
An Ontology connected to several data repositories: query
processing steps

Alfredo Goñi
Depto. LSI. Universidad del Paı́s Vasco

alfredo@si.ehu.es

http://siul02.si.ehu.es/˜jirgbdat

Arantza Illarramendi
Depto. LSI. Universidad del Paı́s Vasco

jipileca@si.ehu.es

Eduardo Mena
Depto. IIS. Universidad de Zaragoza.

mena@prometeo.cps.unizar.es

José Miguel Blanco
Depto. LSI. Universidad del Paı́s Vasco

jipblarj@si.ehu.es

Abstract
The great expansion of communication networks has made avail-
able to users a huge number of heterogeneous and autonomous data
repositories that present different structures/organizations, query
languages and data semantics. In that context it is clear that new
information retrieval techniques with a strategy that focuses on in-
formation content and semantics are needed. We propose to use
domain specific Ontologies to capture the information content of
such repositories whenever available. We describe such Ontolo-
gies using a system based on Description Logics. In this paper
we present all the stages of the processing of a query formulated
over an Ontology when the answer must be found in the underly-
ing data repositories. Those stages make up a subpart of the global
query processing strategy defined for a set of loosely-coupled On-
tologies. We show first how the query is transformed into a seman-
tically equivalent one and how inconsistent queries are detected.
Then, we explain the test to verify if the query can be answered
from the cache memory. Next, we present a set of heuristics used
during the query decomposition process. Later on, we show how to
optimize plans associated to subqueries that access the underlying
data repositories and finally we illustrate how the answers retrieved
from the repositories are correlated in order to generate the query
answer.
Keywords: Ontologies, Knowledge-based systems, Query Pro-
cessing.

1 Introduction
On the global information infrastructure, the great expansion
of communication networks has made available to users a
huge number of heterogeneous and autonomous data repos-
itories. However, these repositories present different struc-
tures/organizations, query languages and data semantics,
making it very difficult for the users to access the data stored
in them.

A possible solution to lighten the problem of lack of
uniformity when dealing with available repositories consists

of defining new information retrieval techniques with a
strategy that focuses on information content and semantics.
We propose to represent intensional descriptions of the
objects in the repositories as metadata, introducing in this
way a semantic level over the repositories. In the existing
syntactic-keyword navegational approaches, in which the
query is a set of keywords, the user has to do most of the
information filtering and correlation [Alt, Inf].

In order to define a semantic level over a repository differ-
ent techniques can be used. We use one or more pre-existing
Ontologies, characterizing information in different domains,
to create the semantic level. An Ontology may be defined
as the specification of a representational vocabulary for a
shared domain of discourse which may include definitions
of concepts, relations, functions and other objects [Gru93].
Ontologies have been used to describe information content
in repositories independent of the underlying syntactic rep-
resentation of the data [KS96, MP97].

In our proposal, Ontologies are described using a sys-
tem based on Description Logics (DL) [BBMR89] and the
mapping information� is expressed using the extended re-
lational algebra. Reasoning mechanisms from DL are use-
ful to perform query optimization and in particular semantic
and caching optimization. DL systems are also appropriated
to offer intensional answers to the users. Mapping descrip-
tions play a key role in encapsulating the heterogeneity due
to different formats and organization of the data in the var-
ious repositories. They act as an intermediary language be-
tween the DL expressions and the query languages of the
local repositories. Our focus in this paper is to present the
query processing steps defined for searching efficiently the
data stored in one or more data repositories that may con-
tain overlapping data under one relevant Ontology. With re-
spect to other related works that also consider the problem
of accessing efficiently underlying data repositories from se-
mantically rich views [ASD�91, AKS96, CHS91, FRV96,
LSK95], our particular contribution consists of incorporating
new enhancements in the different query processing steps.
So, we show: 1) the definition and use of the notion of Most
Immediate Superconcepts in the step of semantic transfor-

�Mapping information is the information that relates Ontologies with
one or more repositories where the actual data are stored.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Universidad de Zaragoza

https://core.ac.uk/display/289993964?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

mation and decomposition. This notion allows one to obtain
some terms that do not appear in the query but that can be
used to obtain a better query execution plan, as well as to
eliminate constraints and redundant terms; 2) a test to decide
if the initial query can be answered with the data stored in
the cache memory; 3) a set of heuristics that make an effi-
cient query decomposition; 4) how to optimize the mapping
information corresponding to the subqueries previously de-
composed and that have to be processed in the underlying
repositories.

