a Milestone (Sorisole, BG, Italy) Ethos-One microwave oven equipped with a magnetic stirrer
111	system- at 120 °C for an "effective time" (isothermal treatment time) between 1 and of 60 min
112	(viz., 1, 5, 10, 20, 30, 40, 50 and 60 min), plus the heating and cooling ramps, which also
113	contributed to the thermal budget. The heating up to 120 °C started with a ramp set to 19
114	$^{\circ}C \cdot \min^{-1}$ during the first 5 min, followed by a second ramp at a rate of 2.5 $^{\circ}C \cdot \min^{-1}$ for 10 min.
115	The cooling down to room temperature took 25 minutes, at a rate of ~4.8 °C·min ⁻¹ . The DES
116	was finally removed by washing with water and was recovered by crystallization.
117	
118	[Figure 1 here]
119	
120	2.2.2. Microwave-assisted DMAc-sodium bicarbonate polar aprotic solvent
121	Alternatively to the DES-based method, 8 cm ³ of a colorless, water-miscible, high boiling
122	liquid -viz. N,N'-dimethylacetamide (DMAc) with formula CH ₃ C(O)N(CH ₃) ₂ - was used, in the
123	presence of 40 mg of sodium hydrogen carbonate (NaHCO ₃), as a treatment agent for C .
124	ladanifer and E. arborea wooden samples (200 mg of biomass samples). The same procedure
125	explained above for the microwave-assisted DES treatment was followed for the polar aprotic
126	solvent-based treatment. DMAc was removed by washing with water and recovered by
127	distillation.
128	
129	2.2.3. Microwave-assisted DMAc-potassium methoxide system
130	The third approach investigated for the hydrolytic treatment of C. ladanifer and E. arborea
131	biomass (200 mg) was based on a mixture of 8 cm ³ of DMAc with 40 mg of potassium
132	methoxide (commonly used as a catalyst for transesterification in the production of biodiesel).
133	The solution was then treated as in the previously discussed methods.
134	

135 2.2.4. Alkaline treatment

Solutions were prepared with 200 mg of each sample and 2 cm³ of NaOH (4 kg m⁻³), which were stirred for 24 h. From these solutions, 0.3 cm³ of each sample were isolated and then diluted to 25 cm³ (to keep the concentration within the spectrophotometer measurement range and to avoid absorption flattening due to saturation). When necessary, HCl was used to keep a neutral pH.

141

142 2.2.5. Acid-soluble lignin, furfural and 5-HMF contents

143 The acid-soluble lignin (ASL), furfural and 5-(hydroxymethyl)-furfural contents were 144 determined according to the methodology proposed by Chi, et al. [15], based on the 145 measurement of their respective maximum absorbance at 205 nm, 277 nm and 285 nm, and which makes use of the effect of the reduction with borohydride on the furfural and 5-HMF 146 147 maxima mentioned above. For these latter two chemical species, their initial absorbance in the 148 UV-vis spectrum was measured and, after the addition of 30 mg of sodium borohydride to 149 eliminate the interference of furanic compounds (followed, after 5 min, by the addition of a 150 small amount of HCl) [16], absorbance measurements were repeated. Their associated 151 absorption maxima at 277 and 285 nm completely disappeared upon reduction with NaBH₄. 152 Therefore, the furfural and 5-HMF contents could be readily calculated from the absorbance 153 difference before and after reduction (ΔA_R) at their respective wavelengths. 154 All determinations were performed with three replications, except for the kinetic studies, and

all results are in average.

156

157 2.2.6. Sugars content

158 The quantification of reducing sugars was conducted according to Miller [17], using DNS as

the most specific reagent in a solution containing sodium hydroxide and potassium sodium

160 tartrate. The solution was prepared by mixing 0.8 g of NaOH, 15 g of sodium potassium tartrate

and 0.5 g of DNS, completing up to 50 cm^3 with distilled water. To ensure the homogeneity of

162 the mixture, it was boiled for 5 minutes. It was then cooled with water and ice, 5 cm^3 of water

163 were added to compensate for the evaporated volume, and it was allowed to rest for 15 min.

- 164 With this solution, which will be referred to as 'DNS', 1:1 mixtures with the samples or the
- 165 standard solutions to be analyzed were prepared (0.5 cm^3 of DNS and 0.5 cm^3 of either the

166 sample or the standard solution). The determination of reducing sugars in these mixtures was

- 167 conducted by measuring their absorbance at 540 nm.
- 168 The total sugars determination was carried out in agreement with the method proposed by
- 169 DuBois, et al. [18]. This method is usually called 'phenol-sulfuric acid method' because in the
- 170 preparation of the measuring solutions, $1-2 \text{ cm}^3$ of sample, 1 cm^3 of phenol (5 %) and 5 cm^3 of

171 concentrated sulfuric acid (95.5 %) are mixed in the test tubes. The test tubes containing these

172 solutions were placed in a rack which was kept in a thermostatic bath, between 25 and 30 °C,

173 for 10-15 min. Glucose at various concentrations was used as a standard. The

- spectrophotometric measurement of the total sugars was carried out at 490 nm, that is, at the
- 175 wavelength at which hexoses and their methylated derivatives exhibit their maximum
- absorption. Non-reducing sugars content was calculated by difference between the total sugars
- and the reducing sugars percentages.
- All determinations were performed in triplicate biological replications, except for the kineticstudies, and all results are in average.
- 180

181 2.2.7. Calibration curves

182 In order to obtain the calibration curves for each component under study (shown in Figure

183 2), dissolutions with different concentrations of the analytical standards used as a reference (viz.

184 furfural, lignin, 5-HMF and glucose) were prepared. Absorption values for increasing

185 concentrations of the analytical standards were plotted and data was fitted with a straight line, in

- agreement with Beer's Law.
- 187 Apropos of ASL, furfural and 5-HMF, excellent linear relationships (Eq. 1-3) were obtained
- 188 at their three respective wavelengths (at λ =280 nm for ASL, at λ =277 nm for furfural and at
- 189 λ =285 nm for 5-HMF), with Pearson coefficients (R^2 values) above 0.95 in all cases.

