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Abstract

Nonlinear methods applied to heart rate variability (HRV) signals have been reported to provide
new insights to characterize abnormalities occurring in the context of cardiac conditions or pathologies
like congestive heart failure or atrial fibrillation, to name a few. Also, alterations in the Autonomic
Nervous System (ANS), which modulates heart rate, have been shown to lead to changes in nonlinear
HRV patterns. Nonetheless, the still unclear mechanisms underlying physiological or pathophysi-
ological variations in nonlinear HRV indices, in combination with the time-consuming algorithms
required to estimate these indices, represent bottlenecks for their application in clinical practice.

Following an introduction to the topics of the thesis, which is covered in chapter 1, the second
chapter, chapter 2, is devoted to the first major contribution of this thesis, which consists of the
proposal and development of a methodology to reliably estimate a nonlinear HRV index, namely
correlation dimension, while notably reducing the computational cost associated with its computation.
The proposed framework is shown to be highly effective in reducing the time for calculation of
short-term nonlinear HRV analysis to just a few seconds.

With regards to interpretation of nonlinear HRV analysis, it is important to note that there are
a number of factors that affect its calculation and should be taken into account when comparing
different studies from the literature. Characteristics of HRV time series like sampling rate as well as
selection of parameter values in nonlinear methods all have an impact on nonlinear HRV results and
could under some circumstances lead to misleading interpretations. A major objective of chapter 3 is
to study the influence of sampling rate on nonlinear HRV indices and to propose methods to attenuate
this influence. The proposed methods include, on the one hand, heart rate-correction of HRV estimates
by individual- or population-based regression formulas and, on the other hand, pre-processing of HRV
time series by interpolation or point-process models.

Chapter 4 focuses on investigating the effect of parameter value selection as required for cal-
culation of certain nonlinear HRV indices (e.g. approximate entropy) and proposes a novel index
independent of a-priori parameter value definition. This novel index is called multidimensional
approximate entropy. Nonlinear HRV analysis, including the novel proposed index, is applied to the
study of conditions associated with alterations in cardiac ANS modulation, like aging and congestive
heart failure (CHF). All evaluated nonlinear HRV indices are found to be significantly decreased in
elderly subjects with respect to young ones under resting supine conditions. Additionally, congestive
heart failure patients are shown to have statistically significantly larger values of the evaluated nonli-
near indices as compared to healthy subjects, in all cases analyzing the night period. Also, nonlinear
HRV analysis is assessed in response to sympathetic provocations, as induced by changing from
supine to standing position or by atropine administration, where a decrease in all estimated nonlinear
indices is observed.
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Chapter 5 is devoted to assess the performance of nonlinear HRV analysis in the triage of
prophylaxis administration to prevent hypotensive episodes caused by spinal anesthesia during
cesarean delivery. The study is conducted in collaboration with the Anesthesia Department of Hospital
Universitario Miguel Servet (Zaragoza, Spain). Since prophylaxis may produce side effects on the
fetus, the challenge is to predict normotensive outcomes for which prophylaxis could be disregarded.
The hypothesis in this thesis is based on the fact that altered ANS regulation caused by the last
period of pregnancy and the proximity to surgery could be reflected on nonlinear HRV indices and
this could help to predict hypotensive vs normotensive outcomes with higher accuracy than when
using demographic variables only. Importantly, the methodological knowhow on nonlinear HRV
analysis developed in the thesis is applied to characterize other cardiovascular signals, like the pulse
photopletysmographic signal. Time series derived from this signal, including peripheral vascular
information, are incorporated into a logistic regression-based classifier together with nonlinear
HRV indices. The proposed classifier reaches 76.5 % sensitivity and 72.2 % accuracy in detecting
normotensive outcomes, thus providing relevant objective information to support clinicians’ decisions.

In Chapter 6 the main conclusions derived from the thesis are presented and future extensions
of the conducted investigations are considered. Emphasis is made on the contribution of the thesis
to the development of novel methodologies to more robustly characterize nonlinear HRV indices
and reliably interpret corresponding results. Based on the developed methodologies, conditions or
pathologies associated with altered cardiac ANS modulation are investigated and the contribution of
nonlinear HRV analysis for their characterization is highlighted.

In summary, methodological objectives of this thesis include: i) proposal of a novel framework
to improve reliability of correlation dimension estimation by using an algorithm with reduced com-
putational load that facilitates its applicability in clinical practice; ii) development of alternative
methods to attenuate the dependency of nonlinear heart rate variability (HRV) indices on mean heart
rate (HR); iii) proposal of a novel multidimensional nonlinear HRV index independent of a priori
parameter definition for its computation. In addition, objectives related to clinical application of the
methodological contributions are: i) characterization of the effect of aging on nonlinear HRV; ii)
assessment of complexity and irregularity of heart rate in congestive heart failure (CHF) patients as
compared to healthy subjects; iii) improvement in the efficacy of prophylaxis administration for the
prevention of hypotensive events after spinal anesthesia during programmed cesarean delivery.
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Resumen y Conclusiones

La inclusión de métodos no lineales aplicados a señales de variabilidad del ritmo cardiaco (HRV, del
inglés Heart Rate Variability) proporciona una nueva visión en la caracterización de anomalías en el
contexto de las enfermedades cardiacas o patologías como la insuficiencia cardiaca o la fibrilación
auricular, por nombrar algunas. Se ha demostrado que alteraciones en el sistema nervioso autónomo
(ANS, del inglés Autonomic Nervous System), el cuál modula el ritmo cardiaco, conllevan a cambios
en los patrones no lineales de la HRV. Sin embargo, la incertidumbre, todavía presente, en los
mecanismos que subyacen a variaciones fisiológicas o patofisiológicas en los índices no lineales de
la HRV, junto con el alto tiempo que requieren los algoritmos para la estimación de estos índices,
representan el cuello de botella para su aplicación en la práctica clínica.

Después de una breve introducción sobre los temas abordados en esta la tesis en el capítulo 1, el
segundo capítulo, el capítulo 2, está dedicado a la primera gran contribución de esta tesis, que consiste
en la propuesta y desarrollo de una metodología con el fin de reducir el coste computacional asociado
a la caracterización no lineal de la HRV. El esquema propuesto es muy eficaz, reduciendo el tiempo
de cálculo a unos pocos segundos para el análisis no lineal de señales de HRV de corta longitud (5
minutos).

Con respecto a la interpretación del análisis no lineal de la HRV, es importante señalar que hay
una serie de factores que afectan a su cálculo y deben tenerse en cuenta al comparar diferentes
estudios de la literatura. Las características de las series de HRV, como la frecuencia de muestreo,
así como la selección de valores de parámetros en los métodos no lineales, tienen un impacto en
los resultados de los índices no lineales de la HRV y, en algunas circunstancias, pueden dar lugar a
interpretaciones erróneas. Uno de los principales objetivos del capítulo 3 es estudiar la influencia de
la tasa de muestreo en los índices no lineales de la HRV y proponer alternativas para atenuar esta
influencia. Los métodos propuestos incluyen, por una parte, la corrección de la frecuencia cardiaca de
las estimaciones de la HRV mediante fórmulas de regresión individuales o basadas en la población y,
por otra, el preprocesamiento de las series temporales de HRV mediante modelos de interpolación o
de point-process.

El capítulo 4 se centra en investigar el efecto de la selección del valor de los parámetros requeridos
para el cálculo de ciertos índices no lineales de la HRV (por ejemplo, la entropía aproximada) y
proponiendo un nuevo índice independiente de la definición del valor de éstos parámetros a-priori.
Este novedoso índice se denomina entropía multidimensional aproximada. El análisis no lineal de la
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HRV, incluido el nuevo índice propuesto, se aplica al estudio de afecciones asociadas a alteraciones
de la modulación cardiaca del ANS, como el envejecimiento y la insuficiencia cardiaca congestiva
(CHF, del inglés Congestive Heart Failure). Por un lado, todos los índices no lineales de la HRV
evaluados ven disminuidos significativamente sus valores en las personas mayores en comparación
con los jóvenes ambos grupos en condiciones de reposo en posición de decubito supino. Por otro
lado, los pacientes con insuficiencia cardiaca muestran valores más altos de los índices no lineales
significativamente con respecto al grupo de sujetos sanos, en ambos casos analizando el período
nocturno. Además, el análisis no lineal de la HRV es evaluada en respuesta a provocaciones simpáticas,
inducidas por el cambio de la posición supina a la posición de pie o por la administración de atropina,
donde se observa una disminución en todos los índices no lineales estimados.

El capítulo 5 está dedicado a la evaluación del rendimiento del análisis no lineal de la HRV en el
triaje de la administración profiláctica con el fin de prevenir los episodios de hipotension causados por
la anestesia espinal durante el parto por cesárea. El estudio se realiza en colaboración con el Servicio
de Anestesia del Hospital Universitario Miguel Servet (Zaragoza, España). Debido a que la profilaxis
puede producir efectos secundarios en el feto, el desafío consiste en predecir los casos normotensos
para los cuales se puede prescindir del tratamiento profilactico. La hipótesis de esta tesis se basa en el
hecho de que la alteración de la regulación del ANS causada por el último período de embarazo y la
proximidad a la cirugía podría reflejarse en los índices no lineales de la HRV, lo que podría ayudar a
predecir los casos que deriven en hipotension y normotension con mayor precisión que cuando se
utilizan solamente variables demográficas. Es importante destacar que las propuestas metodológicas
para el análisis no lineal de la HRV desarrolladas en la tesis se aplican en la caracterización de
otras señales cardiovasculares, como la señal fotopletismografica de pulso. Las series temporales
derivadas de esta señal, que incluyen información del sistema vascular periférico, se incorporan en un
clasificador basado en la regresión logística junto con los índices no lineales de la HRV. El clasificador
propuesto alcanza un 76,5% de sensibilidad y un 72,2% de precisión en la detección de los casos
normotensos, proporcionando así información pertinente y objetiva respaldando la decisión final del
equipo médico.

En el capítulo 6 se presentan las principales conclusiones derivadas de la tesis y se consideran
futuras ampliaciones en base a las investigaciones llevadas a cabo. Se hace hincapié en la contribución
de la tesis al desarrollo de metodologías novedosas para caracterizar de manera más robusta los índices
no lineales de la HRV e interpretar con fiabilidad los resultados correspondientes. Basándose en las
metodologías desarrolladas, se investigan las condiciones o patologías asociadas con alteraciones en
la modulación autonómica de la actividad cardiaca y se destaca la contribución del análisis no lineal
de la HRV para su caracterización.

En conclusión, entre los objetivos metodológicos desarrollados en esta tesis se encuentran: i) la
propuesta de un esquema de trabajo para incrementar la fiabilidad de la estimación de la dimensión de
correlación, usando un algoritmo que reduce la carga computacional, facilitando su aplicabilidad en la
práctica clínica; ii) el desarrollo de métodos alternativos para atenuar la dependencia de los índices no
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lineales de la HRV con el ritmo cardiaco medio; iii) la propuesta de un índice no lineal de la HRV
multidimensional independiente de la definición a priori de parámetros para su estimación. Además,
los objetivos relacionados con la aplicación clínica de las contribuciones metodológicas son: i) la
caracterización del efecto del envejecimiento en los índices no lineales de la HRV; ii) la evaluación de
la complejidad e irregularidad del ritmo cardiaco en pacientes que sufren de insuficiencia cardiaca
comparada con sujetos sanos; iii) la mejora de la eficacia de la profilaxis para la prevención de eventos
de hipotensión después de anestesia espinal durante parto programado por cesárea.
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“The heart has reasons which
reason does not know.”

- Blaise Pascal (1623-1662) -

1
Introduction

Summary

In this chapter, the motivation for the development of this thesis is introduced. The human body
is a source of biomedical signals that can be used to characterize and identify health status and
pathologies. This thesis is based on the heartbeat interval variations and their relation to the regulation
of the autonomic nervous system (ANS) on the heart. The modulation of the heart rate through
sympathetic and parasympathetic systems is introduced. Finally, technical approaches commonly
used for assessing autonomic nervous system (ANS) activity using heart rate dynamics are presented
throughout this dissertation.
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2 Introduction

1.1 Motivation

Heart rate variability is considered a non-invasive technique for assessing ANS regulation of heart
rate [179]. During the last few decades, interest in this analysis has risen. Around 1600 related
scientific papers were published in 2017 (data from Pubmed search engine https://www.pubmed.gov).
Its potential is widely recognized and used. The analysis of HRV has been applied to characterize
changes in ANS response due to several pathologies or habits, e.g. cardiovascular diseases (CVD),
metabolic disorders, mental disorders and stress [49, 48, 136, 153, 90, 26, 72, 45, 163, 82, 128, 112].
The World Health Organization reported that 31% of all world global deaths were related to CVD,
which is 17.7 million people, 422 million people worldwide have diabetes and 1.6 million deaths are
directly related to this disease each year. In addition, more than 300 million people worldwide are
suffering from a mental disorder (depression, bipolar affective disorder, schizophrenia, psychosis,
dementia, developmental disorders). Early detection is crucial to reduce the incidence, morbidity and
mortality of CVD, and metabolic disorders and to increase the efficacy of treatment for mental and
stress disorders (retrieved from http://www.who.int).

After years of study, in 1996, the standards of measurement of heart rate variability, including
physiological interpretation and clinical use, were published [179]. However, despite the huge number
of studies related to HRV analysis, linear indices (referred to as time- and frequency-domain) are
sometimes not enough to extract conclusive findings. The relationship between intrinsic pacemaker
cells and ANS modulation expressed in HRV has been reported as nonlinear [194]. Nonlinear
techniques have been highlighted as powerful tools to assess HRV for diagnosis and prognosis,
pointing out the presence of nonlinearities in heart rate regulation, but further research is needed to
relate these nonlinear techniques to a physiological interpretation [87, 85, 177].

During the following 20 years, many authors focused their research studies on this new branch.
In 2015, the advances in HRV signal analysis were released, paying attention to these nonlinear
techniques [161]. However, physiological interpretation of nonlinear indices is still unclear, since
methodological aspects, such as their dependence on parameter setting, which has not been addressed
in any great depth yet, may be misleading.

1.2 Autonomic Nervous System Regulation of the Heart

Cardiovascular and respiratory systems are regulated by ANS. Heart rate, lung volume and blood
pressure are modulated in order to supply the body’s needs. A sensor net, made up of sensory receptors,
detects variations of these variables, information which is managed by regulatory systems. In this
thesis, we focus our attention on the regulation of ANS on the heart. The presence of ANS innervation
in the heart can be found at several locations. ANS fibers are present in the sino-atrial (SA) node, the
atria, atrio-ventricular (AV) node and also in the ventricles, see figure 1.1. As with most of the body’s
organs, the heart is innervated by the two main subsystems of the ANS, the parasympathetic (vagal)
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and the sympathetic system. These subsystems are described as antagonistic and they work together
to maintain the cardiovascular homeostasis.

Adrenal 
medulla Epinephrine and

norephinephrine

Circulation

Heart

SA node

Baroreceptors
in aorta

Carotid body
chemoreceptors

Baroreceptors in wall
of internal carotid artery

Cardioregulatory center and chemoreceptors
in medulla oblongata

Sympathetic 
nerve fibers

Parasympathetic 
nerve fibers

Sensory
nerve fibers

Figure 1.1 Innervation of the heart by autonomic nervous system.

The vagal system decreases heart rate and cardiac contractility (rest and digest response), while
the sympathetic system acts antagonistically increasing the heart rate and cardiac contractility, and
regulating the peripheral vasoconstriction (fight or flight response) [65]. The underlying mechanisms
of these two subsystems present different physiological dynamics. On one hand, parasympathetic
modulation acts by releasing acethylcholine into the synaptic space of the neurons, where muscarinic
cholinergic receptors of cardiomyocytes are stimulated, changing properties such as ionic currents and
conductances, decreasing the excitability of the cells, and then reducing the heart rate. On the other
hand, sympathetic regulation stimulates the adrenal medulla, releasing adrenaline and noradrenaline
into the bloodstream, which stimulates β -receptors, changing the cardiomyocyte properties, increasing
the heart rate. Parasympathetic system regulation shows a faster response than the sympathetic one.

Pharmacological blockades are used for treatment of certain pathologies in which ANS response
is altered, such as silent ischemia or heart failure, or to explore the subsystems behavior separately
[169, 138, 96]. These drugs could stimulate or inhibit ANS subsystem activity. On one hand,
the muscarinic antagonist (anticholinergic) drugs reduce the respiratory sinus arrhythmia degree,
inhibiting vagal modulation, and are used in Parkinson’s disease. On the other hand, β -adrenergic
receptor blocker therapy plays a key role in the treatment of cardiovascular diseases due to their
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antiischemic, antiarrhythmic and antihypertensive properties, and also it has been reported to be
beneficial in cases of heart failure [108].

1.3 Heart Rate Variability

In normal sinus rhythm, heart rate is determined by the SA node, which receives impulses from both
sympathetic and parasympathetic systems, increasing or decreasing heart rate respectively, in order to
meet internal and external demands to maintain homeostasis. Heart rate variability refers to the beat-to
beat heart rate variations, and its analysis has been proposed for the assessment of ANS regulation on
the heart. HRV is derived from the electrocardiogram (ECG), which describes the electrical activity
of the heart, recorded by electrodes placed on the body surface.

Figure 1.2 Physiological phases of the heart and electrocardiograph signal representation. 1) Pace-marker cells of SA
node are ready to fire (Atrial depolarization). 2) SA cells fire and electrical activity begins (Atrial repolarization). 3) Atrium
pumps blood to ventricles. 4) Electrical activity travels from atrioventricular node to Purkinje fibers to depolarize ventricles
(QRS complex). 5) Ventricles begin repolarizing from endocardium to epicardium. 6) End of the ventricular repolarization
and ventricles pump blood to aorta artery.

The mechanical contraction of the heart is preceded by electrical cell (cardiomyocytes) excitation,
the so-called depolarization stage, while, the return to electro-mechanical relaxed condition is called
repolarization. Each heartbeat generation is composed of several phases illustrated in Fig. 1.2. The
cardiomyocytes belonging to the SA node present the special characteristic of being auto-activated,
generating the beginning of a heartbeat. They are known as the natural pacemaker of the heart. These
cells generate the stimulus to be transmitted to the rest of cardiomyocytes. First, atria are depolarized,
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producing the mechanical contraction (P wave). The electrical activity travels to the atrioventricular
node, where it is delayed and then, ventricles receive the electrical impulse via Purkinje fibers (QRS
complex). Atria are repolarized, and ventricles start depolarizing as well as contracting (T wave). The
electrocardiogram (ECG) represents the global electrical activity of the heart.
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Figure 1.3 Position of electrodes placed in the chest is illustrated in the left panel. On the right, an ECG signal is shown
produced by the electrical activity of each heartbeat. Asterisks represent the heartbeat location in time, t(k), where k is the
beat index.

To obtain HRV, the detection of each heartbeat occurrence time from the ECG is needed (see Fig.
1.3). The selection of a proper fiducial points for HRV analysis is important. The heartbeat location is
commonly extracted from the R wave peak, corresponding to the fast propagation of the impulse from
atria to ventricles through the AV node and the bundle of His, since it is usually the dominant wave
within the QRS complex. However, in certain QRS complex morphologies, with dominant negative
peak, detection of the latest would be more robust. On the other hand, switching from main positive
peak to main negative peak from beat to beat would induce extra variability. Thus, in this thesis,
fiducial points are selected to be either the positive or the negative QRS complex peaks, depending on
which of them represent the most recurrent morphology.

Heart Rate Variability Representations

RR time Series

The tachogram or RR time series is defined as the difference between consecutive R wave peaks.
Hence:

RR(k) = t(k)− t(k−1), (1.1)

where t(k) is the kth heartbeat location in time.
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Heart Rate Series

HR time series are defined as the inverse of RR time series in beats per minute (BPM) units:

HR(k) =
60

RR(k)
(1.2)

These series are naturally unevenly sampled, but methods, such as interpolation, could be applied
when necessary to generate evenly sampled series.

Figure 1.4 illustrates both series and their differences.
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Figure 1.4 From top to bottom, RR interval and heart rate as HRV signal representations. Data extracted from a 24h
Holter recording of Normal Sinus Rhythm database from www.physionet.org.

Other Alternative Representations

Alternative representations of HRV have been proposed based on physiological models.

On one hand, integrate-and-fire models such as the integral pulse frequency modulation (IPFM)
model provides a physiologically plausible model for HRV representation, assuming that the ANS
influence on the SA node can be described by a modulating signal, M(t) [115]. The modulating
signal over a DC level of 1 is integrated until reaching a threshold, which is the mean heart period,
when a new heartbeat is generated and the integral is reseted.

On the other hand, models taking into account the stochasticity of the process, like the point-
process model, have been also used for HRV representation. This model was firstly applied in
neuroscience, analyzing the electrical activity of the brain through electroencephalogram (EEG),
obtaining promising results [181]. Its application to HRV analysis provides a probability model to
describe heart rate dynamics mathematically. The waiting time from one heartbeat time t(k) until the
next one is assumed to obey an inverse Gaussian probability density function [10].
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1.4 Autonomic Nervous System Assessment

As aforementioned, HRV is considered a non-invasive technique for assessing the ANS activity
related to heart regulation [179]. Approaches based on the time- frequency-domain and in terms of
complexity/irregularity have been applied to HRV analysis and they are described in the following.

1.4.1 Time Domain Analysis

Time domain indices are based on statistical characteristics of HRV signals. Time domain indices
give a description of the time series first moments, heart rate mean (HRM), standard deviation of
consecutive normal beats (SDNN), referring to those whose origin is the SA node, and the square
root of the mean squared differences of successive normal heartbeat intervals (RMSSD). In particular,
SDNN and RMSSD have been related to parasympathetic activity [179].