In the rest of the paper we present first the overview of
the query processing. In the following sections we focus
on the different steps of the query processing: semantic
transformation, cache optimization, query decomposition,
optimization of the mapping information and correlation of
the answer.

2 Query Processing: an overview
Five main steps are followed during the query processing:
parsing of the query; semantic transformation, cache opti-
mization and query decomposition; query processing in the
underlying repositories; loading of the answers brought from
the repositories in the cache memory; and, query processing
over the cache memory.

During the parsing step, lexical and syntactical errors are
detected. In our case this is achieved by using the parser
of the DL system. In the following sections we explain
the features of the second and third steps. Finally we do
not explain the last two steps because there are not new
enhacements in them.

2.1 Query expression
The general form of a query formulated over an Ontology
described using a DL system is:

[rf(role) for] getall concept description

where rf(role) means to project the role values for that
concept description. The conditions that form part of the
concept description are a conjunction of concept names and
role restrictions. A concept� groups individual elements
of the real world. A role represents a binary relationship
between concepts or between concepts and scalar data types.
However what distinguishes the notion of concept from
the class specification in semantic data models or object-
oriented databases, is that it is possible to describe concepts
using intensional descriptions phrased not only in terms of
necessary properties that must be satisfied by their instances
(in this case the concept is called a primitive concept and
is denoted as �� like using notation of the BACK system
[vLNPS87]) but also in terms of necessary and sufficient
properties (in this case the concept is called a defined concept
and is denoted as ��) [Bor92]. The role restrictions can be
cardinality restrictions like atleast(n,role) or atmost(m,role)

�In some DL systems, the names class and attribute are used instead of
concept and role.

or value restrictions like all(role,concept type), role: value
and role: close(value)�

Queries in DL systems are considered as new concepts
that describe the conditions that the instances that constitute
their answers must satisfy. Queries are classified in the On-
tology. The classification mechanism consists of discovering
the subsumption relationships between concepts when a new
concept is declared, i.e. the new concept is automatically
located into the hierarchy of terms. One concept subsumes
another one if in all possible circumstances, any instance of
the second one must be in the first one. Using a DL system, it
is possible to know whether one concept is subsumed by an-
other one simply by looking at the definition of the concepts,
without accessing the instances.

2.2 Example query
To illustrate the query processing approach, we show the
different steps performed when answering the next query:

rf(number-of-pages) for getall document and
periodical publication and multimedia document and

atleast(1,doc-author-name) atmost(1,doc-author-name) and
all(doc-author-name,organization)

that retrieves the page numbers for all the documents that
verify the following conditions: they are periodical, multi-
media, with only one author and that the author name corre-
sponds to an organization. For example, �25,JavaWorld1�
could be an element of the answer where JavaWorld1 is the
instance that refers to a number of the JavaWorld on-line
publication, published in http://www.javaworld.com and con-
sidering that the organization IDG is the author.

The previous query is formulated over the STANFORD-I
Ontology (http://siul02.si.ehu.es/˜jirgbdat/OBSERVER) and that
is a subset of the Bibliographic-Data Ontology [Gru94]
developed as a part of the ARPA Knowledge Sharing Effort.

3 Semantic Transformation
The semantic transformation consists of finding a semanti-
cally equivalent query to the user query. For that, the set of
Most Immediate Superconcepts (MIS) is calculated. Let T
= fT�,� � �,TP g be the set of concepts and roles that form the
Ontology, and let C = fC�,� � �,CNg be the set of concepts
and role restrictions that form the concept description of the
query then the set MIS� corresponding to the query is:

MIS=fDj(D�T �D�C)�(D subsumes(C� and��and CN))
��E(E�MIS�E��D �E does not subsume D)g

The concept description of the query C, C� and � � � and
CN , is semantically equivalent to the intersection of all the
immediate superconcepts in the set MIS D� and � � � and
DM . In [GIMB97] the proof of the previous statement

�The restriction role: close(value) means that the role must take that
value and only that.

