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Abstract

The fixed-stress split method has been widely used as solution method in the

coupling of flow and geomechanics. In this work, we analyze the behaviour of

an inexact version of this algorithm as smoother within a geometric multigrid

method, in order to obtain an efficient monolithic solver for the Biot’s problem.

This solver combines the advantages of being a fully coupled method, with the

benefit of decoupling the flow and the mechanics part in the smoothing algo-

rithm. Moreover, the fixed-stress split smoother is based on the physics of the

problem, and therefore all parameters involved in the relaxation are based on

the physical properties of the medium and are given a priori. A local Fourier

analysis is applied to study the convergence of the multigrid method and to sup-

port the good convergence results obtained. The proposed geometric multigrid

algorithm is used to solve several tests in semi-structured triangular grids, in

order to show the good behaviour of the method and its practical utility.
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1. Introduction

In recent years, intensive research has been focused on the design of efficient

methods for solving the large linear systems arising from the discretization of the

Biot’s model, since in real simulations it is the most consuming part. Using an

implicit time-stepping discretization, the resulting system matrix on each time5

step is an example of saddle point problem requiring therefore specific solvers.

There are mainly two approaches, the so-called monolithic or fully coupled meth-

ods and the iterative coupling methods. In the monolithic approach, the linear

system is solved simultaneously for all the unknowns, and it usually provides

unconditional stability and convergence. The challenge here, is the design of effi-10

cient preconditioners to accelerate the convergence of Krylov subspace methods

and the design of efficient smoothers in a multigrid framework. Recent advances

in both directions can be found in [1, 2, 3, 4] and the references therein. On

the other hand, at each time step, iterative coupling methods solve sequentially

the equations for fluid flow and geomechanics, until a converged solution within15

a prescribed tolerance is achieved. A big advantage of these methods is their

flexibility since two different codes for fluid flow and geomechanics can be linked

for solving the poroelastic problems. The most used iterative coupling methods

are the drained and undrained splits, which solve the mechanical problem first,

and the fixed-strain and fixed-stress splits, which on the contrary solve the flow20

problem first [5, 6].

Due to its unconditional stability, one of the most frequently used schemes

of this type is the so-called fixed-stress split method. This sequential-implicit

method basically consists in solving the flow problem first fixing the volumetric

mean total stress, and then the mechanics part is solved from the values obtained25

at the previous flow step. The unconditional stability of the fixed-stress split

method is shown in [7] using a von Neumann analysis. In addition, stability and

convergence of the fixed-stress split method have been rigorously established in

[8]. Recently, in [9] the authors have proven the convergence of the fixed-stress

split method in energy norm for heterogeneous problems. Estimates for the30
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case of the multirate iterative coupling scheme are obtained in [10], where mul-

tiple finer time steps for flow are taken within one coarse mechanics time step,

exploiting the different time scales for the mechanics and flow problems. In

[11], the convergence of this method is proven in the fully discrete case when

space-time finite element methods are used. In [12], the authors present a very35

interesting approach which consists to re-interpret the fixed-stress split scheme

as a preconditioned-Richardson iteration with a particular block-triangular pre-

conditioning operator. In fact, the four commonly used sequential splitting

methods, i.e. drained-split, undrained-split, fixed-stress and fixed-strain [5],

can be seen in this way [13]. It is analyzed that a fully-implicit method outper-40

forms the convergence rate of the sequential-implicit methods. Following this

approach a family of preconditioners to accelerate the convergence of Krylov

subspace methods has been recently proposed for the three-field formulation of

the poromechanics problem [14].

Here, we want to propose the use of an inexact version of the fixed-stress split45

scheme as a smoother in a geometric multigrid framework, in order to obtain an

efficient monolithic solver for the Biot’s problem. This approach combines the

advantages of being a fully-coupled method on the one hand with the benefit of

decoupling the flow and the mechanics part in the smoothing algorithm on the

other hand. Recently, another decoupled smoother, based on an inexact Uzawa50

method, has been successfully proposed to solve the poroelastic problem in a

monolithic manner [4]. However, the key for a satisfactory performance of this

smoother is the choice of a relaxation parameter in the pressure update step.

The main advantage of the fixed-stress split smoother proposed here is that the

parameter is established by the physics of the problem, opposite to the case55

of the Uzawa smoother for which the relaxation parameter has to be carefully

chosen.

The rest of the paper is organized as follows. Section 2 is devoted to the

description of the poroelasticity model and the considered finite element dis-

cretization. In Section 3, after a brief introduction of the fixed-stress split60

algorithm, we introduce the class of smoothers that we proposed based on that
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method, and we analyze their relaxation properties by using a smoothing local

Fourier analysis technique. In Section 4, the rest of the multigrid components

that we consider are listed and a two-grid local Fourier analysis is used to study

the convergence of the resulting multigrid algorithm. Also in this section, the65

implementation of the geometric multigrid on semi-structured grids is explained

in order to extend the proposed method to problems on more complex domains.

