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Abstract In this note a study of the convergence properties of some starters E0 =

E0(e,M) in the eccentricity–mean anomaly variables for solving the elliptic Kepler’s

equation (KE) by Newton’s method is presented. By using a Wang Xinghua’s theorem

(1999) on best possible error bounds in the solution of non–linear equations by Newton’s

method we obtain for each starter E0(e,M) a set of values (e,M) ∈ [0, 1)× [0, π] that

lead to the q–convergence in the sense that Newton’s sequence (En)n≥0 generated from

E0 = E0(e,M) is well defined, converges to the exact solution E∗ = E∗(e,M) of KE

and further |En −E∗| ≤ q2
n−1 |E0 −E∗| holds for all n ≥ 0. This study completes in

some sense the results derived by Avendaño et al. (2014) by using Smale’s α-test with

q = 1/2. Also since in KE the convergence rate of Newton’s method tends to zero as

e→ 0, we show that the error estimates given in the Wang Xinghua’s theorem for KE

can also be used to determine sets of q–convergence with q = ek q̃ for all e ∈ [0, 1) and

a fixed q̃ ≤ 1. Some remarks on the use of this theorem to derive a priori estimates of

the error |En − E∗| after n Kepler’s iterations are given. Finally, a posteriori bounds

of this error that can be used to a dynamical estimation of the error are also obtained.

1 Introduction

The iterative solution of elliptic Kepler’s equation

E − e sinE = M, (1)

where M is the mean anomaly (for periodicity in [0, π]), e ∈ [0, 1) the eccentricity of

an elliptic orbit and the unknown E the eccentric anomaly, has been the subject of

an extensive list of references for a long time. Here we mention just a few of them

(Smith (1979); Broucke (1980); Mikkola (1987); Colwell (1993); Markley (1995); Odell

and Gooding (1986); Feinstein and McLaughlin (2006); Charles and Tatum (1998);

Palacios (2002); Mortari and Clochiatti (2007); Dubinov and Galidakis (2007); Davis

et al. (2010); Calvo et al. (2013); Avendaño et al. (2015); Calvo et al. (2017)).
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In many cases, taking a suitable starter E0 = E0(e,M), Newton’s method is applied

to the equation fe(E;M) ≡ E − e sinE −M = 0 with the recursion

Ek+1 = N(Ek) ≡ Ek −
fe(Ek;M)

f ′e(Ek;M)
, k = 0, 1, . . . (2)

where N(·) = Nfe(·) is the Newton’s iterator of fe, to get a Newton’s sequence (Ek)k≥0
that converges to the unique solution E∗ = E∗(e,M) of fe(E;M) = 0. Then our aim

is to make the small number n of iterations so that En provides an approximation to

E∗ with the desired accuracy. Observe that for e = 1 and Ek = 0 the recursion (2)

becomes singular and therefore we expect to find some difficulties with the convergence

when (e,M) is close to (1, 0).

First of all observe that the Newton’s iterator N(Ek) defined in (2) is well defined

for all M ∈ [0, π] and e ∈ [0, 1) for any Ek, then for all starter E0 = E0(e,M) the cor-

responding sequence (En)n≥0 is well defined. However we cannot ensure their conver-

gence to some E∗ that would be the unique solution E∗ = E∗(e,M) of fe(E;M) = 0.

In fact it has been shown in Charles and Tatum (1998) that with the standard choice

E0(e,M) = M , while there is convergence for (e,M) = (0.991, 0.13π) and for (e,M) =

(0.993, 0.13π), Newton’s method seems not converge for (e,M) = (0.992, 0.13π). This

implies that for a given starter E0(e,M) it is important to identify the set of (e,M) ∈
[0, 1)× [0, π] that ensures the convergence of Newton’s iterates.

There are some particular starters that lead to convergent Newton’s sequences.

Thus if 0 ≤ fe(E0(e,M)) ≤ π, taking into the monotonic increasing and convexity of

fe(E;M) with respect to E with respect to E ∈ [0, π] for all M ∈ [0, π] and e ∈ [0, 1)

we have fe(E
∗(e,M);M) = 0 ≤ fe(E0(e,M);M) which by monotony of fe implies

E∗(e,M) ≤ E0(e,M). Now by the convexity of fe the sequence (Ek)k≥0 decreases

monotoniquely to E∗. Therefore 0 ≤ fe(E0(e,M)) ≤ π is a sufficient condition to

ensure the convergence of Newton’s sequence. In particular for the simplest guess E0 =

E0(e,M) = π we have the desired monotone decreasing convergence.