�In order to get the MIS set the system uses the subsumption notion.

appears and also it is reasoned that the complexity of the
operation to calculate the MIS set is polynomial.

3.1 Application to the example
The MIS set corresponding to the query presented in
section 2.2 is:

fmultimedia document, atleast(1,doc-author-name),
atmost(1,doc-author-name), magazineg

By calculating the MIS set some more specific concepts
to be used in the next steps and that do not appear in the
initial query are detected (in the example magazine) and
other redundant concepts and role restrictions of the initial
query are identified (in the example document, all(doc-
author-name,organization) because they do not belong to the
MIS set).

The semantically equivalent query is therefore

rf(number-of-pages) for getall multimedia document and
atleast(1,doc-author-name) and atmost(1,doc-author-name)

and magazine

3.2 Detection of inconsistent queries and generation of
intensional answers

Using the MIS set, the initial query may be detected as
inconsistent and also intensional answers may be given to
the user.

It is detected that the query is inconsistent when getall
nothing is a semantically equivalent query to the user query,
that is, when nothing is in the set of Most Immediate
Superconcepts.

For example, if the query were

getall multiple-author-document and
atmost(1,doc-author-name)

then it would be detected as inconsistent due to multiple-
author-document is defined as

multiple-author-document �� document and
atleast(2,doc-author-name)

and therefore nothing would be in the MIS set of the
previous query.

When working with DL systems, it is also possible to
give intensional answers, that is, answers in terms of the
descriptions that the instances that form the extensional
answer satisfy. These intensional answers can be offered to
the user before the extensional answer is ready. Two different
types of intensional answers are possible: Most Specific
Formulation (MSF) of the query and Extended Formulation
(EF) of the query. The first one is formed by the elements
of the MIS set corresponding to the query (notice that
the MSF expression is the semantically equivalent query)
and the second one is formed by recursively substituting the
concepts in the initial query by their definitions. Both types
of intensional answers (MSF and EF) are offered to the user

by request but, in particular, the EF is also offered when
the initial query is inconsistent, because it becomes more
explicit where the inconsistency is.

The EF of the previous inconsistent query, getall multiple-
author-document and atmost(1,doc-author-name), appears
below, where the inconsistency can be identified.

getall document and
atleast(2,doc-author-name) and atmost(1,doc-author-name)

4 Cache optimization
When dealing with Ontologies connected to several data
repositories, it is worth having some data cached within
the Ontologies in order to avoid accessing the underlying
repositories each time a user formulates a query. Then,
during the query processing, it is necessary to detect if the
query can be answered with the data stored in the cache. In
general, it is not easy to verify if the answer to a query is
contained in the cache memory because it depends on the
query language and how the cached data are represented.
Furthermore, verification that the query is not cached should
be as fast as possible.

In this section we state first the notion of explicit and
implicit cache, then the test to decide if the query answer
is in the cache memory and finally we point out the problem
of finding the contents of the optimal cache memory and give
a possible optimal cache memory for the example.

4.1 Explicit and implicit cache memory
Working with DL systems it is possible to cache explicitly
the instances of concept descriptions and the values of roles.
Taking into account that queries are considered as new
concepts (possibly with projection of roles) that means that
query answers can be explicitly cached. Moreover, there are
other queries built using as base sets only sets in the explicit
cache, that are implicitly cached.

A concept C that belongs to the Ontology, C � T ,
is explicitly cached by storing the instances in the cache
memory and adding getall C to the set ECQ.

A role r � T is explicitly cached for a concept C � T
by storing their corresponding values in the cache memory
and adding rf(r) for getall C to the set ECQ. A role can be
explicitly cached only for concepts that are explicitly cached.

The set ECQ is formed by all the concept descriptions and
roles that are cached.

A query q � [rf(r) for] getall C is implicitly cached,
denoted by q � ICQ, if all the terms (concepts and roles)
that form part of the semantically equivalent query to q are
cached (either implicitly or explicitly).