170	$y_{ASL} = 109.11x + 0.0841; R^2 = 0.9802$	Eq. 1
191	$y_F = 270.76x + 0.2236; R^2 = 0.9534$	Eq. 2
192	$y_{HMF} = 10.56x + 0.017; R^2 = 0.9921$	Eq. 3
193	As regards the calibration curves for glucose (depicted in Figure $2b$), the equation of the	e
194	calibration curve of total sugars (TS) (Eq. 4) was built by applying the methodology propo	sed
195	by DuBois, et al. [18], measuring the absorbance at 490 nm. On the other hand, the method	d by
196	Miller [17] was used for the calibration for reducing sugars (RS) (Eq. 5), measuring the	
197	absorbance at 540 nm. R^2 values were close to 1. Eq. 6 for non-reducing sugars (NRS) is the	ne
198	difference between the calibration curves of total and reducing sugars.	
199	$y_{TS} = 5.0694x + 0.0525; R^2 = 0.9807$	Eq. 4
200	$y_{RS} = 17.867x + 0.0442; R^2 = 0.9946$	Eq. 5
201	$y_{NS} = y_{490} - y_{540} = -12.7976x + 0.0083$	Eq. 6
202		
203	[Figure 2 here]	
204		
205	2.2.8. Kinetic studies	
206	The processing of lignocellulosic biomass follows complex kinetic mechanisms involving	
	The processing of fighteen alone of officers comptent kinetic meen anishis in vorving	
207	productive reactions (for instance, taking the case of furfural and 5-HMF production, the	
207 208	productive reactions (for instance, taking the case of furfural and 5-HMF production, the conversion of cellulose to hexoses and of hemicellulose to pentoses, the generation of ison	ners
207 208 209	productive reactions (for instance, taking the case of furfural and 5-HMF production, the conversion of cellulose to hexoses and of hemicellulose to pentoses, the generation of ison and/or intermediates and the subsequent production of furanic compounds) and parasitic	ners
207 208 209 210	productive reactions (for instance, taking the case of furfural and 5-HMF production, the conversion of cellulose to hexoses and of hemicellulose to pentoses, the generation of ison and/or intermediates and the subsequent production of furanic compounds) and parasitic reactions (taking the same example, substrate fragmentation and/or reversion, furanic	ners
207 208 209 210 211	productive reactions (for instance, taking the case of furfural and 5-HMF production, the conversion of cellulose to hexoses and of hemicellulose to pentoses, the generation of ison and/or intermediates and the subsequent production of furanic compounds) and parasitic reactions (taking the same example, substrate fragmentation and/or reversion, furanic compounds consumption by reactions with themselves and/or with reactive species present	ners t in
207 208 209 210 211 212	productive reactions (for instance, taking the case of furfural and 5-HMF production, the conversion of cellulose to hexoses and of hemicellulose to pentoses, the generation of ison and/or intermediates and the subsequent production of furanic compounds) and parasitic reactions (taking the same example, substrate fragmentation and/or reversion, furanic compounds consumption by reactions with themselves and/or with reactive species present the reaction media, furanic compounds rehydration to yield levulinic and formic acids, etc.	ners t in).
207 208 209 210 211 212 213	productive reactions (for instance, taking the case of furfural and 5-HMF production, the conversion of cellulose to hexoses and of hemicellulose to pentoses, the generation of ison and/or intermediates and the subsequent production of furanic compounds) and parasitic reactions (taking the same example, substrate fragmentation and/or reversion, furanic compounds consumption by reactions with themselves and/or with reactive species present the reaction media, furanic compounds rehydration to yield levulinic and formic acids, etc. The overall mechanism is still subjected to debate, as noted by [19], and –to the best of the	t in).
 207 208 209 210 211 212 213 214 	productive reactions (for instance, taking the case of furfural and 5-HMF production, the conversion of cellulose to hexoses and of hemicellulose to pentoses, the generation of ison and/or intermediates and the subsequent production of furanic compounds) and parasitic reactions (taking the same example, substrate fragmentation and/or reversion, furanic compounds consumption by reactions with themselves and/or with reactive species present the reaction media, furanic compounds rehydration to yield levulinic and formic acids, etc. The overall mechanism is still subjected to debate, as noted by [19], and –to the best of the authors' knowledge– there is no information available on the kinetic modelling of furanic	t in
207 208 209 210 211 212 213 214 215	productive reactions (for instance, taking the case of furfural and 5-HMF production, the conversion of cellulose to hexoses and of hemicellulose to pentoses, the generation of ison and/or intermediates and the subsequent production of furanic compounds) and parasitic reactions (taking the same example, substrate fragmentation and/or reversion, furanic compounds consumption by reactions with themselves and/or with reactive species present the reaction media, furanic compounds rehydration to yield levulinic and formic acids, etc. The overall mechanism is still subjected to debate, as noted by [19], and -to the best of the authors' knowledge– there is no information available on the kinetic modelling of furanic compounds generation from lignocellulose in ionic liquids or DES, only a few studies on 5	t in).
 207 208 209 210 211 212 213 214 215 216 	productive reactions (for instance, taking the case of furfural and 5-HMF production, the conversion of cellulose to hexoses and of hemicellulose to pentoses, the generation of ison and/or intermediates and the subsequent production of furanic compounds) and parasitic reactions (taking the same example, substrate fragmentation and/or reversion, furanic compounds consumption by reactions with themselves and/or with reactive species present the reaction media, furanic compounds rehydration to yield levulinic and formic acids, etc. The overall mechanism is still subjected to debate, as noted by [19], and –to the best of the authors' knowledge– there is no information available on the kinetic modelling of furanic compounds generation from lignocellulose in ionic liquids or DES, only a few studies on 5 HMF production from glucose in ILs. For practical reasons, given the variety of products	t in).

217 studied herein, simplifications to the above model are necessary for performing the kinetic

218	studies, and a single lumped reaction -without considering the individual reactions yielding
219	various products- has been chosen in this case, interpreting the processes on the basis of first-
220	order (or pseudo-first-order) kinetics. The aim of this (over)simplification was to gain basic
221	insight into the speed of the chemical reactions and yields for each of the solvents under study.
222	
223	2.2.9. Statistical analyses
224	Data were subjected to analysis of variance (ANOVA). For post hoc comparison of means,
225	Tukey's multiple range test at 0.05 probability level ($p<0.05$) was used. All tests were made
226	using IBM SPSS Statistics v.25 software.
227	
228	3. Results and discussion
229	3.1. Furfural, 5-HMF and ASL
230	The highest values of ASL, furfural and 5-HMF were generally obtained after 60 min of
231	microwave-assisted treatment, both for E. arborea and C. ladanifer-derived biomass (see Table
232	2). As noted above, furfural and 5-HMF values, obtained by the difference in the absorption
233	values before and after the reduction with borohydride, were not influenced by the lignin
234	content.
235	According to Table 3, and as depicted in Figure 3, both for <i>E. arborea</i> and <i>C. ladanifer</i> , the
236	choline chloride/urea treatment was significantly more effective in the production of ASL,
237	furfural and 5-HMF than the treatment with DMAc/sodium bicarbonate, which -in turn-
238	showed better or similar performance than the DMAc/potassium methoxide alternative in
239	almost all cases (the latter only performed better in ASL production from <i>E. arborea</i>).
240	It is worth noting that after the choline chloride/urea treatment, E. arborea samples led to
241	higher contents in furan-derived products than those of C. ladanifer, although the differences
242	were not significant from a statistical point of view in all cases (see Table 3). However,
243	treatment times below 10 min showed a higher production of furfural and 5-HMF from C .
244	ladanifer than from E. arborea. As regards the lignin content in the liquid phase after the MW-