A second point concerns the rate of convergence of a convergent Newton’s sequence

(Ek)k≥0 starting from E0 = E0(e,M) as a function of (e,M) ∈ [0, 1)× [0, π]. Of course

Newton’s method is a second order method and we have

lim
k→∞

|Ek+1 − E∗|
|Ek − E∗|2

=
e| sin(E∗)|

2(1− e cos(E∗))
, (3)

and this shows that the so called quotient convergence factor (Ortega and Rheinboldt

(1970), pp. 282) given by the right hand side of (3) may become arbitrary large for

(e, E∗) close to (1, 0) i.e. the singular point of the Newton’s iteration. Moreover this

quadratic convergence only holds for Ek in a sufficiently small neighborhood of E∗

that is not known in advance.

In general to study the convergence of Newton iterations starting from x0 for

solving a non linear system F (x) = 0 with exact solution x∗, there are several results

depending on the assumptions of F around x0. Some well known are the Newton-

Kantorovitch’s (Kantorovich and Akilov (1982)) and Smale’s (Smale (1986)) theorems

revised more recently in (Dedieu (2006); Argyros et al. (2014)). These results depend on

the measure of the error in the approximation to the exact solution x∗. Some frequently

used measures are

ed(xn) = ‖xn+1 − xn‖, (4)
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that appears e.g. in the original paper of Smale (1986) and

eg(xn) = ‖x∗ − xn‖ es(xn) = ‖F ′(x0)−1F (xn)‖, (5)

that are two natural measures: the first one in the sense of the global error and the

second one considered by Smale in Blum et al. (2010).

Here for a starter E0 = E0(e,M) of KE fe(E;M) ≡ E − e sinE −M = 0 well

defined for all (e,M) ∈ [0, 1)× [0, π] we introduce the following

Definition 1 The starter E0 of KE is q–convergent for (e,M) ∈ [0, 1) × [0, π] if the

Newton’s sequence (En)n≥0 defined by (2) converges to some E∗, the unique solution

of fe(E;M) = 0, and there exist some q ∈ [0, 1) such that the following estimate holds

|En − E∗| ≤ q2
n−1 |E0 − E∗| n = 0, 1, 2, . . . (6)

Moreover for a given q ∈ [0, 1) the set of q–convergent values (e,M) ∈ [0, 1) × [0, π]

will be called the q–convergence set of the starter E0 = E0(e,M).

Note that for q = 1/2, E0 is an approximate zero of KE in Smale’s notation (Smale

(1986), Avendaño et al. (2014)).

The aim of this paper is to use a version of Newton-Kantorovich theorem given

by Wang Xinghua (1999) that obtains optimal error estimates of Newton’s sequence

to derive sufficient conditions of q–convergence of a starter E0 = E0(e,M) for KE

and the corresponding q–convergence set. Note a similar study with q = 1/2 has been

carried out in Avendaño et al. (2014) by using the so called α-test based on Smale’s

theorem Blum et al. (2010). Here it will be seen that for many starters the q–factor

can be written in the form q = ek q̃ with some 0 ≤ q̃ < 1 and k ≥ 0 which, in view

of (6), imply sharper error bounds for small eccentricities whereas in Avendaño et al.

(2014) the bound is uniform in the eccentricity. Further, other estimates (4)–(5) are

derived that allow us a priori and a posterior estimates of the error after n iterations.

The paper is organized as follows: In Section 2 the original Wang Xinghua version of

of Newton-Kantorovich theorem as well their particular case for Kepler’s equation are

presented. In Section 3 the q–convergence properties of some well known starters are

studied including other error estimates. The paper ends with some conclusions on the

use of these results in practical applications.

2 Error estimates in Newton’s iteration of Kepler equation

First of all we recall the version of Newton-Kantorovich theorem given by Wang

Xinghua (1999) in Th. 4.3.

Theorem 1 Let X and Y be Banach spaces, D an open convex subset of X and

F : D ⊂ X → Y be a Frechet differentiable non linear operator. Assume that F ′(x0) is

invertible for a given starting point x0 ∈ D and that there exist positive constants β, L

and λ so that

1.

β = ‖F ′(x0)−1 F (x0)‖. (7)

2.

‖F ′(x0)−1
(
F ′(y)− F ′(z)

)
‖ ≤ L‖y − z‖ for all y, z ∈ D. (8)
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3.

λ = Lβ < 1/2. (9)

4. The closed ball of center x0 and radius r = (1 −
√

1− 2λ)/L, B(x0, r) = {x; ‖x −
x0‖ ≤ r} satisfies B(x0, r) ⊂ D.