4.2 How cached data can be identified
The problem of verifying if a query can be answered
completely with the contents of the cache memory is similar
to the problem of verifying if a query is implicitly cached
by the set of explicitly cached queries. The only difference

is that the concept expression of the query can be anyone (q
� [rf(r) for] getall C� and � � � and CN instead of q � [rf(r)
for] getall C). The test to decide if the query answer is in the
cache memory is the next one:

A query q� [rf(r) for] getallC� and � � � andCN is cached if
all the concepts whose names (Di) appear in the setMIS �
fD�,� � �,DMg corresponding to q are explicitly or implicitly
cached (getall Di � ECQ 	ICQ) and all the roles that
appear in the set MIS and the roles to be projected in the
query (rj) are also cached (rf(rj) for getall D � ECQ	ICQ
where D subsumes C� and � � � and CN)

The complexity of the previous test is polynomial because
it is based on verifying if all the elements in the setMIS are
cached, that is, if they are in the previously computed ECQ
and ICQ sets.

Another novelty of our approach is that it does not matter
how the user formulates the query

getall document and atleast(2,doc-author-name)
getall atleast(2,doc-author-name) and document

getall biblio thing and atleast(2,doc-author-name)
getall multiple author document

because theMIS set fmultiple author documentg is calcu-
lated first and the verification is made based on this set using
the ECQ and the ICQ notions.

4.3 Contents of the optimal cache memory for the
example.

A different problem not directly related to the query process-
ing steps but that needs a solution is to define the contents of
the optimal cache memory. In [GIMB97] we present an ap-
proach to define an optimal cache, the cost model and the
algorithm used to decide which queries are worth caching.
The algorithm has to calculate the set ECQ that produces the
greatest benefit for a limited size of the cache memory. In
order to know the benefit produced by a set ECQ then its
corresponding set ICQ has to be calculated and a set of pa-
rameters that measure the benefit have to be available. We
use an algorithm based on the A�, instead of an exhaus-
tive search algorithm, that calculates quasi-optimal solutions
and that our experimental results show that is more efficient.
Moreover, the algorithm is not performed during query pro-
cessing but between sessions (at night for example). Within
a session the LRU (Least Recently Used) strategy is used as
the strategy for replacement in the cache memory.

The algorithm proposed is:

1) create the initial state
2) while exists a state S not visited yet
2.1) build the new states resulting from adding a new query to the ECQ
and calculate the new ICQ, benefit B and cost C
2.2) order the list of states by decreasing order of benefit B
2.3) eliminate the states �ECQ��ICQ�� B�� C�� where there exists another
state �ECQ��ICQ�� B�� C�� with cost (C��C�) and benefit (B��B�)

Finally, in order to follow with the rest of the query
processing steps, let us suppose that the content of the cache
memory, as calculated by the previous algorithm, is:

fmultimedia document, agent, organization, publisher,
university, [agent name, agent]�, [doc title,

multimedia document]g

It can be seen that the example query cannot be completely
answered with the contents of the cache memory because
its corresponding semantically equivalent query expression
contains terms (magazine, doc-author-name and number-of-
pages) that are not in the cache memory.

5 Query Decomposition
Query decomposition implies to obtain and analyze all
the possible combinations of subqueries that can be made
on the underlying repositories in order to get the query
answer. In this section we present the heuristics defined in
order to perform an efficient query decomposition and their
application to the example.

5.1 Heuristics

In general, query decomposition is a very complex task
because there can be many different ways of decomposing
a query into sets of subqueries and statistic information and
access paths in the local systems are not available. For that
reason, instead of calculating all the possible partitions	, that
is sets of subqueries, that can be made starting from the
semantically equivalent query [rf(r) for] getall D� and � � �

and DM and estimating the cost for each partition, we have
defined a strategy that avoids searching all the possibilities
by applying a set of heuristics. The strategy consists of, first
of all, obtaining the terms of the query that are not cached
to which the heuristics H1, H2, H3 and H4 (defined below)
are tried to apply. After this step it is known the set of terms
that necessarily have to be in at least one of the decomposed
subqueries to answer from the data repositories. Next, those
non-cached terms are grouped into subqueries that have to
be answered from the same repository to which the heuristics
H5, H6 and H7 are tried to apply. H5 and H6 try to reduce the
size of the subqueries and H7 tries to reduce the computation
cost. The general goals of these heuristics are:

 Goal 1: To avoid that the answer sent from each
repository is too large
.