Section 5 illustrates the good convergence of the multigrid method based on the

fixed-stress split smoothers through two numerical experiments, one of them

considering also variable coefficients. Finally, some conclusions are drawn in70

Section 6.

2. Mathematical model and discretization

We begin with a small introduction about the quasi-static Biot’s model for

soil consolidation. For a more detailed explanation about the governing equa-

tions and the mathematical model we refer to the reader to the books by Wang75

[15] and Coussy [16], for instance. A stabilized P1-P1 finite element method is

considered to describe the solver proposed in this work as well as to present the

numerical experiments. However, our approach can be easily implemented for

other finite-element and finite-volume discretizations.

2.1. Mathematical model80

Let Ω be a bounded open subset of Rn, n ≤ 3, with regular boundary Γ.

According to Biot’s theory [17, 18], the consolidation process must satisfy the

following system of partial differential equations:

equilibrium equation: −divσ′ + α∇ p = ρg, in Ω, (1)

constitutive equation: σ′ = 2Gε(u) + λ div(u)I, in Ω, (2)

compatibility condition: ε(u) =
1

2
(∇u+∇ut), in Ω, (3)

Darcy’s law: q = − 1

µf
K (∇p− ρfg) , in Ω, (4)

continuity equation:
∂

∂t

(
1

M
p+ α∇ · u

)
+∇ · q = f, in Ω, (5)
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where G and λ are the Lamé coefficients, I is the identity tensor, u is the

displacement vector, p is the pore pressure, σ′ and ε are the effective stress and

strain tensors for the porous medium, g is the gravity vector, q is the percolation

velocity of the fluid relative to the soil, µf is the fluid viscosity and K is the

absolute permeability tensor. The bulk density ρ is related to the densities of

the solid (ρs) and fluid (ρf ) phases as ρ = φρf + (1 − φ)ρs, where φ is the

porosity. M is the Biot modulus and α is the Biot coefficient given by

α = 1− Kb

Ks
,

where Kb is the drained bulk modulus , and Ks is the bulk modulus of the solid

phase.85

Combining equations (1)-(5), the mathematical model can be written only

in terms of the displacements of the solid matrix u and the pressure of the fluid

p, giving rise to the so-called two-field formulation of the Biot’s consolidation

model

−divσ′ + α∇p = ρg, σ′ = 2G ε(u) + λ div(u)I, (6)

∂

∂t

(
1

M
p+ α∇ · u

)
−∇ ·

(
1

µf
K (∇p− ρfg)

)
= f. (7)

To complete the formulation of a well–posed problem we must add appropriate

boundary and initial conditions. For instance,

p = 0, σ′ n = 0, on Γt,

u = 0, K (∇p− ρfg) · n = 0, on Γc,
(8)

where n is the unit outward normal to the boundary and Γt ∪ Γc = Γ, with

Γt and Γc disjoint subsets of Γ having non null measure. For the initial time,

t = 0, the following condition is fulfilled(
1

M
p+ α∇ · u

)
(x, 0) = 0, x ∈ Ω. (9)

2.2. Discretization90

We describe the discretization of the problem by the linear finite element

method. For this purpose, we introduce the variational formulation for the
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two-field formulation of the Biot’s model as follows: For each t ∈ (0, T ], find

(u(t), p(t)) ∈ V ×Q such that

a(u,v)− α(p,div v) = (ρg,v), ∀ v ∈ V , (10)

α(div ∂tu, q) +
1

M
(∂tp, q) + b(p, q) = (f, q) + (Kµ−1

f ρfg,∇q), ∀ q ∈ Q,(11)

where V = {u ∈ (H1(Ω))n | u|Γc = 0}, and Q = {p ∈ H1(Ω) | p|Γt = 0},95

with H1(Ω) denoting the Hilbert subspace of L2(Ω) of functions with first weak

derivatives in L2(Ω), (·, ·) is the standard inner product in the space L2(Ω), and

the bilinear forms a(·, ·) and b(·, ·) are given as

a(u,v) = 2

∫
Ω

Gε(u) : ε(v) dΩ +

∫
Ω

λ divu div v dΩ,

b(p, q) =

∫
Ω

K

µf
∇p · ∇q dΩ.