245	assisted treatments, it was significantly higher in E. arborea than in C. ladanifer in the three
246	media.
247	
248	[Table 2 here]
249	[Table 3 here]
250	[Figure 3 here]
251	
252	For the choline chloride/urea treated shrubs biomass, the values for soluble lignin content
253	(1.26-1.80 %), furfural content (2.33-2.74 %) and 5-HMF content (0.77-0.82 %) were in
254	agreement with those reported by Chi, et al. [15] for the acid hydrolysis of Pinus taeda L.
255	(ASL: 1.43 %; furfural: 2.02 %; and 5-HMF: 1.05 %). Da Silva et al. found furfural+5-HMF
256	contents ranging from 0.57 % for macauba shell and up to 7.28 % for native cellulose in one of
257	their works [20], and furfural and 5-HMF values of 5.25 % and 0.87 %, respectively, for native
258	cellulose in another study [21] (Table 4).
259	Non MW-assisted alkaline treatments (with NaOH), used for comparison purposes, gave
260	soluble lignin contents twice as high for <i>E. arborea</i> (2.25 %) as those for <i>C. ladanifer</i> (1.31 %),
261	and both were higher than those obtained for the other treatments. However, furfural contents
262	for the alkaline procedure were 0.40 % for <i>E. arborea</i> and 0.19 % for <i>C. ladanifer</i> , significantly
263	lower than those obtained in the MW-assisted treatments. 5-HMF contents (0.52 $\%$ and 0.47 $\%$
264	for E. arborea and C. ladanifer, respectively) were similar to those obtained after 20 min of
265	MW-assisted DES treatment and higher than those obtained in the other two polar aprotic
266	solvent-based alternatives (Table 4).
267	
268	[Table 4 here]
269	
270	3.2. Sugar content
271	

From the data summarized in Table 5, it may be observed that the concentration of reducing sugars in the hydrolysates obtained from both species was low ($w_B = 0.23-0.44$ %), and that *E. arborea* biomass led to significantly higher values than that from *C. ladanifer* for all treatment media (see Table 3). On the other hand, the production of non-reducing sugars was high, close to that of total sugars (provided that they were determined by subtracting the reducing sugars from the total ones). In this case, significant differences were only found for the polar aprotic solvents, not for the ChCl:urea DES (Table 3).

279 It may also be noted that the greatest increase in the production of total sugars –and therefore 280 in the production of non-reducing sugars- occurred for MW-treatment times ranging from 10 to 281 20 min, both for C. ladanifer and E. arborea. For reducing sugars this only occurred for the DMAc-based treatments in the case of C. ladanifer. The greatest increase in the production of 282 reducing sugars for *E. arborea* took place between 5 and 10 min for all the treatments. 283 284 Both for *E. arborea* and *C. ladanifer* hydrolysates, the DES treatment was found to be 285 significantly more effective in terms of sugar production than the treatments based on the polar 286 aprotic solvent (Table 3), although it is worth noting the DMAc/CH₃OK solvent showed a similar 287 performance to the DES in the reducing sugars production. No significant differences were 288 observed between the results of the microwave-assisted DMAc-potassium methoxide and the

289 DMAc-sodium hydrogen carbonate systems for TS and NRS, only for RS (in which –as noted

above- DMAc/CH₃OK performed better).

Upon application of the choline chloride/urea treatment, *E. arborea* samples produced more total sugars and non-reducing sugars than *C. ladanifer* ones, but the differences were not significant. On the other hand, the reducing sugars content was significantly higher for the former in the three media.

Upon alkaline treatment for 24 h (Table 4), the obtained total sugar values ($w_B = 4.63$ % for

E. arborea and 5.64 % for *C. ladanifer*) were similar to those obtained for a 10-20 min MW-

assisted treatment in choline ChCl/urea and higher than those in DMAc-based solvents.

298 Reducing sugars production ($w_B = 1.29$ % for *E. arborea* and 1 % for *C. ladanifer*) were three

299	times higher than those attained with the microwave treatments. Non-reducing sugars for the
300	NaOH treatment ($w_B = 3.34$ % and 4.64 %, respectively) would be similar to those obtained for
301	a 5 min treatment with choline ChCl/urea, for a 40-50 min treatment with $DMAc/NaHCO_3$ and
302	for a 50-60 min treatment with DMAc/CH ₃ OK in the case of <i>E. arborea</i> ; and for a 10 min
303	treatment with choline ChCl/urea in the case of C. ladanifer ($w_B = 4.64$ % was much higher than
304	the values resulting from the polar aprotic solvent-based treatments).
305	For comparison purposes, Table 6 shows the concentration of total sugars and reducing
306	sugars for corncob (twice higher) and bamboo (ten times higher) [22].
307	
308	[Table 5 here]
309	[Table 6 here]
310	
311	3.3. Analysis of kinetic data
312	The kinetic coefficients (k) calculated for the different treatments are reported in Table 7. It
313	may be observed that, in general terms, the highest constants agree with the highest rates of
314	production. That is, for the ChCl/urea treatment, in addition to the highest concentrations of
315	lignin and furfural, the highest kinetic constants were also obtained –both for <i>E. arborea</i> and <i>C</i> .
316	<i>ladanifer</i> -: k_{lignin} values of 0.296 and 0.175, respectively; and $k_{furfural}$ values of 0.319 and 0.065,
317	respectively. Another is the case of 5-HMF and total and reducing sugars, for which the highest
318	formation kinetics were obtained for the DMAc/CH ₃ OK solvent (k_{HMF} values of 0.488 for E.
319	arborea and 0.779 for C. ladanifer; k_{TS} values of 1.404 and 1.778, respectively; and k_{RS} values
320	of 0.435 and 0.952, respectively). The difference in the kinetic behavior between furfural and 5-
321	HMF has to be referred to the different percentages of pentose in the raw materials [23].
322	
323	[Table 7 here]
324	
325	3.4. On treatment methods and mechanisms