 Goal 2: To try that the computation cost in each
repository is small, unless it is needed to reach goal 1.

�It means that the role agent name is cached for the concept agent.
�If the query is composed by n terms, there are as much possible

decompositions as the number of possible partitions in a set of cardinality n.
Moreover, the possibilities are even more because a term can appear in more
than one subquery and a defined concept can be substituted by its definition.

�In the following, terms large and small are relative to the limited size
of the cache memory where the answers are stored during each session.

 Goal 3: To try not to bring parts that are already cached,
unless it is needed to reach the previous goals.

 Goal 4: To try to send subqueries that satisfy the
two first goals to be executed in parallel in different
repositories. This avoids communication cost and a
greater computation cost among the repositories.

Heuristic H1: Substitute a non-cached defined concept
without alternative� mapping information by its most spe-
cific definition. In general, it is not worth bringing the in-
stances corresponding to a defined concept from the reposi-
tories because there may happen that an already cached con-
cept or a redundant element is brought from the repositories.
Once the defined concept is substituted by its most specific
definition the redundant elements in that definition are re-
moved.

Heuristic H2: Maintain a non-cached defined concept with
alternative mapping. The non-cached defined concept is
not substituted by its most specific definition because it
mainly favors goal 2 (alternative mapping informations are
provided for defined concepts only if they are better than the
automatically calculated from their definitions).

Heuristic H3: Substitute a non-cached primitive concept
by one of its non-cached subconcepts only if the rest of the
subconcepts are all cached and if it is the total generalization
of all its subconcepts. A primitive concept that is not cached
and that is the total generalization of several subconcepts
where only one is not cached can be substituted by the only
non-cached subconcept. This favors the goals 1, 2 and 3.

Heuristic H4: Not to send a subquery with projection of a
role that is already cached. If the role r to be projected in the
query is cached for the query concept, then it is not needed
to retrieve the role values from the underlying repositories
but only the instances of the query description. Once
answers to the subqueries are loaded into the cache memory
then it is possible to retrieve the role values corresponding
to the instances that satisfy the query description. This
heuristic favors the goal 1 because the answer sent from the
underlying repositories is smaller (role values are not sent).
It also favors the goal 3, because some parts already cached
are not brought again: the role values.

Heuristic H5: Reduce the size of the answer for a subquery
within a repository. If the size of the answer for a subquery
sent to a repository is too great, specially if the description is
unsafe�, then that size has to be reduced by adding some term
to the subquery that can be answered in the same repository
and that reduces the size because the intersection of all the
terms is calculated. If the terms fE�,...,Epg have to be
brought from the same repository and it is considered that

�Concepts and roles may have more than one mapping information to
which we call alternative mapping informations.

	A query expressed in DL is unsafe if only contains restrictions of the
type all or atmost [Dev93].

the size of the answer is too great then another term Eq

belonging to the initial query or that subsumes the query
has to be added to the subquery. Eq has to verify that it
does not subsume E� and ... and Ep because Eq would not
reduce the size of the answer. It is convenient that Eq has
the smallest possible size in order to reduce the size of the
answer to E� and ... and Ep and Eq , and that it does not have
a high cost to compute Eq in the repositories. If statistics are
not available then it can be supposed that primitive concepts,
restrictions of the type role: value, and defined concepts with
alternative mapping do not have a high computation cost,
but restrictions of the type atleast, atmost and all have a high
cost. The best terms to be added are: 1) a non-cached term of
the query with an alternative mapping in the same repository
and 2) a cached term of the query that can be retrieved from
the same repository. If there are not terms that verify these
conditions then the heuristic H6 has to be applied.

Heuristic H6: Merge subqueries whose sizes of answer
have to be reduced with subqueries with smallest sizes of
answer from other repositories. If the size of the answer
to a subquery in a repository is too great and the heuristic
H5 cannot be applied any longer, then the merge with other
subqueries in other repositories has to be made, in order to
reduce that size. With this heuristic the goal 4 is favored.