1.4.2 Frequency Domain Analysis

In 1981, Akselrod et al. [2] characterized heart rate fluctuations in the frequency domain, describing
the relation between ANS modulation (sympathetic and parasympathetic subsystems) and power
spectral density content in specific bands.

The sympathetic activity was reported to contribute to low frequency (LF) band content (PLF :
0.04-0.15 Hz), whereas the parasympathetic activity contribution was related to high frequency (HF)
band content (PHF : 0.15-0.4 Hz), but also to LF band. Figure 1.5 illustrates an exemplary spectral
representation of HRV signal, corresponding to relaxed conditions. HF content was proposed as an
index to estimate the parasympathetic activity . In addition, the ratio between LF and HF power
spectral density band content, known as sympathovagal ratio (LF/HF), was reported to provide a
measure of the balance between sympathetic and parasympathetic system regulation. The mentioned
spectral band definitions are suitable for adult healthy subjects who are breathing normally. HF band
definition can be modified, depending on the subject status, to ensure that parasympathetic activity
is captured [9, 70], since factors such as respiratory sinus arrhythmia could be reflected in higher
frequencies and thus, the pre-defined HF boundaries should be adjusted [80].

Spectral analysis can be carried out by analyzing the raw RR time series by Lomb-Scargle
periodogram, since raw RR time series is unevenly sampled, or by Fourier transform on interpolated
RR time series.
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Figure 1.5 Example of power spectral density of a HRV signal (modulating signal M(t)) where low and high frequency
contributions are illustrated.

1.4.3 Nonlinear Domain Analysis

From Deterministic to Stochastic Processes

A system can be classified as deterministic, stochastic or mixed. When an input always produces
the same output, the system is said to be deterministic. Deterministic systems can be mathematically
described with an unambiguous relationship between the input and the output of the system. There
are deterministic systems whose response is highly influenced by initial conditions, producing a very
different output depending on those conditions. Such an influence is known as the butterfly effect, as
the dependence on initial conditions is represented as the beating of a butterfly’s wings in California
that could unleash a tornado in another part of the world. Those deterministic systems are known
as chaotic. Although the output of a chaotic system could seem to be random, it is not, since it can
be exactly determined. In Fig. 1.6, the Lorenz attractor, which is a chaotic system, is illustrated.
This system consists of three coupled differential equations, generating three outcome signals with a
randomness-like behavior (see section 2.2.1 for the Lorenz attractor mathematical description). The
most widespread methods used to characterize nonlinear system dynamics are the ones based on chaos
theory, where the greater the amount of information, the higher the accuracy of the measurements. In
stochastic systems the output is totally random or has a certain degree of randomness.

The HRV signal could be interpreted as the observable outcome of a system containing information
on cardiac ANS regulation. The HRV signal can contain information related to intrinsic physiological
nonlinearities, such as changes in the gain of baro-reflex feedback loops or delays in conduction time,
which might not be properly described by temporal and spectral signal characteristics [200, 6, 165].
The presence of nonlinear characteristics in HRV time series has been highlighted by surrogate data
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Figure 1.6 Left panel: Lorenz attractor is represented in the phase-space. Right panel: random-like behavior of one of its
single outputs is illustrated.

analysis [87, 85, 177, 88]. The question of whether HRV arises from a low-dimensional attractor
associated with a deterministic nonlinear dynamical system or has an stochastic origin is still unclear.

System complexity is a concept referring to dynamic richness of subsystem interconnections
and feedback. In particular, HRV is known to be related to the outcomes of coupled cardiovascular
and respiratory systems such as heart rate, lung volume and blood pressure, among others. Based
on transfer functions and models, proposals to quantify the interaction between these variables
influencing HRV have been reported [162, 187, 16, 192]. A simplified model of these interactions
proposed in [187] is illustrated in Fig. 1.7. Nonlinear complexity indices have been shown to
provide complementary information to linear approaches in the characterization of HRV signals [30].
Techniques based on detrended fluctuation analysis [84], Lempel-Ziv complexity [105], Lyapunov
exponents [191], D2 [145] and approximate and sample entropies [142] have been used to assess HRV
complexity.

State of the Art

Availability of faster computing resources as well as development of more efficient algorithms
for computation of nonlinear HRV characteristics has been crucial for the boost of these methods
in research, since the associated high computational load was considered as a limitation for their
applicability. Fig. 1.8 shows a timeline with relevant milestones in the characterization of HRV, both
using classical and nonlinear methodologies. Some of these methodologies, like approximate entropy
or detrended fluctuation analysis, have been widely applied in the last three decades, as illustrated in
Fig. 1.9, which shows usage rate of nonlinear methodologies.

Nonlinear HRV indices have been highlighted as promising markers to characterize cardiovascular
diseases, such as congestive heart failure, atrial fibrillation or myocardial infarction as well as risk for
sudden cardiac death or other type of deaths [118, 167, 187, 40, 43, 50, 75, 173, 12, 73, 50]. Also,
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Figure 1.7 A simplified model of HR regulation, adapted from Voss et al. [187]

nonlinear HRV analysis has been applied to investigate the effects of aging [14], mental disorders
[16, 122, 124] or unbalanced cardiovascular regulation [149].

According to Sassi et al. [161], nonlinear methods can be classified as: long-range correlation
and fractal scaling (e.g. 1/ f factor, DFA), short-term complexity (e.g. Poincaré plot analysis,
acceleration/deceleration capacity), entropy and regularity (e.g. approximate and sample entropy), and
nonlinear dynamical systems and chaotic behavior (e.g. correlation dimension, Lyapunov exponents).
In this thesis, the nonlinear indices most commonly used in the literature (see Fig. 1.9), like those based
on entropy and regularity (approximate and sample entropy, ApEn and SampEn respectively) and
nonlinear dynamical systems and chaotic behavior (correlation dimension, D2), have been considered.

The above mentioned nonlinear indices are based on Takens’ work, which was focused on
detecting strange attractors [178]. He concluded that an attractor could be properly reconstructed
when the phase-space dimensionality is sufficient to unfold the attractor. He also postulated that it is
possible to assess the information of a system by taking into account just one experimental output.
Based on this, ApEn, a measure of system complexity, was introduced by Pincus [144]. Almost a
decade later, Richman and Moorman introduced sample entropy (SampEn), an irregularity index for
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Figure 1.8 Milestones over the time towards the nonlinear heart rate variability assessment. Figure adapted from G.E.
Billman (Frontiers in Physiology, 2011) [18].

which dependency on data length was attenuated with respect to ApEn [125]. Meanwhile, Grassberger
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Figure 1.9 Graphical representation of usage rate of most common nonlinear methods for HRV analysis (data from
Pubmed search engine e, statistical sample of two hundred studies.).

and Procaccia introduced an algorithm to estimate D2 also based on Takens’ conjecture to characterize
strange attractors (chaotic systems) [60].

Shedding light into physiological interpretation of nonlinear HRV indices has been the focus
of different research studies. Some studies have shown correlation between frequency-domain and
nonlinear HRV indices and have postulated the role of vagal modulation in underlying nonlinear
characteristics [198, 132, 75, 193]. Other studies have shown that nonlinear HRV indices are almost
unaffected by postural changes known to elicit autonomic responses [172]. In contrast, a statistically
significant reduction in HRV irregularity during tilt test, eliciting sympathetic activation, has been
reported [75, 148]. The effect of ANS blockades on healthy subjects has been analyzed to improve
physiological interpretation of HRV dynamics [135, 75, 193, 23]. Inhibition of vagal nerve activity on
the heart by atropine administration revealed lower complexity in nonlinear HRV analysis, whereas
no differences were found in nonlinear HRV indices following administration of the β -adrenoceptor
antagonist propranolol. In response to exercise, an increase in the exercise load has been related to a
decrease in the irregularity and chaos-like behavior of the HRV time series [79, 188, 64].

Nevertheless, caution is required when interpreting results obtained by using nonlinear HRV
measurements. First, nonlinear HRV indices are highly influenced by values given to the parameters



“thesis” — 2018/3/12 — 11:04 — page 13 — #39

1.5 Applications of Nonlinear HRV Analysis 13

involved in their definitions [118, 177, 34, 75, 20, 182, 69]. In addition, nonlinear HRV indices show a
strong dependence on mean HR [202, 146, 123, 195], which should be attenuated before establishing
any comparison. Standardizing the use of nonlinear HRV indices by accounting for both associated
parameter definition and mean HR attenuation would be advisable if such indices are aimed to be
more extensively used and interpreted.

1.5 Applications of Nonlinear HRV Analysis

The methodologies proposed in this thesis for nonlinear HRV analysis will be applied to assess
cardiovascular disorders and conditions like heart failure, aging and hypotension during cesarean
section.

1.5.1 Aging

Aging has been reported to be associated with a decrease in cardiac vagal modulation [24, 44, 54].
These effects have been related to a decrease in HRV, as assessed by frequency-domain indices [98].
In this thesis nonlinear HRV characteristics will be investigated in a database of healthy subjects
spanning a broad range of ages.

1.5.2 Congestive Heart Failure

CHF has been associated with increased sympathetic activity and decreased peripheral response
to adrenergic input [38, 63]. A decrease in the low frequency power of HRV was related to the
progression of the disease in patients with severe CHF [62]. This result can be explained by: (i) a
central autonomic regulatory impairment in heart failure, supported by results of muscle sympathetic
nerve activity in CHF patients with absent low frequency content [186]; (ii) a decreased responsiveness
to sympathetic modulation, which may reduce the capability of the heart to oscillate at this frequency
[63]; and (iii) an increased chemoreceptor sensitivity, which may be related to an increase in very
low frequency power (PV LF ) and a decrease in low frequency power in CHF patients [147]. In the
case of nonlinear HRV analysis, controversial findings have been reported. While some studies report
lower complexity and irregularity in CHF patients than healthy subjects [73, 107], other studies have
described HRV of CHF patients as more complex and irregular than that of healthy subjects [204, 41].
In this thesis, light will be shed on potential reasons underlying these results, particularly taking into
account important methodological considerations that influence nonlinear HRV analysis.

1.5.3 Hypotension during Cesarean Section

Prophylaxis treatment has become essential to prevent the development of hypotensive events after
spinal anesthesia during cesarean section. However, prophylaxis administration could increase fetal
distress in those cases where there is no need for it, i.e. for normotensive outcome. The combination
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of symptoms caused by late pregnancy period, physiological and psychological stress and ANS
disability to compensate for the drop in blood pressure induced by anesthesia could be responsible
for hypotensive episodes during cesarean delivery. HRV characteristics have been found to correlate
with hypotensive episodes on the day of surgery [21, 31, 66, 199]. Prediction of hypotensive episodes
would benefit the wellbeing of both the mother and the fetus during the intervention, thus increasing
the efficacy of prophylactics. In this thesis novel nonlinear HRV analysis will be applied to improve
classification of hypotensive vs normotensive events.

1.6 Objectives

The interaction of the diverse physiological mechanisms involved in HR regulation, and how each
of them is reflected by the HR dynamics, becomes an ambitious and complicated challenge to
understand. Nonlinear HRV analysis was highlighted as a powerful tool to extend the description
of several cardiovascular diseases, complementing the information provided by linear approaches.
However, the main caveat in the nonlinear HRV analysis lies in its physiological interpretation.
Searching for dependencies, such as HRM or a priori parameters that have to be selected for nonlinear
HRV indices estimation, is of great interest in order to attenuate these influences, and clarify their
physiological interpretation.

In chapter 2 alternative methodologies for more reliable estimation of nonlinear HRV indices while
reducing the associated computational cost are explored. A methodological framework is initially
introduced for estimation of D2. Based on the similarities found in the computation of approximate
and sample entropy with respect to correlation dimension, the framework will be considered for the
estimation of those other indices as well.

The effect of heart rate, as sampling rate of HRV signal, on nonlinear HRV indices will be
investigated in chapter 3 and strategies for attenuation of this effect will be introduced. The proposed
strategies will be validated in synthetic time series reproducing physiological characteristics of heart
rate signals.

Nonlinear HRV indices, like approximate entropy, are to a large extent dependent on parameters
which values need to be set a priori. In chapter 4, a nonlinear multidimensional approximate entropy-
based index, independent of a priori parameters is proposed. Synthetic time series with different
levels of randomness are used to validate the proposed index. This index, as well as other nonlinear
HRV indices commonly used in the literature are applied to assess the effects of aging as well as to
compare CHF patients and healthy subjects.

In chapter 5, the knowhow developed along the thesis is applied to assess a stress-related clinical
problem, namely prediction of hypotensive episodes after spinal anesthesia during cesarean section.
Linear and nonlinear analysis of HRV, pulse wave variability and pulse rate variability (derived
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from photoplethysmographic signal) are investigated to derive combinations of indices with optical
capability to classify hypotensive versus normotensive events.

Concluding remarks of this thesis are presented in chapter 6.

In summary, methodological objectives of this thesis include: i) proposal of a novel framework
to improve reliability of correlation dimension estimation by using an algorithm with reduced com-
putational load that facilitates its applicability in clinical practice; ii) development of alternative
methods to attenuate the dependency of nonlinear HRV indices on mean HR; iii) proposal of a
novel multidimensional nonlinear HRV index independent of a priori parameter definition for its
computation.

Objectives related to clinical application of the methodological contributions are: i) characteriza-
tion of the effect of aging on nonlinear HRV; ii) assessment of complexity and irregularity of heart
rate in CHF patients as compared to healthy subjects; iii) improvement in the efficacy of prophylaxis
administration for the prevention of hypotensive events after spinal anesthesia during programmed
cesarean delivery.
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“But the trouble was that ignorance became more
interesting, especially big fascinating ignorance
about huge and important things like matter and
creation, and people stopped patiently building their
little houses of rational sticks in the chaos of the
universe and started getting interested in the chaos
itself – partly because it was a lot easier to be an
expert on chaos, but mostly because it made really
good patterns that you could put on a t-shirt.”

- Terry Pratchett (1948-2015) -

2
Framework for Correlation Dimension Estimation

Summary

In this chapter, correlation dimension is introduced, based on that it is possible to reconstruct certain
system characteristics with just considering one single system output (Takens hypothesis). The
novelties, presented here, covered a new strategy to estimate the scaling region of the log-log curves
(correlation sums vs. tolerance values), being crucial for improving reliability of correlation dimension.
Besides, two proposed approaches for its estimation and an algorithm for a fast computation are
introduced. The proposed framework is validated through synthetic and real data, pointing out the
caveats and limitations for correlation dimension estimation.
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2.1 Correlation Dimension

As mentioned in the introduction chapter, nonlinear HRV analysis measurements have been described
as complementary to time- and frequency-domain indices, but some pitfalls could mislead their
interpretation. One of such limitations arises from their application to time series with limited
duration. In particular, D2 estimation has shown a strong dependence on the length of the time
series [60]. Alternatives to alleviate this effect were proposed in [78, 180]. In addition to this,
stationarity is another requirement that a time series has to fulfill to obtain reliable results. However,
these methodological constraints, regarding data length duration and stationarity, are usually difficult
to satisfy at the same time [88]. Furthermore, computation of D2 is time-consuming, increasing
exponentially with data length. In this regard, several attempts have been reported trying to reduce
this disadvantage, including parallel computing using MPI (Message Passing Interface) [190, 205].

In this chapter, a new methodological framework to estimate D2 is proposed, increasing correlation
dimension reliability and reducing its computational time.

2.1.1 Mathematical Definition

Let x(n), n = 1, . . . ,N, be the time series of interest, which in HRV analysis will be the RR interval
series normalized to unit amplitude (divided by absolute maximum value), and N the total number of
beats. A set of m-dimensional vectors, ym(i), called reconstructed vectors, are generated [178]:

ym
i = [x(i),x(i+ τ),x(i+2τ), . . . ,x(i+(m−1)τ)]T (2.1)

where τ represents the delay between consecutive samples in the reconstructed space. The amount of
reconstructed vectors is Nm = N − τ(m−1) for each embedding dimension m. The distance between
each pair of reconstructed vectors, ym

i ,ym
j , is denoted as:

dm
i, j = d(ym

i ,y
m
j ) (2.2)

computed as the norm of the difference vector ∆ym
i, j = ym

i −ym
j . In section 2.4.1, different norms and

their effect on D2 estimates from finite time series are discussed.

The self-similarity is addressed by computing the correlation sums, which represents the proba-
bility of finding similar reconstructed vectors, according to a certain threshold r. Hence, correlation
sums are defined as follow:

Cm(r) =
1

Nm(Nm −1)

Nm

∑
i, j=1

H(r−dm
i, j)

=
1

Nm(Nm −1)

Nm

∑
i=1

cm
i (r)

(2.3)



“thesis” — 2018/3/12 — 11:04 — page 19 — #45

2.1 Correlation Dimension 19

where H(·) is the Heaviside function,

H(x) =

{1 x ≥ 0

0 x < 0

(2.4)

and

cm
i (r) =

Nm

∑
j=1

H(r−dm
i, j) (2.5)

For deterministic systems, Cm(r) decreases monotonically to 0 as r approaches 0, and it is expected
that Cm(r) is well approximated by Cm(r)≈ rDm

2 . Thus, Dm
2 can be defined as:

Dm
2 = lim

r→0

logCm(r)
log(r)

(2.6)

For increasing m, Dm
2 values tend to saturate to a D2 value, constituting the correlation dimension

estimate.

2.1.2 Scaling Range Assessment: Sigmoid Curve Fitting

D2 is estimated from Eq. (2.6), whose numerator and denominator both tend to −∞ as r tends to 0.
Therefore, making use of L’Hôpital’s rule, the equation can be rewritten as [104]:

Dm
2 = lim

r→0

dlogCm(r)
dlog(r)

(2.7)

Since the size of the time series is finite, choosing small values of r to evaluate this limit is
problematic. For values of r close to 0, very few distances contribute to the correlation sum, making
the estimation unreliable. Therefore, the evaluation of this expression is usually done in a linear
region in the log(Cm(r)) vs log(r) representation, called the log-log curve, where its slope value is
considered an estimate of Dm

2 .

The slope of the linear region could be estimated by different approaches, e.g. searching for
maximum slope can be done by directly computing the increments in the log-log curve, or as the
maximum of the first derivative of the log-log curve [78]. Nevertheless, these approaches encounter
some limitations, since logarithmic r values produce non-equidistant sampling . Another limitation
arises in the presence of dynamic systems, whose log-log curves could present several linear regions,
as can be seen in Fig. 2.1, where data corresponds to a RR interval series extracted from a 30-minute
ECG recording. In order to estimate the slope of the linear region of the log-log curve, an attempt
to artificially extend the linear region is made by excluding the self-comparisons (dm

i, j) from the
correlation sums (see Eq. 2.5).
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However, the basis of the proposed approach, to improve D2 estimation, lies in considering
self-comparisons. Fig. 2.2 illustrates how log-log curves behave in both situations, considering or
not considering self-comparisons. As shown, both share part of the linear region. Sigmoid curve
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fitting (SCF) over the log-log curves provides an analytic function, whose maximum slope in the linear
region is well defined. These log-log curves are reminiscent of the bi-asymptotic fractals, showing
upper and lower asymptotic log-log values. This was studied by Rigaut [156] and Dollinger et al.
in [47], where exponential fittings were proposed. The sigmoid curve fitting technique is applied to
log-log curves, after interpolating them, in the logarithmic scale, to achieve evenly-spaced r values.

To do so, a modified Boltzmann sigmoid function was considered. This was used by Navarro et al.
[130] as a model for the phase transition of smart gels:

f (x) = A2 −
(A2 −A1)

B+ e
(−x+xo)

α

(2.8)

where A1, A2, α , xo and B are the design parameters. The first derivative of f (x) is:

d f (x)
dx

=− (A2 −A1)e
(−x+xo)

α

α

(
B+ e

(−x+xo)
α

)2 (2.9)

In this study, the sigmoid curve, f (x), is fitted to each log-log curve. The first derivative, Eq. 2.9,
is analytically determined and its maximum value constitutes the estimation of the slope of the linear
region, i.e. D̂m

2 , see Fig. 2.3. Note that hat notation refers the application of SCF on its estimation.
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Figure 2.3 In the left panel a modified Boltzman sigmoid curve is shown where the parameters according to Eq. 2.8 are
illustrated; In the right panel, an example of a log-log curve ( black dashed line), the SCF curve obtained (black solid line).
The derivative of both curves is shown in gray color, dashed and solid respectively. Maximum slope estimations are marked
with dots.

In order to achieve a good fitting, the threshold values, r, have to guarantee that both upper and
lower asymptotes are reached. Then, threshold values, r ∈ [0.01 3] with a step of 0.01 are considered.
The upper asymptote is reached when all comparisons are above the threshold, Cm(r)≈ 1, and the
lower asymptote when only the self-comparisons are below, Cm(r) = 1

Nm(Nm−1) .
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The requirement for a good fitting is to achieve a regression factor greater than 0.8 with respect to
log-log curve values. Thus, the SCF approach is robust against erroneous D2 estimates. In those cases,
where dynamic systems exhibits log-log curves with more than one linear region, no estimation of D2

is given, since the fitting is not enough satisfactory to reach the minimum necessary regression factor.

As the embedding dimension m increases, the linear regions of the log-log curves tend to be
parallel to each other. Thus, D̂m

2 estimates tend to saturate to a certain value, which is considered the
D̂2. D2 is estimated by fitting the D̂m

2 vs. m curve following a modified version of the one used by
Carvajal et al. [29]:

Dm
2 = D2

(
1−Ae−km

)
(2.10)

where A, is here introduced to reach the saturation level more quickly than the previously proposed,
and k is the exponential growth factor.