326 It is known that the use of oxidant acids (HNO₃) for pretreating lignocellulosic biomass 327 allows the disruption of the association between carbohydrates and lignin [20, 21]. On the other hand, alkaline treatments (NaOH, CH₃OK) can also be used to remove lignin and thereby 328 329 increase the digestibility of cellulose. Compared to acid and hydrothermal processes, mild 330 alkaline pretreatments (NaHCO₃) lead to less solubilization of hemicelluloses and less 331 formation of inhibitory compounds, and they can be operated at lower temperatures [24]. 332 Although the solvents under study have the ability to disrupt the hydrogen bond network of 333 biopolymers, their different mechanisms result in different efficiencies. Further, the lower 334 performance of DMAc-based systems can be explained by fact that they are disturbed by water 335 impurities [25]. 336 In the DES system, ChCl may act as a bridge between the urea and the biomass biopolymers 337 units to, subsequently, weaken and break the specific linkages into the biopolymer (e.g., the 338 ether linkages between the phenylpropane units present in lignin, as reported by Alvarez-Vasco, 339 et al. [26]). Another possibility would be that, instead of ChCl and urea, the intermediate agents 340 were choline cation and $[Cl(urea)_2]^-$ anion (Figure 1). 341 In the case of DMAc-based systems, the hydroxyl groups of lignocellulosic materials may 342 interact with a sodium- or potassium-DMAc macrocation via hydrogen bonding bridged by the 343 bicarbonate or methoxide anions (Figure 4). Sodium or potassium can interact with the carbonyl 344 oxygen via ion-dipole interaction [27], but for this interaction to take place no biopolymer 345 bound water can be present. On the contrary, such problem does not occur in the case of the 346 DES system: since water is linked to urea through hydrogen bonding, the deleterious water 347 effect is suppressed [28]. 348 349 [Figure 4 here] 350 351 Regardless of the chosen method, acid-soluble lignin should be removed to increase 352 subsequent fermentation process. In agreement to Schwartz and Lawoko [29], a suitable and

353 economical approach would be to use Amberlite XAD-4 resin, which was shown to remove 354 90% of ASL. Subsequent fermentation of the resin-treated hydrolyzates gave ethanol yields as 355 high as 97% of theoretical and showed a marked increase in the fermentation rate. 356 The results of this study provide further evidence on the efficiency of microwave-assisted 357 DES treatment for biomass conversion, previously claimed by other authors: both strategies 358 exhibit a strong synergism, result in improvements in biomass digestibility and appear to require 359 much less energy to achieve a satisfactory treatment effectiveness within a very short period 360 [30]. As compared to common solvents used for biomass conversion, DESs clearly offer notable 361 advantages, apart from their low cost and low environmental impact, owing to their ability to 362 produce highly concentrated solutions of HMF or furfural [31]. Moreover, their high H-bond 363 accepting ability and polarity facilitates lignin degradation and/or extraction from wood fibers 364 [26]. As regards the concurrent use of microwave irradiation, it can maximize ionic 365 characteristics and increase molecular polarity of DES [32] and, thus, it can significantly 366 shorten the reaction time for DES treatment while achieving a similar or even higher degree of 367 effectiveness compared to DES pretreatment alone [33-35].

368

369 **4.** Conclusions

370 The results suggest that the deep eutectic solvent-based treatment offers an efficient, safe, 371 sustainable, and cost-effective alternative to conventional methods for the extraction of 372 bioactive compounds from C. ladanifer and E. arborea biomass. Samples of these shrubs may 373 be easily dissolved by a MW-assisted procedure in a ChCl/urea DES to give lignin, furfural, 5-374 (hydroxymethyl)furfural and sugars with reasonable yields. Conversely, the DMAc/NaHCO₃ 375 and DMAc/CH₃OK solvent exchange systems would be less appropriate due the disruptive 376 effect of water impurities. Nevertheless, if the aim of treating C. ladanifer and E. arborea 377 biomass is to recover sugars for subsequent enzymatic saccharification, the very low 5-HMF 378 contents attained with the dimetylacetamide systems (especially the CH₃OK one) make them 379 highly advantageous as compared to the traditional method using NaOH.

380	A	peculiarity of the present work is that the operating conditions led to higher contents of								
381	non-reducing sugars than of reducing sugars. This finding can be useful to modify cured phenol-									
382	formaldehyde resins: whereas reduced sugars cannot be used to modify these resins, non-									
383	reducing sugars can be used to replace a major portion of the adhesive resin. These non-									
384	reducing sugars may also be advantageously used as a starting material in bioprocesses to									
385	produce succinic acid (one of the chemical platforms suggested by the DOE), farnesene									
386	(sesqu	iterpenes) and sucralose.								
387										
388	Ackn	owledgments								
389	Th	is work was supported by the European Union LIFE+ Programme under project " CO_2								
390	Opera	tion: Integrated agroforestry practices and nature conservation against climate change",								
391	ref. L	IFE11 ENV/ES/000535. P.M.R. gratefully acknowledges the financial support of								
392	Santa	nder Universidades through the "Becas Iberoamérica Jóvenes Profesores e Investigadores,								
393	Españ	a" scholarship program.								
394										
395	Decla	aration of interest								
396	Th	e authors have no competing interests to declare								
397	11	e autions have no competing interests to declare.								
308	Dofo	roncos								
390	Neici	i ences								
399	[1]	C.A. Mooney, S.D. Mansfield, R.P. Beatson, J.N. Saddler, The effect of fiber								
400		characteristics on hydrolysis and cellulase accessibility to softwood substrates, Enzyme								
401		Microb. Technol. 25(8-9) (1999) 644-650.								
402	[2]	Y. Sun, J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production : a								
403		review, Bioresour. Technol. 83(1) (2002) 1-11.								
404	[3]	Z. Hu, Z. Wen, Enhancing enzymatic digestibility of switchgrass by microwave-assisted								
405		alkali pretreatment, Biochem. Eng. J. 38(3) (2008) 369-378.								