The initial condition is given by(
1

M
p(0) + α∇ · u(0), q

)
= 0, ∀ q ∈ L2(Ω). (12)

For the spatial discretization, we use a stabilized linear finite element method

[19]. The stabilization proposed in that work was based on adding an artificial100

term to the flow equation with the purpose of eliminating the non-physical oscil-

lations that the pressure field often exhibits when linear finite element methods

are used to approximate both displacement and pressure unknowns. For this

stabilized finite element method, discrete inf-sup stability conditions and con-

vergence results were recently derived in [20]. We have chosen this discretization105

because of its simplicity, good monotonicity properties and rigorous convergence

results. For time discretization, we consider a backward-Euler scheme.

Let Th denote a triangulation of Ω satisfying the usual admissibility assump-

tions. Defining the discrete spaces as

Vh = {uh ∈ (H1(Ω))n | ∀T ∈ Th,uh|T ∈ Pn1 , uh|Γc
= 0},

Qh = {ph ∈ H1(Ω) | ∀T ∈ Th, ph|T ∈ P1, ph|Γt = 0},

where P1 denotes the space of scalar piecewise linear functions on Th, the fully110

discretized scheme at time tm,m = 1, 2, . . ., can be written as the following:
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find (umh , p
m
h ) ∈ Vh ×Qh such that

a(umh ,vh)− α(pmh ,div vh) = (ρg,vh), ∀ vh ∈ Vh, (13)

α(div ∂̄tu
m
h , qh) +

1

M
(∂̄tp

m
h , qh) + b(pmh , qh) + c(∂̄tp

m
h , qh) = (fmh , qh) +

(Kµ−1
f ρfg,∇qh), ∀ qh ∈ Qh, (14)

where ∂̄tu
m
h := (umh − u

m−1
h )/τ , ∂̄tp

m
h := (pmh − p

m−1
h )/τ , and the stabilization

term is defined as

c(ph, qh) =
∑
T∈Th

h2
T

∫
T

CT (∇ph · ∇qh) dΩ,

where CT is a constant independent of the space and time discretization param-

eters. Following [19], we fix the stabilization parameter as CT = (4(λ+ 2G))−1,

which was observed as optimal at least for one-dimensional problems. Notice

that the stabilization term is, essentially, the time derivative of a diffusion op-

erator multiplied by a stabilization parameter.

Thus, a linear system Ax = b must be solved in each time step, where matrix

A is a 2× 2 block symmetric indefinite matrix of the form

A =

 A BT

B −C

 , (15)

with matrices A and C both symmetric and positive definite.

3. Fixed-stress split algorithm

In this section we describe the fixed-stress split algorithm and we explain how115

it can be interpreted mathematically. Then, we propose a class of smoothers

based on this method.

3.1. The fixed-stress split algorithm

The fixed-stress split scheme for solving poroelasticity problem is an iterative

method in which the flow problem is solved first supposing a constant volumetric

mean total stress, and once the flow problem is solved, the elasticity problem is
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then exactly solved. The volumetric mean total stress is defined as the mean of

the trace of the total stress tensor, that is σv = tr(σ)/3, and it is related to the

volumetric strain εv = tr(ε) as

σv = Kbεv − αp.

By using this relation, we write the flow equation in terms of the volumetric

mean total stress instead of the volumetric strain,(
1

M
+
α2

Kb

)
∂p

∂t
+

α

Kb

∂σv
∂t
−∇ ·

(
1

µf
K (∇p− ρfg)

)
= f. (16)

The fixed-stress split scheme is based on solving the flow equation (16) consider-

ing that the term (α/Kb)∂σv/∂t is known. In the discrete case, this is equivalent

to an iterative method based on the splitting of matrix A =MA −NA as A BT

B −C

 =

 A BT

0 −C + α2

Kb
Mp

−
 0 0

−B α2

Kb
Mp

 , (17)

where Mp is the mass matrix. Notice that matrix MA can be interpreted

as an block-upper-triangular preconditioner where the Schur complement with120

respect to A, −(C + BA−1BT ) has been approximated by the matrix S =

−C + (α2/Kb)Mp. As the discretization considered here satisfies a discrete inf-

sup condition, mass matrix Mp is spectrally equivalent to −BA−1BT . This

yields that MA is an efficient preconditioner [13].

3.2. Smoothers based on the fixed-stress split method125

We now present two physics-based type smoothers related to the splitting

algorithm described above. In the multigrid context, it seems natural to consider

as relaxation procedure an operator based on MA replacing the two diagonal

block matrices by suitable smoothers. This means to consider relaxations as

M̃A =

 MA BT

0 MS

 ,
with MA and MS suitable smoothers for operators A and S respectively. In

this work, we mainly consider two relaxations of this type. The first smoother
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is denoted as M̃A,T1, and it is based on a symmetric Gauss-Seidel iteration for

A; i.e.,

MA = (DA + LA)D−1
A (DA + UA),

where DA, LA and UA are, respectively, the diagonal, the strict lower, and the

strict upper parts of A; and on a symmetric Gauss-Seidel iteration for S =

−C + (α2/Kb)Mp. Of course, other relaxation schemes for A and S can be

considered, such as a red-black Gauss-Seidel method, etc.