2.1.3 New Approaches for D2 Assessment

In this section, new alternatives, based on (SCF) approach, to estimate D2 are introduced. As
mentioned in section 2.1.2, we chose D̂m

2 as the maximum slope on each fitted sigmoid curve.
Nevertheless, the linear region is composed of more than one single point. Based on this, a new
approach for D2 estimation is proposed by considering a set of points, i.e. slope estimations, extracted
from these linear ranges, instead of considering only one single point per curve.

The main idea is based on selecting one point of the linear range in the SCF log-log curve of
the lowest embedding dimension m, and moving forward to the next embedding dimension m+1,
selecting the point of the corresponding SCF log-log curve that satisfies the minimum distance to
the former curve following the gradient descent technique (i.e. where an hypothetical perpendicular
line starts in the mth log-log curve and intersects the (m+1)th log-log curve, see Fig. 2.4). Minimum
distance was considered, assuming that the linear range of log-log curves tend to be parallel to each
other. The procedure is repeated up to the maximum considered embedding dimension. Then, several
sets of slopes are computed (one for each point in the linear region around the maximum slope of
the SCF log-log curve of the lowest embedding dimension), providing a set of D2 estimates per
embedding dimension (D̂m

2(⊥),r). The dependence on r in the notation indicates that each set of D2

estimates is linked to an r value, corresponding to the first value of each set.

Finally, Eq. 2.10 is used to estimate the final D2 (D̂2(⊥),r) for each set of points. These (D̂2(⊥),r)
estimates are linked to the log(r) value of the lowest embedding dimension. Finally, regarding the
criterion in searching for the maximum slope value in the log-log curves, the maximum of the D̂2(⊥),r

is selected as the new D2 estimate, called D̂2(⊥), see Fig 2.5.
Another new approach for D2 estimation based on SampEn is now presented. SampEn was

defined by Zurek et al. [205] as:
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Figure 2.4 Maximum slope points are marked with crosses over fitted sigmoid curves. Points calculated using gradient
descent criteria from two starting points are shown in dots and circles. r j is the point which corresponds to the maximum
slope in the lowest embedding dimension. The inset illustrates the D2 estimation of the three sets of points.

SampEn(m,r) = log(Cm(r))− log(Cm+1(r)) (2.11)

where, in this case, Cm(r) is computed as in Eq. 2.1.1, but without considering self-comparisons. Let
us define SampEni= j(m,r) as the sample entropy considering self-pairs, which is easily computed
for all embedding dimensions m and a huge set of thresholds r using the fast algorithm which will
be described in section 2.1.4. We can generate a SampEni= j(m,r) surface from the fitted sigmoid
curves. An example of a 300-beat RR interval series extracted from one recording of the database
used in [27] is shown in Fig. 2.6. For each embedding dimension, the value of r which maximizes
SampEni= j(m,r) is used to estimate the slope of the linear region of the SCF log-log curves, D̂m

2(max),
yielding another D2 estimate, called in this thesis D̂2(max).
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2.1.4 Fast Computation of Correlation Sums

One important limitation of D2 estimation is the high computational time required, mainly due to the
sequential estimation of correlation sums.

This section describes an algorithm for the fast computation of correlation sums based on matrix
operations (MO). A matrix S, containing the differences between all pairs of samples of x(n), is
computed as:

S = X−XT (2.12)

where X is the N ×N matrix:

X =



x(1) x(2) . . . x(N)

x(1) x(2) . . . x(N)

x(1) x(2) . . . x(N)
...

...
. . .

...
x(1) x(2) . . . x(N)


(2.13)

where xi, j symbolizes x(i)−x( j). For instance, the dashed box contains the elements of the difference
vector ∆ym

i, j for τ = 1. For each embedding dimension m and the reconstructed vector i, the difference
vectors ∆ym

i, j generates a Sm
i matrix:

S =



x1,1 . . . xi,1 xi+1,1 . . . xi+m−1,1 . . . xN,1
...

...
...

...
...

...
...

...
x1, j . . . xi, j xi+1, j . . . xi+m−1, j . . . xN, j

x1, j+1 . . . xi, j+1 xi+1, j+1 . . . xi+m−1, j+1 . . . xN, j+1
...

...
...

...
...

...
...

...
x1, j+m−1 . . . xi, j+m−1 xi+1, j+m−1 . . . xi+m−1, j+m−1 . . . xN, j+m−1

...
...

...
...

...
...

...
...

x1,N . . . xi,N xi+1,N . . . xi+m−1,N . . . xN,N


(2.14)

Sm
i =



xi,1 xi+1,2 . . . xi+m−1,m
...

...
...

...
xi, j xi+1, j+1 . . . xi+m−1, j+m−1
...

...
...

...
xi,Nm xi+1,Nm+1 . . . xi+m−1,N


=



∆ym
i,1

T

...
∆ym

i, j
T

...
∆ym

i,Nm
T


(2.15)

The selected norm is applied to the matrix Sm
i , generating the norm vector dm

i , whose elements
are distances dm

i, j.
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To compute the limit described in Eq. 2.6, distances should be compared with a set of thresholds,
which implies the repetition of all the process as many times as the number of thresholds. The
proposed algorithm avoids this repetition, since distances in dm

i are compared with a whole set of
thresholds r = [r1,r2, . . . ,rNr ]:

Γ
m
i =


H(r1 −dm

i,1) H(r2 −dm
i,1) .. H(rNr −dm

i,1)

H(r1 −dm
i,2) H(r2 −dm

i,2) .. H(rNr −dm
i,2)

...
...

...
...

H(r1 −dm
i,Nm

) H(r2 −dm
i,Nm

) .. H(rNr −dm
i,Nm

)

 (2.16)

where Γm
i is a Nm ×Nr matrix, which contains ones and zeros. The summation of all elements per

column of Γm
i represents the partial correlation sums of the ith reconstructed vector for a set of

thresholds r:

cm
i = Γ

m
i

T 1 =


cm

i (r1)

cm
i (r2)

...
cm

i (rNr)

 (2.17)

where 1 is a Nm ×1 vector of ones.

Finally, the procedure is repeated varying the i index Nm times to compute Cm(r).

2.2 Validation Study

The selected time series chosen to validate the proposed approaches to estimate D2 are the Lorenz
attractor and the MIX(P) process.

2.2.1 Lorenz Attractor

The Lorenz attractor is a chaotic system, which is described by three coupled first order differential
equations. Its evolution exhibits a chaotic behavior for certain parameter values and initial conditions.

dx
dt

= σ(y− x), (2.18)

dy
dt

= ρx− y− xz, (2.19)

dz
dt

= β z+ xy (2.20)

For parameter values σ = 10, ρ = 28, and β = 8/3, the theoretical D2 value is 2.02 [109]. The
Lorenz attractor was illustrated in chapter 1 Fig. 1.6.
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2.2.2 MIX(P) Processes

MIX(P) is a family of stochastic processes that samples a sine for P = 0 and becomes more random
as P increases, becoming totally random for P = 1. These processes were reported by Pincus et al.
[145] following the expression

MIX(P) j = (1−Z j)X j +Z jYj, (2.21)

where X j =
√

2sin(2π j/12), Yj ≡ i.i.d. uniform random variables on [−
√

3,
√

3], and Z j ≡ i.i.d.
random variables, with Z j = 1 with probability P, and Z j = 0 with probability 1−P. MIX(P indicates
a mixture of deterministic and stochastic components.

2.3 Evaluation Study on HRV Signals

The database used for evaluation was recorded at the Miguel Servet University Hospital in Zaragoza
(Spain), for the prediction of hypotensive events in elective cesarean delivery [27]. It consists of
ECG signals from 11 women with programmed cesarean section recorded at a 1000 Hz sampling
frequency immediately before cesarean surgery. Five of them suffered from hypotension during the
surgery (Hyp) and 6 did not (NoHyp). The database used in this chapter represents a subgroup of the
whole database, since clinicians continued recording signals during 3 years. In chapter 5, the clinical
problem will be deeply assessed. In the meantime, novel D2 estimates were considered to evaluate
their capability to track some changes in ANS modulation moments before intervention.

RR time series of 5 minutes in lateral decubitus position were analyzed. Ectopic beats as well as
missed and false detections were detected and corrected [116].

2.4 Results

2.4.1 Validation on Synthetic Time Series

Lorenz attractor series were used to validate the new proposed methodologies computed using the
ℓ∞-norm. Figure 2.5(a) displays the SCF log-log curves for embedding dimensions m from 1 to 10.
The sets of points, where the slope was evaluated according to [88], are displayed for different starting
points. For each starting point, the corresponding set of points, D̂m

2(⊥),r, was selected by gradient
descent approach. Figure 2.5(b) shows the slope estimation D̂m

2(⊥),r versus m for each starting point.
Figure 2.5(c) displays the D2 estimate D̂2(⊥),r versus log(r) for each starting point. The maximum
D̂2(⊥),r constitutes the novel D2 estimate, D̂2(⊥). Tab. 2.1 illustrates D2 estimates through the three
proposed approaches presented in this chapter. The three of them led to close results to the Lorenz
attractor theoretical value of D2, being D̂2(⊥) the closest one. Relative errors for D̂2 and D̂2(max) were
found above 4%, while for D̂2(⊥) was just 1%; D2 estimated, as described in [27], was also included
for comparison purposes.
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Table 2.1 Correlation dimension estimates for the different proposed approaches, using different norms for Lorenz
attractor series (5000 samples).

Estimates
Lorenz attractor

ℓ1 ℓ2 ℓ∞

D2 [27] 1.95 1.94 1.93
D2 1.69 1.70 1.93
D2(⊥) 1.84 1.74 2.01
D2(max) 1.99 1.71 1.93

Use of Norms in Proposed D2 Estimates

Although the D2 is considered norm-invariant [180], the selection of the norm in D2 estimates deserves
further attention when applied to a finite duration time series. The norm of the difference vector,
∆ym

i, j = ym
i −ym

j , defines the distance dm
i, j in Eq. 2.2. Norms from ℓ1 (|| · ||1) to ℓ∞ (|| · ||∞) could be

selected. Left panel in Fig. 2.7 shows norm unity for ℓ1 and for ℓ2.

In Fig. 2.7, the right panel shows how different norms shifts the log-log curves, losing the entire
linear region in some cases when a fixed range of thresholds is used. In those cases, the range of these
thresholds should be long enough to ensure that the linear regions are contained therein, thus, the
election of the norm is linked to the range of the thresholds.

In the SCF approach, it is particularly important that the two asymptotic regions of the log-log
curve should be reached. Therefore, the correct selection of the norm and the range of the set of
thresholds are critical to assure the goodness of the SCF approach. Tab. 2.1 shows the D2 estimates
for 5000 sample length of Lorenz attractor series. The effect of different norms is reflected in the
estimates, since the set of thresholds was fixed. As shown, the usage of ℓ∞-norm together with the
considered fixed set of thresholds achieves closest values for the novel proposed estimates with respect
to the theoretical D2 value for the Lorenz attractor, 2.01. In the case of the approach used in [27],
where self-comparisons were not considered on the computation, D2 values was found lower than the
theoretical value.

Hereinafter, due to the effect of different norms on D2 estimation, all the results presented in this
thesis were computed using the ℓ∞-norm.

MIX(P) processes were analyzed by considering P values of 0.1, 0.4, and 0.8. The greater the P
value, the higher the level of randomness of the time series is. D̂2 was found increased as P increases,
thus, these estimates can be considered as measures of the degree of randomness of the time series, as
shown in Fig 2.8.
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Figure 2.8 MIX(P) signals with different degree of randomness and their correspondent estimation of the D̂2.

2.4.2 HRV Time Series Results

Same database, as the one used in [27] , was studied in this chapter. The results, shown in Tab. 2.2,
are divided into hypotensive and non-hypotensive groups. As an example, Fig. 2.9 shows the RR time
series of one woman of each group (left panel) and their D̂2(⊥) estimate (right panel).
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Figure 2.9 The left panel shows two RR intervals, one corresponding to a patient who developed a hypotensive event
(Hyp) and the other to one who did not (N-Hyp); the right panel shows the D̂2(⊥) estimation using the perpendicular points
in the log-log curves.

Besides the approaches proposed in this paper, the sequential approach used in [27], referred to
as classical, was added for the sake of comparison. The data distribution of the results was found
to be not normal by the Kolmogorov-Smirnov test, and, therefore, the Mann-Whitney U test was
applied. The differences between both groups for all estimates were found to be significant with
a p-value lower than 0.03. In order to evaluate their discriminant power, comparing normotensive
and hypotensive groups, a receiver operating characteristic (ROC) analysis was performed. The area
under the ROC curve, accuracy, sensitivity, and specificity for all the indices were computed, see Tab.
2.3. Similar accuracy value with respect to the one reported in [27] was achieved by the proposed D̂2

estimate, whereas the proposals, based on the the gradient descent and SampEn surface, were higher,
reaching an accuracy of 90.9% in both cases.

2.4.3 Evaluation of the Computational Load

The computational time cost of the correlation sums depends on the length of the data to analyze,
the maximum embedding dimension considered, and the number of thresholds used. The results
shown in Tab. 2.4 correspond to the computational time cost, estimating correlation dimension on
Lorenz attractor series by varying the data length (where m = 1 - 16 and r = 0.01-3 with 0.01 step
size). The computational time required for a sequential approach is denoted by TSeq, whereas the
time required for the proposed technique, based on matrix operations to estimate correlation sums, is
denoted by TMO. The speed-up is defined as Sp = TSeq/TMO, which is the ratio between sequential
and the proposed approach. As shown in Tab. 2.4, Sp was increased by one order of magnitude in the
estimation of correlation sums on 5000- and 10000-sample time series with respect to 300-sample
time series. It is worth noting that for a 300-sample time series, standard length for a 5-minute RR
interval series, correlation sums were estimated in less than 1 s.

In table 2.4, the time cost was considered for the D̂2 estimation, but not for the other two novel
proposals. Therefore, Tab. 2.5 shows the time required for the correlation dimension estimates
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Table 2.2 D2 estimated by different approaches for HRV signals (300 samples). Data expressed as median | interquartile
range.

Estimates
HRV

Hyp N-Hyp p-value

D2 [27] 5.9 | 0.6 4.4 | 1.3 0.03
D̂2 5.9 | 0.6 4.8 | 0.8 0.03
D̂2(⊥) 6.4 | 0.7 5.1 | 0.8 0.03
D̂2(max) 5.9 | 0.5 4.8 | 0.7 0.01

Table 2.3 ROC area for the nonlinear HRV analysis of all studied correlation dimension estimates for real data. Accuracy
(Acc.), sensibility (Sen.), and specificity (Spe.) are expressed in percentage.

Estimates ROC area Acc. Sen. Spe.

D2 [27] 0.90 81.8 71.4 100
D̂2 0.90 81.8 71.4 100
D̂2(⊥) 0.90 90.9 100 85.7
D̂2(max) 0.97 90.9 83.3 100

Table 2.4 Computational time of correlation sums estimated for Lorenz attractor series of different sample lengths. Sp is
the speed-up achieved and defined as Sp = TSeq/TMO, where TSeq is the time demand for a sequential algorithm and TMO
the time demand for the proposed technique, based on matrix operations.

N (samples) TSeq (s) TMO (s) Sp

300 1086 0.9 ≈ 1200
5000 8.69·105 50 ≈ 16000
10000 3.63·105 300 ≈ 12000

Table 2.5 Computational load for correlation dimension estimates by all proposed approaches analyzing Lorenz attractor
series and HRV signals where ℓ∞-norm was selected. Data expressed as mean ± standard deviation.

Time Estimate
Lorenz attractor HRV
(5000 samples) (300 samples)

TD2 (s) [27] (8.86 ± 0.35) ·105 3314 ± 180
TD̂2

(s) 194 ± 29 4.66 ± 0.58
TD̂2(⊥)

(s) 260 ± 38 214 ± 30
TD̂2(max)

(s) 194 ± 29 4.30 ± 0.56

including the one used in [27]. To do so, 10 realizations of Lorenz attractor series were generated,
whose initial conditions were randomly chosen. It is noticeable that the time cost of D̂2(⊥) was higher
compared to the others in both cases, the Lorenz series and the HRV signals (11 subjects), since sets
of slope estimations per log-log curve to compute correlation dimension are considered. Each of the
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different sets of thresholds was associated with an r value within an interval centered on the maximum
slope for m = 1. The boundaries of this interval were defined taking into account a decrease of 50% in
the amplitude of the maximum slope value by considering the SCF first derivative. The more abrupt
the transition zone in the sigmoid, the lower the amount of starting points. Thus, different number of
points were considered on each realization, leading to computational time variations.

2.5 Discussion

In this chapter, a methodological framework was proposed to compute the D2 of a finite duration
time series and also to reduce the computational time cost of the estimation. A new approach for
estimating the slope of the linear region from the log-log curves was proposed, fitting log-log curves
through sigmoid ones. Finally, D2 was estimated, exploiting the asymptotic value of an exponential
relationship between D̂m

2 and m.

One important limitation for the application of D2 on HRV analysis is the long computational time
required for the correlation sums. In an attempt to solve this problem, an algorithm has been proposed
based on matrix operations. In [205], another approach was described based on parallel computing,
which also decreased the time demand with respect to the sequential approach. Nevertheless, the
computational times, achieved in the present work, were obtained with a regular computer (Windowsr

7 based PC, Intelr Core i7 3.5 GHz, 16 Gb RAM with Matlabr R2011a). As an example, for a signal
of 300-sample length (a usual length in typical 5 min HRV analysis, ≈ 300 beats), the time demand
was reduced with respect to the sequential approach from 18 minutes to 1 second, which allows the
on-line computation of D2 in clinical practice.

Another limitation for the D2 estimation is the reliability. Non-stationary data can lead to an
unreliable measurement of D2. Regarding this problematic issue, several techniques, attempting to
characterized dynamical systems, have been reported [180, 190, 205]. Searching the linear region of
the log-log curves becomes a difficult challenge, when the system is non-stationary, since more than
one linear region could appear and classical D2 estimate would be unreliable. The SCF approach is
robust against those cases, since no estimate is provided when fitting is not good enough, below to 0.8
of determination coefficient.

The novel approaches, proposed in this thesis regarding estimation of D2, use the SCF approach.
D̂2(⊥) exploits the fact that the linear regions of the log-log curves tend to be parallel when embedding
dimension increases. This allows the consideration of a set of points surrounding the maximum slope
point, and therefore, several D2 estimates are obtained for these starting points. D̂2(max) is based on
the differences between two consecutive log-log curves, defining the SampEni= j surface. This surface
showed maximum values for each embedding dimension, m, and a specific threshold, r, providing
another estimation of the D2, D̂2(⊥). This estimation was found to be the closest to the theoretical D2

for the Lorenz attractor, resulting in a relative error of 4%, considering 5000-sample size and for a
differential equation resolution of 0.01.
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D2 is known to be a surrogate of the fractal dimension of a chaotic attractor [60]. However,
when applied to finite duration time series, nonzero finite D2 values do not imply the existence of
an underlying chaotic attractor. For example, when applied to MIX(P) processes, nonzero finite D2

values were obtained, the higher the value was as much as the random content. Thus, although D2

could not be interpreted as the fractal dimension of an underlying chaotic attractor, in this case, it still
provides a measure of the complexity of the process, at least regarding its unpredictability.

D2 estimate in HRV signals may shed light on the degree of complexity of the ANS regulation.
The group of women (Hyp) suffering from hypotension during a programmed cesarean section
under spinal anesthesia showed higher D2 values than the group who did not (N-Hyp), at least when
evaluated during lateral decubitus position. All the proposed correlation dimension estimates not only
maintain the accuracy obtained in [27], but they increased it. Predicting hypotension is a challenge,
since it occurs in the 60% of the cases and may lead to fetal stress [42]. On one hand, estimates that
performed 100% of specificity, D2 [27], D̂2, and D̂2(max), may provide clinicians valuable information
to apply prophylaxis to any woman that might potentially suffer from a hypotensive event. On the
other hand, estimates that performed 100% of sensitivity, D̂2(⊥), may provide information about the
usage of prophylaxis on the less number of patients to prevent hypotension. The effect of prophylaxis
on patients who finally are not going to suffer from a hypotensive event and its relation with fetal
stress deserves further studies. This clinical study will be deeply assessed in chapter 5.

2.6 Conclusion

The contribution of this chapter is the introduction of a novel methodological framework for a reliable
estimation of the correlation dimension from a limited time series, such as HRV signals. Three
alternatives for estimating correlation dimension were proposed. Sigmoid curve fitting was used to
assess the slope of the linear region of the log-log curves based on considering self-comparisons.
The computational speed-up achieved may allow considering correlation dimension for monitoring
in clinical practice. Nevertheless, the main limitation for the application of these methodologies to
HRV analysis lies in its relation to the underlying physiology, which is still unclear and needs further
studies. In spite of the fact that the framework proposed in this chapter focuses on the characterization
of HRV signals, its applicability could be extended to a wide range of fields.
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“I am enough of the artist to draw
freely upon my imagination.
Imagination is more important than
knowledge. Knowledge is limited.
Imagination encircles the world.”

- Albert Einstein (1879-1955) -

3
Nonlinear HRV Measurement Dependencies

Summary

The purpose of this study is to characterize the influence of mean HR on nonlinear HRV indices. The
hypothesis is that HR, which is considered the intrinsic sampling rate of HRV signal, may influence
nonlinear HRV indices, leading to biased ANS modulation information.
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3.1 Introduction

In the previous chapter, a framework for improving D2 estimation was presented. Using this metho-
dology, sample and approximate entropy can be concomitantly computed, since they are also based
on correlation sums (see section 1.4.3 and 2.1.3). Despite the improvements achieved in terms of
estimation reliability and computational load, these nonlinear indices still require further analysis for
their application to HRV analysis.

