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One of the major challenges in modern biology is the use of large omics datasets for

the characterization of complex processes such as cell response to infection. These

challenges are even bigger when analyses need to be performed for comparison

of different species including model and non-model organisms. To address these

challenges, the graph theory was applied to characterize the tick vector and human cell

protein response to infection with Anaplasma phagocytophilum, the causative agent of

human granulocytic anaplasmosis. A network of interacting proteins and cell processes

clustered in biological pathways, and ranked with indexes representing the topology

of the proteome was prepared. The results demonstrated that networks of functionally

interacting proteins represented in both infected and uninfected cells can describe the

complete set of host cell processes and metabolic pathways, providing a deeper view

of the comparative host cell response to pathogen infection. The results demonstrated

that changes in the tick proteome were driven by modifications in protein representation

in response to A. phagocytophilum infection. Pathogen infection had a higher impact on

tick than human proteome. Since most proteins were linked to several cell processes, the

changes in protein representation affected simultaneously different biological pathways.

The method allowed discerning cell processes that were affected by pathogen infection

from those that remained unaffected. The results supported that human neutrophils but

not tick cells limit pathogen infection through differential representation of ras-related

proteins. This methodological approach could be applied to other host-pathogen models

to identify host derived key proteins in response to infection that may be used to develop

novel control strategies for arthropod-borne pathogens.
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INTRODUCTION

The transcriptional regulatory network coordinates gene
expression, resulting in the production of proteins involved in
the execution of cellular processes (Xue et al., 2014). Modern
biological investigations are based on genome-scale analysis,
which implicate thousands of molecular entities as being of
interest due to their change in abundance in response to different
stimuli. However, the interpretation of these findings represents
one of the greatest challenges in modern biology. Gene Ontology
enrichment analysis may indicate that a set of genes or proteins
are implicated in a given pathway or process, but what role they
play or how they function together in response to stimuli is
not defined (O’Hara et al., 2016). Protein-protein interaction
databases may be used to define proteins that share functional
or physical associations, but the information returned generally
lacks a biological significance (Barrat et al., 2004). The biological
significance has been simulated using for example Petri nets and
the signaling Petri nets algorithm to dynamically model flow
in simulated protein-protein interactions (O’Hara et al., 2016).
However, this approach may emulate the behavior of a system,
but the biological context is lost.

In graph theory, a network is a collection of nodes and edges
connecting them to represent their relationships (Barrat et al.,
2004; Horvath, 2011; Robinson et al., 2015). Other than nodes,
relationships linking start and end nodes can also have properties,
particularly the interaction strength or edge weight (Barrat et al.,
2004; Horvath, 2011; Robinson et al., 2015). Several indices
measure network properties from which the relationships are
derived. The degree centrality (DC) is the most basic measure of
a network, representing the number of edges leaving (or arriving
at) a given node after weighting by the total number of records
containing this interaction. The DC provides an estimation of the
strength of the association but does not evaluate the importance
of each node in the context of the network. TheWeighted Degree
(WD) is the calculation of the relative DC of each node in the
context of the complete network. Another centrality index, the
node Betweenness Centrality (BNC) indicates how often a node
is found on the shortest path between two nodes in the network
(Estrada-Peña et al., 2015). The implicit meaning of the BNC is
the importance of the node in the flow of other components of
the network. Networks have also a measure of Modularity, which
explains the nodes that interact more among them than with the
other nodes in other clusters. This modularity is obtained from
the number of interactions among nodes and the weight of the
edges linking them.

Herein, we developed a method to obtain biologically
significant information from large datasets of annotated protein
representation, specifically focused on how these proteins
function together in response to stimuli. The method was
based on the development of a metaphorical network that links
the representation of dozens of thousands of proteins with
various cell processes, from which several indexes describing the
graph were obtained. The concepts of graph theory have been
commonly used to describe ecological relationships (Jordano
et al., 2006) or the behavior of social networks (Girvan and
Newman, 2002; Kourtellis et al., 2013), but recent applications

in Genomics and Systems Biology have been proposed (Horvath,
2011). Definitions of graph theory terms and its practical use for
our method are described in Supplementary Table 1.

Our study was based on the protein profile of uninfected and
infected cultured cells of Ixodes scapularis tick vector hemocytes
(ISE6) and human host neutrophils (HL60), involved in the life
cycle of the tick-borne pathogen Anaplasma phagocytophilum
(Severo et al., 2015; Villar et al., 2015). A. phagocytophilum is an
obligate intracellular bacterium that causes human granulocytic
anaplasmosis, a disease characterized by fever, headache, muscle
pains, and pancytopenia (Severo et al., 2015). Recent studies have
shown that several biological pathways are modulated during
A. phagocytophilum interaction of tick vector and human host
cells (de la Fuente et al., 2016, 2017; Gulia-Nuss et al., 2016).
These pathways include remodeling of the cytoskeleton (Ayllón
et al., 2013), gene transcription (Sultana et al., 2010; Ayllón et al.,
2015), bacterial intracellular development (Huang et al., 2010a,b),
metabolism (Villar et al., 2015; Dumler et al., 2016; Cabezas-Cruz
et al., 2017; Taank et al., 2017), stress response (Neelakanta et al.,
2010), apoptosis and immune response (Borjesson et al., 2005;
de la Fuente et al., 2005; Severo et al., 2013; Ayllón et al., 2015;
Shaw et al., 2017), cell cycle (Khanal et al., 2017), and epigenetics
(Cabezas-Cruz et al., 2016; Dumler et al., 2018) among others.

The application of this method to tick cell response to
infection demonstrated that the resulting network of protein and
cell processes has the general properties of a natural network,
which supports the validity of the approach. Furthermore, the
indexes of Centrality of the network could be used to define
the main changes of different tick cellular processes affected
in response to infection. In human cells, the Weighted Degree
(WD), an index derived from the connections of the network
and protein representation was used to evaluate changes in
proteins and cellular processes in response to infection. The
results showed that this approach is appropriate for the analysis
of large proteomics datasets derived from different organisms in
response to pathogen infection. The results demonstrated that
networks of functionally interacting proteins can describe the
complete set of host cell processes and biological pathways in
response to pathogen infection. Furthermore, individual proteins
were identified and validated that change the relative importance
of different biological processes such as defense response to
bacteria.