Then F ′(x) is invertible in B(x0, r) and the sequence (xk)k≥0 given by

xk+1 = xk − F (xk)−1 F (xk), k = 0, 1, . . .

remains in B(x0, r) and converges to some x∗ ∈ B(x0, r) with F (x∗) = 0 and the

following (optimal) estimates hold

eg(xn) ≤ q2
n−1

µn(q)
eg(x0) ≤ q2

n−1

µn−1(q2)
ed(x0) (10)

and

ed(xn)

ξ(q2
n

)
≤ eg(xn) ≤ q

β
µn−1(q2) ed(xn−1)2 ≤ q2

n−1 ed(xn−1) (11)

where q, and the functions µn and ξ are given by

q = q(λ) =
1−
√

1− 2λ

1 +
√

1− 2λ
=

2λ

(1 +
√

1− 2λ)2
, λ =

2q

(1 + q)2
. (12)

µn(ω) =

2n−1∑
i=0

ωi =
1− ω2n

1− ω ≥ 1 (0 ≤ ω < 1)

ξ(ω) =
1 +

√
1 + 4ω/(1 + ω)2

2
.

(13)

Note that according to Eq. (12) when λ ∈ (0, 1/2) the corresponding q ∈ (0, 1).

Hence to have q = 1/2 we must take λ = 4/9 and for q = 1/10 we must take λ = 20/121.

Further observe that for ω ∈ [0, 1] the function ξ(ω) is monotonic increasing and

therefore

1 = ξ(0) < ξ(ω) < ξ(1) =
1 +
√

2

2
, for 0 < ω < 1.

In the case of KE, D = X = Y = R, x = E and

F (x) = fe(E;M) ≡ x− e sinx−M, with e ∈ [0, 1), M ∈ [0, π] (14)

is analytic for all x ∈ R.

Denoting the starting value for the solution of (14) by x0 = E0 = E0(e,M) the

constants β and L of (7), (8) are

β =
|E0 − e sinE0 −M |

1− e cosE0
, L =

e

1− e cosE0
, (15)

and therefore for each E0 , λ = λ(E0) is a function of e and M defined by (9) and

given by

λ = λ(E0) =
e|E0 − e sinE0 −M |

(1− e cosE0)2
=
e|E0(e,M)− e sin(E0(e,M))−M |

(1− e cos(E0(e,M)))2
. (16)

Hence applying Theorem (1) to the KE: fe(E;M) = 0 we have
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Proposition 1 Let E0 = E0(e,M), be a given starter for solving KE , then for all

ν ∈ (0, 1/2) the set

Σq(E0) = {(e,M) ∈ [0, 1)× [0, π];λ(E0) ≤ ν < 1/2} (17)

with q = q(ν) given by (12) is contained in the q–convergence set of E0. In addition

the following estimates hold

|E∗ − En| ≤
q2

n−1

µn(q)
|E∗ − E0| ≤ q2

n−1 |E∗ − E0|, (18)

|E∗ − En| ≤
q2

n−1

µn−1(q2)
|E1 − E0| ≤ q2

n−1 |E1 − E0|, (19)

|E∗ − En| ≤ q2
n−1 |En − En−1|, (20)

|En+1 − En| ≤ ξ
(
q2

n
)
|E∗ − En| ≤

(
1 +
√

2

2

)
|E∗ − En|. (21)

Next we will derive some consequences that follow from the above Proposition:

First of all for a given starter E0 the set Σq(E0) is contained in the q-convergence set

of E0 with rate q = q(ν) < 1 gives a useful information about the values of eccentricity

and mean anomaly that satisfy the above bounds (18) to (21) and therefore on the q-

convergence with this factor. Clearly starters with larger sets Σq(E0) or smaller values

of q will be preferred for Newton’s solution of KE.

Secondly in view of (16) there is a k ≥ 1 such that

λ(E0) = ek λk(E0), with λk(E0)|e→0 6= 0. (22)

Then q(λ), for λ ∈ [0, 1/2] given by (12) can be written as

q(λ) =
2λ

(1 +
√

1− 2λ)2
= ek

2λk

(1 +
√

1− 2ek λk)2

≤ ek 2λk
(1 +

√
1− 2 λk)2

= ek q(λk).

(23)

Thus for 0 < ρ < 1 we may define the sets

Σ̃ρ(E0) = {(e,M) ∈ [0, 1)× [0, π]; q(λk) ≤ ρ < 1} , (24)

so that for the starter E0 = E0(e,M) if (e,M) ∈ Σ̃ρ(E0) we have q-convergence with

the factor q = ek ρ for all e ∈ [0, 1) and now the q–convergence factor tends to zero

as ek, in contrast with the information derived from the sets Σq(E0) in which the

convergence is uniform in the whole set.