The second relaxation procedure considered here is based on the smoother

MA,2 = MA(2MA −A)−1MA,

for the displacements and on a symmetric Gauss-Seidel iteration for S = −C +

(α2/Kb)Mp. Smoother MA,2 corresponds to two iterations of the symmetric

Gauss-Seidel iteration as it can be seen from the relation I −M−1
A,2A = (I −

M−1
A A)2. We denote this smoother as M̃A,T2.

In this work, we also consider smoothers based on a diagonal inexact version

of the fixed-stress split scheme, that is,

M̃A =

 MA 0

0 MS

 ,
where againMA andMS are suitable smoothers forA and S = −C+(α2/Kb)Mp,130

respectively. This kind of smoothers can have some appeal on parallel comput-

ers, since the relaxation of the mechanics and flow parts can be executed in

parallel. In particular, we consider a smoother based on two iterations of the

symmetric Gauss-Seidel method for displacements, and one iteration of the sym-

metric Gauss-Seidel method for S. We denote it in this work as M̃A,D2.135

Remark. Notice that the proposed smoothers based on the fixed-stress split

method can be easily adapted to be applied to other different discretizations of

the problem as mixed finite-elements or finite volume schemes, for example.

3.3. Local Fourier analysis for the fixed-stress split smoothers

This section is devoted to the study of the proposed fixed-stress split smoothers140

by the local Fourier analysis technique. A smoothing analysis to show how effi-
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ciently these relaxations annihilate the high-frequency components of the error

is performed.

3.3.1. Basis of LFA

We first briefly introduce the basic notation and facts which have to be as-145

sumed to perform the local Fourier analysis. It is assumed that all discrete

operators have constant coefficients and are defined on an infinite grid Ωh, ne-

glecting the effect of boundary conditions. In this way, all occurring multigrid

components, the discrete approximation and its corresponding error can be rep-

resented by formal linear combinations of the so-called Fourier modes, defined150

as ϕh(θ,x) = eıθ·x/h, where θ ∈ Θ := (−π, π]2. These grid-functions result

then to be “eigenfunctions” of the smoothing operator and the corresponding

“eigenvalues” give rise to the so-called Fourier symbol of the relaxation proce-

dure.

We distinguish high- and low-frequency components on Ωh, since we are155

interested in the behavior of the smoother for the high-frequency Fourier modes.

The classification of “high” and “low” is done with respect to the coarse grid,

which in this case is built by using standard coarsening, that is, the step size is

double in each direction on the coarse grid, which is denoted by Ω2h. Then, low-

frequencies are defined as Θ2 = (−π/2, π/2]2 and therefore the high-frequencies160

are given by Θ\Θ2.

One can perform a local Fourier smoothing analysis by considering the corre-

sponding Fourier domain representation or the Fourier symbol of the smoothing

operator S̃h(θ) on the high frequencies. This gives rise to the computation of

the so-called smoothing factor, which is defined as

µ = sup
Θ\(−π/2,π/2]2

ρ(S̃h(θ)). (18)

3.3.2. Smoothing analysis of the fixed-stress split smoother

Next, we want to analyze the smoothing properties of the proposed class

of smoothers based on the fixed-stress split method. We fix a uniform right
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triangular grid, for example, but the analysis can be performed on any regular165

triangular grid.

Figure 1 presents the spectra of (a) I −M−1
A A and (b) I − M̃−1

A,T1A re-

spectively. It can be observed from Figure 1 (a) that we have good convergence

properties for the fixed-stress method, but one has to solve the mechanics and

flow parts on each iteration. In the right picture we see that the inexact version170

of this algorithm, although still converging, is not a good option, as we have

eigenvalues close to one.

-1 0 1
-1

0

1

-1 0 1
-1

0

1

(a) (b)

Figure 1: Spectral pictures of (a) I −M−1
A A, and (b) I − M̃−1

A,T1A

If we restrict the spectrum to the high frequencies, however, it is observed in

Figure 2(a) that M̃−1
A,T1 is an excellent smoother within a multigrid framework.

Similar results are shown for M̃−1
A,T2 in Figure 2(b). For completeness, we175

also display in Figure 2(c) the spectrum of the diagonal version of the inexact

method restricted to the high frequencies. Although it provides worse results

than the previous ones, it could be interesting to consider this smoother due to

its excellent parallelization properties.