MATERIALS AND METHODS

Proteomics Datasets From
A. phagocytophilum-Infected and
Uninfected ISE6 Tick Cells and HL60
Human Cells
The characterization of the host cell proteome in response
to Anaplasma phagocytophilum infection was characterized
in Ixodes scapularis tick vector embryo-derived cell line
ISE6 (provided by U.G. Munderloh, University of Minnesota,
USA) that serves as hemocyte model, and the human HL60
promyelocytic leukemia cells that serve as model of neutrophils
(de la Fuente et al., 2005; Villar et al., 2015). The ISE6 cells
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were cultured in L-15B300 medium as previously described
(Munderloh et al., 1994). HL-60 cells were cultivated in RPMI
1640 medium supplemented with 10% heat-inactivated fetal calf
serum, 2mM L-glutamine and 25mMHepes buffer as previously
described (de la Fuente et al., 2005). Cells were infected with
A. phagocytophilum (human isolate NY18) (Asanovich et al.,
1997) as previously described (de la Fuente et al., 2005; Villar
et al., 2015).

The proteomics dataset for tick cells was obtained from
previously published results (Villar et al., 2015). Briefly,
uninfected and infected tick cell cultures were sampled at
7 days post-infection. Total proteins were extracted, on
gel concentrated, trypsin digested and analyzed by reverse
phase liquid chromatography-tandem mass spectrometry (RP-
LC-MS/MS) using an Easy-nLC II system coupled to an
linear ion trap mass spectrometer model LTQ (Thermo
Scientific). The MS/MS raw files were searched against a
compiled database containing all sequences from Ixodida (77,195
Uniprot entries in March 2015) and Anaplasmataceae (64,677
Uniprot entries in March 2015) (http://www.uniprot.org) using
the SEQUEST algorithm (Proteome Discoverer 1.4, Thermo
Scientific). Searches were also performed against a decoy
database in an integrated decoy approach. A false discovery
rate (FDR) < 0.05 was considered as condition for successful
peptide assignments and at least two peptides per protein
were the necessary condition for protein identification. Three
biological replicates were used for each of uninfected and infected
tick cells. For the quantitative analysis of tick proteins, after
discarding Anaplasma proteins in infected cells, the total number
of peptide-spectrum matches (PSMs) for each tick protein was
normalized against the total number of PSMs in tick cells
and compared between control and infected cells by Chi2-test
(p < 0.05).

For human cells, uninfected and infected human cell cultures
(n = 2 independent cultures with ∼106 cells each) were sampled
at 24 h post-infection. The cells were centrifuged at 10,000 ×

g for 5min, resuspended in lysis buffer (100mM Tris-HCl,
4% SDS, 50mM DTT), boiled for 5min and homogenized by
passing through a needle (27G). Samples were sonicated for
1min in an ultrasonic cooled bath, followed by vortexing for
10 sec. After three cycles of sonication–vortex, total cell extracts
were centrifuged at 200 × g for 5min to remove cell debris.
The supernatants were collected and protein concentration was
determined using the RC DC Protein Assay (Bio-Rad, Hercules,
CA, USA) with BSA as standard.

The protein extracts (200 µg) from uninfected and
infected human cells were precipitated following the
methanol/chloroform procedure5, resuspended in urea buffer
(8M urea, 50mM ammonium bicarbonate, pH 8.8), reduced
with 10mM DTT for 1 h at 37◦C and then alkylated with
50mM iodoacetamide for 1 h at room temperature (RT) in
darkness. The mixture was diluted four-fold to reduce urea
concentration and then in solution digested overnight at 37◦C
with 60 ng/µl of sequencing grade trypsin (Promega) at 20:1
protein:trypsin (w/w) ratio in 50mM ammonium bicarbonate,
pH 8.8. Trifluoroacetic acid was added to a final concentration of
1% and the peptides were finally desalted onto OMIX Pipette tips

C18 (Agilent Technologies), dried down, and stored at −20◦C
until mass spectrometry analysis.

The desalted protein digests was resuspended in 10%
acetonitrile, 5% acetic acid in water and analyzed by RP-LC-
MS/MS using an Ekspert nLC 415 system coupled to a 6,600
TripleTOF R© mass spectrometer (AB SCIEX, Framingham, US)
through Information-Dependent Acquisition (IDA) followed by
SWATH (Sequential Windowed data independent Acquisition of
the Total High-resolution Mass Spectra). Approximately 4 µg
of each protein digest from each of the replicate samples were
pooled together as a mixed sample for each condition (infected
and uninfected human cells). Pooled mixed samples were then
used for the generation of the reference spectral ion library as
part of SWATH-MS analysis. The peptides were concentrated
(on-line) using a 0.1 × 20mm C18 RP precolumn (Thermo
Scientific), and then separated using a 0.075 × 250mm C18
RP column (New Objetive, Woburn, MA, USA) operating at
300 nl/min. Peptides were eluted using a 120min gradient from
10 to 30% solvent B in solvent A followed by 10min gradient
from 30 to 40% solvent B in solvent A (Solvent A: 0.1% formic
acid in water, solvent B: 0.1% formic acid in acetonitrile) and
directly injected into the mass spectrometer for analysis. For
IDA experiments, the mass spectrometer was set to scanning
full spectra (390–1,400 m/z) using 250ms accumulation time
per spectrum, followed by up to 50 MS/MS scans (100–1,500
m/z). Candidate ions with a charge state between +2 and +5,
and counts per second above a minimum threshold of 100, were
isolated for fragmentation. One MS/MS spectrum was collected
for 100ms, before adding those precursor ions to the exclusion
list for 15 sec (mass spectrometer operated by Analyst R© TF
1.6, AB SCIEX). Dynamic background subtraction was turned
off. MS/MS analyses were recorded in high sensitivity mode
with rolling collision energy on and collision energy spread of
5. Two biological replicates were used for each of uninfected
and infected human cells. For SWATH quantitative analysis,
6µg of each independent sample were subjected to the cyclic
data independent acquisition (DIA) of mass spectra using the
SWATH variable windows calculator (V 1.0, AB SCIEX) and
the SWATH acquisition method editor (AB SCIEX), following
previously established methods (Gillet et al., 2012). A set of
50 overlapping windows was constructed (containing 1 m/z
for the window overlap), covering the precursor mass range
of 400–1,250m/z. For these experiments, a 50ms survey scan
(390–1,400m/z) was acquired at the beginning of each cycle, and
SWATHMS/MS spectra were collected from 100 to 1,500 m/z for
70ms at high sensitivity mode, resulting in a cycle time of 3.6 s.
Collision energy for each window was determined according to
the calculation for a charge +2 ion-centered upon the window
with a collision energy spread of 15.