Further observe that the inequality (18) bounds the global error in the n−th

iteration eg(En) = |E∗ − En| in terms of the global error in the starting value

eg(E0) = |E∗ − E0| ≤ π. Clearly the factor q2
n−1 with 0 < q < 1 implies the de-

sired q-convergence and it can be considered as an a priori error bound after a given

number n of iterations. Also if we want |E∗ − En| ≤ Etol it is enough to select n > 0
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so that δn = δn(e,M) = q2
n−1 |E1 − E0| ≤ Etol. For example, since |E∗ − E0| ≤ π

for all E0, if (e;M) ∈ Σ1/10(E0), after four Kepler’s iterations (n = 4) we can ensure

a global error |E∗ − E4| ≤ π × 10−15.

The inequality (20) provide an additional information with a more practical value

because |En−En−1| is available along the iterative process and then allow us to choose

dynamically the number of iterations depending on our accuracy requirements. Thus

if we want |E∗ − En| ≤ Etol it is enough to check q2
n−1|En − En−1| ≤ Etol. Finally,

(21) provides a two-sided error bound of the global error |E∗ − En|.

3 The convergence of some starters

Next we examine the convergence properties of some well known starters in the lit-

erature E0 = E0(e;M) obtaining the sets Σq(S0) ⊂ [0, 1) × [0, π] that ensure the

convergence bounds (18)-(21) for ν ≤ 1/2. We have included the value ν = 1/2 cor-

responding to q(1/2) = 1 because this is the boundary of q–convergence ensured by

Proposition 1. In particular we consider the values of ν = 1/2, 4/9, 8/25, 20/121 that

correspond to the q-factors q = 1, 1/2, 1/4, 1/10 respectively. Note that q = 1/2 is

the corresponding to Smale α-test. For some starters we have used the notations Sj
employed by Odell and Gooding (1986) in Table I.

3.1 The starter E0 = π.

This is one of the simplest starters considered in the literature and by (2) the first

Newton’s iteration gives Nfe(π) = (M + πe)/(1 + e) ∈ [0, π] that has a low compu-

tational cost (does not require the computation of trigonometric functions or roots).

Because of this we will study this starter from the first iteration i.e.

E0 = E0(e;M) =
M + πe

1 + e
, (25)

instead of the above E0 = π. Now the function λ(E0) of (16) becomes

λ(E0) = λ(E0)(e,M) =
e2 [π − (1 + e) sin((M + πe)/(1 + e))−M ]

(1 + e)(1− e cos((M + πe)/(1 + e))2
,

and for ν < 1/2 the set Σq(E0) is defined implicitely by

Σq(E0) = {(e,M) ∈ [0, 1)× [0, π] ; λ(E0)(e,M) ≤ ν < 1/2} , (26)

where q = q(ν) is given by (12).

In Figure 1 we display the boundaries of the setsΣq(E0) for ν = 1/2, 4/9, 8/25, 20/121

corresponding to the q-factors q = 1, 1/2, 1/4, 1/10. Obviously q1 < q2 ≤ 1 implies that

Σq1(E0) ⊂ Σq2(E0). Here the sets Σq(E0) have the points (e,M) ∈ [0, 1)× [0, π] above

the corresponding boundaries.

From the Proposition 1 it follows the q–convergence of starter (25 ) with factor q < 1

for all (e,M) above the boundary of Σ1(E0). In particular for all e < 0.461359 = e1
this property holds for all M and this implies that solving KE along an orbit with

eccentricity e < e1 we have q–convergence for all values of the mean anomaly. Here

e1 is the unique root of λ(E0)(e,M = 0) = 1/2 in (0, 1). Similar conclusions follow
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from the boundaries of the the other sets Σq(E0). Thus, in the case of q = 1/2 for

e < 0.42019 (the root of λ(E0)(e,M = 0) = 4/9) we have q–convergence with factor

q ≤ 1/2. On the other hand for M > 0.155763 we have q–convergence with factor q < 1

for all values of eccentricity.

0.0 0.2 0.4 0.6 0.8 1.0

e

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M

q = 1

q = 1/2

q = 1/4

q = 1/10

Fig. 1 Boundaries of the Σq(E0) sets of starter (25) for the values of factor q =
1, 1/2, 1/4, 1/10. The sets Σq are the points (e,M) ∈ [0, 1) × [0, π] above the corresponding
boundaries.