4. Multigrid method180

In this section we consider the components involved in the coarse-grid cor-

rection part of the multigrid algorithm, and we analyze the performance of the
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Figure 2: Spectral pictures of (a) I − M̃−1
A,T1A, (b) I − M̃−1

A,T2A, and (c) I − M̃−1
A,D2A

restricted to the high-frequencies.

resulting multigrid method by using a two-grid local Fourier analysis. This anal-

ysis will allow us to derive the corresponding asymptotic convergence factors of

the algorithm.185

4.1. Multigrid components

We propose a monolithic geometric multigrid method for solving the quasi-

static Biot’s model for soil consolidation. The previously introduced class of

smothers based on the fixed-stress split algorithm is considered for the relax-

ation process within the proposed multigrid method. Regarding the coarse-grid190

correction part of the algorithm, a standard coarsening strategy is chosen to

construct the grid-hierarchy, which will be composed of regular triangular grids.

Standard seven-point restriction and interpolation operators are used for the

transfer of information between the meshes.

4.2. Two-grid local Fourier analysis195

The behavior of the multigrid method can be analyzed by evaluating the

error reduction associated with each particular multigrid component on the

Fourier modes previously defined. In the transition from the fine to the coarse

grid each low-frequency θ00 ∈ Θ2 is coupled with three high frequencies, giving

rise to the so-called spaces of 2h-harmonics, F4(θ00) = span{ϕh(θα1α2 , x)|α1, α2 ∈
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{0, 1}}, with θα1α2 = θ00− (α1sign(θ00
1 )π, α2sign(θ00

2 )π). Then, the coarse–grid

correction operator (Ih − Ih2hL
−1
2h I

2h
h Lh), composed of the discrete operators on

the fine and coarse grids, Lh and L2h, respectively, and the inter–grid transfer

operators: restriction, I2h
h and prolongation Ih2h, as well as the smoother Sh,

leave these subspaces invariant. This implies that the two-grid method M2h
h =

Sn2

h (Ih − Ih2hL
−1
2h I

2h
h Lh)Sn1

h , also does, and therefore M2h
h is equivalent to a

block–diagonal matrix consisting of blocks denoted by M̃2h
h (θ00) = M2h

h |F4(θ00).

In this way, one can determine the spectral radius ρ(M2h
h ) by calculating the

spectral radius of these smaller matrices, that is:

ρ = ρ(M2h
h ) = sup

θ00∈Θ2

ρ(M̃2h
h (θ00)). (19)

The two-grid analysis is the basis for the classical asymptotic multigrid con-

vergence estimates, and the spectral radius of the two–grid operator, ρ(M2h
h ),

indicates the asymptotic convergence factor of the two-grid method.

4.2.1. Local Fourier analysis results

Next, we present some results from the two-grid analysis previously intro-

duced. For these results, the material parameters are given by E = 104, ν = 0.2,

being E and ν the Young’s modulus and the Poisson ratio, respectively. From

these values, the Lamé coefficients can be obtained by the following formulas

λ =
νE

(1 + ν)(1− 2ν)
, G =

E

2(1 + ν)
.

Moreover, we consider a diagonal permeability tensor K = kI with constant k.200

In order to show that the local Fourier analysis gives very accurate pre-

dictions of the real asymptotic convergence factor of the multigrid method, in

Table 1 we compare the two-grid convergence factor ρ predicted by LFA with the

asymptotic convergence factor ρh experimentally computed by using aW−cycle.

For these tests we consider a uniform right triangular grid and also a regular205

equilateral triangular grid. However, the local Fourier analysis presented can be

performed on any regular triangular grid. We display the results for different

numbers of smoothing steps n = n1 + n2 and for a fixed value of parameter k,

13



n MA,T1 MA,T2 MA,D2

Right

1 0.45 (0.46) 0.28 (0.29) 0.28 (0.29)

2 0.28 (0.29) 0.16 (0.17) 0.16 (0.16)

3 0.20 (0.21) 0.12 (0.12) 0.12 (0.12)

4 0.16 (0.17) 0.08 (0.09) 0.08 (0.09)

Equilateral

1 0.35 (0.35) 0.17 (0.17) 0.17 (0.17)

2 0.13 (0.14) 0.05 (0.06) 0.05 (0.06)

3 0.08 (0.08) 0.03 (0.04) 0.03 (0.04)

4 0.05 (0.06) 0.02 (0.03) 0.02 (0.03)

Table 1: Comparison between the two-grid analysis convergence factors predicted by LFA

ρ and the experimentally computed asymptotic convergence factors ρh (between brackets),

for different numbers of smoothing steps n, two different regular triangular grids (right and

equilateral) and k = 10−3.

that is k = 10−3. From the table we can observe a very good agreement be-

tween the predicted values and the experimentally obtained ones, which makes210

the LFA a very useful tool for the study of the convergence of the multigrid

method based on the fixed-stress split relaxation.