To create a spectral library of all the detectable peptides
in the samples, the IDA MS raw files were combined and
subjected to database searches in unison using ProteinPilot
software v.5.0.1 (AB SCIEX) with the Paragon algorithm.
Spectra identification was performed by searching against a
complied database containing all the sequences from the Homo
sapiens proteome and A. phagocytophilum taxonomy (Uniprot
Databases: 70,939 and 21,847 entries, respectively in June 2017)
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with the following parameters: iodoacetamide cysteine alkylation,
trypsin digestion, gel-based ID as special factor, identification
focus on biological modification and thorough ID as search
effort. The detected protein threshold was set at 0.05. An
independent False Discovery Rate (FDR) analysis, using the
target- decoy approach provided by ProteinPilot, was used
to assess the quality of identifications. Positive identifications
were considered when identified proteins reached a 1% global
FDR. For SWATH processing, up to 10 peptides with seven
transitions per protein were automatically selected by the
SWATH Acquisition MicroApp 2.0 in the PeakView 2.2 software
(AB SCIEX) with the following parameters: 15 ppm ion library
tolerance, 5min XIC extraction window, 0.01 Da XIC width,
and considering only peptides with at least 99% confidence and
excluding those which were shared or contained modifications.
However, to ensure reliable quantitation, only proteins with 3 or
more peptides available for quantitation were selected for XIC
peak area extraction and exported for analysis in the MarkerView
1.3 software (AB SCIEX). Global normalization was performed
according to the Total Area Sums of all detected proteins in
the samples. A Student’s t-test was used to perform two-sample
comparisons between the averaged area sums of all the transitions
derived for each protein across the two replicate runs for each
sample under comparison, in order to identify proteins that
were significantly differentially represented between infected and
uninfected human cell samples.

Gene Ontology (GO) analysis for biological process was
done by Blast2GO software (version 3.0; www.blast2go.com)
(Villar et al., 2014). The mass spectrometry proteomics data have
been deposited at the ProteomeXchange Consortium (http://
proteomecentral.proteomexchange.org) via the PRoteomics
IDEntifications (PRIDE) partner repository with the dataset
identifier PXD002181, doi: 10.6019/PXD002181 and at the
PeptideAtlas repository (www.peptideatlas.org) with the dataset
identifier PASS01141, for tick and human cells, respectively.
Supplementary Datasets 1 and 2 contain the complete list of
tick and human proteins identified, data quantitation and GO
annotations.

Development of a Network of Proteins and
Cell Processes in Tick Cells
A network is a set of nodes that are connected by edges. In
the classic body of science devoted to food webs (Dunne et al.,
2002) or parasitic networks (Lafferty et al., 2006) nodes are the
interacting organisms, and links between nodes represent the
strength with which they interact. The direction and strength of
the interaction has a weight, which may be i.e., the number of
times a parasite has been found on a host (Estrada-Peña et al.,
2015).

The network construct proposed here is bipartite and
metaphorical, meaning that a protein is the source node and the
cell biological processes in which it is involved are the targets.
Each protein was annotated with its role in a biological process
according to gene ontology annotations. The network was built
with a “source” (the protein) and a “destination” [the process(es)
in which each protein is involved]. The link between source

and destination has strength equivalent to the representation
of the protein (expressed as normalized PSMs) in infected and
uninfected cells. The Degree of each node was then calculated
according to either the representation of the protein or the sum
of links reaching a process (the destination).

The network is directed and the edge linking both nodes has
a weight, which is the representation of the protein. Since the
representation profile of each protein changes in either control
or infected cells, it is therefore the indicator of the over- or
under-representation of a protein, which radically changes the
topology of the network, and therefore the relative importance of
the processes. The WD, obtained from the sum of representation
profiles of each link between proteins and processes is the
fundamental brick of the network. All the calculations explained
below were separately performed for the network of the sets of
proteins detected in either uninfected (UtC) or infected cells
(ItC).

All the work on the networks was done using the software
Gephi 0.92 (www.gephi.org, accessed June 2016). First, clusters
of each network were computed using the Louvaine algorithm.
A cluster (also called the “modularity” of the network) is
structurally cohesive to the extent that multiple independent
relational paths among all pairs of members hold it together.
The index detects groups of interacting nodes that are closer
among them than with other nodes (Moody and Bevilacqua,
2003). In our framework, modularity has the implicit meaning
of the set of proteins that are involved in a biological process
more than in others. Clusters may have dozens of processes
and hundreds of proteins, or consist only of few processes
because proteins involved are not linked to other processes.
Clusters or modules of the networks of proteins and processes
of tick cells were considered here as biological pathways, and
were named according to the process of the cluster with
highest representation. This definition of “biological pathway” is
different from typical pathways (metabolic, canonical signaling,
etc.) and was adopted herein because the calculations using the
Louvaine algorithm were strongly supportive of these clusters as
“groups of proteins and processes that interact frequently among
them.” Most important, these “pathways” changed in infected
and uninfected cells, suggesting deep changes in the rewiring of
the molecular machinery of the cells in response to infection.

We calculated the distribution of values of the WD of each
node, which explains the assortativity of the network and its
scale-free property, which strongly correlates with the network’s
robustness to failure. The exponent of a power-law function
calculated the scale-free distribution and its significance, which
demonstrates how close the distribution of WD is near the
“perfect” power-law distribution, and therefore how fault tolerant
the network is. The assortativity coefficient is the Pearson
correlation (r) between the WD of nodes at both ends of each
link in the network. The result ranges from−1 (low degree nodes
often connect high degree nodes) to 1 (nodes of equal or similar
degree are often connected). A significantly negative r means for
disassortative networks, with strong hierarchical configurations,
larger nodes connecting smaller nodes, as in scale-free networks.
The positive correlation means for an assortative network, where
hubs only link with other hubs (Rivas et al., 2012).
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Centrality is a fundamental property of a network because
it refers to nodes that connect high score nodes. Therefore,
proteins with a high centrality can be regarded as pivotal
parts of the network, while highly central processes can be
considered as fundamental for the cell. We calculated the
BNC, a measure of the importance of a node in the “traffic”
between different nodes of a network, giving a higher score
to a node that sits on many shortest path of other node
pairs (Barthelemy, 2004). In our context, it is an indicator of
“how central” is a process in the links between two proteins
or other processes and the relative importance of a protein
in the relationships of two or more processes. The rate of
change of the BNC and WD between the networks built for
infected and uninfected cells were calculated to capture the
impact of the infection on the structure of the network. The
objective was to focus on the detection of new proteins being
represented, new processes operating, or significant changes
in the indexes of the ItC when compared to UtC-derived
networks.