The physiological interpretation of HRV as a marker of ANS activity may be misled by how
intrinsic pacemaker cells and ANS activity are expressed in HRV [194]. The nonlinear relationship
between temporal and complexity HRV indices with respect to HR has been addressed, emphasizing
the importance of attenuating this effect [202, 146, 123, 195]. Furthermore, different mathematical
models have demonstrated a relationship between HRV amplitude and HR, and alternatives to correct
it [33, 121, 8, 159, 150, 19].

Nonlinear indices, such as D2, SampEn, and ApEn are computed over linearly detrended and
normalized series, so this effect on HRV amplitude is already compensated for [135, 143, 148, 187, 22].
Despite this normalization, HR may still influence nonlinear HRV indices, due to the fact that HR is the
intrinsic sampling rate of HRV signal. This implies that the amount of information captured during the
same time interval depends on HR. Alternatives to increase nonlinear index reliability (e.g. increasing
data length), such as interpolating RR time series, have been used [180, 135, 64, 152, 79, 94]. However,
the reported dependence of nonlinear indices on data length may compromise the comparison between
different studies[67]. Our hypothesis is that the influence of HR, as sampling rate, on nonlinear HRV
indices is still noticeable even when the same data length is considered.

To summarize, in this chapter the assessment of HR influence on nonlinear HRV indices is tackled.
To do so, a simulation study is carried out emulating ANS conditions of healthy subjects during
resting supine position. Since this HR influence might mislead the physiological interpretation of
nonlinear HRV indices in terms of ANS evaluation, alternative methods are proposed to attenuate this
effect. Finally, the methodology is applied to evaluate a body position changes database consisting of
supine and standing position.

3.2 Materials

3.2.1 Fantasia Database

Twenty young rigorously-screened healthy subjects underwent 120 min of supine resting while
continuous ECG and RP signals were recorded at 250 Hz while watching the movie Fantasia (Disney
1940), to help maintain wakefulness. Further database information is available elsewhere [77] and can
be downloaded from http://www.physionet.org/ [59].

http://www.physionet.org/
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3.2.2 BPC Database

This database was developed collaboratively at Harvard Medical School, Massachusetts Institute of
Technology, and the Favaloro Foundation Medical School. The whole cohort of short-term recordings
comes from two data collecting studies. Further details of this database can be found in [175].

First Study: Thirteen male subjects of age 21.6 ± 4.4 years (Mean ± SD; range, 19-38 years)
with no history of cardiopulmonary disease participated in a study carried out at Clinical Research
Center at the Massachusetts Institute of Technology, USA.

Second Study: It comprises groups of subjects of different ages. The database was created to
evaluate the effect of age distinguishing three ranges. In this thesis, only the young group was included
(9 subjects, 26.7 ± 4.7 years; range, 20-35 years).

Thus, subjects from the first and second study were selected, being 22 subjects. Two recordings
per subject were acquired containing 7-min ECG and respiration (RP) signals, sampled at 360 Hz.
The protocol included postural changes. First, ECG and RP signals were recorded while subjects were
in supine position. Then, subjects changed to standing position and after 5 min, to allow reaching
hemodynamic equilibrium, ECG and RP signals were recorded in standing position. Subjects were
asked to breathe following an irregular sequence of tones.

3.2.3 Simulation Study

A simulation study was conducted to assess the mathematical relationship between HR and nonlinear
HRV indices. The simulation study was carried out based on a HRV representation through the
IPFM model. This model assumes that ANS influence on the sinoatrial node can be represented by
a modulating signal, M(t) [115]. According to this model, when the integral of 1+M(t) reaches a
threshold, T , a new heartbeat is generated at time instant t(k). Threshold T represents the inverse
mean HR.

Fantasia database was selected to compute modulating signals, according to the following proce-
dure. Assuming that M(t) is causal, band-limited and M(t)< 1 then, the instantaneous HR can be
described as:

dHR(t) =
1+M(t)

T
(3.1)

Instantaneous heart rate dHR(t) is obtained from the heartbeat times, t(k), based on the IPFM
model [116], and sampled at 4 Hz. A time-varying mean heart rate dHRM(t) is computed by low pass
filtering dHR(t) with a cut-off frequency of 0.03 Hz. The heart rate variability signal is obtained as
dHRV (t) = dHR(t)− dHRM(t). Finally, the modulating signal, M(t) ≈ dHRV (t)/dHRM(t) [8], that is
the HRV signal corrected or normalized by the mean HR.
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Spectral analysis was applied to 5-min modulating signals M(t) by Welch periodogram. Frequency
domain indices were estimated based on spectral bands (LF band from 0.04 to 0.15 Hz and HF band
from 0.15 to 0.4 Hz). Respiratory frequency was checked to be within the HF band.

Among all modulating signals, only those which presented one marked peak on each band (LF
and HF band) were selected for the simulation study. Spectral indices such as the powers and the
frequency peaks were used to generate synthetic stochastic modulating signals using an autoregressive
moving average (ARMA) technique [134]. A total of one hundred 5-min segments were selected and
their spectral indices were used to feed the ARMA model. A total of M = 50 stochastic modulating
signals M j(t) with j = 1, ...,M, were simulated for each M(t), where the stochastic content was
modeled in the moving-average term by zero-mean unit variance white noise. Figure 3.1 shows the
spectra of 50 stochastic realizations, their median spectrum and one of the segment-recording they are
based on.

Then, the IPFM model was applied to each stochastic realization, varying the parameter Tn, where
n = 1, ...,16, corresponding to T from 0.46 to 1.1 s in steps of 0.04 s, to simulate the heartbeat
occurrence times, t j

Tn
(k). In this way, simulated 300-sample RR series are generated, where ANS

modulation is independent of changes in mean HR. Simulation scheme is illustrated in Fig. 3.2. D2,
SampEn and ApEnmax were computed over these simulated RR time series.
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Figure 3.1 Spectra derived from 50 stochastic realizations of simulated modulating signals during supine conditions (data
simulates subject conditions from Fantasia database) applying ARMA technique fixing LF and HF spectral content (red
lines). Average spectrum is shown in circles (blue) and spectrum belonging to real data in dashed line (green).

Another simulation was done based on the BPC database characteristics. However, since subjects
were asked to breathe following an irregular sequence of tones, the spectral analysis did not revealed
dominant peaks on HF band, evaluating all subjects. The ARMA model was fed, on one hand,
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Figure 3.2 Simulation data scheme is illustrated. Heartbeat time occurrences are detected from ECG. Based on the IPFM
model the ANS modulating signal M(t) is estimated. Spectral analysis by Welch periodogram is computed on M(t) in
order to estimate the parameters needed for the simulation, frequency and power of LF and HF components, which are used
to construct a new set of modulating signals, M j(t), through ARMA technique, with M = 50 realizations. Then, IPFM
model is used to generate simulated heartbeat occurrences t j

Tn
(k) with different values of T from 0.46 to 1.1 s. Simulated

RR series are computed from the t j
Tn
(k).

by the power spectral density from LF and HF bands and, on the other hand, by the middle band
frequencies of LF and HF, 0.095 and 0.275 Hz respectively. Then, modulating signals were simulated
from spectral indices derived from supine and upright positions. This extends the analysis of HRV
dependence on HR under enhanced sympathetic activity.

3.3 Evaluation by Nonlinear Techniques

ECG preprocessing: Because the reliability of the HRV analysis can be compromised by low
sampling frequency of ECG recordings [120], the ECGs belonging to BPC and Fantasia databases
were interpolated by cubic splines to a frequency of 1080 and 1000 Hz, respectively. Then, heartbeat
times, t(k), where k symbolizes the kth beat, were estimated using an ECG wavelet-based detector
[114]. Ectopic beats were identified imposing a time-varying threshold on instantaneous heart rate
variations. Then, these ectopic beats were corrected using the IPFM model, as described in [116].

3.3.1 Correlation Dimension

Correlation dimension, D2, measures the degree of complexity of the system that generates the time
series [60]. In the previous chapter 2, techniques to improve the estimation of D2 were introduced.
On that study, log-log curves (logarithm of correlation sums vs. logarithm of thresholds) were fitted
to sigmoid curves, thus, increasing the accuracy of maximum slope estimation. Moreover, another
estimate of D2 denoted as D2(max) based on the points that maximize the difference between each
pair of sigmoid curves was presented. Both D2 and D2(max) were computed by varying m = 1-16 and
r = 0.01-3 in steps of 0.01.
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3.3.2 Approximate and Sample Entropy

SampEn and ApEn are irregularity measurements of the time series [140]. Although both entropies
are closely related to each other, SampEn was introduced to overcome the self-pairs-related limitation
of ApEn computation. Briefly, patterns of time series values (reconstructed vectors) of a certain
length (embedding dimension, m) are compared to the rest of the possible pattern candidates. Those
comparisons, whose differences are below a threshold r, are summed up and used to calculate
correlation sums. The final entropy value measures the changes produced when increasing the length
of the patterns in one unit. The parameters m and r have to be previously defined to estimate these
entropy values. In this chapter, parameter values are set to m = 2 and r = 0.15 for SampEn.

The computation of approximate entropy recalls the definition to estimate correlation dimension.
But in this case, time series of interest is normalized by its standard deviation. In this approach,
correlation sums are modified with respect to the ones used by correlation dimension as follows:

Cm
i (r) =

1
Nm

Nm

∑
j=1

H(r−dm
i, j) (3.2)

where Cm
i (r) is the correlation sum and H is the Heaviside function 2.4; the amount of reconstructed

vectors is Nm = N − (m−1) for each embedding dimension, m; and the distance, computed by the ℓ∞

norm, between each pair of reconstructed vectors, ym
i ,ym

j , is denoted as dm
i, j.

This procedure is repeated with all reconstructed vectors and the probability of a pattern of length,
m, appearing along the time series is denoted by:

φ
m(r) =

1
Nm

Nm

∑
i=1

log(Cm
i (r)) (3.3)

ApEn provides information about how regular the time series is when two consecutive length
patterns are compared:

ApEn(m,r) = φ
m(r)−φ

m+1(r) (3.4)

For the further ApEn estimations, the embedding dimension was set to m = 2. A graphical
interpretation of SampEn and ApEn estimation, based on Eq. 2.11 and Eq. 3.4 respectively, is shown
in Fig. 3.3.

Maximum Approximate Entropy, ApEn(m,rmax(m))

Figure 3.4 shows an example of the dependence of ApEn estimate on threshold r, when embedding
dimension m is fixed, by analyzing a 2000-sample Lorenz attractor time series.

Here, threshold values used in the literature, varying commonly between 0.1 and 0.2, provides an
underestimation of ApEn value, whereas the proposed methodology is able to provide the maximum
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Figure 3.3 Graphical representation of SampEn and ApEn computation. The vertical dashed lines in both panels
illustrates the threshold value as r = 0.2. To compute SampEn(2,0.2) and ApEn(2,0.2) the lost of probability as embedding
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Figure 3.4 Dependence of ApEn on threshold r. Example of ApEn estimation using the proposed methodology for
correlation dimension described in chapter 2. Vertical dotted lines indicate the three most common threshold values, r = 0.1,
0.15, and 0.2. Data analyzed extracted from a 2000-sample time series of Lorenz attractor system.

value which it is not found in the SampEn estimation as a consequence of considering self-comparisons
[117].

As mentioned before, the framework for estimating correlation dimension, described in chapter 2,
was used to obtain: the value of the threshold r that maximizes ApEn for a given value of m, denoted
by rmax(m) [196, 155]; and the maximum entropy value for a given value of m, ApEn(m,rmax(m)). In
particular, ApEn(2,rmax(2)) and SampEn(2,0.2) were considered for further analysis.

3.4 Nonlinear Indices Dependence on HR as Sampling Rate

The methodology used to compute nonlinear HRV indices, considered in this study, was applied to
linearly detrended and normalized RR time series. The detrending ensures that mean HR values are
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removed from the series, whereas the normalization eliminates the influence of mean HR on HRV
amplitude. Despite this fact, the effect of mean HR, as sampling rate, might still be present on them.
In this section, this effect is investigated on the simulation study, where changes in mean HR are
independent from changes in ANS modulation. First, a mathematical relationship between nonlinear
HRV indices and HRM is assessed by two regression formulas; then, a HR-correction is proposed
based on these formulas. Second, alternatives based on interpolation of RR series and instantaneous
mean RR, provided by point-process model, are proposed for attenuating the sampling rate influence
of mean HR on nonlinear HRV indices.

3.4.1 Regression Formulas

In order to explore the relationship between nonlinear HRV indices and HR, the following regression
models were proposed.

X = β +αRR (Linear), (3.5)

X = β (RRα) (Parabolic), (3.6)

where X ∈ {D2, SampEn, ApEn} and α and β are regression coefficients.

Based on the former models, HR-correction formulas were obtained by projecting each nonlinear
index onto a standard level of RR = 0.5 s, hence:

Linear : XC1 = X +ξ (0.5−RR) , (3.7)

Parabolic : XC2 = X
(

0.5
RR

)ξ

, (3.8)

where ξ is the correction factor.

Transformation of XC1 or XC2 and RR into linear relationship was used to compute Pearson’s
correlation coefficient ρ . Then, optimization was assessed by total least squares, providing correction
factors by a golden cut search algorithm to minimize ρ(ξ ).

Correction factors were computed on each stochastic realization. Thus, subject-specific correction
was defined, considering the correction factors of the 50 stochastic realization for each modulating
signal and computing the median of the HR-corrected indices.

Furthermore, a unique correction parameter was additionally computed, considering all stochastic
realization for all modulating signals. In that case, the transformation and optimization technique,
described above, was applied to obtain median values for each nonlinear index, thus, defining a
median correction approach to obtain Xξ

C1 and Xξ

C2.
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3.4.2 Interpolation

RR series are unevenly sampled, being the HR its sampling rate. This implies that the number of
data information for the same time interval is dependent on HR. On the other hand, it is known that
estimation of nonlinear indices, such as D2, SampEn, and ApEn, are data length dependent [67].
Therefore, interpolating RR time series at the same sampling rate may alleviate the influence of mean
HR on nonlinear HRV indices, since it allows considering the same number of data for the same time
interval. Interpolation at 2, 4 and 8 Hz were studied (XI2, XI4, and XI8 respectively).

3.4.3 Point-process

Point-process modeling: Another alternative to overcome the dependency of RR time series on HRM
is based on the point-process paradigm, where derived time series resolution is not related to HRM.
Point-process model provides a probabilistic framework to characterize the stochastic properties of
the beat-to-beat RR time series [10]. It is based on the assumption that the beat generation events
follow a probability distribution, in particular, the inverse Gaussian probability distribution. In
this study, history dependence of previous events was considered. Thus, the distribution is named
history-dependence inverse Gaussian distribution:

f (t|Ht(k),θθθ) =

[
θp+1

2π(t − t(k))3

] 1
2

exp

(
−

θp+1(t − t(k)−µ(Ht(k),θθθ))
2

2µ(Ht(k),θθθ)2(t − t(k))

)
(3.9)

where t(k) represents the time occurrence of the kth heartbeat,

Ht(k)= {t(k),RR(k),RR(k−1), ...,RR(k− p+1)} the elements involved in the history-dependence
of p order of previous beats and RR(k) = t(k)− t(k−1) the RR values.

The estimation of θθθ parameters is carried out by considering the local maximum-likelihood
within a time interval l (l = 60 s for this study). This interval should be long enough to obtain
an estimate of µ(Ht(k),θθθ) that represents the behavior of the beat-to-beat time series. Statistical
Kolmogorov-Smirnov test is used to measure the goodness-of-fit, comparing heartbeat events t(k) and
the ones obtained after time-rescaling derived from the point-process model [203]. The parameters θθθ

are updated by shifting the estimation interval, ∆ ms, which is considered the point-process resolution,
see Fig. 3.5.

Therefore, the instantaneous mean RR can be defined as:

µ(Ht(k),θθθ) = θ0 +
p

∑
j=1

θ jRR(k− j+1) (3.10)

Ectopic-free RR time series were obtained by a point-process model based on the methodology
described in [36]. Instantaneous mean RR was computed by setting a resolution of ∆ = 50 ms, trying
to capture the effect of right censoring, described as the influence of the next event out of the analysis
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Figure 3.5 Graphical representation of the intervals for estimation of θθθ t using the local log likelihood.

window, and a model order of p = 12, set as a trade-off to represent subject resting conditions from
Fantasia database and supine and standing conditions from BPC database [5].

The nonlinear indices considered on this study are commonly computed over raw RR time series.
The embedding dimension, m, needs to be reviewed for the analysis of point-process derived time
series, since it is related to the number of events in the raw RR time series. In order to compare
nonlinear HRV indices computed from the point-process instantaneous mean RR with those computed
from the interpolated RR time series, the embedding dimension was scaled by a factor, depending on
the point-process model resolution.

madap = m
∆2Hz

∆XHz
(3.11)

where m values ∈ {1, ...,16}, ∆2Hz is the resolution of RR time series interpolated at 2Hz correspon-
ding to 500 ms, and ∆XHz refers to the new resolution of the RR time series at sampling rate of XHz
corresponding to 1

X s.

For instance, embedding dimension m is set as 2 for maximum approximate entropy for interpo-
lated RR time series at 2 Hz. Then, the computation of the same index over derived point-process
time series at 50 ms resolution needs to adapt the embedding dimension value by a factor of 10 to
represent the same information.
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3.5 Statistical Analysis

Kolmogorov-Smirnov test was used to test the normality of data distributions and Mann-Whitney
U-test or paired T-test were used, according to data normality. Furthermore, Pearson correlation was
used to assess linear correlation between corrected nonlinear HRV indices and RR. p < 0.05 was
considered as statistically significant.

Bland-Altman plots were used to analyze the agreement of subject-specific vs. median correction
formulas. The intraclass correlation coefficient (ICC) was computed by SPSS for Windows, Version
15.0. Chicago, SPSS Inc.

3.6 Results

3.6.1 Nonlinear HRV Indices and Mean HR Reflect Body Position induced Changes

Nonlinear HRV indices, D2, SampEn, and ApEn(2,rmax(2)), were computed for the BPC database,
considering 300-sample segments. All of them were found significantly higher in supine than in
standing position (see Fig. 3.6 b)). Mean RR was also significantly higher in supine than in standing
position (Fig. 3.6 a)), which might explain the statistical differences observed in the computed
nonlinear HRV indices.

3.6.2 Nonlinear HRV Indices and RR Relationship by Simulation Study

The relationship between nonlinear HRV indices and RR was assessed in the simulation study, where
RR was changed remaining ANS modulation. Nonlinear HRV indices computed from simulated
data are illustrated in Fig. 3.7 (median values shown as blue circles). The correlation of nonlinear
indices and mean RR was evaluated by Pearson correlation coefficient, finding high correlation for a
wide range of median index values, being these ranges 3.5-5.02 for D2, 0.42-1.02 for SampEn, and
0.72-1.24 for ApEn(2,rmax(2)), see Table 3.1.

HR-Corrected Nonlinear Indices by Regression Formulas

Regression formulas were applied to the nonlinear HRV indices derived from each simulated modulat-
ing signal (subject-specific approach), providing corrected indices with minimal mean RR correlation.
The obtained HR-corrected nonlinear indices are shown in Fig. 3.7 (median values by taking into
account all segments, in triangles right and left for linear and parabolic regressions, respectively).
The application of correction formulas provided nonlinear HRV indices where the effect of mean RR
values was attenuated. The range covered by them was highly reduced, being in this case 3.81-3.95
for D2, 0.57-0.61 for SampEn, and 0.8-0.9 for ApEn(2,rmax(2)), see Table 3.1.

A set of correction factors (median approach) was obtained by considering the median of all
nonlinear index values for each heart rate and computing global correction parameters (Table 3.1).
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Figure 3.6 BPC database (22 subjects) was analyzed in which supine and standing positions were compared. (a, b)
illustrate mean RR and uncorrected nonlinear HRV indices while c) shows HR-corrected nonlinear HRV indices. ∗ indicates
p < 0.05 by Mann-Whitney U-test between supine (Sup) and standing (Std) positions.

To evaluate the agreement between subject-specific vs. median correction approaches, the intraclass
correlation coefficient (ICC) of data distributions was analyzed. It was found above 0.8 for all
HR-corrected nonlinear indices and for both proposed regression formulas. The Bland-Altman plot
in Fig. 3.8 illustrates the difference between linear and parabolic approaches for D2, SampEn, and
ApEn(2,rmax(2)).
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Figure 3.7 Nonlinear HRV indices computed from simulation study, X ∈ {D2, SampEn, ApEn(2,rmax(2))}, varying
mean heart period, distribution of all uncorrected nonlinear HRV indices are shown in (blue) circles, corrected by linear
regression in (brown) down triangles, corrected by parabolic regression in (green) up triangles, both former cases only
subject-specific correction value of non-linear indices for each RR were shown. Finally, HR-corrected nonlinear indices
by interpolating RR time series at 2, 4, and 8 Hz in (orange) diamonds. Data corresponds to all simulations derived from
Fantasia database. Data distributions are represented by median and interquartile range.

Table 3.1 Pearson correlation factor ρ and p-values of nonlinear indices and RR obtained from simulation study. Linear
and parabolic dependence of nonlinear indices on RR were evaluated. Coefficient of determination (R2) as well as Pearson
correlation factor and p -values (considering subject-specific and median correction) and ξ correction factor are presented
for both regressions. Pearson correlation factor ρ and p-values of nonlinear indices and RR obtained, interpolating the
simulated RR time series at 2 Hz. Data are shown as median ± interquartile range.