Some relevant consequences for small eccentricities can be derived from the scaled

q–convergence sets

Σ̃ρ(E0) =
{

(e,M) ∈ [0, 1)× [0, π] ; q̃(λ2(E0)) ≤ ρ ≤ 1
}
.

Here

λ2(E0) = λ2(E0)(e,M) =
[π − (1 + e) sin((M + πe)/(1 + e))−M ]

(1 + e)(1− e cos((M + πe)/(1 + e))2
.

In Figure 2 we display the boundaries of the scaled ρ–convergence sets for ρ = 1, 1/2, 1/4, 1/10.

These scaled sets include the points of Σ̃ρ(E0) i.e (e,M) ∈ [0, 1)× [0, π] above the cor-

responding boundaries in which q = e2 ρ. From this Figure 2 it follows that e.g. in the

case of ρ = 1/2 for M > 1.2 we have q–convergence with factor q < (1/2) e2.

To illustrate the upper bound (20) of the error |E∗ − En| in the n-th Newton’s

iteration as a function of the last two iterations in a region of q–convergence we consider

the solution of an elliptic orbit with eccentricity e = 0.3. In Figure 3 we display for

M ∈ [0, π] the values of Ex of the upper bound q2
n−1|En − En−1| = 10−Ex for
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0.0 0.2 0.4 0.6 0.8 1.0

e
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1.0

1.5

2.0

2.5

3.0
M

ρ = 1

ρ = 1/2

ρ = 1/4

ρ = 1/10

Fig. 2 Boundaries of the scaled sets Σ̃ρ of starter (25) for the values ρ = 1, 1/2, 1/4, 1/10. The

ρ–convergence scaled sets Σ̃ρ are the points (e,M) ∈ [0, 1) × [0, π] above the corresponding
boundaries in which q = e2 ρ.

eccentricity e = 0.3 and n = 2, 3, 4, 5 (Here Ex is limited between 0 and 60). Observe

that for eccentricity e = 0.3 all values of M are included in the q–convergence region

Σ1/4(S0) therefore we take q = 1/4 in the above upper bound.

Finally, in Fig. 4, we display the number of correct figures in the error after n =

1, 2, 3, 4 iterations of Newton’s method. The quadratic convergence of Newton’s method

can be appreciated because from an iteration to the next one it can be noted that

approximately the same level curve duplicates their value. These figures show the

regions in (e,M) ∈ [0, 1)× [0, π] with a number of correct digits in the error |E∗−En|
after n iterations.

3.2 The starter E0 = 0.

Now the first Newton’s iteration gives Nfe(0) = M/(1−e) that has a low computational

cost. Then, as in the previous starter, we will consider instead of E0 = 0 the starter

after the first iteration given by

E0 = min{M/(1− e), π} =

{
M/(1− e) for M < π(1− e),
π otherwise.

(27)

and the q–convergence regions are defined by (17)

In Figure 5 we display the boundaries of the q–convergence regions Σq(E0) for

ν = 1/2, 4/9, 8/25, 20/121 corresponding to the q-factors q = 1, 1/2, 1/4, 1/10. Here
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0.0 0.5 1.0 1.5 2.0 2.5 3.0

M

0

10

20

30

40

50

60

E
x

n = 2

n = 3

n = 4

n = 5

Fig. 3 Bounds Etol = 10−Ex of the errors |E∗ − En| given by Prop. 1 for e = 0.3 and
n = 2, 3, 4, 5

the convergence regions are the sets of (e,M) ∈ [0, 1)× [0, π] outside the corresponding

boundaries. A study of scaled q–convergence sets and error bounds as in the previous

starter is skipped for brevity.

3.3 The starter S1: E0 = M.

Now the function λ(S1) of (17) becomes

λ(S1) =
e2 sinM

(1− e cosM)2
,

and the sets of q–convergence derived from Proposition 1 can be defined explicitly as

a function of ν < 1/2 by

Σq(S1) =
{

(e,M); 0 ≤ e ≤ min
{

1,
√
ν/(
√

sinM +
√
ν cosM)

}
, M ∈ [0, π]

}
. (28)

In Figure 6 we display the boundaries of the setsΣq(E0,1) for ν = 1/2, 4/9, 8/25, 20/121

corresponding to the q-factors q = 1, 1/2, 1/4, 1/10. Here the convergence regions are

the sets of (e,M) ∈ [0, 1)× [0, π] between the corresponding two boundaries.