Development of a Network of Proteins and
Cell Processes in Human Cells
In the case of proteins and processes detected in human cells,
we adhered to the basic tenets described above for tick cells. We
calculated the WD of each node from the representation profile
of each protein linking a cell process. To evaluate the impact of
the infection with A. phagocytophilum, we compared the rate of
change of theWD of both represented proteins and cell processes
(log transformed).

RNAi for Gene Knockdown in Tick Cells
Primers were designed using the sequence of I. scapularis
ras-related Rab14 protein B7QHS7 (GeneBank accession
number XM_002414689) and selected for amplification
a 273 bp region using oligonucleotide primers forward:
5′-CCCGCATCATCGAGGTGTGC-3′ and reverse:
5′-CCTCCTCGTATGTCACATCTC-3′. T7 promoter sequence
was appended to the 5′ end of the forward and reverse primers
for in vitro transcription and synthesis of dsRNA using the
Megascript RNAi kit (Ambion, Austin, TX, USA). The unrelated
Rs86 dsRNA was synthesized using the same methods described
previously and used as negative control (Ayllón et al., 2013). The
dsRNA was purified and quantified by spectrophotometry. RNAi
experiments were conducted in cell cultures by incubating tick
ISE6 cells with 10 µl dsRNA (5 × 1010-5 × 1011 molecules/µl)
and 90 µl of fresh medium in 24-well plates using six wells per
treatment. After 48 h of dsRNA exposure, medium containing
dsRNA was removed and replaced with 1ml fresh medium
alone or containing cell free A. phagocytophilum NY18. Cells
were incubated for 72 h, and then collected for DNA and RNA
extraction and cell viability studies.

RNAi for Gene Knockdown in Human Cells
siRNAs were obtained from GE Healthcare Dharmacon Inc.
(Lafayette, CO, USA). Human Rab14 protein P61106 (GeneBank
accession number NM_016322) was silenced using ON-
TARGETplus SMARTpool Human rab14 siRNA. As control,

ON-TARGETplus Non-targeting Control Pool was used. In
addition, Accell Red Non-targeting Control siRNA was used as
transfection control to confirm the intake of siRNA molecules
by human cells. Gene knockdown experiments were conducted
by incubating human HL60 cells with siRNAs following
manufacturer’s recommendations, in 24-well plates using four
wells per treatment. DharmaFECT (DharmaconTM) was added
following manufacturer’s recommendations to facilitate the
transfection of HL60 cells. After 24 h of siRNA exposure,
medium containing siRNAwas removed and replaced with 0.5ml
fresh medium alone or containing cell free A. phagocytophilum
NY18. Cells were incubated for 48 h, and then collected for
DNA and RNA extraction and immunofluorescence microscopy
assays.

Determination of Gene Knockdown Levels
by Real-Time RT-PCR
Total RNA was extracted from UtC, ItC, UhC, and IhC using
Tri Reagent (Sigma-Aldrich) following the manufacturer’s
recommendations and used to characterize the mRNA levels
of selected genes. Real-time RT-PCR was performed on RNA
samples using gene-specific oligonucleotide primers, the
Kapa SYBR Fast One-Step qRT-PCR Kit (Sigma-Aldrich)
and the QIAGEN Rotor-Gene Real-Time PCR Detection
System (QIAGEN, Hilden, Germany). Oligonucleotide
primers for analysis were as follows: (a) I. scapularis Rab14
forward: 5′-ACTCCCAACACGGTGATCTT-3′ and reverse:
5′-GGCTTCCGTCCTGAATGTTC-3′, (b) H. sapiens Rab14
forward: 5′-ATGGCAACTGCACCATACAAC-3′ and reverse:
5′-AGCTCCGTGTAACAGCCCTA-3′. A dissociation curve was
run at the end of the reaction to ensure that only one amplicon
was formed and that the amplicons denatured consistently
in the same temperature range for every sample. The mRNA
levels were normalized against tick rps4 or human β-actin
using the genNorm method [Delta-Delta-Ct (ddCt) method]
as described previously (Ayllón et al., 2013). Normalized Ct
values were compared between test dsRNA-treated tick cells and
controls treated with Rs86 dsRNA or between UtC and ItC by
Student’s t-test with unequal variance (p = 0.05; n = 6 biological
replicates). In the case of human cells, normalized Ct values were
compared between test siRNA-treated and control cells treated
with Non-targeting pool siRNA or between UhC and IhC by
Student’s t-test with unequal variance (p < 0.05; n= 4 biological
replicates).

Determination of A. phagocytophilum DNA
Levels by Real Time PCR
Total DNA was extracted from infected cells using a NucleoSpin
Tissue kit (Macherey-Nagel GmbH and Co., Duren, Germany).
DNA samples were analyzed by real-time PCR using gene-
specific primers for A. phagocytophilum msp4 as previously
described (Ayllón et al., 2013). Normalized Ct values were
compared between dsRNA/siRNA-treated tick cells and controls
treated with Rs86 dsRNA or Non-targeting pool siRNA by
Student’s t-test with unequal variance (p < 0.05; n = 4–6
biological replicates).

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5 August 2018 | Volume 8 | Article 265

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Estrada-Peña et al. Graph Theory of Cell-Anaplasma Interactions

Immunofluorescence Microscopy Assays
Uninfected and A. phagocytophilum-infected HL60 cell slides
were prepared using a cytocentrifuge. The slides were dried
and fixed immediately with acetone for 10min at RT, blocked
by adding 50 µl of 5% BSA diluted in PBS, and incubated
in a humidified chamber at RT for 1 h. After 3 washes in
0.05% Tween 20/PBS (wash buffer), the cells were incubated
with rabbit polyclonal anti-A. phagocytophilum msp4 antibodies
(Contreras et al., 2017) diluted 1:100 in PBS for 1 h at
RT. After additional washes, the cells were incubated with
100 µl of FITC conjugated goat anti-rabbit IgG secondary
antibodies (Sigma-Aldrich, St. Louis, MO, USA), diluted 1:200
in PBS, for 1 h at RT. Finally, the slides were mounted
using Prolong Gold antifade reagent with DAPI reagent
(Molecular Probes, Eugene, OR, USA). To confirm the
intake of siRNA molecules by human cells, cytocentrifuge
preparations of HL60 cells treated with Accell Red Non-targeting
Control siRNA were prepared and then mounted as described
above. The slides were examined using a Zeiss LSM 800
laser scanning confocal microscope (Carl Zeiss, Oberkochen,
Germany).