Notice that this heuristic is applied instead of calculating
the best set of subqueries to be merged which is a costly
process as we explain next. Let us suppose that there are
n subqueries N�� � � � � Nn to bring from n different nodes
and that N�� � � � � Nm (with m � n) need to reduce its size.
For that, the response times and sizes of the answers of all
the different combinations among Ni (� � i � n) would
have to be estimated and the best one chosen. As statistics
corresponding to the repositories are not available then it
would be needed to use the statistics stored about concepts
and roles of the Ontology (response times and sizes of the
answers) and estimate the response times and sizes for each
Ni.

Heuristic H7: Transform a subquery with several restric-
tions over the same role whose size is not too great by a
subquery with the projection of that role. If the size of the
extension of a role is not too great and there are several re-
strictions over that role, then the role values can be brought
instead of the conjunction of the restrictions. This favors
goal 2 (but not goal 1) and that is why it is worth only if the
size of the extension is really small enough. In particular if
there exists a restriction of the form all(r,c) and c is cached,
then to compute all(r,c) in the repositories has a high cost
due to the kind of mapping information corresponding to it
and it is more interesting to bring the values of the role r.

The algorithm used to apply the heuristics appears in the
following. The complexity of the algorithm is polynomial in
the number of terms in the Ontology, elements in the query
and number of repositories involved in the query.

f find the cached and non-cached parts of the query g
1) initialize cached and non-cached with elements in MIS
that are cached and not cached respectively
2) for each element C in non-cached
2.1) try to apply H1 or H2 to C and update cached and non-cached
2.2) try to apply H3 to C and update cached and non-cached
2.3) try to apply H4 and update cached and non-cached
f obtain subset of subqueries to ask in the repositories g
3) initialize subqueries with subsets of non-cached parts to
be brought from same repository node
4) for each subquery S in subqueries
4.1) try to apply H5 to S and update S in subqueries
4.2) try to apply H7 to S and update S in subqueries
5) try to apply H6 to queries in subqueries

The general ideas behind the previous heuristics agree
with other works that also consider their definition for a
similar context. However, our contribution consists of
defining them in the context of DL systems where there exist
defined and primitive concepts and where some of them may
be already cached.

5.1.1 Application to the example

In this subsection we show the application of some heuris-
tics to the semantically equivalent query appearing in sub-
section 3.1 that corresponds to the query presented in the
2.2, and supposing that the contents of the cache memory
are those defined in the 4.3.

As there are some elements in the set MIS that are not
cached (magazine and doc-author-name) then heuristics are
applied to the semantically equivalent query.

after having tried the set of heuristics, only H2 and H5
have been applied and therefore it has been decided that the
queries Q1’ and Q2 have to be answered in the underlying
repositories (called rep1 and rep2.

Q2: getall magazine and atleast(1,doc-author-name) and
atmost(1,doc-author-name)

fin repository rep1g

Q1’: rf(number-of-pages) for getall multimedia document
fin repository rep2g

that are considered to be of a reasonable size to be loaded
into the cache memory once they have been answered from
the underlying repositories.

6 Query Processing in the Repositories

The set of subqueries that have been selected in the previous
step have to be asked in the underlying repositories. Be-
fore generating the expressions in the query languages of the
repositories involved, it is convenient to optimize the map-
ping information that has been expressed in a language inde-
pendent of the query languages of the underlying reposito-
ries: the extended relational algebra. Therefore, in this step,
for each DL subquery a corresponding optimized mapping
information (that is, a more simplified extended relational
algebra expression) is generated.

Definition of mapping information for a concept. LetE be
a set of entities, a mapping information for a concept defined
upon E is a set� of triples �R,(atr�,� � �,atrn),T�, where
R is an extended relational algebra expression upon E;
atr�� � � � � atrn are attributes of R; and T � D� � � � ��Dn,
where Di is the domain of the attribute atri for all i between
� and n.

Definition of mapping information for a role. Let E be a
set of entities, a mapping information for a role defined upon
E is a set of 6-tuples

�Rrl,(atrd�,. . . ,atrdn),(atrn�,� � �,atrnm),TC ,frl,Tr�,

where Rrl is an extended relational algebra expression upon
E; atrd�� � � � � atrdn and atrn�� � � � � atrnm are attributes
of Rrl; TC=T��. . .�Tn, where Ti is the domain of the
attribute atrdi for all i between � and n; frl is a function
with definition frl:D� � � � ��Dm � T , where Dj is the
domain of the attribute atrnj for all j between � and m and
T is the range of the attribute. Finally, Tr=D��. . .�Dm.