Uncorrected D2 SampEn ApEn(2,rmax(2))

ρ 0.959 ± 0.068 0.947 ± 0.1 0.949 ± 0.074
p-value 0.0002 ± 0.0015 0.0004 ± 0.0044 0.0003 ± 0.0022
Median± IQR 4.26 ± 0.7 0.72 ± 0.30 0.98 ± 0.26

Regression Formulas Linear Parabolic

Subject-specific D2C1 SampEnC1 ApEn(2,rmax(2))C1 D2C2 SampEnC2 ApEn(2,rmax(2))C2

R2 0.919 ± 0.129 0.896 ± 0.186 0.902 ± 0.139 0.923 ± 0.129 0.896 ± 0.179 0.910 ± 0.125
ρ(·10−05) 0.013 ± 0.20 0.016 ± 0.21 -0.0051 ± 0.20 -0.016 ± 0.20 0.0109 ± 0.20 0.01 ± 0.20
p-value 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0
Median± IQR 3.88 ± 0.07 0.59 ± 0.02 0.85 ± 0.04 3.85 ± 0.02 0.59 ± 0.01 0.84 ± 0.03

Median correction D2
ξ

C1 SampEnξ

C1 ApEn(2,rmax(2))
ξ

C1 D2
ξ

C2 SampEnξ

C2 ApEn(2,rmax(2))
ξ

C2

R2 0.997 0.988 0.970 0.999 0.990 0.982
ρ(·10−05) -0.787 -0.109 -0.051 0.661 0.232 0.061
p-value 1 1 1 1 1 1
Median± IQR 3.88 ± 0.07 0.59 ± 0.02 0.85 ± 0.05 3.85 ± 0.02 0.59 ± 0.01 0.84 ± 0.03
ξ Correction factor 2.068 0.869 0.541 0.375 0.813 0.417

2 Hz Interpolation D2I2 SampEnI2 ApEn(2,rmax(2))I2

ρ -0.47 ± 1.41 -0.39 ± 1.09 -0.29 ± 0.77
p-value 0.0005 ± 0.04 0.008 ± 0.19 0.07 ± 0.37
Median± IQR 3.85 ± 0.01 0.59 ± 0.002 0.83 ± 0.006

HR-Corrected Nonlinear Indices by Interpolation

The nonlinear indices were computed from simulated RR time series interpolated at 2, 4, and 8 Hz.
As shown in Fig. 3.7, the corrected nonlinear index values obtained by regression formulas projected
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Figure 3.8 Bland-Altman plots and ICC illustrate the agreement between subject-specific and median correction ap-
proaches computed on Fantasia database to correct HR effect for both proposed regressions for corrected D2, SampEn, and
ApEn(2,rmax(2)) indices: linear (left panels) and parabolic (right panels).
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onto RR = 0.5 s and by interpolating RR time series at 2 Hz revealed similar median values. However,
the interpolation of RR time series at 4 and 8 Hz resulted in decreased nonlinear values. In these
cases, m values were not adapted, regarding Eq. 3.11. Despite the fact that Pearson correlation factor
computed between HR-corrected nonlinear HRV indices, by interpolation, and mean HR values is still
significant, their range is now much reduced, being 3.84-3.86 for D2, 0.588-0.592 for SampEn, and
0.824-0.836 for ApEn(2,rmax(2)), almost negligible compared to the range of uncorrected nonlinear
ones.

Nonlinear Indices of Synthetic Point-process Time Series

The obtained heartbeat occurrence times, t j
Tn
(k), from the simulation study were used to generate

instantaneous mean RR time series by considering a point-process model resolution of 500 ms.
Nonlinear indices were computed over these synthetic time series, where the mean RR was varied,
see Fig. 3.9. The dependence of nonlinear indices, in particular, for SampEn and ApEn(2,rmax(2)),
on mean RR above 0.5 s was found attenuated compared with same index values computed over
synthetic raw RR time series (Fig. 3.6, with the exception of D2 index, whose dependence on mean
RR values was still present. Instantaneous mean RR time series derived from the point-process could
not capture variations of mean RR below 0.5 s, due to model resolution (∆ = 500 ms) and then, this
effect influenced the studied nonlinear indices (Fig. 3.9).
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Figure 3.9 Nonlinear HRV indices, X ∈ {D2, SampEn, ApEn(2,rmax(2))}, computed from synthetic point-process time
series at 500 ms resolution and model order of 12 where mean heart period were varied. Data corresponds to all simulations
derived from Fantasia database. Data distributions are represented by median and interquartile range.

3.6.3 Nonlinear Analysis of BPC Database

The proposed HR-corrections were evaluated in the BPC database. The results shown in Fig. 3.6 c)
illustrate the differences found between supine and standing conditions. Median and interquartile
range of uncorrected and HR-corrected nonlinear HRV indices are provided in Table 3.2.
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Table 3.2 Uncorrected nonlinear HRV indices and HR corrected by proposed approaches evaluated in the BPC database.
Data are shown in terms of median and interquartile range. C1 and C2 refer to HR-correction by linear and parabolic
regression formulas respectively applied to all cases separately. ξ refers to HR-correction by C1 or C2 approach but
regression parameters were obtained as the median values of all regression formulas according to C1 or C2. Statistical
differences were tested by Mann-Whitney U-test.

Nonlinear index Supine Standing p-value

D2 5.61 (4.88 | 6.38) 4.41 (3.64 | 4.88) 0.003
D2C1 5.10 (4.33 | 5.62) 4.07 (3.41 | 4.57) 0.001
D2C2 4.85 (4.19 | 5.25) 3.97 (3.31 | 4.46) 0.002

D2
ξ

C1 4.66 (3.98 | 5.27) 3.88 (3.24 | 4.42) 0.005

D2
ξ

C2 4.47 (3.93 | 4.93) 3.82 (3.25 | 4.32) 0.006
D2I2 3.67 (3.23 | 4.08) 3.02 (2.84 | 3.64) 0.02

SampEn 0.73 (0.53 | 0.83) 0.48 (0.37 | 0.67) 0.008
SampEnC1 0.28 (0.05 | 0.38) 0.24 (0.15 | 0.37) 0.7
SampEnC2 0.40 (0.28 | 0.44) 0.33 (0.25 | 0.44) 0.4

SampEnξ

C1 0.33 (0.16 | 0.43) 0.27 (0.19 | 0.42) 0.4

SampEnξ

C2 0.44 (0.34 | 0.49) 0.36 (0.27 | 0.47) 0.06
SampEnI2 0.50 (0.42 | 0.54) 0.35 (0.26 | 0.42) 0.001

ApEn(2,rmax(2)) 1.11 (1.03 | 1.17) 0.88 (0.77 | 0.95) 0.008
ApEn(2,rmax(2))C1 0.94 (0.91 | 1.01) 0.88 (0.80 | 0.97) 0.06
ApEn(2,rmax(2))C2 0.94 (0.91 | 0.99) 0.87 (0.79 | 0.96) 0.04

ApEn(2,rmax(2))
ξ

C1 0.78 (0.68 | 0.84) 0.77 (0.71 | 0.86) 0.5

ApEn(2,rmax(2))
ξ

C2 0.78 (0.74 | 0.83) 0.78 (0.71 | 0.84) 0.9
ApEn(2,rmax(2))I2 0.80 (0.74 | 0.85) 0.71 (0.66 | 0.80) 0.01

In a first study, the value of the median correction factor ξ extracted from the simulation study
was used. It is worth noting that after linear correction there was no significant difference in SampEn
and ApEn(2,rmax(2)) between supine and standing positions, while parabolic correction only reduced
differences below significance for SampEn.

In a second study, regression formulas were used to correct nonlinear indices of each simulated
recording’s, referred as subject-specific correction. HR-corrected D2 was found statistically signif-
icantly different for linear and parabolic regression formulas, whereas ApEn(2,rmax(2)) was only
significant for parabolic.

Finally, nonlinear HRV indices were computed on RR time series interpolated at 2, 4, and 8 Hz.
We can conclude that the higher the interpolation order, the lower the nonlinear HRV values. In
all cases, HR-corrected nonlinear indices calculated by interpolation showed statistical differences
between position, regardless of the interpolation order used, being their range notably reduced.
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Assessing HRV Analysis by Point-process Paradigm

Time-varying series generated from the previously described point-process model are shown in Fig.
3.10. There, an example of a set of heartbeat occurrence times from subject number 1 of the BPC
database, during supine position, is illustrated.

0 100 200 300 400
Time (s)

0.8

0.9

1.0

1.1

RR (s) μRR (s)

Figure 3.10 Example of instantaneous RR series derived from point-process (Data correspond to subject 1 during supine
conditions from BPC database).

Interpolated RR time series at 20 Hz and instantaneous RR derived from a point-process model at
50 ms resolution were analyzed by means of nonlinear indices, see Fig. 3.11. Embedding dimension
m values were adapted in both cases by a multiplying factor of 10. Nonlinear indices computed over
point-process derived time series were not found statistically significant, whereas the nonlinear indices
obtained by interpolation of RR time series at 20 Hz provided statistically significantly different
values between supine and standing positions.

3.7 Discussion

3.7.1 Simulated Data

HRV analysis has been widely used as non-invasive technique to assess and quantify cardiac ANS
modulation [179, 187, 161]. However, HRV analysis is still under investigation, due to HRV charac-
teristics that could lead to physiological misinterpretations [135, 33]. ANS modulation is linked to
ANS tone (HR mean) and, as a consequence, an increase in the sympathetic activity and a decrease
in the vagal tone are related to an increment in the HR and a reduction on its variability [33, 91].
This implies that there is a physiological correlation between HRV and HR. However, we have
demonstrated that it exists also a methodological influence between nonlinear HRV indices and HR,
due to the fact that HR is the intrinsic sampling rate of HRV signal. A simulation was carried out
to study an hypothetical case, where the relationship of ANS modulation and HR is uncorrelated.
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Figure 3.11 Nonlinear indices computed over i) raw RR time series and over ii) instantaneous heart rate (µRR(t))
considering a memory order of 12 varying with 50 ms resolution, and iii) RR time series interpolated at 20 Hz. Embedding
dimension m was adapted to point-process and interpolation resolution.

ANS modulating signals were generated as realizations of stochastic processes [134]. Then, heartbeat
occurrences were calculated, using an IPFM model, which is based on action potential generation in
SA node cells, and has been proven appropriate to describe the genesis of HRV [115]. This simple
model allows keeping the ANS modulation constant, emulating healthy subject’s conditions at resting,
for different mean HR values. Two approaches have been proposed to attenuate the effect of HR in
nonlinear HRV indices, as shown by the simulation study: regression formulas and interpolation.

Regression Formulas

Regression formulas are commonly used to characterize the relationship between two magnitudes such
as ventricular repolarization and heart rate [151, 174, 13]. The relationship between D2, SampEn,
and ApEn, computed over simulated 300-sample RR series, and mean HR was studied by linear and
parabolic regression formulas. Although the usage of other regression models, different from linear or
parabolic ones, may provide improved fittings to the relationship between nonlinear HRV indices and
mean RR, coefficients of determination R2 ≥ 0.9 were obtained for all cases for these to regression
models. Then, a correction was proposed based on regression formulas derived for each simulated
case, the so-called subject-specific correction, minimizing nonlinear HRV indices correlation to mean
HR. A correction based on regression formulas derived from median parameters was proposed
as an extension to be applied to other databases. ICC values > 0.8 were found, when evaluating
subject-specific vs. median correction approaches for all nonlinear HRV indices, suggesting the usage
of either of the approaches, see Fig. 3.8.
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Interpolation

Simulated RR time series were interpolated at 2, 4, and 8 Hz. The higher the interpolation rate,
the lower the nonlinear index values. The addition of new data, resulting from interpolation, can
be interpreted, in terms of entropy, as an increase in signal regularity, being in concordance with a
previous work where electroencephalogram complexity through D2 was evaluated by varying the
sampling rate [81]. In this chapter, interpolation was used as a technique to reduce the dependence of
nonlinear HRV indices on mean HR as sampling rate effect, since it allows the estimation of nonlinear
indices over the same time interval and the same number of points. Sampling rate value should be
greater than the maximum HR. HR-correction nonlinear HRV indices computed by interpolating
at 2 Hz and by regression formulas presented similar values and range. In some studies, RR time
series were interpolated to increase the number of data points for improving the accuracy of nonlinear
measurements, thus, compensating mean HR effect on them. The used sampling rates varied including
2, 4, and 8 Hz, or even higher, 20 KHz [135, 64, 94]. However, since nonlinear HRV indices estimates
are strongly dependent on the selected sampling rate, results should be compared with caution.

On the Comparison with Respect to Point-process

Interpolation of raw RR time series has been proposed, in this thesis, as a method to attenuate the
influence of mean HR on nonlinear HRV indices. Furthermore, another alternative to overcome this
limitation was explored by using a point-process model, which provides a representation of the RR
time series, based on a probability description, whose resolution is not dependent on HR. In particular,
the influence of HR on D2, SampEn and ApEn(2,rmax(2)), computed over the point-process derived
instantaneous mean RR (see Fig. 3.6), was lower than when these indices were computed over the
raw RR time series, see Fig. 3.9.

Despite the dependence of nonlinear HRV indices, computed over raw RR time series, on mean
HR revealed by the simulation study, no HR-correction of nonlinear HRV indices is considered in
most of the studies found in the literature, where mean HR values are even not provided in some cases
[137, 146, 119, 97, 124, 188]. The application of nonlinear indices without HR correction should
be restricted to HR steady-state group conditions, avoiding study cohorts that present statistically
different mean HR, as for example in [188].

3.7.2 Real Data

Classical nonlinear HRV indices evaluated in the BPC database showed around 21, 34, and 21%
of reduction in median values from standing with respect to supine position for D2, SampEn, and
ApEn(2,rmax(2)) respectively, while mean HR increased by around 28%. Changes in these indices
may reflect changes in mean HR as well as additional changes in ANS modulation, as suggested in
previous studies [146, 195].
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In the BPC database, HR-corrected nonlinear indices were computed under supine and stand-
ing conditions and D2 was found to be significantly different for all regression approaches, while
ApEn(2,rmax(2)) only showed statistical differences for subject-specific by parabolic regression.
Linear and parabolic regression formulas were selected to be suitable for the three indices under
simulation conditions, although coefficients of determination were slightly lower for ApEn(2,rmax(2))
and SampEn than for D2.

On the other hand, all nonlinear HRV indices were still found significantly different, when
corrected by interpolation. It was found a statistically significant reduction in standing with respect to
supine of 18, 30, and 12% for HR-corrected D2, SampEn, and ApEn(2,rmax(2)) respectively, mostly
reflecting ANS modulation changes, while mean HR effect was attenuated. HR-corrected nonlinear
index ranges, calculated as the difference of median values for supine and standing positions, were
found reduced, when compared to uncorrected nonlinear HRV index ranges.

The embedding dimension, m, refers to the length of reconstructed vectors whose elements
correspond to values of the raw RR time series. The same set of values for embedding dimension were
assumed either for interpolated RR time series, interpolated at 2Hz, and for raw RR time series. Based
on this, the necessity to adapt this parameter setting to the resolution of the derived point-process time
series was suggested, since nonlinear index values computed over interpolated RR time series at 4
and 8 Hz were found reduced, but unrelated to a loss of complexity/irregularity, see Fig. 3.6.

The adaptation of the embedding dimensions, m, was taken into account for nonlinear HRV
analysis in the BPC database, where analysis results (Fig. 3.11 were obtained from: RR time series
derived from the point-process model at 50 ms resolution; and interpolated RR time series at 20
Hz. Results regarding nonlinear HRV analysis over raw RR time series were also displayed for the
sake of comparison. SampEn and ApEn(2,rmax(2)) computed over raw and interpolated RR time
series were statistically significantly decreased, comparing supine with respect to standing position,
whereas no statistical differences were found for both indices, when point-process derived time series
were analyzed. The point-process model was used by setting the same parameters for all considered
subjects in supine and in standing position. The results could be influenced by not adjusting the model
parameters in a subject-specific way, but this was not addressed in the thesis. The analysis of derived
point-process time series at 50 ms resolution in a 5-min window was found more time-consuming
than the analysis of interpolated RR time series at 2 Hz, due to the increase of data length as it
was described in section 2.4.1 Table 2.4. This fact may suppose a limitation in the application of
point-process model in the clinical practice, being, in such a case, suitable for an off-line approach.

Note that, although HR-correction attenuates the effect of mean HR as sampling rate, HR-corrected
nonlinear HRV indices may be still correlated with mean HR, since both parameters could vary in
the same direction. After HR-correction, nonlinear HRV indices were able to capture information
about ANS modulation in response to body position changes, regardless HRM values. Correction
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approaches may lead to better understanding the complexity and irregularity ANS changes unbiased
by mean HR, as natural sampling rate of RR time series.

HR-corrected nonlinear HRV indices addressed in this thesis, pointed out to a reduction in the
complexity of the underlying system and an increase in the HRV series regularity caused by an
increase of the sympathetic activity, when changing from supine to standing position, being in
agreement with previous works with similar conditions, considering tilt table test or even exercise
[135, 83, 152, 79, 148, 23]. Nevertheless, these results and their physiological interpretation are
limited by the low number of subjects of study and further studies are needed.

3.8 Conclusion

In this chapter, changes in nonlinear HRV indices were studied under different sympathetic conditions,
where mean HR also was changed. D2, SampEn, and ApEn(2,rmax(2)) dependence on mean HR,
as sampling rate, was explored. A simulation study was carried out, emulating ANS modulation
unrelated to mean HR. Simulation results showed that heart rate affects nonlinear indices as it is
the intrinsic sampling rate of HRV signal, even when considering the same data length. Two HR-
correction methodologies, regression formulas and interpolation, were proposed. Another alternative,
based on a point-process model, was explored. The evaluation on a BPC database revealed a reduction
of all studied HR-corrected nonlinear HRV indices in standing with respect to supine position. After
HR-correction, nonlinear HRV indices were able to capture changes in the sympathetic modulation
by body position-induced changes. HR-correction by interpolation was found suitable to attenuate the
mean HR effect. Although the application of a point-process model was also found as an alternative
to obtain HRV representation unrelated to its resolution, its computation was more time-consuming
than for interpolation approach. HR-correction could represent an improvement for nonlinear HRV
analysis, extending its application in such cases of non-steady mean HR.
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“A right-hand glove could be put on
the left hand, if it could be turned
round in four-dimensional space.”

- Ludwig Wittgenstein (1889-1951) -

4
Multidimensional Approximate Entropy:

A priori-free Approximate Entropy-based Index

Summary

Nonlinear HRV indices, such as ApEn, requires the selection of a priori parameters to be computed.
In this chapter, an approximate entropy-based index called multidimensional approximate entropy,
MApEnmax, is proposed. This index is independent of the a priori parameters, taking into account
information from long-term correlations (large embedding dimensions). The validation of the proposed
index was carried out by analyzing synthetic time series by varying their degree of stochasticity.
MApEnmax was applied to characterize aging and congestive heart failure to capture ANS regulation
changes.
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4.1 Introduction

ApEn was introduced by Pincus and co-workers [144] in 1991 as an entropic measurement to quantify
the regularity of medical data. Ten years later, Richmann and Moorman [125] introduced SampEn, a
variation of ApEn, reducing the bias of considering self-comparisons and being less dependent on
data length. Both approaches have been widely used to characterize and distinguish between healthy
and pathological conditions [53, 100, 141, 164, 197, 15, 158].

However, caveats in the computation of these nonlinear indices have been pointed out, such as the
dependence on mean HR and on certain parameters needed for their estimates. The dependence of
nonlinear HRV indices has already been addressed in chapter 3, while in this chapter, the analysis
is focused on the relevance of a priori parameters, that have to be selected for their computation,
evaluating their effect on SampEn and ApEn results’ interpretation. In particular, the embedding
dimension, m, (i.e. the length of reconstructed vectors); and the tolerance threshold, r, used to evaluate
reconstructed vectors which are similar to each other, are the two parameters considered for further
analysis. These parameters have been assigned diverse values in published HRV studies (e.g. m = 1 or
2; and r = 0.1 to 0.25 times the standard deviation of the time series) [158, 145, 176, 201, 1, 52, 40,
140, 168, 11, 3]. Thus, one main drawback lies in the comparison between studies, since the a priori
selection of m and r values can lead to different physiological interpretations.

Different approaches have been proposed to identify the values for the embedding dimension m or
the threshold r used by nonlinear dynamics characterizing chaotic time series [92, 28, 110, 34, 171,
106]. With regards to the embedding dimension, the false nearest neighbor method has been used to
search for the lowest embedding dimension, m, that allows the phase-space reconstruction, with very
different values of m in accordance with the diverse underlying dynamics of the analyzed time series
[92]. Minimum values of m were reported, being 2, 3 and 6 for Hénon, Lorenz, and Mackey-Glass
time series, respectively [28]. With regards to the tolerance threshold, some studies have been focused
on searching for the value of the threshold r, denoted by rmax(m), maximizing ApEn estimate. This
ApEn-based index has served to show that white noise series is more irregular than the cross-chirp
signal [34]. Furthermore, this index has been reported to better enhanced HRV and blood pressure
variability differences between supine and upright position with respect to the usage of fixed r values,
such as 0.1-0.25 times the standard deviation [171]. It should be noted that, although, in those cases, r
is generally referred as fixed, to be precise, the parameter that is fixed is the factor multiplying the
standard deviation, rather than the threshold r itself. In the literature, identification of the values of r
and m used to characterize different types of time series is still unclear, as highlighted by the high
diverse published values [171, 106].

Multiscale entropy (MSE) and refined MSE methods have been introduced to account for com-
plexity properties at different scales [40, 41, 183]. These methods provide information from SampEn
across a range of time scales. By applying the coarse-graining technique, each time scale is repre-
sented as a new time series derived from the original one [40]. Short time scales (1 to 4) have been
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proposed to be more related to parasympathetic and respiratory control, whereas long time scales (5 to
20) have been postulated to be more related to sympathetic control [170]. However, one caveat of the
MSE methods lies in the usage of coarse-graining technique, since the data length is reduced as the
scale increases. This limits the applicability of MSE for short-term HRV analysis and the reliability
of SampEn estimation becomes compromised for short data length [183].