Note that as remarked in Odell and Gooding (1986), for e > 0.9733 there is a range

of values of M for which Newton’s iterations diverge.
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3 iterations of Newton's method

0.0 0.2 0.4 0.6 0.8 1.0
e

0.0

0.5

1.0

1.5

2.0

2.5

3.0
M

 2 4 8
16
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Fig. 4 Level curves indicate the positive decimal logarithm of the error bound q2
n−1 |E1−E0|

of |E∗−En| for the starter (25) for n = 2, . . . , 4 iterations of Newton’s method. Here q is defined
by (12) with λ given by (16).

3.4 The starter S2: E0 = M + e sinM.

Now the function λ(S2) of (17) becomes

λ(S2) =
e2| sinM − sinE0|

(1− e cosE0)2
,

and for ν < 1/2 the set Σq(E0) is defined implicitely by

Σq(S2) =

{
(e,M) ∈ [0, 1)× [0, π]

∣∣∣ e2| sinM − sinE0|
(1− e cosE0)2

≤ ν
}
. (29)

with E0 = M + e sinM . In Figure 7 we display the boundaries of the sets of (29) for

q = 1, 1/2, 1/4, 1/10.

3.5 The starter S4: E0 = M + e.

Now the function λ(S4) of (17) becomes

λ(S4) =
e2(1− sin(M + e))

(1− e cos(M + e))2
,
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Fig. 5 Boundaries of the Σq(E0) sets of starter (27) for q = 1, 1/2, 1/4, 1/10. The sets Σq are
the points of (e,M) ∈ [0, 1)× [0, π] on the left of the corresponding boundaries.

and the set Σq is defined implicitly by

Σq(S4) =

{
(e,M) ∈ [0, 1)× [0, π]

∣∣∣ e2(1− sin(M + e))

(1− e cos(M + e))2
≤ ν < 1/2

}
. (30)

In Figure 8 we display the boundaries of the q–convergence sets (30) for q = 1, 1/2, 1/4, 1/10.

3.6 The starter S7

Here the function E0 = E0(e,M) is given by

E0(e,M) = Min

{
M

1− e , M + e,
M + eπ

1 + e

}
, (31)

and it is a piecewise linear function of the mean anomaly.

Taking into account that π ≥ E0(e,M) ≥ E∗(e,M) the Newton’s sequence starting

from E0 is monotoniquely decreasing and convergent for all (e,M) ∈ [0, 1)× [0, π].

Concerning the rate of convergence, in Figure 9 we display the boundaries of the

q–convergence sets Σq(S7) for q = 1, 1/2, 1/4, 1/10. Here the corresponding sets are

limited between the upper and lower lines.
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Fig. 6 Boundaries of the Σq(E0) sets for several values of q of starter E0 = M .

3.7 The starter of Charles and Tatum (1998)

This starter is given by

E0 = E0(e,M) = M + e
(

(π2M)1/3 −
(
π

15

)
sinM −M

)
. (32)

It is an empirical starter that has been obtained by means of some systematic trial

and error and correction by graphical means. The authors claim that in the range

e ∈ [0.991, 1] and M ∈ [0.001, 0.1] convergence to nine decimal places was achieved in

four Newton’s iterations. In Figure 10 we display the Σq(E0) sets corresponding to the

values ν = 4/9 (q = 1/2) and ν = 20/121 in which q = 1/10.

3.8 Broucke’s starter (1980)

This is a piecewise linear function in the mean anomaly M with coefficients depending

on the eccentricity that is given by

E0(e,M) =



γ(−e)M, for M ∈ [0, 1− e),

ξ(−e)M + (e/2), for M ∈ [1− e, π/2− e),

γ(e)M + ν1(e), for M ∈ [π/2− e, π − e− 1),

ξ(e)M + ν2(e), for M ∈ [π − e− 1, π],
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Fig. 7 Σq(E0) sets of starter S2: E0 = M + e sinM for q = 1, 1/2, 1/4, 1/10. Here the sets
Σq include the points (e,M) ∈ [0, 1)× [0, π] under the upper boundary and on the left of the
lower boundary.

with

γ(e) =
2π + (2 + π)e

(e+ 1)(4e+ 2π)
, ξ(e) =

π + e

π + 2e
,

ν1(e) =
e(3π + 2e)

2π + 4e
, ν2(e) =

eπ(2 + 4e+ π)

(e+ 1)(4e+ 4e+ 2π)
.

As it has been shown in our paper Calvo et al. (2013), this is globally a good starter

in the sense of the ‖ · ‖2 and ‖ · ‖1 norms of the error in e ∈ [0, 1), and M ∈ [0, π].