Annexin V-FITC Staining to Detect Tick Cell
Viability
Approximately 5 × 105 uninfected and A. phagocytophilum-
infected tick ISE6 cells were collected after different treatments.
Apoptosis was measured by flow cytometry using the Annexin
V-fluorescein isothiocyanate (FITC) apoptosis detection kit
(Immunostep, Salamanca, Spain) following the manufacturer’s
protocols. The technique detects changes in phospholipid
symmetry analyzed bymeasuring Annexin V (labeled with FITC)
binding to phosphatidylserine, which is exposed in the external
surface of the cell membrane in apoptotic cells. Cells were
stained simultaneously with the non-vital dye propidium iodide
(PI) allowing the discrimination of intact cells (Annexin V-
FITC negative, PI negative) and early apoptotic cells (Annexin
V-FITC positive, PI negative). All samples were analyzed on
a FAC-Scalibur flow cytometer equipped with CellQuest Pro
software (BD Bio-Sciences, Madrid, Spain). The viable cell
population was gated according to forward-scatter and side-
scatter parameters. The percentage of apoptotic, dead, necrotic
and viable cells was determined by flow cytometry after Annexin
V-FITC and PI labeling and compared between both test and
control dsRNA treated infected and uninfected cells by Student’s
t-test with unequal variance (p < 0.05; n = 6 biological
replicates).

RESULTS

Development of a Graph Approach for the
Characterization of Networks of Proteins
and Cell Processes in Response to
A. phagocytophilum Infection of Tick
Vector and Human Cells
The host cell proteome in response to A. phagocytophilum
infection was characterized in I. scapularis tick vector ISE6 cells

that serve as hemocyte model (Supplementary Dataset 1), and
human HL60 promyelocytic leukemia cells that serve as model
of neutrophils (Supplementary Dataset 2; de la Fuente et al.,
2005; Villar et al., 2015). Proteins from uninfected and infected
cells were analyzed by reverse phase liquid chromatography-
tandem mass spectrometry (RP-LC-MS/MS) using an Easy-nLC
II system coupled to a linear ion trap mass spectrometer model
LTQ (Thermo Scientific, San Jose, CA, USA) or an Ekspert nLC
415 system coupled to a 6600 TripleTOF R© mass spectrometer
(AB SCIEX, Framingham, USA) for tick and human cells,
respectively. Three and two biological replicates for tick and
human cells, respectively were used for each uninfected and
infected cells. For the quantitative analysis of tick proteins, after
discarding Anaplasma proteins in infected cells, the total number
of peptide-spectrum matches (PSMs) for each tick protein was
normalized against the total number of PSMs in tick cells
(Figure 1). For the quantitative analysis of human proteins,
the total area sums for each protein were normalized against
the total area sums of all detected proteins in human cells
(Figure 1). Gene ontology (GO) analysis for biological process
was done by Blast2GO software (version 3.0; www.blast2go.com)
(Villar et al., 2015; Figure 1). In our approach, the network is
composed of nodes (proteins) influencing next level successive
nodes (cell processes) (Figure 1). In the graph approach, the
functional protein-protein interactions have a weighted degree
on one or several cell processes, which in our application is
the representation profile of the protein (Figure 1). This is
the basis for the Centrality of the networks of proteins and
cell processes detected in either uninfected or infected cells.
Centrality is a property of the networks that refers to nodes
that are fundamental for the cohesion of the network (Chisanga
et al., 2017). Therefore, proteins with a high centrality are
pivotal parts of the network, while highly central processes
can be considered as fundamental for the cell response to
infection.

Simple Indexes Define the Network of
Protein Processes in Tick ISE6 Cells, a
Model of Vector Hemocytes
In the tick cell model, the BNC (Gago, 2014) that represents
the importance of the vertex in the network was calculated.
The change rate of the BNC was calculated between uninfected
(UtC) and infected (ItC) tick cells to characterize the response
to infection in the structure of the network of proteins and
cell processes. The analysis was focused on the detection of
newly represented proteins, newly operating processes, and/or
significant changes in the indexes of the ItC-derived when
compared to UtC-derived networks. The network of proteins and
processes in UtC showed 7,595 nodes, which were connected by
a total of 11,326 links. The network of ItC had 7,520 nodes and
11,268 links. A total of 6,812 proteins involved in 784 processes
were identified in UtC, while ItC showed 6,745 proteins and 783
processes (Supplementary Dataset 3). The infection of tick cells
withA. phagocytophilum resulted in changes in protein levels and
the appearance of proteins not present in UtC. A total of 671
and 605 proteins were unique to UtC and ItC, respectively, and
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FIGURE 1 | Use of graph theory to characterize tick and human cell protein response to infection. Schematic representation of the framework used for analysis.

TABLE 1 | Number of tick cell proteins and processes on each biological

pathway, including those that are unique to UtC and ItC (in parenthesis).

Biological pathway UtC ItC

Proteins Processes Proteins Processes

Metabolism 977 (149) 33 (3) 989 (130) 36 (6)

Redox 734 (67) 115 (3) 724 (57) 116 (4)

Proteolysis 667 (72) 44 (0) 661 (66) 45 (1)

Signal processing 249 (19) 52 (2) 241 (11) 53 (3)

Transport 372 (46) 84 (2) 355 (29) 82 (0)

Phosphorylation 374 (30) 101 (0) 373 (29) 109 (8)

Translation 241 (29) 28 (0) 229 (17) 28 (0)

Transcription 310 (33) 77 (2) 303 (26) 76 (1)

22 and 21 processes were unique to UtC and ItC, respectively
(Table 1).

Two indexes based on the WD demonstrated that both ItC
and UtC networks have properties of natural, not random,
highly hierarchical networks. The WD of all nodes in both
UtC and ItC networks followed a power-law distribution with
an exponent of 2.60 for UtC (p = 0.039) and 2.38 for ItC
(p = 0.004), lower p-values meaning a stronger similarity to
the scale-free distribution, which is a fundamental property of
natural networks. It is interesting to note thatA. phagocytophilum
infection did not change the scale-free property of WD, therefore
not collapsing the metabolism of the tick. The assortativity

coefficient (r) of both UtC abd ItC networks, which is a measure
of its hierarchical configuration was r = −0.2477 (UtC) and
r = −0.2468 (ItC). Therefore, both UtC and ItC networks were
dissortative (r index was significantly negative), indicating a
strong hierarchical configuration that shows high resilience to
random protein removal.