- 406 [4] D. Jackowiak, J.C. Frigon, T. Ribeiro, A. Pauss, S. Guiot, Enhancing solubilisation and
 407 methane production kinetic of switchgrass by microwave pretreatment, Bioresour.
 408 Technol. 102(3) (2011) 3535-3540.
- 409 [5] S.M. Nomanbhay, R. Hussain, K. Palanisamy, Microwave-assisted alkaline pretreatment
- 410 and microwave-assisted enzymatic saccharification of oil palm empty fruit bunch fiber
- 411 for enhanced fermentable sugar yield, Journal of Sustainable Bioenergy Systems 03(01)
- 412 (2013) 7-17.
- 413 [6] A.d.l. Hoz, A. Diaz-Ortiz, A. Moreno, Microwaves in organic synthesis. Thermal and
 414 non-thermal microwave effects, Chem. Soc. Rev. 34 (2005) 164-178.
- 415 [7] D.R. Keshwani, J.J. Cheng, Microwave-based alkali pretreatment of switchgrass and
- 416 coastal bermudagrass for bioethanol production, Biotechnol. Progr. 26(3) (2010) 644-652.
- 417 [8] A. Isaac, J. de Paula, C.M. Viana, A.B. Henriques, A. Malachias, L.A. Montoro, From
- 418 nano- to micrometer scale: the role of microwave-assisted acid and alkali pretreatments in
 419 the sugarcane biomass structure, Biotechnol. Biofuels 11(1) (2018).
- 420 [9] A.K. Chandel, C. Es, R. Rudravaram, M.L. Narasu, V. Rao, P. Ravindra, Economics and
 421 environmental impact of bioethanol production technologies: an appraisal, Biotechnol.
- 422 Mol. Biol. Rev. 2 (2007) 14-32.
- 423 [10] H. Lee, D.H. Cho, Y.H. Kim, S.J. Shin, S.B. Kim, S.O. Han, J. Lee, S.W. Kim, C. Park,
- Tolerance of *Saccharomyces cerevisiae* K35 to lignocellulose-derived inhibitory
 compounds, Biotechnol. Bioprocess Eng. 16(4) (2011) 755-760.
- 426 [11] A. Martinez, M.E. Rodriguez, S.W. York, J.F. Preston, L.O. Ingram, Use of UV
 427 absorbance to monitor furans in dilute acid hydrolysates of biomass, Biotechnol. Progr.
- 428 16(4) (2000) 637-641.
- 429 [12] J. García-Álvarez, Deep eutectic mixtures: Promising sustainable solvents for metal430 catalysed and metal-mediated organic reactions, Eur. J. Inorg. Chem. 2015(31) (2015)
 431 5147-5157.
- 432 [13] R. Ruiz-Peinado, G. Montero, M. Del Rio, Biomass models to estimate carbon stocks for
 433 hardwood tree species, Forest Syst. 21(1) (2012) 42-52.

- 434 [14] P. Carrión-Prieto, S. Hernández-Navarro, P. Martín-Ramos, L.F. Sánchez-Sastre, F.
- 435 Garrido-Laurnaga, J.L. Marcos-Robles, J. Martín-Gil, Mediterranean shrublands as
- 436 carbon sinks for climate change mitigation: new root-to-shoot ratios, Carbon Manag. 8(1)
 437 (2017) 1-11.
- 438 [15] C. Chi, Z. Zhang, H.-m. Chang, H. Jameel, Determination of furfural and
- 439 hydroxymethylfurfural formed from biomass under acidic conditions, Journal of Wood
- 440 Chemistry and Technology 29(November 2013) (2009) 265-276.
- [16] S. Sun, Y. Song, P. Sun, J. Chen, Furfural, acid-soluble lignin and reducing sugar content
 in biomass hydrolysate by spectrophotometric method, Acta Energ. Sol. Sin. 34(2) (2013)
 331-336.
- 444 [17] G.L. Miller, Use of dinitrosalicylic acid reagent for determination of reducing sugar,
 445 Anal. Chem. 31(3) (1959) 426-428.
- 446 [18] M. DuBois, K.a. Gilles, J.K. Hamilton, P.a. Rebers, F. Smith, Colorimetric method for
 447 determination of sugars and related substances, Anal. Chem. 28(3) (1956) 350-356.

448 [19] L. Penín, S. Peleteiro, R. Yañez, J.C. Parajó, V. Santos, Kinetics of 5-

- 449 hydroxymethylfurfural production from monosaccharides in media containing an ionic
- 450 liquid and a solid acid catalyst, BioResources 12(4) (2017) 10.15376/biores.12.4.8402451 8418.
- 452 [20] V. da Silva Lacerda, J.B. López-Sotelo, A. Correa-Guimarães, P. Martín-Ramos, S.
- 453 Hernández-Navarro, M. Sánchez-Bascones, L.M. Navas-Gracia, Efficient microwave-
- 454 assisted acid hydrolysis of lignocellulosic materials into total reducing sugars in ionic
 455 liquids, Cellul. Chem. Technol. 50(7-8) (2016) 761-770.
- 456 [21] V. da Silva Lacerda, J.B. López-Sotelo, A. Correa-Guimarães, S. Hernández-Navarro, M.
- 457 Sánchez-Bascones, L.M. Navas-Gracia, P. Martín-Ramos, E. Pérez-Lebeña, J. Martín-
- 458 Gil, A kinetic study on microwave-assisted conversion of cellulose and lignocellulosic
- 459 waste into hydroxymethylfurfural/furfural, Bioresour. Technol. 180(0) (2015) 88-96.

- 460 [22] A. Martel, Transformation of *Symphytum officinale* L. and *Panicum virgatum* L. biomass
- 461 to 5-Hydroxymethylfurfural for biofuel production, Faculty of Graduate Studies,