In Figure 11 we display the q–convergence sets for q = 1, 1/2, 1/4, 1/10.

3.9 The starter of Calvo et al. (2013).

The authors of the present paper have derived an starter that minimizes in a global

sense the error for e ∈ [0, 1), M ∈ [0, π]. This starter is a piecewise linear function in

the mean anomaly given by

E0(e,M) =


p1M + q1, M ∈ [M0,M1],

p2M + q2, M ∈ [M1,M2],

p3M + q3, M ∈ [M2,M3],

(33)
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Fig. 8 Boundaries of the Σq(E0) sets of starter S4: E0 = M+e for q = 1, 1/2, 1/4, 1/10. Here
the sets Σq include the points (e,M) ∈ [0, 1)× [0, π] under the upper boundary and above of
the lower boundary.

with M0 = 0, M1 = 1− e, M2 = π − 1− e, M3 = π and

p1 =
η1

1− e , p2 =
η2

π − 2
, p3 =

π − η1 − η2
1 + e

,

q1 = 0, q2 = η1 +
(e− 1)η2
(π − 2)

, q3 =
π(η1 + η2) + π(1− e− π)

1 + e
,

and

η1 =
a0 + a1e

1 + a2e
, a0 = 1, a1 = −0.633589, a2 = −0.564096,

η2 =
b0 + b1e

1 + b2e
, b0 = π − 2, b1 = −0.860154, b2 = −0.777978.

Next, in Figure 12 we display the q–convergence sets for q = 1, 1/2, 1/4, 1/10.

3.10 The starter of Markley.

Markley (1995) proposed a very accurate starter SM with a quite large computational

cost that combined with a fifth–order iterative method gives in one iteration a max-

imum relative error less than 10−18 when roundoff errors and double precision are

properly addressed.

In this starter E = E0 is the exact solution of the cubic equation

[3(1− e) + αe] E3 − 3M E2 + 6α(1− e) E − 6αM = 0, (34)



15

0.0 0.2 0.4 0.6 0.8 1.0

e

0.0

0.5

1.0

1.5

2.0

2.5

3.0
M

q = 1/10

q = 1/4

q = 1/2

q = 1

Fig. 9 Boundaries of Σq(E0) sets of starter S7: (31) for q = 1, 1/2, 1/4, 1/10 . The corre-
sponding sets are limited between the upper and lower boundaries.

where α is, in principle, a specified constant. Here we have chosen the value

α =
3π2

(π2 − 6)
, (35)

although a non constant improved value of α is

α(e,M) =
3π2 + 1.6π(π −M)/(1 + e)

π2 − 6
. (36)

Note that (34) arises by substituting in KE the function sinE by the Padé approxima-

tion
E(6α− (α− 3)E2)

6α+ 3E2
.

From equation (34) it follows that

M =
(3(1− e) + αe)E3

0 + 6α(1− e)E0

6α+ 3E2
0

, (37)

and this implies that in the case of Markley starter the function λ = λ(SM ) of (16)

can be written explicitly as a function of (e, E0) ∈ [0, 1)× [0, π] instead of the variables

(e,M) ∈ [0, 1)× [0, π] and is given by

λ(SM ) =
e|E0 − e sinE0 −M |

(1− e cosE0)2
= −e2 −6π2E0 + 6E3

0 + (−6E2
0 + π2(6 + E2

0)) sinE0

(−6E2
0 + π2(6 + E2

0))(1− e cosE0)2
.

(38)
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Fig. 10 Boundaries of Σq(E0) sets of starter (32) for q = 1, 1/2, 1/4, 1/10. Here the Σq sets
includes all points (e,M) ∈ [0, 1)× [0, π] outside the corresponding boundaries.
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Fig. 11 Boundaries of Σq(E0) of Broucke’s starter for q = 1, 1/2, 1/4, 1/10. Here the Σq– sets
includes all points (e,M) ∈ [0, 1)× [0, π] outside the corresponding boundaries.
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Fig. 12 Boundaries of Σq(E0) sets of CEMR’s starter in the (e,M) plane for q =
1, 1/2, 1/4, 1/10

Note that E0(e, ·) : [0, π]→ [0, π] is a one to one map. Because of this we will consider

λ(SM ) = λ(SM )(e, E0) .

By using (37) we may check that fe(E0;M) ≥ 0 for all e ∈ [0, 1), E0 ∈ [0, π]. Hence

E0(e,M) ≥ E∗(e,M) and Markley starter is a monotonic starter for all e ∈ [0, 1),

E0 ∈ [0, π].