Also, we observe that the diagonal version of MA,T2, that is, smoother

MA,D2 provides similar results, resulting in a very appealing alternative due to

its parallelizable properties.215

Robustness with respect to the permeability. Next, we want to show the robust-

ness of the proposed class of smoothers with respect to the permeability. For

this purpose, in Table 2 we display the two-grid convergence factors provided

by LFA for different values of the permeability k and an increasing number of

smoothing steps n from n = 1 to n = 4. We can observe that the triangular220

smoothers provide a very robust behavior for different values of the permeabil-

ity, and that the obtained asymptotic convergence rates are around 0.1 with

only two smoothing steps. The diagonal version also provides very good results

identically to the corresponding triangular version.
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Right Equilateral

n \ k 1 10−3 10−6 1 10−3 10−6

MA,T1

1 0.45 0.45 0.45 0.35 0.35 0.35

2 0.28 0.28 0.28 0.13 0.13 0.13

3 0.20 0.20 0.20 0.08 0.08 0.08

4 0.16 0.16 0.16 0.05 0.05 0.05

MA,T2

1 0.28 0.28 0.28 0.17 0.17 0.17

2 0.16 0.16 0.16 0.05 0.05 0.05

3 0.12 0.12 0.12 0.03 0.03 0.03

4 0.08 0.08 0.08 0.02 0.02 0.02

MA,D2

1 0.28 0.28 0.28 0.17 0.17 0.17

2 0.16 0.16 0.16 0.05 0.05 0.05

3 0.12 0.12 0.12 0.03 0.03 0.03

4 0.08 0.08 0.08 0.02 0.02 0.02

Table 2: Two-grid analysis convergence factors predicted by LFA for different values of pa-

rameter k, by using different numbers of smoothing steps n, and considering two different

uniform triangular grids (right and equilateral).

4.3. Multigrid on semi-structured grids225

To deal with irregular domains, it is very common to apply a regular re-

finement process to an unstructured input grid to obtain a particular hierarchy

of globally unstructured grids, but with structured patches. The basic idea to

construct the hierarchy of semi-structured meshes is to begin with a purely un-

structured grid, which will be our coarsest mesh, and to apply several steps of230

regular refinement to each element. This is done by dividing each triangle into

four congruent triangles, connecting the midpoints of their edges (see Figure 3),

and so forth until the mesh has the desired meshwidth to handle the fine scale

features and to approximate accurately the solution of the problem. The initial

unstructured mesh is chosen however to adequately represent the geometry of235

the domain, taking into account the large scale structure, that is, the shape and
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the material properties.

Figure 3: Coarsest unstructured grid and the semi-structured meshes obtained after one and

two regular refinement steps.

The semi-structured grid framework serves as the basis of an efficient imple-

mentation in terms of memory consumption, parallelization and performance

of the proposed solver. First, the regularity of the structured regions makes240

that transfer operations between grids can be defined geometrically, allowing

a straightforward implementation of a geometric multigrid algorithm. More-

over, explicit assembly of the global matrix is not necessary in the structured

patches of the grid and then the discrete operator can be implemented using a

stencil-based data structure [21].245

5. Numerical results

In this section we illustrate the good convergence properties of the proposed

multigrid based on the fixed-stress split smoothers through two numerical ex-

periments. For the following tests we have considered the diagonal version of the

fixed-stress split smoother, that is MA,D2, since it provides convergence rates250

similar to the triangular version and because of its parallelizable properties.

5.1. Poroelastic footing problem

For the first numerical experiment we deal with the so-called poroelasticity

footing problem [22], which is solved on the computational domain Ω = [0, 1]×

[0,
√

3/2], represented in Figure 4 (a). The base of this domain is assumed to be255

rigid, whereas a uniform load of intensity σ0 = 104N/m2 is applied in a strip of
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(a) (b)

Figure 4: (a) Computational domain and boundary conditions for the poroelastic footing

problem. (b) Coarsest grid in the hierarchy of semi-structured meshes.

length 0.4, at the centered part of the upper boundary. Except the upper part,

which is assumed free to drain, the rest of the boundary is impermeable. More

concretely, we can split the boundary Γ = ∂Ω into three different parts given

by260

Γt,1 = {(x, y) ∈ Γ | y =
√

3/2, 0.3 ≤ x ≤ 0.7},

Γt,2 = {(x, y) ∈ Γ | y =
√

3/2, 0 < x < 0.3 or 0.7 < x < 1},

Γc = Γ\{Γt,1 ∪ Γt,2}.