462 Laurentian University, Sudbury, Ontario, Canada, 2016, p. 136.

- 463 [23] Y. Liu, J. Wang, M. Wolcott, Modeling the production of sugar and byproducts from acid
- 464 bisulfite pretreatment and enzymatic hydrolysis of Douglas-fir, Bioresour. Technol. 224
 465 (2017) 389-396.
- 466 [24] L.J. Jönsson, C. Martín, Pretreatment of lignocellulose: Formation of inhibitory by-
- 467 products and strategies for minimizing their effects, Bioresour. Technol. 199 (2016) 103468 112.
- 469 [25] A. Potthast, T. Rosenau, R. Buchner, T. Röder, G. Ebner, H. Bruglachner, H. Sixta, P.
- 470 Kosma, The cellulose solvent system N,N-dimethylacetamide/lithium chloride revisited:
- 471 The effect of water on physicochemical properties and chemical stability, Cellulose 9(1)
 472 (2002) 41-53.
- 473 [26] C. Alvarez-Vasco, R. Ma, M. Quintero, M. Guo, S. Geleynse, K.K. Ramasamy, M.
- 474 Wolcott, X. Zhang, Unique low-molecular-weight lignin with high purity extracted from
- 475 wood by deep eutectic solvents (DES): a source of lignin for valorization, Green Chem.
- 476 18(19) (2016) 5133-5141.
- 477 [27] C.L. McCormick, P.A. Callais, B.H. Hutchinson, Solution studies of cellulose in lithium
 478 chloride and N,N-dimethylacetamide, Macromolecules 18(12) (1985) 2394-2401.
- 479 [28] C. Du, B. Zhao, X.-B. Chen, N. Birbilis, H. Yang, Effect of water presence on choline
- 480 chloride-2urea ionic liquid and coating platings from the hydrated ionic liquid, Sci. Rep.
 481 6 (2016) 29225-29225.
- 482 [29] T.J. Schwartz, M. Lawoko, Removal of acid-soluble lignin from biomass extracts using
 483 Amberlite XAD-4 resin, BioResources 5(4) (2010) 2337-2347.
- 484 [30] Z. Chen, C. Wan, Ultrafast fractionation of lignocellulosic biomass by microwave-
- 485 assisted deep eutectic solvent pretreatment, Bioresour. Technol. 250 (2018) 532-537.

- 486 [31] K.D.O. Vigier, G. Chatel, F. Jérôme, Contribution of Deep Eutectic Solvents for Biomass
 487 Processing: Opportunities, Challenges, and Limitations, ChemCatChem 7(8) (2015)
 488 1250-1260.
- 489 [32] Y. Liu, W. Chen, Q. Xia, B. Guo, Q. Wang, S. Liu, Y. Liu, J. Li, H. Yu, Efficient
- 490 cleavage of lignin-carbohydrate complexes and ultrafast extraction of lignin oligomers
- 491 from wood biomass by microwave-assisted treatment with deep eutectic solvent,
- 492 ChemSusChem 10(8) (2017) 1692-1700.
- 493 [33] A. Aguilar-Reynosa, A. Romaní, R. Ma. Rodríguez-Jasso, C.N. Aguilar, G. Garrote, H.A.

494 Ruiz, Microwave heating processing as alternative of pretreatment in second-generation

495 biorefinery: An overview, Energy Convers. Manage. 136 (2017) 50-65.

- 496 [34] K. Ninomiya, T. Yamauchi, C. Ogino, N. Shimizu, K. Takahashi, Microwave
- 497 pretreatment of lignocellulosic material in cholinium ionic liquid for efficient enzymatic
 498 saccharification, Biochem. Eng. J. 90 (2014) 90-95.
- 499 [35] R.D. Singh, K. Bhuyan, J. Banerjee, J. Muir, A. Arora, Hydrothermal and microwave
 500 assisted alkali pretreatment for fractionation of arecanut husk, Ind. Crop. Prod. 102
- 501 (2017) 65-74.
- 502 [36] P. Carrión-Prieto, P. Martín-Ramos, S. Hernández-Navarro, L.F. Sánchez-Sastre, J.L.
- Marcos-Robles, J. Martín-Gil, Valorization of *Cistus ladanifer* and *Erica arborea* shrubs
 for fuel: Wood and bark thermal characterization, Maderas: Cienc. Tecnol. 19(4) (2017)
 443-454.
- 506 [37] A. Procentese, E. Johnson, V. Orr, A. Garruto Campanile, J.A. Wood, A. Marzocchella,
 507 L. Rehmann, Deep eutectic solvent pretreatment and subsequent saccharification of
- 508 corncob, Bioresour. Technol. 192 (2015) 31-36.
- 509 [38] Y. Wu, C. Zhang, Y. Liu, Z. Fu, B. Dai, D. Yin, Biomass char sulfonic acids (BC-
- 510 SO3H)-catalyzed hydrolysis of bamboo under microwave irradiation, BioResources 7(4)
 511 (2012) 5950-5959.
- 512

513 **Table 1.** Overall chemical composition of *E. arborea* and *C. ladanifer* [14, 36]. Values are given as an

	Erica arborea	Cistus ladanifer
Elemental analysis:		
C (%)	51.0 (49.3-52.8)	47.8 (47.5-50.1)
H (%)	6.2 (6.0-6.4)	6.4 (6.0-6.8)
N (%)	1.0 (0.3-1.1)	0.8 (0.3-1.9)
O (by diff., %)	~41.8	~45.0
Vegetal components:		
Cellulose (%)	40.0 (37.3-41.1)	55.0 (54.9-55.7) [†]
Lignin (%)	39.5 (39.3-40.1)	25.3 (24.5-34.2)
Hemi-cellulose (%)	11.0 (9.7-13.8) [‡]	10.2 (10.1-10.9) [‡]
Extractive (%)	9.5 (5.7-11.0)	9.5 (9.4-9.6)
<i>Moisture</i> (wt.%)	26.0	26.8

514 average of 25 repetitions, followed by the minimum and maximum values in brackets.

[†] This cellulose content is higher than that of most woods, which is usually in the 35-50% range.

[‡] These hemicellulose contents are lower than those of most woods, which usually range from 20% to 30%.

517

518 **Table 2.** Mass fraction (*w*_B, in %) for lignin, furfural and 5-HMF in hydrolysates after MW-assisted deep

519 eutectic solvent or polar aprotic solvent extraction. The tests were performed in triplicate, and

520 standard deviations were <5 %, except in those cases in which the furan compounds yields were below

521 1.5 % (in which the standard deviations were higher, up to 10 %).