Tick Cell Biological Pathways Are
Unambiguously Defined by Indexes of
Centrality
The clusters of each network were computed as the set of proteins
and cell processes that interact more among them than with
others, using the Louvaine algorithm as implemented in the
software Gephi 0.92 (www.gephi.org, accessed June 2016). In our
analysis, this concept of modularity has the implicit meaning of
proteins that are involved in certain cell processes more than in
others, and groups of cell processes that are triggered by specific
groups of proteins. The components (proteins and processes) in
each cluster are thus the biological pathways that are cohesively
connected.

The detection of clusters resulted in 146 and 141 biological
pathways in UtC and ItC, respectively. Most of them were tightly
connected in the network, since many proteins were involved
in processes belonging to different biological pathways. This
effect produced a main giant component with some isolated
biological pathways that were not connected to that main
core of the network (Supplementary Figures 1, 2). The UtC
and ItC networks showed 116 and 114 connected biological
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pathways, respectively, with 21% of the biological pathways
isolated among them and unconnected with the main core of
the network. Between all detected biological pathways, the first
eight contained 75.9% of the nodes and 79.8% of the links
in UtC, and the 77.1% of the nodes and 81% of the links in
ItC. The most relevant biological pathways were metabolism,
redox, proteolysis, signal processing, transport, phosphorylation,
translation, and transcription (including DNA and RNA-related
processes) (Table 1).

A. phagocytophilum Infection Rewires the
Network of Tick Vector Cell Processes and
Changes the Relative Importance of Some
Biological Pathways
An explicit comparison of the BNC and WD values between
UtC and ItC networks showed changes in relevant cell processes
and the resulting contribution to each biological pathway
(Figure 2A). The results showed that in UtC, proteolysis had the

highest representation in the network, which together with signal
processing and transcription were the most central biological
pathways, thus linking the most relevant cell processes. The
changes in ItC resulted in a 410- and 30-fold increase in BNC
of metabolism and phosphorylation, respectively. Proteolysis
showed slight changes in centrality but increased in more than
5-fold the WD. These results suggested an increase in the
number and/or representation of proteins affecting proteolysis
in response to infection, even if this biological pathway did
not change its relative position in Centrality. However, both
metabolism and phosphorylation became highly central in ItC,
with only a slight increase in WD.

The most relevant changes were observed in the rewiring
of the proteins involved in the biological pathways, because
each protein belongs to a cell process but is also secondarily
involved in biological pathways belonging to other processes. It
was possible to evaluate how proteins belonging to a biological
pathway also affected other biological pathways in either UtC or
ItC (Figure 2B). Changes in UtC when compared to ItC showed

FIGURE 2 | Results of the graph analysis in A. phagocytophilum infected and uninfected tick vector cells. (A) Variations in Betweenness Centrality (BNC) and

Weighted Degree (WD) values between UtC and ItC. Bars represent BNC and WD values for UtC. The fold change between ItC and UtC is included near each bar.

(B) Comparison of the WD between UtC and ItC for the proteins of each biological pathway and their connections to other biological pathways. A circle layout

displaying the relationships between biological pathways and proteins linking them in both UtC and ItC is shown. Each sector of the circle shows the names of the

eight most important biological pathways detected by a clustering algorithm. The first sector below the name shows the percentage of proteins of that biological

pathway present in other biological pathways. The second sector indicates the percentage of proteins belonging to other biological pathways that also affect the

biological pathway of reference. The third sector displays the percentage of proteins that belong to that biological pathway and are also involved in other biological

pathways. The fourth sector displays the actual value of the parameter displayed in the figure. Colors for these three sectors indicate the set of proteins from/to

different biological pathways that are shared. The white band above the fourth sector indicates the proportion of “in-coming proteins” while the rest of the sector is

used to display the proportion of “out-going proteins”. The relative size of each band is proportional to the WD of the proteins shared among the biological pathways.

Note: The Supplementary Figure 3 displays an example with annotations and labels to interpret the circle and band layouts.
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that (i) a set of proteins involved in both transport and proteolysis
were absent in UtC but present in ItC, (ii) the combined WG of
proteins in translation-redox in ItC was only 10%, increasing to
more than 80% in UtC, (iii) more than 50% of WG of proteins
in transcription were also involved in translation in ItC, but were
absent in UtC, and (iv) connections between signal processing
and transcription in ItC were not apparent in UtC (Figure 2B
and Supplementary Figure 3).

Tick and Human Cells Respond Differently
to Infection With A. phagocytophilum
The properties of the networks for tick proteome were supported
by the presence/absence of several proteins in either UtC or
ItC, deeply impacting the network topology and capturing
the impact of pathogen infection on the tick cell response.
We then proceeded to compare the changes in annotated
proteins of A. phagocytophilum infected (IhC) and uninfected
(UhC) human HL60 cells. The analysis was focused on the
rate of change of WD as the measure of changes in the

networks, to evaluate if only this index could represent changes
in both proteins and cell processes in response to infection.
The rate of change of WD was calculated for each protein
and cell process in both infected and uninfected tick and
human cells, and log transformed to produce comparable results
(Figures 3A–D).

The results showed that the WD change rate was higher
for tick (Figure 3B) than human cell processes (Figure 3D),
but fewer over- and under-represented processes were present
in human when compared to tick cells (Figures 3B,D),
demonstrating a higher impact of A. phagocytophilum infection
on tick cells. Similarly, more over- and under-represented
proteins were present in ItC than in IhC (Figures 3A,C).
However, the WD change rate was higher in IhC than in ItC for
identified over-represented proteins. The biological significance
of these results is that A. phagocytophilum infection had a
higher impact on tick cells, but the fewer human proteins
manipulated by the pathogen were more highly differentially
represented.