In this study, a novel ApEn-based index, exploiting maximum ApEn and multidimensional,
properties is presented for short-term HRV analysis. This proposed index, MApEnmax, avoids the
usage of the coarse-graining technique and, thus, the variations in data length for the different time
scales. Furthermore, its computation provides an entropic estimation without the need of selecting
input parameter values ad hoc. The ability of the proposed index MApEnmax to represent different
degrees of randomness in time series was firstly tested on synthetic signals and subsequently, the
index was used to characterize HRV changes induced by aging and by CHF.

4.2 Approximate Entropy-based Indices

The mathematical definition of ApEn was previously described in section 3.3.2. The use of fixed thresh-
old values and the one, denoted by rmax(m), that maximizes the ApEn, referred as ApEn(m,rmax(m)),
were introduced. In this chapter, ApEn(2,0.2) and ApEn(2,rmax(2)) were considered for the sake of
comparison.

4.2.1 Multidimensional Approximate Entropy

ApEn(m,r) and ApEn(m,rmax(m)) provide information about the regularity of the time series when
two consecutive length patterns (embedding dimensions m and m+1) are compared. Increasing the
length pattern, m, the probability of finding similar patterns decreases. Although this probability tends
to zero as m approaches infinity, the information contained could still be of great interest. Therefore,
one of the novelties in the multidimensional approach proposed in this thesis lies in considering a
range of embedding dimensions to compute a single entropy value, making it independent of the
embedding dimension m. The multidimensional entropy index, MApEn(r), is defined as:

MApEn(r) =
M

∑
m=1

ApEn(m,r) , (4.1)

where M = 15 was set based on correlation dimension estimation described in [22]. The other novelty
lies in considering rmax(m) for each given value of m. In this way, the definition of MApEn(r) can be
used to define MApEnmax.

MApEnmax =
M

∑
m=1

ApEn(m,rmax(m)) , (4.2)
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Note that the proposed index MApEnmax does not require any a priori selection of embedding
dimension or tolerance threshold values for its definition, regardless of M.

Correlation dimension and sample entropy were also computed, using the methodology described
in chapter 2. All nonlinear HRV indices were computed over RR time series interpolated by cubic
splines at 2 Hz to attenuate the HR effect as sampling rate, as described in chapter 3.

4.2.2 Time- and Frequency-domain HRV Indices

Time- and frequency-domain indices were obtained from the raw RR time series and from the
modulating signal of the IPFM model, respectively, using the same analysis windows.

Mean heart rate HRM and the square root of the mean squared differences of successive normal
heartbeat intervals RMSSD were calculated.

Spectral analysis was performed on a modulating signal, M(t) estimated by applying the IPFM
model, where the influence of HRM was compensated[8]. Power spectral density content regarding
low frequency (PLF , 0.04-0.15 Hz) and high frequency (PHF , 0.15-0.4 Hz) bands, as well as normalized
low frequency power (PLFn = PLF/(PLF +PHF)) were estimated [179, 161].

4.3 Materials

4.3.1 Synthetic Signals

MIX Processes: a family of processes combining deterministic and stochastic behavior were studied.
The degree of stochasticity was controlled by parameter P. MIX(P) generated a sine for P = 0 (pure
deterministic) and became more random as P increased up to 1 (P = 1, pure stochastic) [144], see
section 2.2.2 for its definition.

For each P value in {0,0.25,0.5,0.75,1}, 30 processes were generated, each containing 300
samples.

Noise Time Series: white and pink noise (1/ f ) time series with zero mean and unit variance were
studied. A total of 30 white and pink noise processes, respectively, were generated, each containing
300 samples.

4.3.2 HRV Signals

Fantasia Database: ECG signals sampled at 250 Hz were acquired from twenty young (21-34 years
old, 25.9 ± 4.3) and 20 elderly (68-85 years old, 74.5 ± 4.5) rigorously-screened healthy subjects
undergoing 120 minutes of supine resting while watching the movie Fantasia (Disney, 1940) to
help maintain wakefulness. Further database information is available in [77]. Recordings can be
downloaded from www.physionet.org [59].
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Congestive Heart Failure Database: ECG recordings from the Congestive Heart Failure RR
Interval Database (including patients in NYHA classes I, II, and III) and the BIDMC Congestive Heart
Failure Database (including patients in NYHA classes III and IV) were selected. These recordings,
sampled at 128 and 250 Hz respectively, can be downloaded from www.physionet.org [59]. The
mixed databases consist of a total of 44 CHF patients aged 55.5 ± 11.4 y.o. Heartbeat locations were
obtained from automatic ECG annotations and subsequently manually reviewed and corrected by
experts, are available in the same repository. ECG recordings from 72 healthy subjects, aged 54.6 ±
16 y.o., were obtained from the Normal Sinus Rhythm Database available from www.physionet.org.
Long-term ECG recordings sampled at 128 Hz and their corresponding heart beat annotations are
included.

Heartbeat locations provided by the repository were corrected for ectopic beats based on instanta-
neous heart rate variation [116]. The time interval between consecutive heartbeats was used to define
the RR interval time series.

4.3.3 Statistical Analysis

For the Fantasia database, the whole 2-hour recordings were analyzed. For the CHF and Normal Sinus
Rhythm databases, a 3-hour night period was selected centered on the minimum HRM to establish a
fair comparison under similar stationary conditions, with minimal influence of potentially different
daily activities. 5-minute windows with 50% overlapping were used for analysis in all cases.

The proposed index, MApEnmax, as well as all other nonlinear HRV indices were evaluated on
synthetic and real data. The normality of data distributions was tested by Kolmogorov-Smirnov
test. Nonlinear as well as time- and frequency-domain HRV indices were used for the comparison
between young and elderly subjects, and between CHF patients and healthy subjects by ANOVA test
or Mann-Whitney U test depending on whether data distributions satisfied the normality criterion or
not respectively.

4.4 Results

4.4.1 Synthetic Data

Figure 4.1 and Fig. 4.2 show the values of the nonlinear HRV indices computed over MIX(P)
processes and pink and white time series. In the comparison of MIX(P) processes with the degree
of randomness below P = 0.75 (0 vs. 0.25; 0.25 vs. 0.5; and 0.5 vs. 0.75) all nonlinear indices led
to statistically significant differences. In the comparison between MIX(P) processes with P above
0.75 (0.75 vs. 1) no statistically significant differences were found for any of the nonlinear indices.
On the other hand, all the analyzed indices were able to separate pink and white noise time series.
In addition, the multidimensional index MApEn(r) was able to separate pink and white noise time
series for all tested values of the tolerance threshold r (results only shown for r = 0.2, Fig. 4.2).
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Figure 4.1 Nonlinear indices evaluated over MIX(P) processes with varying stochastic levels and pink and white noise
time series. Data are shown as median and interquartile range over 30 realizations.

While statistically significant differences were found for both MApEn(0.2) and MApEnmax when
comparing different stochastic processes, the former presented decreased values as randomness
increased, while the latter showed opposite results. To analyze these differences, the results of
evaluating ApEn for two embedding dimensions, namely m = 2 and m = 6, are illustrated in Fig.
4.3. The use of a fixed threshold did not always allow ApEn to characterize the randomness level
of the MIX(P) processes. As an example, for m = 6, the use of the fixed threshold r = 0.2 led to
MIX(0.25) having much larger complexity than MIX(0.5), MIX(0.75), and MIX(1). For m = 2,
however, MIX(0.25) presented the lowest complexity. When combining results from different scales,
MApEn(0.2) showed lower values as the randomness level increased, thus, not being able to reflect
the degree of stochasticity in the time series (Fig. 4.2 left panel). However, MApEnmax served to
characterize MIX(P) processes according to their stochasticity level for any value of m, which then
rendered MApEnmax suitable to characterize stochasticity levels (Fig. 4.2 right panel).
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Figure 4.2 MApEn(0.2) and MApEnmax evaluated on MIX(P) processes with varying stochastic levels as well as white,
and pink noises. Data are shown as median and interquartile range by considering 30 realizations.

In Fig. 4.4 a) ApEn(m,0.2) and ApEn(m,rmax(m)) are shown for pink and white noises when the
embedding dimension m was varied from 1 to 15. ApEn(m,0.2) values were higher for white noise
than for pink noise for low embedding dimension values, while presented the opposite behavior for
large embedding dimensions. The multidimensional index MApEn(0.2) resulted in higher values for
white than for pink noise, reflecting the behavior found for the lowest embedding dimensions (Fig.
4.4 b) left). On the other hand, ApEn(m,rmax(m)) was consistently larger for white than pink noise
throughout all embedding dimensions and, consequently, differences between these noise time series
were amplified when computing MApEnmax (Fig. 4.4 b) right) with respect to MApEn(0.2).

4.4.2 HRV Data

Nonlinear HRV Analysis

One subject from the young cohort and another one from the elderly cohort were discarded for
analysis, as their RR time series were not suitable for ectopic beats correction. Their variability values
reached the maximum allowed HR variation, thus precluding distinction between normal and ectopic
beats [116].

ApEn(2,0.2), ApEn(2,rmax(2)), MApEn(0.2), MApEnmax, SampEn(2,0.2), and D2 values showed
a trend for higher values in young than in elderly subjects, but only MApEnmax showed statistically
significantly higher values in young subjects (see Fig. 4.5 and 4.6). On the other hand, all analyzed
nonlinear HRV indices, with the exception of MApEn(0.2), were statistically significantly larger in
CHF patients than in healthy subjects (4.5 and 4.6).

Figure 4.7 illustrates the contribution of ApEn(m,0.2) and ApEn(m,rmax(m)) throughout the
embedding dimensions for MApEn(0.2) and MApEnmax respectively, for each of the analyzed cohorts.
The index ApEn(m,0.2) was found to have higher values in young subjects than in elderly subjects for
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Figure 4.4 a) ApEn computed throughout embedding dimensions for pink noise (blue) and white noise (red) using
different thresholds. b) MApEn(r) computed using different thresholds. ∗ indicates statistically significant differences
(p-values < 0.05). Data are shown as median and interquartile range by considering 30 realizations.

low embedding dimensions (m<= 3), even if not achieving statistical significance in all cases (Fig. 4.7,
left upper panel). Similarly, CHF patients showed higher ApEn(m,0.2) values than healthy subjects
for low values of the embedding dimension m (Fig. 4.7 left lower panel). For large embedding
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Figure 4.5 Regularity and complexity indices comparing young vs. elderly, and healthy subjects vs. CHF patients. ∗
indicates statistically significant differences (p-values < 0.05). Data are shown as median and interquartile range.
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Figure 4.6 MApEn(0.2) and MApEnmax values computed for young (solid black) vs. elderly (solid gray), and healthy
subjects (dotted blue) vs. CHF patients (dashed red). ∗ indicates statistically significant differences (p-values < 0.05). Data
are shown as median and interquartile range.

dimensions, opposite results were found in the two comparisons. Regarding ApEn(m,rmax(m)),
statistically significantly higher values were found in young vs. elderly and in CHF patients vs.
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Figure 4.7 ApEn values computed for thresholds set at 0.2, and rmax(m) through embedding dimensions in young (black)
and elderly (gray) groups shown in the upper panels, and in healthy subjects (blue) and CHF patients (red) during the night
period in the lower panels. ∗ indicates statistically significant differences. Data are shown as median and interquartile range.

healthy subjects for most values of the embedding dimension m, while for the remaining values of m
the compared values could not be statistically distinguished.

Figure 4.8 shows results for the comparison of healthy subjects and CHF patients obtained when:
i) restricting the age range (from 50 to 75 years old); and ii) considering only those CHF patients
classified III-IV regardless their age. Nonlinear index values were found statistically higher for CHF
patients than for healthy subjects in both comparisons.

In addition, MApEnmax values were computed for young, elderly, CHF, and healthy subjects
in 4000-sample time series and results are displayed in Fig. 4.9. Statistical differences between
studied groups are maintained when data length was increased with respect to the case of considering
5-minute analysis window.

Time- and Frequency-domain HRV Analysis

HRM and RMSSD are displayed in Fig. 4.10 for the studied groups. No statistically significant
differences were found for HRM when comparing young and elderly subjects, although a tendency
to lower HRM values for the elderly group was observed with respect to the young group. HRM
was statistically significantly higher in CHF patients as compared to healthy subjects. On the other
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Figure 4.8 Regularity and complexity indices comparing healthy subjects vs. CHF patients restricted to an age range of
50 to 75 years old and all healthy subjects with respect to CHF patients classified III-IV. (∗) indicates statistically significant
differences (p-values < 0.05). Data are shown as median and interquartile range.

hand, the RMSSD index showed statistically significant differences between both pairs of groups,
with elderly subjects and CHF patients presenting reduced RMSSD values.
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Figure 4.9 MApEnmax values computed for young (solid black) vs. elderly (solid gray), and healthy subjects (dotted blue)
vs. CHF patients (dashed red) in time series of 4000 samples. (∗) indicates statistically significant differences (p-values <
0.05 (dark), p-values < 0.07 (gray)). Data are shown as median and interquartile range.
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Figure 4.10 HRM and RMSSD values in young vs. elderly and CHF patients vs. healthy subjects during the night period.
(∗) indicates statistically significant differences.

Values of frequency-domain HRV indices PLF , PHF , and PLFn are shown in Fig. 4.11 for the four
studied groups. Significant differences were found for PLF and PHF in the two comparisons. PLFn

only showed statistically significant differences for the comparison between CHF patients and healthy
subjects.
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Figure 4.11 Frequency domain indices computed comparing young vs. elderly, and CHF patients vs. healthy subjects
during the night period. (∗) indicates significant p-values < 0.05.

4.5 Discussion

Searching for Standardizing Approximate Entropy

Nonlinear HRV analysis has extended the description of ANS regulation of cardiac electrical activity.
The use of nonlinear HRV indices has provided new physiological insights into ventricular dysfunction,
ventricular tachycardia, obstetrical complications under anesthesia, mental disorders and aging,
among others [53, 100, 141, 164, 198, 15, 158]. Nevertheless, the physiological interpretation of
some common nonlinear HRV indices could be biased by the a priori selection of parameter values
intrinsic to their definitions. Automatic search for those parameter values based on methodological
and/or time series characteristics has already been addressed [110, 106]. Nevertheless, indices like
maximum approximate entropy are still linked to the embedding dimension m by definition. The
values of m vary from one study to another even though there is a general tendency to set m = 2
to estimate ApEn(2,rmax(2)), commonly denoted as ApEnmax. In this study, the index MApEnmax

has been proposed, which is based on the summation of maximum approximate entropies for a set
of embedding dimensions, and thus, the necessity of selecting a particular value for the dimension
parameter is avoided. Additionally, the proposed index does not rely on the definition of a tolerance
threshold, since the threshold used is the one leading to the maximal entropy value in each embedding
dimension.

Analysis of Synthetic Data

The proposed index MApEnmax has been tested for characterizing synthetic time series. MApEnmax

values were found statistically significantly larger for white than for pink noise. This behavior was
also reproduced by all other tested nonlinear HRV indices including MApEn(0.2), although such
differences were found to be attenuated when using a fixed tolerance threshold as compared to using
the one leading to maximum entropy.
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The evaluation of the proposed marker on synthetic data, generated by MIX(P) processes, revealed
that the greater the stochastic level, the higher the MApEnmax value, which is in agreement with the
results shown by other nonlinear HRV indices, like correlation dimension or approximate and sample
entropy, describing complexity of time series. On the contrary, the usage of a fixed threshold r, e.g.
with value 0.2, in the computation of MApEn(r) was not able to reflect the degree of randomness
according to the MIX(P) time series.

Aging and CHF Assessment by Nonlinear HRV Analysis

The effect of aging was evaluated on healthy subjects during supine resting conditions, with subjects
being awake. Lower values were found for all analyzed nonlinear indices in the elderly cohort with
respect to the young one, with differences being statistically significant for our proposed MApEnmax

index. Our results are in agreement with previous studies where aging was reported as a cause for
decreased complexity and irregularity of beat-to-beat RR series [41, 77, 89, 15]. This reduction
has been associated with an impairment to adapt against external or internal perturbations [77, 154].
HRM, RMSSD, and PHF values were also decreased, while PLFn values were increased in the elderly
cohort, pointing to a potential enhancement in the sympathetic modulation of SA node activity.

Congestive heart failure was assessed by comparing failing patients and healthy controls during
the night period while they were sleeping. According to the results obtained for all the studied
nonlinear HRV indices, including the proposed MApEnmax index, statistically significantly higher
complexity and irregularity were found in CHF patients with respect to healthy subjects. Similar
results were found when restricting the age of the individuals to the range covering from 55 to 75 years
old, pointing out that age has no relevant effect on the comparison between CHF patients and healthy
subjects for the compared cohorts. Similarly, NYHA class had no impact on the distinction between
CHF patients and healthy subjects, as demonstrated by restricting the analysis to CHF patients in
NYHA classes III-IV, which led to similar results to those found for the whole CHF population (Fig.
4.8).

Spectral HRV analysis showed a significant decrease in PLFn for CHF patients with respect to
healthy subjects. In previous studies CHF has been reported to be associated with an increase of the
sympathetic tone and a decreased peripheral response to adrenergic input [93, 62]. In other studies, a
reduction in HRV low frequency content has been associated with the progression of heart failure in
CHF patients with advanced disease [62].

CHF has been characterized by ApEn in the literature, but results were found dependent on
methodological factors [204]. Multiscale entropy, which extends the classical SampEn definition to
a time-scale representation, has been applied to describe heart rate dynamics in CHF [40]. Costa et
al. reported that healthy subjects presented greater MSE values than CHF patients, but in particular,
the elderly healthy cohort showed lower MSE values than CHF group in the first scale. In our study
CHF patients and healthy subjects showed diverse ApEn values, being greater in one or in the other
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group depending on the tolerance r and the embedding dimension m. Therefore, the different results
obtained in the present study and those in [183] could be due to the method itself (ApEn here and
SampEn in [183]) and/or to the values used for the tolerance threshold (rmax(m) in this study and
fixed thresholds in [183]).

ApEn(m,rmax(m)) values were found greater for CHF patients than healthy subjects for all
considered embedding dimensions, contrary to the lower MSE values in CHF reported for all scales in
[183]. Additionally, to discard the effect of data length in underlying differences between the results
presented here and results described in [183], our proposed multidimensional index MApEnmax was
also tested on increased HRV signal lengths (4000 samples), confirming its discriminant capacity
between healthy and CHF patient’s groups, with higher values for CHF patients (Fig. 4.9).

Although a relationship between derived-MSE indices and sympathetic/parasympathetic modula-
tion has been reported [170], the methodological differences comparing derived-MSE and MApEnmax

do not allow the translation of the physiological interpretation to the present study.

The CHF patients included in the present study were enrolled in a long-term study to evaluate
the efficacy of drugs, in particular, milrinone and digoxin, and these drugs may have had an effect
into the ANS response mechanisms. In addition, no information was available in relation to other
concomitant disorders that CHF patients might suffer, such as obstructive sleep apneas, which could
interfere, misleading the nocturnal nonlinear analysis [129].

4.6 Conclusion

A multidimensional approximate entropy index, MApEnmax, was introduced as a priori-free parameter
entropy measurement. The evaluation on synthetic time series, such as MIX(P), pink and white noise,
revealed that MApEnmax characterized the degree of randomness in the series consistently. In the
analysis of aging, MApEnmax was higher in the elderly than the young population, thus, capturing
the heart rate complexity changes due to aging that may reflect loss of ANS adaptability. In addition,
MApEnmax was increased in CHF patients as compared to healthy subjects during the night period
suggesting greater complexity in CHF than healthy subjects. The addition of MApEnmax in nonlinear
HRV analysis could provide robust information according to the HR dynamics complexity, since
maximum approximate entropy computed throughout embedding dimensions contribute to its value.
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“Prediction is very difficult,
especially if it’s about the future.”

- Niels Bohr (1885-1962) -

5
Improvement in the Prevention of Hypotensive

Episodes after Spinal Anesthesia in Cesarean
Delivery by Nonlinear Analysis

Summary

Prophylactic treatment has been proved to reduce hypotension incidence after spinal anesthesia during
cesarean labor. However, the use of pharmacological prophylaxis could lead to undesirable side
effects on mother and fetus. Thus, the prediction of hypotension becomes an important challenge to
reduce the number of women that needed to be treated. One of the hypotheses underlying these kind
of hypotension events may be due to the malfunctioning of ANS on blood pressure regulation. In this
chapter, ANS response of pregnant women to body position changes was explored for hypotension
prediction.
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5.1 Motivation

The amount of cesarean deliveries worldwide has been increased by a global average of 12.4% from
1990 to 2014 [17]. Although the use of spinal anesthesia has been beneficial reducing mortality and
morbidity during labor [68], side effects such as hypotension and bradycardia in the mother [99] and
hypoxia and acidosis in the fetus [157] might be triggered after its administration. In particular, the
incidence of hypotension events has been reported between 30 and 100% of cases [111, 131]. This
wide range of incidence could be associated with discrepancies in the hypotension definition and
measurement techniques [76].

The use of prophylaxis has led to a notable reduction in the number of hypotension events [37].
However, prophylaxis through sympathomimetic drugs administration can lead to a non-desired
reactive hypertension with dose-dependent incidence up to 82% of the patients [4]. Prediction of
hypotension events during cesarean section would help to: 1) decrease the latency time between
hypotension event and its treatment; 2) increase efficiency in the anesthetic administration to better
control for the hemodynamic consequences of spinal block; 3) decrease the number needed to
treat (NNT), thus avoiding unneeded pharmacological exposition and therefore, reducing the derived
side effects. Prediction of hypotension after spinal anesthesia during elective cesarean delivery has
been reported in the literature [71, 31, 66, 25, 55, 76, 22, 199, 160]. However, results have been found
to be highly dependent on the number of studied subjects, the definition of hypotension episode, and
the features considered for the analysis.