Treatment	Time (min) [†]	E	Erica arl	borea	Cistus ladanifer			
	Thire (IIIII)	Wlignin	Wfurfural	W_{5HMF}	Wlignin	Wfurfural	W_{5HMF}	
	1	0.52	1.00	0.25	0.48	1.05	0.23	
	5	0.82	1.13	0.34	0.69	1.38	0.33	
	10	1.25	1.30	0.39	0.93	1.45	0.36	
MW aggisted ChCl/urea DES extraction	20	1.35	1.73	0.59	1.03	1.58	0.45	
Ww-assisted ChCl/utea DES extraction	30	1.63	2.59	0.65	1.22	1.94	0.49	
	40	1.67	2.70	0.65	1.28	2.13	0.58	
	50	1.79	2.69	0.75	1.40	2.26	0.63	
	60	1.80	2.74	0.82	1.26	2.33	0.77	
	1	0.33	0.97	0.22	0.42	0.92	0.20	
	5	0.45	1.02	0.23	0.58	1.06	0.21	
	10	0.47	1.08	0.24	0.59	1.16	0.24	
MW againsted DMA a/NaHCO autraction	20	0.55	1.18	0.25	0.61	1.20	0.26	
Ww-assisted DWAC/NaHCO3 extraction	30	0.69	1.26	0.27	0.62	1.23	0.28	
	40	0.80	1.37	0.28	0.70	1.25	0.28	
	50	0.85	1.43	0.33	0.79	1.29	0.29	
	60	0.90	1.46	0.34	0.78	1.30	0.29	
	1	0.52	0.62	0.00	0.46	0.62	0.05	
	5	0.69	0.93	0.02	0.64	0.80	0.05	
	10	0.90	1.08	0.02	0.68	1.06	0.07	
MW assisted DMA o/CH OK antroption	20	0.98	1.43	0.06	0.73	1.29	0.09	
IVI VV - assisted DIVIAC/CH3OK EXtraction	30	0.99	1.42	0.11	0.76	1.25	0.09	
	40	1.04	1.37	0.12	0.77	1.16	0.10	
	50	1.07	1.36	0.15	0.80	1.30	0.11	
	60	1.10	1.35	0.18	0.82	1.23	0.13	

[†] This time refers to the isothermal treatment time. It should be noticed that the heating and cooling ramps also

523 contribute to the thermal budget (i.e., for t=0 min, there would be a non-zero production of lignin, furfural and 5-524 LIME due to besting and easling remark)

524 HMF due to heating and cooling ramps).

- 525 Table 3. Mass fractions (*w*_B, in %) for acid soluble lignin (ASL), furfural, 5-HMF, total sugars (TS),
- 526 reducing sugars (RS) and non-reducing sugars (NRS) in the hydrolysates after a 60 min treatment for the

527 MW-assisted ChCl/urea, DMAc/NaHCO3 and DMAc/CH3OK media.

Treatment	Erica arborea						Cistus ladanifer					
Treatment	ASL	Furfural	5-HMF	TS	RS	NRS	ASL	Furfural	5-HMF	TS	RS	NRS
ChCl:urea DES	1.80 aA	2.74 aA	0.82 aA	9.19 aA	0.41 aA	8.78 aA	1.26 aB	2.33 aB	0.77 aA	8.45 aA	0.33 aB	8.13 aA
DMAc/NaHCO3	0.90 bA	1.46 bA	0.34 bA	3.74 bA	0.34 bA	3.40 bA	0.78 bB	1.30 bB	0.29 bB	3.22 bB	0.23 bB	2.99 bB
DMAc/CH ₃ OK	1.10 cA	1.35 bA	0.18 cA	3.80 bA	0.44 aA	3.36 bA	0.82 bB	1.23 bA	0.13 cB	2.90bB	0.36 aB	2.54 bB

528 * Means followed by the same lowercase letter within each column are not significantly different at p<0.05 by

529 530 Tukey's test. Means of the same product (viz. ASL, furfural, 5-HMF, TS, RS or NRS) followed by the same

uppercase letter for *E. arborea* and *C. ladanifer* are not significantly different at p<0.05 by Tukey's test. All values 531 are presented as the average of three repetitions.

532

533 Table 4. Comparative measurements of soluble lignin, furfural and 5-HMF in the hydrolysates (*w*_B, in %).

534 Tests were performed in triplicate, and standard deviations were <10 % in all cases.

Component	Solvent	Sh	rubs	Nativa callulora	Uardwooda	Deferences	
Component	Solvent	E. arborea	C. ladanifer	Native centilose	Haluwoous	References	
	ChCl/urea	0.52-1.80	0.48-1.4				
Lianin	DMAc/NaHCO ₃	0.33-0.90	0.42-0.79		1.43	Chi, et al. [15]	
Lightin	DMAc/CH ₃ OK	0.52-1.10	0.46-0.82				
	NaOH	2.25	1.31				
	ChCl/urea	1.00-2.74	1.05-2.33	2.30-5.25		da Silva et al. [20]	
Enefred	DMAc/NaHCO ₃	0.97-1.46	0.92-1-30				
Furiurai	DMAc/CH ₃ OK	0.62-1.43	0.62-1.30				
	NaOH	0.40	0.19				
	ChCl/urea	0.25-0.82	0.23-0.77	0.23-0.87		da Silva et al. [21]	
5 JIN/IE	DMAc/NaHCO ₃	0.22-0.34	0.20-0.29				
3-HMF	DMAc/CH ₃ OK	0.00-0.18	0.05-0.13				
	NaOH	0.52	0.47				
			—				

535

- 537
- 538 Table 5. Total sugars (TS), reducing sugars (RS) and non-reducing sugars (NRS) mass fractions (w_B, in
- 539 %) for the MW-assisted ChCl/urea, DMAc/NaHCO3 and DMAc/CH3OK treatments as a function of
- 540 exposure times. Tests were performed in triplicate, and standard deviations were <5 %.

Trootmont	Time (min) [†]	Erica arborea			Cistus ladanifer		
Treatment	Time (mm)	WTS	WRS	WNRS	WTS	WRS	WNRS
	1	2.94	0.17	2.76	3.33	0.12	3.21
MW-assisted ChCl:urea DES extraction	5	3.54	0.20	3.34	3.97	0.14	3.84
	10	4.04	0.27	3.78	4.86	0.23	4.63
	20	6.45	0.28	6.17	6.36	0.23	6.13
	30	8.15	0.31	7.84	7.03	0.28	6.75
	40	8.44	0.35	8.09	8.06	0.29	7.77
	50	8.83	0.40	8.43	8.09	0.30	7.79
	60	9.19	0.41	8.78	8.45	0.33	8.13
	1	0.45	0.17	0.29	0.39	0.11	0.29
	5	0.61	0.18	0.43	0.40	0.11	0.28
	10	0.75	0.22	0.53	0.57	0.12	0.45
MW assisted DMA a/NaHCO astraction	20	2.46	0.25	2.21	2.44	0.19	2.25
Ww-assisted DWAC/MartCO3 extraction	30	3.29	0.28	3.01	2.44	0.19	2.25
	40	3.33	0.28	3.05	2.60	0.20	2.40
	50	3.68	0.30	3.37	2.70	0.23	2.47
	60	3.74	0.34	3.40	3.22	0.23	2.99
	1	0.28	0.16	0.11	0.12	0.12	0.00
MW-assisted DMAc/CH ₃ OK extraction	5	0.71	0.19	0.52	0.26	0.13	0.13
	10	1.05	0.28	0.77	0.63	0.16	0.47
	20	2.63	0.30	2.33	2.21	0.26	1.94
	30	3.27	0.36	2.91	2.39	0.28	2.11
	40	3.32	0.37	2.95	2.64	0.29	2.35
	50	3.48	0.42	3.06	2.82	0.33	2.49
	60	3.80	0.44	3.36	2.90	0.36	2.54