FIGURE 3 | Rate of WD change of tick and human cell protein and processes. (A) The rate of WD change of the proteins in tick vector cells. The WD of the proteins in

UtC is shown, together with the log-transformed rate of change in ItC. Most highly over- and under-represented proteins are shown (3- and 5-fold for tick and human

cells, respectively). Proteins represented only in UtC or ItC were not included. (B) The rate of change of WD of the cell processes in tick vector cells. The WD of the cell

processes in ItC is shown, together with the log-transformed rate of change in ItC. Most highly over- or under-represented cell processes are shown. Processes

appearing only in UtC or ItC were not included. (C) The rate of change of WD of the proteins in human cells. The WD of the proteins in UhC is shown, together with

the log-transformed rate of change in IhC. Most highly over- and under-represented proteins are shown. (D) The rate of change of WD of the cell processes in human

cells. The WD of the cell processes in IhC is shown, together with the log-transformed rate of change in IhC. Most highly over- and under-represented cell processes

are shown.
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Detection of Tick Vector and Human Host
Proteins Playing a Major Role in
Metabolism Changes in Response to
A. phagocytophilum Infection
The network constructed with tick proteomics data was used
to identify individual proteins playing a major role in response
to infection with A. phagocytophilum. The characterization of
the changes in the metabolism of both UtC and ItC showed
a variation in the centrality of defense response to bacteria,
evasion or tolerance of host defense response, hippo signaling,
glucose catabolic process, cellular glucose homeostasis, and
regulation of apoptotic process (Supplementary Table 2). These
processes have been implicated in tick-A. phagocytophilum
interactions using a systems biology approach (Sultana et al.,
2010; Severo et al., 2013; Ayllón et al., 2015; de la Fuente
et al., 2015, 2016; Villar et al., 2015; Cabezas-Cruz et al.,
2016, 2017; Gulia-Nuss et al., 2016; Shaw et al., 2017).
The increase in the centrality of these processes was driven
by changes in the WD of certain proteins that were only
represented in either ItC or UtC or over-represented in ItC
(Supplementary Table 2). Furthermore, some of the proteins
represented only in ItC, linked the defense response to bacteria
with other processes such as phagosome maturation, killing
of cells of the organisms, innate immune response, endocytic
recycling, and small GTPase mediated signal transport, which
are all involved in tick cell response to infection (Sultana et al.,
2010; Severo et al., 2013; Ayllón et al., 2015; de la Fuente et al.,
2015, 2016; Cabezas-Cruz et al., 2016, 2017; Gulia-Nuss et al.,
2016; Shaw et al., 2017). Focusing on the defense response to
bacteria, which Centrality increased by 53,000-fold in response
to infection, the proteins driving this change were the ras-
related proteins Rab14 (B7QHS7 and L7M7N3) over-represented
in ItC, and the antimicrobial peptide microplusin (Q09JR4)
that was represented only in ItC (Supplementary Table 2). Of
these proteins, ras-related proteins were selected for functional
analysis by gene knockdown because these proteins are highly
evolutionary conserved (Supplementary Figure 4), and function
as binary molecular switches that control intracellular signaling
networks affecting processes that have been shown before
to be involved in tick cell infection by A. phagocytophilum
(Sultana et al., 2010; Severo et al., 2013; Ayllón et al., 2015;
de la Fuente et al., 2015, 2016; Villar et al., 2015; Cabezas-
Cruz et al., 2016, 2017; Gulia-Nuss et al., 2016; Shaw et al.,
2017). The ras-signaling pathway includes processes such as
cell defense and survival, actin cytoskeletal integrity, cell
proliferation, cell differentiation, cell adhesion, transcription,
and gene expression, apoptosis, endocytosis, and cell migration
(McCormick, 1995; Kuijl and Neefjes, 2009). In particular, ras-
related proteins may be activated by intracellular bacteria on
phagosomal membranes to prevent the transfer of bacteria from
phagosomes to lysosomes to favor pathogen survival (Kuijl et al.,
2007; Kuijl and Neefjes, 2009). A. phagocytophilum actively
modifies its host cell-derived vacuole (Huang et al., 2010a,b).
Furthermore, A. phagocytophilum is known to hijack Rab10
and other endoplasmic reticulum membrane markers to its
vacuole to complete the infection cycle in both vertebrate and

tick host cells (Huang et al., 2010a,b; Truchan et al., 2016a,b).
In contrast to tick cells, in human cells the ortholog for the
tick ras-related protein Rab14 B7QHS7 (P61106) was under-
represented in IhC when compared to UhC. The human ras-
related protein Rab14 was also selected for functional analysis
by gene knockdown to compare tick and human cell response to
infection.

The results of ras-related proteins rab14 B7QHS7 and P61106
gene knockdown by RNA interference (RNAi) in tick and
human cells, respectively corroborated that these proteins play
a role during infection without affecting tick cell viability
(Figures 4A–C). The results suggested that A. phagocytophilum
increases the levels of Rab14 in ticks to facilitate infection
while in human neutrophils the decrease in Rab14 protein
levels appears as a post-transcriptional mechanism to control
A. phagocytophilum infection (Figures 4D–F).

DISCUSSION

A method based on the graph theory with broad application
in social and ecological relationships among interacting
organisms (Jordano et al., 2006; Kourtellis et al., 2013) was
applied to unambiguously detect the changes produced by
A. phagocytophilum infection on the proteome of tick vector
and human host cells. This is the first application of graph
theory to a dataset of annotated proteins from which we derived
a comprehensive view of biological pathways, the relative
importance of each protein and its place in the context of
the proteome in response to infection. This methodological
approach was applied to two different hosts, further supporting
its application to the characterization of cell response to different
stimuli in model and non-model organisms. Furthermore,
the method was successfully applied to results obtained
from two different proteomics approaches better adapted to
model (human) and non-model (tick) organisms, therefore
demonstrating its validity for the analysis of different proteomics
datasets.

Our method was based on previous reports using classical
approaches to the study of cell response to pathogen infection
by comparing different gene expression and/or protein
representation rates (Villar et al., 2015). However, our approach
intended to capture the complete landscape of the cell biological
machinery, and how the different representation of proteins act
together to up- or under-regulate the cellular processes. We used
uninfected and infected tick cells only as a proof of concept,
but the network framework could be built using any set of
annotated proteins. The method developed here and applied to
the cell response to A. phagocytophilum infection captured many
proteins that remained undetected using the classical approach
based on its rate of change. The network analysis captured the
individual significance of many proteins, even if not statistically
significantly changed in response to infection, and evaluated
their combined actions on the target process(es). Therefore,
the advantage of this method lays on its ability to integrate
the groups of proteins and their combined actions on specific
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FIGURE 4 | Functional analysis by RNAi supports a role for tick and human Rab14 in A. phagocytophilum infection of host cells. (A) A 75–83% knockdown by RNAi

of tick rab14 (B7QHS7) in tick cells resulted in a 40% decrease in A. phagocytophilum infection levels, suggesting that A. phagocytophilum increases the levels of