The malfunctioning or disability of ANS to compensate a drop in blood pressure induced by
anesthesia is one of the hypotheses underlying hypotension episodes. Besides, the physiological and
psychological stress response is altered by the last period of pregnancy. ANS regulation on the heart
can be assessed by HRV analysis, which was found to be correlated with hypotension episodes the
day of surgery [21, 31, 66, 199]. ANS responsiveness through an elicitation protocol, consisted of
postural changes, and the occurrence of hypotension events have been related during the day before
surgery [160].

The analysis of pulse rate variability (PRV), extracted from pulse photoplethysmographic signal
(PPG) recording, has been proved suitable for the assessment of ANS regulation of the heart, taking
into account information about the peripheral vascular regulation [58]. These recordings present
the advantage of reducing number of sensors, being convenient in clinical practice. pulse transit
time (PTT) and its surrogate pulse arrival time (PAT) derived from the ECG and PPG signals, were
introduced as non-invasive approaches for capturing blood pressure changes [189, 61]. They have
been also related to the arterial stiffness, ANS, respiration, and blood pressure [35, 101, 127, 139]. An
increase of PTT values has been associated with a drop in arterial blood pressure (hypotensive episode)
[166]. Based on this, although several studies attempted to shed light into the role of HRV and pulse
oximeter derived index analysis for predicting hypotension after spinal anesthesia for cesarean section
delivery, hypotension prediction is still a challenge [71, 31, 66, 25, 55, 76, 22, 199, 160].
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In this chapter, ANS responsiveness through body position change protocol is analyzed by HRV,
PRV, and PAT indices to avoid side effects caused by prophylaxis used for preventing hypotensive
events induced by spinal anesthesia during cesarean delivery. A classifier focused on the minority
class, normotensive cases, is developed to provide clinicians valuable information for making better
preventive treatment decisions.

5.2 Materials and Methods

5.2.1 Programmed Cesareas Database

The database consisted of a total of 105 pregnant women programmed for an elective cesarean
section at the University Hospital Miguel Servet of Zaragoza, Spain. A subset of this database was
already used in an exploratory research addressed in chapter 2. After obtaining approval from the
Clinical Research Ethics Committee, the parturients were recruited, informed, and asked to sign the
written consent. Indications for programmed cesarean delivery were: iterative cesarean labor; breech
presentation; shoulder presentation; placenta previa; previous uterotomy and other causes. Exclusion
criteria were urgent surgery, uterine contractions and maternal or fetal pathology.

The subjects were randomly selected to belong to a control group (no prophylactics were adminis-
tered, 51 subjects) and to prophylactic group (54 subjects). A prospective study of this work is based
on the factors related to hypotension within the control group. Thus, subjects were grouped according
to hypotensive outcome. A hypotensive episode was defined as a drop in systolic arterial pressure
greater than 20% from baseline value, estimated as mean of three consecutive measurements taken in
lateral decubitus). 33 subjects of the control group suffered from hypotension after spinal injection
until delivery, reaching a 64.7% incidence.

Demographic data were obtained at admission. Biomedical signals were recorded in the surgical
area the day of surgery. Two-lead ECG and PPG were recorded both at 1 kHz during a protocol
designed to enhance ANS alterations by hemodynamic changes. Protocol stages were: 7 minutes of
lateral decubitus (LD) assuming baseline pregnancy conditions, 7 minutes of supine decubitus (SD)
increasing hemodynamic stress due to aorto-cava compression, 7 minutes of sitting position (SP). LD
and SD were recorded for all subjects of the database, whereas sitting position was recorded for 40
subjects. Thus, two subgroups are referred as LD-SD and LD-SD-sitting position (SP).

After recording ECG and PPG signals, all patients received an infusion of Hartmann’s solution
at 15 ml/kg/h. Thereafter, standardized spinal anesthesia was performed: puncture site was lumbar
interspace L2/3 or L3/4 with the patient in a sitting position. Next, 9 to 11 mg of hyperbaric
bupivacaine anesthetic 0.5% according to patient height (<150 cm, 9 mg; 150-165 cm, 10 mg; > 165
cm, 11 mg) and 10 µg fentanyl was injected via 27-G Whitacre needle. Immediately after injection,
patients were positioned supine with a left lateral tilt of about 10◦, facilitating left uterine displacement.
Blood pressure was measured at 2-min intervals beginning 1 min after spinal injection.
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The database of study contains demographic data recorded from the beginning of the pregnancy
period until the day of admission to the hospital. These baseline characteristics grouped according to
their hypotensive outcome are shown in Tab. 5.1.

Table 5.1 Parturient characteristic data. (n) refers to the number of subjects on each group. ∗ indicates number of subjects
different from 18 caused by unavailable data.

Hypotensive Normotensive

Demographic data n Mean SD n Mean SD

Age (yr) 33 35.3 4.7 18 33.7 4.6
Height (cm) 33 161.8 5.9 17 ∗ 161.4 5.8
Weight (kg) 33 73.8 10.5 17 ∗ 72.3 10.5
Pre-gest. weight (kg) 33 61.9 9.9 15 ∗ 62.5 8.9
Gained weight (kg) 33 11.5 4.4 14 ∗ 11.3 3.1
Pre-gest. BMI (kg/m2) 33 23.7 3.7 14 ∗ 24.0 3.1
BMI (kg/m2) 33 28.2 4.1 17 ∗ 28.5 3.9
Gest. age (days) 33 263.2 6.7 18 267.6 6.3

5.2.2 Methods

Series to Study

Heartbeat time occurrences were detected from the ECG lead with the highest signal quality
(signal-to-noise ratio) by a wavelet-based ECG detector [114]. Ectopic beats were detected and
corrected [116]. Then consecutive heartbeat occurrence times were used to generate the beat-to-beat
RR time series.

Temporal location of each PPG pulse wave was detected as the medium-amplitude point where
amplitude reaches 50% of its maximum value [103]. Ectopic and undetected pulses were identified
and their corresponding pulse wave times corrected [116]. Then, consecutive pulse wave times were
used to generate the pulse-to-pulse (PP) time series.

In this chapter, PAT, is referred to the spend time used by pulse waves to travel from the aortic valve
to an arterial point placed at the periphery. The time interval between an R peak in the ECG signal
and its corresponding PPG pulse wave location time defines PAT estimation. It is worth noting that
this estimate, PAT, although considered as a surrogate of PTT, includes the pre-ejection period (PEP)
and the pulse transit time (PTT), the systolic and the propagation time interval respectively, since the
detection of the time instant when the aortic valve opens was replaced by R peak in the ECG signal.

Respiratory rate was extracted from ECG signals by applying a QRS morphology-based technique
that exploits respiration-induced variations in QRS slopes and R-wave angle [102].
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Temporal Analysis

RR, PP and PAT time series were used to calculate the temporal indices such as mean value (µX ),
standard deviation (σX ), square root of the mean squared differences of successive values (RMSSDX ),
standard deviation of differences of successive values (SDSDX ), where X ∈ {RR,PP,PAT}. Median
value ( f R) and interquartile range (IQR[ f R]) were computed from the respiratory rate.

Spectral Analysis

The IPFM model was applied to estimate the modulating signals from heartbeat locations. As
described in chapter 3, these modulating signals are assumed to carry information about ANS activity
once compensated for the mean HR effect [8]. In the following, these modulating signals are referred
to as HRV signals. Similarly as for heartbeat locations, pulse wave occurrence times were used to
compute modulating signals through the IPFM model labeled as PRV signals. HRV and PRV signals
were interpolated at 4 Hz. The IPFM model was not applied to the PAT signal and, this series was
only interpolated at 4 Hz as the other two signals, being suitable for further spectral analysis.

Welch-periodogram was used to estimate spectral properties of the HRV, PRV and PAT sig-
nals. Fixed spectral band of LF (0.04-0.15 Hz) and a variable HF band centered in f R with a fix
bandwidth of 0.25 Hz were used to compute the power content on each band (PLF

Y and PHF
Y ),

their normalized values (PLFn
Y and PHFn

Y ) as well as the sympathovagal balance (LF/HFY ), where
Y ∈ {HRV,PRV,PAT}. The variable HF band aims to better capture parasympathetic activity, since
respiratory rate in pregnant women can be higher and often near the classical HF upper bound of 0.4
Hz [7]. However, in those cases where HF band overlapped with LF band, the lower limit of HF band
was set as the upper LF band limit. No estimation based on spectral analysis was given in those cases
when f R was found below 0.15 Hz due to the uncertainty in the physiological interpretation of these
measurements.

Nonlinear Analysis

D2, SampEn(2,0.2), ApEn(2,rmax(2)), and MApEnmax were selected as nonlinear indices whose
interpretation has been related to complexity and irregularity in previous chapters. In order to simplify
the notation, hereinafter D2, SampEn, ApEnmax, and MApEnmax are used to refer to these studied
indices. RR, PP and PAT time series were interpolated at 2 Hz to be suitable to attenuate the effect of
HR on the estimated nonlinear indices as described in chapter 3.

Statistical Analysis

ANS activity was assessed by analyzing the variations of HR, PR and PAT from ECG and PPG
signals recorded few minutes before surgery on each protocol stage, consisted of lateral decubitus,
supine decubitus, and sitting position. Differences between body position stages were also evaluated.
As an example of notation, PHF

HRV (SD−LD) will be the difference of high frequency power from HRV
analysis between supine and lateral decubitus position.
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The normality of statistical distributions was analyzed by Kolmogorov-Smirnov test. Sensitivity
analysis of features, comparing hypotensive and normotensive groups was tested by T-Student test
on normal distributions and by Mann-Whitney U test on non-normal ones. A univariate statistical
significance was considered for p-values < 0.05.

Due to the large amount of computed features (more than 200), only those showing statistical
sensitivity on hypotension were used as candidates for classification purposes. In this case, a post
hoc correction, such as Bonferroni’s, was not applied, since our purpose is to obtain a combination of
features, no single ones, to better distinguish both groups of study. A set of classifiers were tested
such as Logistic Regression, Naive Bayes, Nearest Neighbor, Linear and Quadratic Discriminant
Analysis, and Supported Vector Machine to search for the best classification results. On the one hand,
some of these classifiers provide their outcome in discrete values of 1 or 0, depending on whether the
subject belongs or not to the non-hypotensive (or normotensive) group. On the other hand, classifiers
such as the one based on a logistic regression provide their outcome as a probability of belonging to
the hypotensive group, see Eq. 5.1.

p =
1

1+ exp−(β0+β1X1+β2X2+...+βNXN)
, (5.1)

where β0, ...,βN are the coefficients and X1, ...,XN represent the selected N-features. Then, a probabil-
ity threshold, pth, determines the risk of suffering from hypotension.

Feature selection was done by a Greedy forward algorithm by maximizing F1 score as inclusion
criteria [39]. F1 score is defined as a measurement equilibrating the positive predictive value and sen-
sitivity, thus improving the classification of the minority class, which, in our case, is the normotensive
group. Overtraining was avoided by using the leave-one-out technique combined with bootstrapping
[51] (see Fig. 5.1) and by restricting the maximum number of selected features for classification to be
less than the square root of the number of subjects in the smallest group as a rule of thumb.
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Figure 5.1 Cross-validation scheme combining leave-one-out (LOO) technique with bootstrapping reducing the variance
of classification results. Circles represent each subject of the database, whereas the color white or black illustrate their truly
hypotension outcome as normotensive or hypotensive respectively. First, leave-one-out is applied to define a training and a
test set (dashed rectangle). Next, bootstrapping is N-1 times applied to this training set. Then, these bootstrapped training
sets are evaluated in the classifier. Leave-one-out procedure is N times repeated generating the resulting X matrix.
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5.3 Results

In Fig. 5.2 RR, PR and PAT signals are shown for two subjects belonging to hypotensive (Hyp) and
normotensive (N-Hyp) groups during supine position.
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Figure 5.2 RR, PR and PAT signals for two subjects belonging to hypotensive group (left panel) and normotensive group
(right panel) during supine position.

Tab. 5.2 shows those indices that were found statistically significantly different between the two
groups in LD-SD and LD-SD-SP cohorts. Correlation between derived nonlinear indices computed
over RR and PR that present statistically significant p-values in LD-SD cohort is illustrated in Fig.
5.3.

The evolution of ApEnmax
PR(SD−LD) with respect to m and the contribution of each position

are displayed in Fig. 5.4. Only ApEnmax
PR(SD−LD) at m = 2 and 3 were found to be statistically

significant comparing hypotensive and normotensive groups. MApEnmax
PR(SD−LD) index computed

as the contribution of all embedding dimensions appeared statistically significant comparing both
groups of study but less than ApEnmax

PR(SD−LD) as illustrated in Tab. 5.2.

Tab. 5.3 shows the classification results for the different tested classifiers. For all classifiers
ApEnmax

PR(SD−LD) and σPAT (SD) were selected as the combination of features that achieved the best
classification results in the LD-SD cohort. The classifier showing the highest F1 score was the one
based on logistic regression.
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Table 5.2 Relation of features extracted from ECG derived respiration, RR, HRV, PR, PRV, and PAT analysis for the
LD-SD and LD-SD-SP cohorts. Only those that were found statistically significant are shown. (n) refers to the number of
subjects on each group. ∗ indicates number of subjects different from 18 for LD-SD and 28 for LD-SD-SP respectively,
corresponding to cases where respiratory rate overlapped to LF band. p-values < 0.05 were statistically significant by
Mann-Whitney U test.

Features Hypotensive Normotensive

Cohorts n Mean SD n Mean SD p-value

LD-SD

SampEnRR(SD) (a.u.) 33 0.45 0.17 18 0.56 0.18 0.03
SampEnRR(SD−LD) (a.u.) 33 -0.03 0.16 18 0.05 0.11 0.03

MApEnmax
RR(SD−LD) (a.u.) 33 -0.35 0.65 18 0.06 0.6 0.03

SampEnPR(SD) (a.u.) 33 0.48 0.16 18 0.59 0.17 0.03
SampEnPR(SD−LD) (a.u.) 33 -0.04 0.16 18 0.06 0.11 0.02
ApEnmax

PR(SD−LD) (a.u.) 33 -0.04 0.09 18 0.03 0.07 0.01
MApEnmax

PR(SD−LD) (a.u.) 33 -0.35 0.63 18 0.12 0.6 0.02

σPAT (SD) (ms) 33 6.20 4.45 18 4.31 1.13 0.03
PLF

PAT (SD) (ms−2) (10−4) 33 0.15 0.39 17∗ 0.04 0.03 0.02
PLFn

PAT (SD) (%) 33 63.22 0.39 17∗ 51.56 16.3 0.03
PLF

PAT (SD−LD) (ms−2) (10−4) 33 0.08 0.24 17∗ 0.02 0.02 0.02
LF/HFPAT (SD) (adim.) 33 2.90 3.38 17∗ 1.31 0.84 0.03
SampEnPAT (SD−LD) (a.u.) 33 -0.04 0.21 18 0.12 0.21 0.01

IQR[ f R]
(SD)

(Hz) 33 0.05 0.04 18 0.03 0.03 0.03

LD-SD-SP

ApEnmax
RR(SP−SD) (a.u.) 28 0.04 0.12 12 -0.05 0.11 0.04

SampEnRR(SD−LD) (a.u.) 28 -0.03 0.12 12 0.07 0.11 0.02
ApEnmax

PR(SD−LD) (a.u.) 28 -0.02 0.07 12 0.05 0.06 0.008
SampEnPR(SP−SD) (a.u.) 28 0.07 0.15 12 -0.04 0.18 0.04
ApEnmax

PR(SP−SD) (a.u.) 28 0.012 0.11 12 -0.07 0.13 0.05

σPAT (SD) (ms) 28 6.36 4.76 12 4.16 0.84 0.002
σPAT (SP−SD)(ms) 28 -0.75 3.6 12 0.94 1.22 0.02
PLF

PAT (SD) (ms−2) (10−4) 28 0.17 0.43 12 0.03 0.02 0.01
PLFn

PAT (SD) (%) 28 62.4 16.9 12 45.9 15 0.009
LF/HFPAT (SD) (adim.) 28 2.81 3.41 12 0.99 0.59 0.009
LF/HFPAT (SP−SD) (adim.) 27 ∗ -1.56 2.48 12 -0.14 0.78 0.02

f R(SD)
(Hz) 28 0.29 0.06 12 0.26 0.04 0.04
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Figure 5.3 Correlation of nonlinear indices computed over RR and PR time series. Statistically significant nonlinear
features are shown for LD-SD cohort.
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Figure 5.4 a) ApEn(m,rmax(m)) vs. m computed on PR time series during lateral decubitus (left panel) and during supine
decubitus (right panel). b) ApEn(m,rmax(m)) vs. m computed over PR time series evaluating differences between supine
and lateral decubitus (left panel). Data distribution of MApEnmax

PR(SD−LD) for hypotensive and normotensive groups are
shown (right panel). p-values <= 0.05 were statistically significant by Mann-Whitney U test.
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Table 5.3 Classification results for the LD-SD cohort for the different considered classifiers. In all cases
ApEnmax

PR(SD−LD) and σPAT (SD) were selected by Greedy algorithm as best feature combination. (#) number of features,
(Sens.) sensitivity, (Spec.) specificity, (PPV) positive predictive value, (Acc.) accuracy, and F1 score.

Classifiers # Sens.(%) Spec.(%) PPV (%) Acc. (%) F1

Logistic Regression 2 76.55 69.81 57.84 72.20 0.66
Naive Bayes 2 73.78 58.91 49.75 64.16 0.59
Nearest Neighbor Method 2 44.78 73.33 47.96 63.25 0.46
LDA 2 41.56 79.64 49.45 66.20 0.46
QDA 2 68.00 59.70 48.27 62.63 0.56
SVM (linear kernel) 2 81.56 61.03 53.94 68.27 0.65
SVM (quadratic kernel) 2 71.33 58.30 48.70 62.90 0.57
SVM (polynomial order 3 kernel) 2 64.56 57.03 45.59 59.79 0.53
SVM (Radial Basis kernel) 2 75.67 60.48 51.52 65.84 0.61
SVM (Multilayer perceptron kernel) 2 77.67 59.76 50.92 66.08 0.62

Subsets of features from the two studied cohorts (LD-SD and LD-SD-SP) and a third one (LD-
SD1) that matches the same subjects from LD-SD-SP group discarding the SP position were evaluated
for classification using the logistic regression approach. The classification results are shown in Tab.
5.4 and the parameters of the logistic models for the different studied cohorts can be found in Tab. 5.5.

It is worth noting that the features ApEnmax
PR(SD−LD) and σPAT (SD) were selected by the classifier

in the three cohorts, and f R(SP) was added in the set for the LD-SD-SP cohort. In Fig. 5.5 box-plots
of the selected features for LD-SD and LD-SD-SP cohorts are illustrated.
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Table 5.4 Classification results considering ECG derived respiration, RR, HRV, PR, PRV, and PAT analysis features for
the three subgroups of the database depending on protocol segments. (#) number of features, (Sens.) sensitivity, (Spec.)
specificity, (PPV) positive predictive value, (Acc.) accuracy, and, F1 score.

Features
# Sens.(%) Spec.(%) PPV (%) Acc. (%) F1

Cohorts

LD-SD (33 vs. 18)

ApEnmax
PR(SD−LD) (a.u.) 2 76.55 69.81 57.84 72.20 0.66

σPAT (SD) (ms)

LD-SD1 (28 vs. 12)

ApEnmax
PR(SD−LD) (a.u.) 2 78.42 68.13 51.17 71.22 0.62

σPAT (SD) (ms)

LD-SD-SP (28 vs. 12)

ApEnmax
PR(SD−LD) (a.u.)

σPAT (SD) (ms) 3 75.44 74.85 56.66 75.03 0.65

f R(SP)
(Hz)

Table 5.5 Logistic regression parameters for the different cohorts.

Logistic reg. parameters LD-SD LD-SD1 LD-SD-SP
(33 vs. 18) (28 vs. 12) (28 vs. 12)

β̂0 0.306 0.446 3.13

β̂1 [σPAT (SD)] -0.38 -0.479 -0.555

β̂2 [ApEnmax
PR(SD−LD)] 8.36 10.48 -3.753

β̂3 [ f R(SP)
] - - -10.55

pth 0.342 0.268 0.344

where β̂ ’s are the coefficients and in [] is represented the corresponding feature
following eq. 5.1. pth is the probability threshold of risk of suffering from hypotension.
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Figure 5.5 Box-plots of the features that were finally selected by classification procedure for a) LD-SD and b) LD-SD-SP
cohorts.
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5.4 Discussion

Hypotensive episodes after spinal anesthesia during cesarean delivery were hypothesized to be more
frequent in patients with high level of stress. The risk of suffering from hypotensive events could be
related to alterations in the ANS response associated with the stress caused by the proximity of surgery
and the last period of pregnancy [46, 133]. To evaluate this hypothesis, the database used in this study
was recorded following a specific protocol enhancing the ANS response due to hemodynamic changes.
Aside from using an ANS elicitation protocol (body position changes), which has been proved to be
helpful to identify women at risk of severe hypotensive events [95], one of the novelties of this study
lies in the inclusion of the PAT signal analysis as an alternative to blood pressure measurement that
can be more easily obtained in clinical practice [127]. Furthermore, PAT signal provides beat-to-beat
information related to arterial stiffness and respiration whereas this information is missed in blood
pressure (BP) measurements by cuff recordings. Improving the accuracy in predicting hypotensive
events to avoid the side effects that pharmacological prophylaxis may produce in the mother and fetus
in the low risk patient is the goal of our study. However, the performance obtained by predicting
hypotension could be affected by the clinical criterion for considering an event as hypotensive, since
BP was measured every 2 minutes after spinal injection. To minimize this effect, clinical hypotension
was also considered when women showed symptoms of dizziness, nausea or discomfort.