[†] This time refers to the isothermal treatment time. It should be noticed that the heating and cooling ramps also

541 542 543 contribute to the thermal budget (i.e., for t=0 min, there would be a non-zero production of TS, RS and NRS due to heating and cooling ramps).

- **Table 6.** Comparison of the sugar mass fractions (*w*_B, in %) in the lignocellulosic biomass hydrolysates
- 547 from *E. arborea* and *C. ladanifer* studied herein with values reported by other authors for corncob and

548 bamboo.

Component	Salvant	Sh	rubs	Cornach	Domboo	References	
Component	Solvent	E. arborea	C. ladanifer	Conicod	Damboo		
	ChCl/urea	2.94-9.19	3.33-8.45	18.6-20.9		Procentese, et al. [37]	
Total sugars (wts)	DMAc/NaHCO ₃	0.45-3.74	0.39-2.70				
	DMAc/CH ₃ OK	0.28-3.80	0.12-2.90				
	NaOH	4.63	5.64				
Reducing sugars	ChCl/urea	0.17-0.41	0.12-0.33				
	DMAc/NaHCO ₃	0.17-0.34	0.11-0.23		3.4	Wu, et al. [38]	
$(w_{\rm RS})$	DMAc/CH ₃ OK	0.16-0.44	0.12-0.36				
	NaOH	1.29	1.00				
Non-reducing sugars (w _{NRS})	ChCl/urea	2.76-8.75	3.21-8.13				
	DMAc/NaHCO ₃	0.29-3.40	0.28-2.99				
	DMAc/CH ₃ OK	0.11-3.36	0.00-2.54				
	NaOH	3.34	4.64				

Table 7. Kinetic coefficients (k), correlation coefficients (r^2) and initial concentration of each sample (H_o)

552 determined from the concentration as a function of time for lignin, furfural, 5-HMF, total sugars and

reducing sugars production from the hydrolysis of *E. arborea* and *C. ladanifer* lignocellulosic biomass.

Component	Solvent	E. arborea		C. ladanifer			Deferences	
		k	r^2	H_0	k	r^2	H_0	References
Soluble	ChCl/urea	0.2959	0.9707	0.0320	0.1752	0.9479	0.0321	
Jianin	DMAc/NaHCO ₃	0.2118	0.8583	0.0321	0.0088	0.8646	0.0321	
ngmn	DMAc/CH ₃ OK	0.0348	0.9745	0.0321	0.0042	0.9831	0.0320	
	ChCl/urea	0.3192	0.8214	0.0320	0.0649	0.8900	0.0321	0.2712 (macauba pulp) [21]
Furfural	DMAc/NaHCO ₃	0.0011	0.8500	0.0321	0.0001	0.9905	0.0321	
	DMAc/CH ₃ OK	0.0433	0.8908	0.0321	0.0309	0.8782	0.0320	
5 LIME	ChCl/urea	0.3844	0.9025	0.0320	0.3296	0.8365	0.0221	0.2729 (macauba pulp),
							0.0521	0.0810 (macauba shell) [21]
J-HMF	DMAc/NaHCO ₃	0.0025	0.6806	0.0321	0.0013	0.9240	0.0321	
	DMAc/CH ₃ OK	0.4883	0.8024	0.0321	0.7798	0.8367	0.0320	
	ChCl/urea	0.3778	0.8704	0.0100	0.1605	0.9149	0.0100	
Total sugars	DMAc/NaHCO ₃	1.4143	0.8309	0.0100	1.3890	0.8024	0.0100	
	DMAc/CH ₃ OK	1.4044	0.8928	0.0100	1.7780	0.8634	0.0100	
Reducing sugars	ChCl/urea	0.3005	0.8780	0.0667	0.5469	0.9137	0.0668	
	DMAc/NaHCO3	0.1600	0.8976	0.0668	0.6234	0.8339	0.0668	
	DMAc/CH ₃ OK	0.4351	0.9132	0.0668	0.9528	0.8690	0.0668	

$$\underbrace{\overset{O}_{H_2N}}_{OH} \underbrace{\overset{O}_{H_2N}}_{OH} \underbrace{\overset{O}_{H_2N}}_{OH} \underbrace{\overset{O}_{H_2N}}_{V} \underbrace{\overset{O}_{H_2N}}_{V} \underbrace{\overset{O}_{H_2N}}_{V} \underbrace{\overset{O}_{H_2N}}_{V} \underbrace{\overset{O}_{H_2N}}_{V} \underbrace{\overset{O}_{H_2N}}_{H} \underbrace{\overset{O}_$$

Figure 1. DES of ChCl and urea where a [choline]⁺ cation is energetically competitive with [Cl(urea)₂]⁻.

560 Figure 2. (a) Calibration curves for furfural (F), acid-soluble lignin (ASL) and 5-(hydroxymethyl)-

561 furfural (5-HMF) concentrations. (b) Calibration curves for glucose concentration. Each data point was

the mean of three determinations. Standard deviation bars were omitted for clarity.

Figure 3. Lignin, furfural and 5-HMF yields for the *E. arborea* and *C. ladanifer* lignocellulosic biomass
hydrolysates after: (*a*) MW-assisted ChCl/urea extraction; (*b*) MW-assisted DMAc/NaHCO₃ extraction;
and (*c*) MW-assisted DMAc/CH₃OK extraction. Total, reducing and non-reducing sugars in the
hydrolysates after: (*d*) MW-assisted ChCl/urea treatment; (*e*) MW-assisted DMAc/NaHCO₃ treatment;
and (*f*) MW-assisted DMAc/CH₃OK treatment.

571 Figure 4. Proposed interaction between DMAc-NaHCO₃ and DMAc-CH₃OK solvents and sugar polymer