Then, the imposed boundary conditions are as follows,

u = 0 and ∇p · n = 0 on Γc,

σ′n = t on Γt,1, σ′n = 0 on Γt,2, p = 0 on Γt,1 ∪ Γt,2,

where t = (0,−σ0)t gives the traction applied on the top boundary part.

Regarding the material parameters, we are going to study three different

cases: one corresponding to an homogeneous porous medium, one correspond-

ing to two layers with different physical parameters and one corresponding to265

random heterogeneous materials.
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5.1.1. Homogeneous porous medium

In this first case, the material properties of the porous medium are given

by E = 3 × 104 and ν = 0.2. The viscosity of the fluid is considered as µf =

10−3 and we will consider different values of parameter k defining the diagonal270

permeability tensor K = kI.

For the application of the proposed multigrid method, we need to define a

hierarchy of grids. This is done by choosing as the coarsest triangulation the one

depicted in Figure 4 (b), which is composed of 10 triangles, and to apply several

iterations of a regular refinement process to each element until achieving a target275

grid with the desired fine scale to approximate the solution of the problem. Once

the hierarchy of grids is built, we can apply the geometric multigrid method

based on the fixed-stress split relaxation to solve the poroelastic footing problem.

To do this, we will consider an F− cycle with two pre-smoothing steps and one

post-smoothing step. We are interested in the behavior of the algorithm for280

different values of the physical parameters. Thus, in Table 3, we show the

numbers of iterations that are needed to reduce the initial residual in a factor

of 10−10 when different finest grids are considered and for different values of

the permeability, including very small ones, which are representative of real

applications. We can observe that the performance of the solver is independent285

of the space discretization parameter and also is very robust with respect to the

permeability value.

5.1.2. Two-layered porous medium

Secondly, we want to investigate the performance of the proposed multigrid

method when a two-layered porous medium is considered. The computational290

domain is the same as given in Figure 4 (a), which is assumed to be composed

of two equally sized layers of porous material with different physical properties.

The values of the material parameters on each layer are given in Figure 5.

We solve such poroelastic problem by applying the same multigrid method

used for the homogeneous porous media test. Notice that the only difference is295

that the parameter appearing in the fixed-stress split smoother will be different

18



τk/µf 6 levels 7 levels 8 levels 9 levels 10 levels

10−2 11 11 11 11 11

10−4 11 11 11 11 11

10−6 11 11 11 11 11

10−8 10 11 11 11 11

10−10 12 11 10 10 11

10−12 12 12 12 12 12

Table 3: Number of iterations necessary to reduce the initial residual in a factor of 10−10 for

different physical parameters and different fine grids obtained by using different numbers of

refinement levels.

from one layer to another, since it depends on the Lamé coefficients λ and G.

In Figure 6 we show the history of the convergence of the proposed multigrid

method for different target grids obtained by applying different numbers of

refinement levels. The reduction of the maximum residual is plotted against300

the number of iterations, and we observe an independent performance of the

algorithm with respect to the space discretization parameter. Moreover, we

can see that in all cases around ten iterations are enough to reduce the initial

maximum residual in a factor of 10−10.

5.1.3. Random heterogeneous materials305

In this third case, we study the robustness of the multigrid method in het-

erogeneous random media. The permeability is modeled as a lognormal random

field, i.e. logK is a zero-mean Gaussian random field. It is well known that

a lognormal random field may accurately represent the permeability of a het-

erogeneous porous medium [23]. To generate samples of the Gaussian random

logK, we have used the covariance function

C(r) = σ2
c exp

(
− r

λc

)
characterized by the correlation length λc and the variance σ2

c , and where r is the

distance between two points. In the numerical experiment, we use two different
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Figure 5: Computational domain and material properties for the two-layered poroelastic foot-

ing problem.

set of parameters, (λc, σc) = (0.3, 1) and (λc, σc) = (0.1, 3). As an example,

in Figure 7, we present a possible sample of the logarithm of the permeability

field, logK, using each of the two sets of parameters. It can be observed that310

very large fluctuations happen in the permeability field for the case with σc = 3.

Moreover, it is assumed that the Young’s modulus as well as the Poisson ratio

are independent Gaussian random variables.

Notice that the parameter involved in the fixed-stress split smoother depends

on the mechanical parameters of the medium. This yields that in this experiment315

such parameter must be calculated on each element. All the random parameters

defined on the finest grid are restricted to each coarse grid of the hierarchy as

the average value of the neighbouring grid points.