In this work, the influence of respiration on the ANS modulation of the heart was also taken
into account. This effect, known as respiratory sinus arrhythmia (RSA), is reflected in the HRV,
PRV and PAT through the HF band, corresponding to the parasympathetic activity [71]. Variability
analysis, in particular HRV analysis, could lead to misinterpreted results depending on respiratory
rate [7]. As mentioned above, stress induced by surgery proximity may produce an increase of
respiratory rate (towards upper boundary of HF band) and also compression of diaphragm. In such
case, parasympathetic activity could be reflected in HRV at higher frequencies and thus classical
HF band would not be able of capturing the information of interest properly. Therefore, variability
analysis was proposed to be guided by respiration, defining an HF band centered in the respiratory
rate.

The analyses of HRV and PRV were found to be highly correlated to each other, being in agreement
with the results of Gil et al.[57], see Fig. 5.3. The evaluation on lateral decubitus, considered as a
basal condition, revealed no differences between both groups of study when analyzing RR, HRV or
PR, and PRV. However, a decreased tendency on the standard deviation of PAT was found as well as
on its complexity, in terms of D2, SampEn, ApEnmax, and MApEnmax values for the normotensive
group with respect to the hypotensive one.

The hemodynamic stress was generated by supine decubitus position via aorto-cava compression.
The analyses of RR, HRV and PR, PRV showed similar temporal and spectral values for both groups
without statistical significance. Nevertheless, the normalized low frequency power of PAT increased
and therefore, greater sympathetic activity [56] was recorded in the hypotensive group with respect
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to the normotensive group. In addition, greater and significant changes were observed for SampEn
pointing out to a decrease in the time series irregularity of RR and PR for hypotensive group. This
tendency was found for MApEnmax index as well but not statistically significant. PAT analysis
revealed an increase in the amplitude variation values in the hypotensive group, see Fig. 5.2. On the
one hand, PAT measure is affected by pulse wave velocity, which is related to BP [61]. On the other
hand, in the present study, PAT values include the PEP which was reported to experiment changes
under enhanced sympathetic conditions [74, 113]. PEP was also highlighted to represent from 12% to
35% of the PAT [139] and its variations could have a strong influence on the variations of the PAT
measure [126]. Variations on PEP could help in the prediction of hypotensive episodes, since those
variations might be enhanced in the same way as the ones in pulse wave velocity increasing the PAT
discrimination power. Although one limitation of this study is the impossibility of separating those
effects, the studied PAT measure can be easily obtained in the clinical routine and has discriminant
power between hypotensive and normotensive groups.

The responsiveness of subjects through body position changes was explored by differences
between supine and lateral decubitus analysis values. The statistical differences between hypotensive
and normotensive group were more notable, in terms of irregularity for RR, PR and also for PAT
evaluating the position change. Thus, this position change modifies the venous return and affects
the ANS activity as well as arterial pressure and stiffness. The differences of approximate entropy
values between supine and lateral decubitus computed on PR, achieved the lowest p-value when
comparing both groups of study. On the contrary, same index computed on RR signal did not
reveal statistical differences, so, hemodynamic changes affect peripheral regulation (blood pressure)
more than heart regulation (heart rate). The analysis of MApEnmax index, derived from RR and PR,
showed statistically lower mean values for the hypotensive than the normotensive group by evaluating
differences between supine and lateral decubitus positions. In regards to the conclusions obtained
by synthetic data in chapter 4, variations of MApEnmax index indicates a decrease in the complexity
of the ANS response in the hypotensive group. The difference of standard deviation of PAT values
observed between groups may be measuring the capacity of ANS to react in case of a drop in blood
pressure. The normotensive group presented higher reaction range (lower σPAT (SD) values), whereas
the hypotensive group shows a narrow margin (higher σPAT (SD) values) to reach the hypothetical
physiological maximum value at which a hypotensive event is triggered.

The studied features that presented statistical differences comparing normotensive and hypotensive
groups were selected as candidates for classification. Due to the high incidence ratio of hypotensive
events (64.7% of cases), the prediction of the normotensive cases is mandatory; otherwise looking for
hypotensive cases higher accuracy values can be achieved, but neglecting the other class. Thus, classi-
fication performance was carried out by evaluating the positive predictive value and sensitivity related
to the normotensive group. Several classifiers were tested and the one providing the best classification
results was selected, see Tab. 5.2. In all cases, the Greedy algorithm selected ApEnmax

PR(SD−LD)

and σPAT (SD) as the best combination of features. Regarding the F1 score measurement, the logistic
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regression classifier provided the best classification result for the LD-SD cohort: 76.55% of sensitivity,
69.81% of specificity, 57.84% of positive predictive value, and 72.2% of accuracy. Then, hereinafter
classification results are referred to the logistic regression classifier.

Sitting position was also included in the protocol to enhance the ANS activity, once the database
recording was in progress. The first 20 subjects (11 of the control group) were not asked to be in the
sitting position while signals were recorded. All the analysis procedure was duplicated by considering
this position on a subset of the whole database (LD-SD-SP), see Tab. 5.2. In this cohort, f R(SP) was
selected increasing the classification performance with respect to the one obtained for LD-SD1 cohort.
On the other hand, the comparison between sitting position and lateral decubitus did not reveal any
index capable of distinguishing both groups of study. The variation in the sympathetic activity caused
by sitting position with respect to the other two body positions was apparently not enough to generate
notable changes on the studied indices.

In the study of Brenck et al. risk factors for developing hypotension based on population
characteristics were studied over 500 pregnant women, achieving accuracy around 60% [25]. A test
combining the demographic data with the features derived from the ECG and PPG signals was carried
out with the data presented in this chapter, and the classification results using logistic regression
were superior to only considering ECG and PPG-derived indices. In particular, the Greedy algorithm
selected body mass index (BMI) and the standard deviation of PAT values during supine position,
altogether leading to classification performance characterized by 82.5% sensitivity, 67.9% specificity,
and 72.9% of accuracy. Based on this, it is reasonable to suggest that the combination of demographic
data and features derived from ECG and PPG signals can lead to better classification results. However,
this statement should be validated over an extended database.

Several studies attempted to shed light into the role of HRV and pulse oximeter derived index
analysis for predicting hypotension after spinal anesthesia for cesarean section delivery [31, 66, 160,
199]. Despite of Yokose et al. found heart rate as the only predictor obtaining an area under the ROC
curve (area under curve (AUC)) of 0.68, this feature did not show predictive power in the database
analyzed in our study. In a study carried out by Sakata and co-workers, the importance of including
postural changes into the recording protocol to enhance hemodynamic changes and ANS response
was highlighted achieving an area under the ROC curve of 0.76. There, LF/HF was reported to be
increased in those parturient who developed hypotension. In our case, similar trend was found for the
LF/HF through the PAT signal (Hyp: 2.9±3.38 versus No-Hyp: 1.31±0.84 in LD-SD cohort and Hyp:
2.81±3.41 versus No-Hyp: 0.99±0.59 in LD-SD-SP cohort), see Tab. 5.2. Ghabach et al. reported
a relationship between approximate entropy and antenatal weight gain [55]. Assuming that this
position was lateral decubitus, which represents the basal position without any extra hemodynamic
stress, the results found in this chapter are in disagreement with the ones reported by Ghabach. In
our study no statistical differences were found in the weight gain (results shown in Tab. 5.1) nor in
approximate entropy during lateral position (Hyp: 0.87±0.08); N-Hyp: 0.85±0.1 and p-value: 0.95,
values corresponding to LD-SD cohort). Although in the work of Yokose et al. neither HRV nor PRV
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were useful to prospectively relate the analysis results to hypotensive events [199], our study provides
contrary insights. Lack of standardization on hypotension definition and the low number of subjects
become a limitation leading to controversial results. Thus, future studies on a larger database should
be explored.

Regarding the classification results obtained in this study, first, we would like to focus our attention
into sensitivity values. Normotensive cases were defined as positive cases for classification, since
this is the minority group and their associated subjects the ones who may suffer from anesthetic
side effects in case of a failed detection. Among normotensive cases (18 women), the 76.55% of
them (≈14) were correctly classified, thus only the 25% (≈4) could present anesthetic side effects.
On the contrary, among hypotensive cases (33 women), the 69.8% (≈23) were correctly classified,
whereas the 31.2% (≈10) were classified as normotensive and they will suffer from hypotension
caused by anesthesia, but they will be treated when hypotension will be detected. The benefits of
our classification results were highlighted being only 4 out of 55 women the population that could
present undesirable, but avoidable by proper prediction, side effect in mother and fetus. The classifier
presented in this chapter could help to better assist clinicians to take decisions. Although the accuracy
obtained is close to the clinical target of the 80%, it is still margin to continue investigating to identify
those factors that triggers the hypotensive events and increase the accuracy of their prediction.

5.5 Conclusion

PR and PAT analysis could help to predict hypotension events after spinal anesthesia during cesarean
section extending the description of ANS regulation and its response to postural changes. Nonlinear
indices characterizing PR and PAT time series used as features to classify normotensive and hypoten-
sive women outcome could help to better assist clinicians to take decisions. These analyses may
indicate the role of peripheral regulation and blood pressure changes in order to avoid the undesirable
side effects of prophylactic administration in the low-risk population.
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“How often have I said to you that
when you have eliminated the
impossible, whatever remains,
however improbable, must be the
truth?”

Sherlock Holmes
Sign of the Four, Ch. 6, p. 111

- Arthur Conan Doyle (1859-1930) -

6
Conclusions and Future Lines

Summary

Nonlinear indices for short-term HRV analysis have been reported as promising in the description
of ANS regulation of the heart, providing complementary information to the classical time- and
frequency-domain methods. However, their physiological interpretation remains unclear, since
quantification of nonlinear indices is highly dependent on methodological factors, such as the intrinsic
sampling rate of the HRV time series or the selection of parameter values involved in the definitions.
In this thesis, a methodological framework aimed at increasing estimation reliability of nonlinear HRV
indices is introduced. This framework could aid in the physiological interpretation of cardiac ANS
regulation and reduce the computational cost for short-term HRV analysis, thus rendering nonlinear
HRV analysis more suitable for application in clinical practice. Major concluding remarks of this
thesis are presented in the following.



“thesis” — 2018/3/12 — 11:04 — page 94 — #120

94 Conclusions and Future Lines

Nonlinear HRV Analysis: Reliability and
Computational Load

In chapter 2, a novel framework for estimation of correlation dimension was introduced. The inclusion
of self-comparisons in computing the probability of finding similar patterns among reconstructed
vectors allowed us to fit the log-log curves to a sigmoidal function (upper asymptote corresponding to
the case of all reconstructed vectors being considered as similar to each other, and lower asymptote
referring to the case of only self-comparisons being considered in the computation of correlation
sums). The proposed approach improves the identification of the linear region and the slope is
estimated as the maximum of the derivative of the sigmoidal function.

One of the bottlenecks in the application of nonlinear HRV analysis in clinical practice is its high
computational load. An algorithm was proposed based on matrix operations that led to a notable
reduction in computational load as compared to the sequential approach. With the proposed algorithm
D2 was estimated in 1 second for a 300-sample time series, while the sequential approach took 18
minutes.

Within the methodological framework proposed in this thesis, two alternatives for estimating
correlation dimension were considered. The first one, with correlation dimension estimate denoted by
D2(⊥), considered a range of slope values near the maximum slope in the log-log curve of m = 1 and
a gradient descent technique was used to estimate the slopes of the remaining log-log curves. The
second one, providing a correlation dimension estimate denoted by D2(max), considered maximum
values of the SampEn surface. The proposed methodologies for D2 computation were tested by
estimating the fractal dimension of the Lorenz attractor, obtaining a relative error with respect to
the theoretical value of 4% for D2(max) and 1% for D2(⊥), while the relative error for the sequential
approach was of 4%.

Caveats in the Interpretation of Nonlinear HRV Indices

Effect of HRM on Nonlinear HRV Indices

In chapter 3, the influence of HR on nonlinear HRV indices was addressed. A simulation study
using the IPFM model was carried out to investigate conditions where HRV and HR were uncorrelated.
Stochastic realizations of IPFM modulating signals were generated based on estimates from a healthy
subject at rest. The model allowed the variation of HRM values without altering the remaining model
components, thus generating RR time series with similar ANS modulation but different HRM. The
studied nonlinear HRV indices (correlation dimension as well as approximate and sample entropy)
showed positive correlation with mean RR changes (negative with respect to HRM), being these results
in agreement with the dependencies reported in previous studies [202, 146, 123, 195]. Methodologies
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to attenuate this HRM effect on nonlinear HRV indices were proposed based on: interpolation of RR
time series; computation of RR time series as derived from a point-process model; and regression
(linear and parabolic) formulas relating HRV indices and RR.

A database consisting of ECG recordings of healthy subjects undergoing body position changes,
as described in section 3.2.2, was analyzed and nonlinear HRV indices were calculated. An increase
in HRM of 28% (in terms of median values) was measured when changing from supine to upright
position. The corresponding nonlinear HRV indices were statistically significantly reduced by 21, 34,
and 21 % for D2(max), SampEn and ApEnmax respectively. When introducing interpolation prior to
computation of nonlinear HRV, the corrected indices were found to be significantly reduced in upright
with respect to supine position, in this case by 18, 30, and 12 % for D2(max), SampEn and ApEnmax

respectively, thus confirming attenuation of the HRM effect. Application of HRM correction of
nonlinear HRV indices based on linear or parabolic regression formulas led to results similar to those
obtained by interpolation, with the disadvantage of being more time-consuming. Correction using a
point-process model also attenuated the dependence of nonlinear HRV indices on HRM. However, the
high resolution of point-process-derived time series needed to capture the right censoring effect imply
a very notable increase in data length, which possibly precludes the use of this technique in clinical
applications. Globally, the approaches proposed in this thesis lead to HR-corrected nonlinear HRV
indices able to capture the variation in cardiac ANS modulation induced by body position-induced
changes regardless of variations in HRM values.

Application of the proposed methodologies to correct for the effects of HR could represent an
improvement in the applicability of nonlinear HRV analysis, extending it to cases where HRM cannot
be considered as constant. Evaluation of nonlinear HRV beyond HR is of relevance. In this regard,
previous studies have demonstrated differences in nonlinear HRV indices despite controlling for HR
values, as in the study by Weippert et al., who reported differences in nonlinear HRV analysis under
dynamic and static exercise even if keeping similar HRs [188].

Effects of a priori Parameter Value Selection on Nonlinear HRV Indices

On top of the effect of HRM on nonlinear HRV indices, physiological interpretation of these
indices can also be influenced by the value of parameters that need to be a priori defined when defining
the indices. Approximate entropy is an example where the values of the embedding dimension, m,
and the threshold, r, need to be selected prior to its computation. The effect of varying the values
of these parameters was assessed in chapter 4. Rather than considering a fixed threshold value
r, selecting the one that maximizes the approximate entropy (denoted by maximum approximate
entropy) has been reported to be a better indicator of the degree of randomness of the time series.
However, this maximum approximate entropy still remains dependent on the embedding dimension m,
which hampers its interpretation. To cope with this, a nonlinear approximate entropy-based index
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independent of a priori parameters was proposed in this thesis. This index is called multidimensional
approximate entropy, MApEnmax.

Time series generated from MIX(P) processes, with varying level of randomness, as well as
from white and 1/ f noises were used as a basis for evaluation of the proposed MApEnmax index.
The obtained results showed that the proposed index was able to capture the degree of randomness
with increasingly higher MApEnmax values for more random time series. The results for MApEnmax

were compared with those of ApEn(m,rmax(m)), for particular values of the embedding dimension
m. The proposed index, by accounting for multidimensional information, showed more pronounced
differences as a function of the level of randomness as compared to ApEn(m,rmax(m)) for any
individual value of m.

By incorporating the proposed multidimensional index to nonlinear HRV analysis, the effects
of aging and CHF disease were assessed. Aging on was evaluated by investigating ECG recordings
of healthy awake subjects at rest. Lower MApEnmax values were found in the elderly group as
compared to the young group . Such a reduction in HRV may be indicative of a decrease in ANS
regulation complexity with age. In a separate investigation, ECG recordings of CHF patients and
healthy subjects were analyzed during the night period. CHF patients showed greater MApEnmax

values than healthy subjects. Although these results would reflect increased nonlinearities in ANS
regulation in association with CHF, the influence of other concomitant disorders, such as sleep apnea,
on HRV cannot be discarded, which would interfere in the interpretation of CHF effects.

In conclusion, the proposal of MApEnmax as a novel index for nonlinear HRV analysis provides
more robust information on the randomness level of time series and could represent a better indicator
of HR dynamics complexity, with the additional important advantage of being independent of pre-
selected parameter values.

Clinical Application: Improving Efficacy of Prophylaxis in Preventing
Hypotensive Events during Cesarean Section

The aforementioned methodological proposals were applied to investigate a stress-related clinical
problem, namely prediction of hypotensive episodes during cesarean section after spinal anesthesia.
The study was carried out in collaboration with the Anesthesia Department of Hospital Miguel
Servet (Zaragoza, Spain). The stress caused by the last period of pregnancy and the proximity of
surgery could be factors altering ANS regulation on the heart and predisposing to hypotension. Linear
and nonlinear analyses applied onto cardiovascular variability signals, such as HRV, pulse arrival
time variability and pulse rate (from pulse photoplethysmographic signal) variability, were analyzed
following a protocol that included variations in body position (lateral decubitus, supine decubitus and
sitting) to elicit autonomic changes.
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Analyzed features presenting statistically significant differences between normotensive and hy-
potensive groups were incorporated into a logistic regression-based classifier. The best classification
results were achieved for the combination of ApEnmax

PR(SD−LD) and σPAT (SD), measured at lateral and
supine decubitus, reaching 76.55% sensitivity, 69.81% specificity, 57.84% positive predictive value
and 72.2% accuracy. These figures on classification performance evaluate the positive predictive value
and sensitivity referred to the normotensive group, as the main objective of the study is to improve
prophylaxis efficacy to avoid undesirable side effects in this low-risk normotensive group.

According to the obtained results, PR and PAT analysis could help predict hypotensive events after
spinal anesthesia during cesarean section, thus extending the description of ANS regulation to other
variability signals on top of HRV. Peripheral regulation and blood pressure information, incorporated
into a classifier like the one proposed in this thesis, could aid clinicians in their decision making.

Importantly, the benefit of including nonlinear indices in the description of variability signals was
highlighted in the evaluated stress-related clinical problem, where the combination of a nonlinear
index (measuring maximum approximate entropy) and a temporal index (measuring the standard
deviation) was selected as providing the best classification results. In addition, nonlinear HRV indices
corrected for HR effect as well as the novel multidimensional parameter-free index proposed in
this thesis, MApEnmax, demonstrated the ability to capture altered ANS modulation in the evaluated
problem.

Future Lines

Based on the results achieved in this PhD thesis, the following extensions or future lines are proposed:

Nonlinear HRV Analysis under ANS Blockade Conditions

Physiological interpretation on the role of sympathetic and parasympathetic ANS branches in modu-
lating nonlinear HRV characteristics deserves further investigation. Analysis of the nonlinear HRV
indices proposed in this study under interventions inhibiting or stimulating the activity of each of the
two autonomic branches would be of major interest. This proposed analysis should ideally first be
performed over a healthy population to provide meaningful physiological interpretations that could be
the basis for subsequent studies aimed at elucidating how specific cardiac disorders alter cardiac ANS
modulation quantified via nonlinear HRV analysis.

Another investigation that should be accomplished in future studies regards the study of changes
in nonlinear HRV in the presence of multiple concomitant disorders. In this thesis, nonlinear HRV
was analyzed in patients with congestive heart failure. However, a relevant number of those patients
presented with sleep apnea, which may notably limit interpretation of the obtained results in terms
of CHF effects [129]. While patients presenting multiple disorders could have been discarded from
further analysis, the low number of them fulfilling such criterion represents a major limitation. Access
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to a database comprising a relevant number of patients free from any other disorder apart from CHF
could be the basis of a new research line.

On the Relation of ANS and Cardio-respiratory System

Another effect interfering in HRV interpretation is respiratory sinus arrhythmia, which is associated
with the high frequency content in spectral HRV analysis. Contradictory results have been reported
from the analysis of the influence of controlled breathing on nonlinear HRV indices [86, 152]. The
point-process methodology, introduced in chapter 3, has been used to assess the interaction of cardio-
respiratory and ANS systems [184, 32]. Valenza et al. described the concept of complexity variability
as variations in instantaneous dominant Lyapunov exponent estimates [185]. Based on this concept,
the coupling between HRV and respiration was analyzed, quantifying the effect of respiratory sinus
arrhythmia on HRV. Based on the results of this thesis, the usage of MApEnmax may render valuable
information analyzing the effect of RSA on HRV in terms of irregularity, since pattern length related to
RSA could match with the embedding dimension used by ApEn misleading the underlying nonlinear
dynamic.

Spectral HRV Complexity

Spectral HRV analysis is commonly accepted as a method to assess sympathetic and parasympathetic
contributions to ANS modulation of heart rate. Most methods based on the study of spectral compo-
nents assume stationarity of heart rate signals and characterize low and high frequency powers of HRV
by a single value. Spectral time-varying approaches extend the applicability of spectral analysis to
conditions where ANS modulation is changing, as e.g. during exercise. The assessment of the results
obtained by time-frequency approaches is limited to characterize central tendency and amplitude
variations of spectral components. However, the framework developed in this thesis for nonlinear
HRV analysis could be extended to this study, providing further and information of interest about
nonlinear ANS modulation dynamics.
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