Rab14 to facilitate infection. Tick ISE6 cells were treated with rab14 dsRNA and control cells were treated with the unrelated Rs86 dsRNA. DNA samples from infected

cells were analyzed by real-time PCR using the A. phagocytophilum major surface protein 4 (msp4) gene-specific primers. Normalized Ct values were compared

between groups by Student’s t-test with unequal variance (p = 0.02; n = 6 biological replicates). (B) Tick rab14 knockdown did not affect cell viability. The percent of

apoptotic tick ISE6 cells was determined after RNAi with rab14 test and Rs86 control dsRNAs by flow cytometry using the Annexin V-fluorescein isothiocyanate (FITC)

apoptosis detection kit. The percentage of apoptotic cells was compared between both test and control dsRNA treated UtC and ItC by Student’s t-test with unequal

variance (p > 0.05; n = 6 biological replicates). (C) Representative images of immunofluorescence analysis of UhC and IhC incubated with either ON-TARGETplus

SMARTpool Human rab14 siRNA or control ON-TARGETplus Non-targeting Control Pool siRNA. Cells were stained with rabbit anti-A. phagocytophilum msp4

antibodies, labeled with FITC (green, arrows) and DAPI (blue). To confirm the uptake of siRNA, cells were treated with Accell Red Non-targeting Control siRNA (red,

arrows) and labeled with DAPI (blue). (D) Human rab14 was up-regulated at the mRNA level in response to infection. The RNA levels of human rab14 (P61106) were

determined by real-time RT-PCR in UhC and IhC. Normalized Ct values were compared between groups by Student’s t-test with unequal variance (p = 0.03; n = 4

biological replicates). (E) A 31–52% knockdown by RNAi of rab14 in human HL60 cells did not affect A. phagocytophilum infection levels, suggesting that Rab14

protein levels decrease post-transcriptionally in human neutrophils to control A. phagocytophilum infection. Human HL60 cells were treated with rab14 siRNA or

control ON-TARGETplus Non-targeting Control Pool siRNA. DNA samples from infected cells were analyzed by real-time PCR using the A. phagocytophilum major

surface protein 4 (msp4) gene-specific primers. Normalized Ct values were compared between groups by Student’s t-test with unequal variance (non-significant,

p > 0.05; n = 4 biological replicates). (F) Proposed model of ras-related protein function in A. phagocytophilum-infected tick and human cells. In tick cells,

A. phagocytophilum (Ap) increases the levels of active ras-related proteins Rab14 in phagosomal membranes to prevent the transfer of bacteria from phagosomes to

lysosomes and hijacks Rab10 and other endoplasmic reticulum membrane proteins to its vacuole to complete the infection cycle and favor pathogen survival and

facilitate infection. In human neutrophils, the decrease in Rab10 levels appears as a post-transcriptional mechanism to control A. phagocytophilum infection.

biological processes, allowing understanding the complete cell
response to a stimuli.

The results demonstrated that changes in the tick proteome
were driven by modifications in protein representation in
response to A. phagocytophilum infection. The conversion of
scores from large datasets of annotated proteins into a graph
structure allowed the tractability of cell processes into biological
pathways. We demonstrated that the distribution of WD values

of the networks has the properties expected in a natural network,
and that the framework has a biological significance after
clustering cell processes into communities of biological pathways.
The method has been widely used for the analysis of different
interacting entities (Chautard et al., 2009), and is therefore
supported by a large coherent corpus of science (Perc et al., 2013).

Pioneering efforts focused on the gene-gene co-expression
using a molecular interaction network (Poirel et al., 2013)
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demonstrated that co-expressed genes should participate
in coherent network structures. Vinayagam et al. (2014)
addressed the physical interactions between proteins (activation-
inhibition relationships) through the use of a network describing
relationships between proteins, without providing insights on
cell processes. A similar network of interactions was built for
70 viral open reading frames (vORFs) interacting with 579
proteins targeted by the vORFs (Pichlmair et al., 2012). However,
the interactions were measured from the visual topology of
the network, without characterizing indexes for interactions.
Previous studies showed the importance of WD in describing
metabolic networks (Ma and Zeng, 2003; Zhang and Horvath,
2005), demonstrating the emergence of a power-law distribution
(scale free topology) intimately linked to the network of
gene co-expression. Our results using proteomics datasets
corroborated that WD follows a power-law distribution at the
protein/cell processes level, which is of extreme importance for
the resilience of the complete network.

The A. phagocytophilum infection had a higher impact on
tick than human proteome. Since most proteins were linked
to several cell processes, the changes in protein representation
affected simultaneously different biological pathways. The
method allowed discerning cell processes that were affected by
pathogen infection from those that remained unaffected. The
deep subversion of the tick proteome by A. phagocytophilum
probably reflects ancient ecological tick-pathogen associations
(de la Fuente et al., 2015). Ticks not only tolerate infection by
A. phagocytophilum, but infected ticks have higher adaptation,
survival and vector capacity (de la Fuente et al., 2017). In contrast
with the infection of several cell types during A. phagocytophilum
life cycle in ticks, pathogen infects only neutrophils in vertebrate
hosts, and therefore subtle changes in the proteome should be
expected (de la Fuente et al., 2005; Ayllón et al., 2015; Severo
et al., 2015; Villar et al., 2015). The results supported that human
neutrophils but not tick cells limit pathogen infection through
differential representation of ras-related proteins.

The method has however some gaps. The absence of a
completely annotated proteome as such currently available in
ticks and other organisms would provide a partial view of the
cell biological processes. For a partially annotated proteome it
is not possible to include a protein in the network if the target
process is not defined, and in consequence the centrality indexes
of the processes would be affected. In contrast, for fully annotated
proteomes as occurs for humans and model organisms, network

analyses may collapse and require alternative approaches as used
here for the analysis of human cell response to infection. These
developments warrant further research to better understand cell
response to stimuli such as pathogen infection.

CONCLUSIONS

Approaches in this field have been commonly restricted to
gene-gene or protein-protein interactions, without evaluating
the metabolic signal that emanates from these interactions.
Our approach addressed the major challenge of integrating
information switching from static to dynamic interaction
networks, revealing the nature of changes in the proteome
and the resulting cell processes and biological pathways. The
metaphorical network linking proteins with cell processes
revealed the design principles of the metabolic organization.
The application of this method identified unexpected roles of
proteins after cell infection, showing the intimate mechanisms of
metabolic rewiring, and has wide applications in other models.
Therefore, this methodological approach could be applied to
other host-pathogen models to identify host derived key proteins
in response to infection that may be used to develop novel control
strategies for arthropod-borne pathogens.
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