It can be seen that

sup {λ(SM ); (e, E0) ∈ [0, 1)× [0, π]} = λ(SM )(1, 2.20982) = 0.0171415 = νM ,

and q(νM ) = 0.00872089 therefore this starter is q–convergent with a factor q < q(νM )

for all (e,M) ∈ [0, 1)× [0, π].

In Figure 13 we display the boundaries of the setsΣq(SM ) for q = 5/1000, 1/1000, 1/10000.

Here we have chosen much smaller values of q than in the above starters because in

this case the starter is very accurate and Newton’s convergence is very fast.

Clearly the above behaviour of the q–convergence together with the fact that

sup {|Nfe(E0)− E0| ; (e, E0) ∈ [0, 1)× [0, π]} = 0.0136618,

implies a very fast convergence for all (e,M) ∈ [0, 1) × [0, π] for this starter. The

calculation of scaled q–convergence regions and error bounds can be carried out as in

the first starter.
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Fig. 13 Boundaries of Σq(E0) sets Σq(SM ) of Markley’s starter for q =
5/1000, 1/1000, 1/10000. The corresponding regions are on the left side of the bound-
aries.

3.11 The starter S10.

By substituting in KE sinE by their third–order truncated expansion at E = 0 we

have the cubic equation in the eccentric anomaly

Pe(E;M) = (1− e)E + e (E3/6)−M = 0. (39)

Now in the starter S10, E0 = E0(e,M) is defined as the solution of (39) for e ∈
[0, 1),M ∈ [0, π].

First of all observe that Pe(0;M) = −M ≤ 0 and Pe(π;M) > 0 together with the

fact that P ′e(E,M) = (1− e) + eE2/2 > 0 implies that for all e ∈ [0, 1),M ∈ [0, π] the

equation (39) has a unique solution. Further for such a solution E = E0 we have

fe(E0;M) = e
[(

E0 −
E3
0

6

)
− sinE0

]
< 0,

from the monotonic increasing and the convexity of fe with respect to E it follows that

E0(e,M) < E∗(e,M) and the first Newton’s iteration E1 = Nf (E0) > E∗. Also it can

be seen that E1 ≤ π, so the remaining iterations decrease montoniquely to the exact

solution E∗(e,M).

Taking into account (39) for the λ-function (16) we get

λ(S10) = −e
2(−6E0 + E3

0 + 6 sinE0)

6(1− e cosE0)2
, (40)

where E0 = E0(e,M) is defined by (39). In Figure 14 we display the boundaries of the

q–convergence sets Σq(S10) for q = 1, 1/2

A remarkable fact already noted in Avendaño et al. (2014) is that these q–convergence

regions include a neighborhood of the singular point (e,M) = (1, 0) in the Newton’s
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Fig. 14 Boundaries of Σq(E0) sets (in white) Σ(S10) around the point (e,M) = (1, π)

iteration in contrast with some other previous starters. This fact has been used by

Avendaño and co-workers Avendaño et al. (2014) to construct a globally simple starter

in the whole set (e,M) ∈ [0, 1)× [0, π] that satisfies the α-test i.e is q–convergent with

factor q = 1/2.

Also it must be noticed that in Avendaño et al. (2014) it has been proved that S10
satisfies the α-test for all (e,M) ∈ [0, 1)× [0, π]. However as can be seen in Figure ??

the sufficient condition of q–convergence derived from Proposition 1 does not guarantee

this property for q = 1/2. In fact

λ(S10)(1, π) =
π(π2 − 6)

24
>

4

9
,

and by continuity the set Σ1/2(S10) does not include a neighborhood of (e,M) = (1, π).

This implies that the sufficient conditions of q–convergence of α-test and Proposition

1 can be different for the same starter.

4 Conclusions

By using a version of the Newton-Kantorovitch theorem on the convergence of Newton’s

method for the solution of implicit equations adapted to the KE, we show that it is

possible to study the q–convergence properties of some well known starters for solving

KE. In particular for a given starter S we may determine the sets Σq(S) of (e,M) ∈
[0, 1) × [0, π] in which we may ensure q–convergence with rate q < 1. Also we may

compute the scaled convergence sets in which the convergence rate has the form q =

ek q̃ for k ≥ 1 and therefore tends to zero as the eccentricity tends to zero. The theorem

allows us to derive for each starter a priori and a posteriori error bounds on the iteration

error depending on the number of iterations and (e,M). Thus we present here a number

of tools that allow to a practical user to choose the most efficient and accurate starter

(or some combination of them) according their particular requirements.
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