The performance of the proposed multigrid method based on the fixed-stress

split smoother for this experiment with random heterogeneous materials is very320

satisfactory as in the previous cases. We have computed an average of the

convergence factors obtained after 50 realizations of the random field, and a

convergence rate of 0.11 is obtained in the case of (λc, σc) = (0.3, 1) . When

(λc, σc) = (0.1, 3), however, the very large fluctuations of the permeability field

cause a slight deterioration of the convergence of the multigrid method, and325

20



0 5 10 15

iterations

10
-5

10
0

10
5

10
10

10
15

m
a

x
im

u
m

 r
e

s
id

u
a

l

6 levels

7 levels

8 levels

9 levels

10 levels

Figure 6: History of the convergence of the multigrid algorithm based on the fixed-stress split

relaxation for the two-layered poroelastic footing problem for different numbers of refinement

levels.

the obtained mean convergence factor is around 0.33. Notice that even using

a standard coarse-grid correction operator the performance of the multigrid

method is still satisfactory.

5.2. Poroelastic problem on a cylindrical shell

As the second numerical experiment, we consider a poroelastic problem on330

a cylindrical shell of deformable porous material in which a uniform load is

applied at the inner boundary. In particular, a fixed pressure p = 1 is imposed

in the inner surface of the cylinder, which produces a uniform load described by

σn = (cos θ, sin θ). The outer boundary, which is impermeable, is constrained by

a rigid body. More concretely, the considered boundary conditions are depicted335

in Figure 8, where also the computational domain is shown. The considered

physical parameters are as stated in the previous numerical experiment, but in

this case the permeability is fixed to be k = 10−6.

In order to apply the fixed-stress split relaxation based multigrid, a hierarchy

of grids must be defined. For the unstructured coarsest grid, we have chosen340

the triangulation shown in Figure 9 (a), which is composed of 18 quite regular

triangles. A regular refinement process is applied to this triangulation, giving

rise to a hierarchy of semi-structured meshes. Due to the curvature of the
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Figure 7: Examples of the logarithm of the permeability field (a) using parameters (λc, σc) =

(0.3, 1) (b) using parameters (λc, σc) = (0.1, 3)

Figure 8: Computational domain and boundary conditions for the poroelastic problem on a

cylindrical shell.

boundary, the refinement procedure is performed in the way that the more

we refine the more the grid approximates the real boundary of the domain.345

More concretely, the refinement of a triangle of the coarsest grid which has two

vertices on the boundary is performed in the following way: the new boundary

point is taken as the intersection of the perpendicular bisector of the edge with

the corresponding boundary arc. For instance, the grid obtained after four

refinement levels is depicted in Figure 9 (b) as an example, where it can be seen350

how well the refined grid approximates the real boundary of the domain.
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Figure 9: (a) Coarsest grid in the hierarchy of semi-structured meshes, and (b) grid obtained

after four regular refinement levels.

Once obtained the hierarchy of meshes, we apply the proposed geometric

multigrid method based on the fixed-stress split smoother to solve the poroe-

lastic problem on the cylindrical shell. In Figure 10 we show the history of the

convergence for different target grids obtained by applying different numbers355

of refinement levels, and by using an F−cycle with two pre- and one post-

smoothing steps. We can observe that we obtain a convergence independent of

the space discretization parameter and that few iterations are enough to obtain

the desired convergence.

Remark. Given the thinly-layered nature of many geologic formations, the360

use of meshes with thin elements with very large aspect ratios can be appealing

in reservoir simulations. Under such challenging test-conditions the convergence

of multigrid methods based on point-wise smoothers, as those considered here,

is expected to deteriorate as the grid becomes more anisotropic, and then ap-

propriate block-wise smoothers or semi-coarsening strategies may be required.365

For example, in the experiment with smoothly random heterogeneous materials,

if a thin rectangular domain with an aspect ratio of 10:1 is considered as our do-

main, triangulated with two right triangles as the coarsest grid, we can observe

a deterioration of the convergence of the proposed multigrid method based on
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Figure 10: History of the convergence of the fixed-stress split smoother based multigrid method

for the cylindrical shell poroelastic problem for different numbers of refinement levels.

the fixed-stress split method from 0.1 to a convergence rate of 0.9. To overcome370

this difficulty, we have implemented a line-wise version of the fixed-stress split

method which consists to simultaneously update all the unknowns located at the

line where the strong coupling occurs. By using this smoother, the convergence

rate that we obtain with the considered F (2, 1)-cycle is improved to 0.03.

6. Conclusions375

In this paper we have proposed a new smoother within a multigrid method

for solving the Biot’s consolidation problem. This relaxation is based on the well-

known fixed-stress iterative coupling scheme, whose parameters only depend on

the physics of the problem. The proposed monolithic multigrid method has

the advantage of being a fully coupled method which decouples the flow and380

geomechanics problems in the smoothing part of the algorithm. It has been

shown that the performance of the algorithm is very satisfactory independently

of the values of the physical parameters, and its application to different problems

in semi-structured triangular grids makes it suitable for dealing with problems

in reasonably complex domains.385
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