Taking into account that the mapping information has al-
ready been defined for all the concepts and roles of the On-
tology, the mapping information for all the constructors that
may appear in subqueries: atleast(n,role), atmost(m,role),
all(role,concept type), role: value, role: close(value) and for
combinations of concepts has to be defined. Furthermore,
this mapping can be optimized when some information about
the underlying data repositories is known, e.g., functional,
inclusion and exclusion dependencies, ranges of values for
attributes, information about null values, and when some
combinations of constructors happen. Due to space limita-
tions we present the mapping information only for one con-
structor, atleast(n,role), and one combination, atleast(n,role)
and atmost(m,role), but they show the kind of optimizations
performed.

6.1 atleast(n,role)

The constructor atleast(n,role) defines a concept, whose
instances are the instances of the concept domain of role
and that take at least n values for that role. Remember
that the mapping for a role defines the pairs (instance,value)
corresponding to a role extension.

Let r be a role, Sr the mapping of r and n an in-
teger greater than 0, the constructor atleast�n� r� has
Satleast(n,r)�� as mapping, where

�
That set f �R�,(atr�� ,� � �,atr�n�),T��, �R�,(atr�� ,� � �,atr�n�),T��,
. . .�Rm,(atrm� ,� � �,atrmnm),Tm� g refers to the union of the instances
represented by all the triples: �R� ��atr�������atr�n� ��atr�������atr�n��
R� � � � � � Rm,(atr�� ,� � �,atr�n�),T��
��The notation used to define a mapping information A is:

A � fy� if cond��x� � � � yN if condN �x�
: x � Bg

The set of triples in A is the calculated by next algorithm:
initialize A with the empty set
for each x in set B
if cond�(x) add y� to A
else � � � else if condN(x) add yN to A

Satleast(n,r) = f
�Rrl,atrd,TC�

if n � � � not�can be null�atrn���

��
atrd ��NULL

(Rrl),atrd,TC�
if n � � � can be null�atrn�

���

if n � � � functional dependency�atrd� atrn���

��count�n��(
atrd

Fcount atrn(Rrl)),atrd,TC�
in other case

: �Rrl,atrd,atrn,TC ,frl,Tr� � Srg

6.2 atleast(n,role) and atmost(m,role)
We present the mapping information for the combination
atleast(n,role) and atmost(m,role) and explain why it is bet-
ter than the mapping information calculated as the conjunc-
tion of the mapping informations of atleast(n,role) and at-
most(m,role). So, the mapping information for the descrip-
tion atleast(n,r) and atmost(m,r), when n � � � atrd ��
atrn �m n is:

Satleast(n,r)�atmost(m,r) =

conjunction(Satleast(n,r),Satmost(m,r)) =
conjunction(Satleast(n,r),complement(Satleast(m+1,r))) =

f� �count�n��(
atrd

Fcount atrn(Rrl)) –
�count�m(

atrd
Fcount atrn(Rrl)), atrd, TC�

: �Rrl,atrd,atrn,TC ,frl,Tr� � Srg

However, a better mapping information for this expression
is the following one:

f� �m�count�n��(
atrd

Fcount atrn(Rrl)), atrd, TC�
: �Rrl,atrd,atrn,TC ,frl,Tr� � Srg

The last mapping expression is much less complex than
the first one and avoids one scan and computing one differ-
ence whatever it is the kind of data repository involved. In
general, the procedure consists of grouping restrictions over
the same role and obtaining the corresponding optimized
mapping expression for each combination of restrictions.

Our main contribution in this step is that we have used
the extended relational algebra as a language independent
of the query languages of the underlying repositories to
define the mapping information among an Ontology and
the repositories. This formalism allows one to describe a
wide spectrum of possible mappings and to define some
optimization cases.

��can be null�atrn� is a expression that takes the value true if it is
possible that atrn takes NULL values and false in other case.
��In this case, it is avoided accessing the underlying data repositories

because the answer is empty.
��functional dependency�atrd � atrn� is a expression that takes

the value true if the functional dependency atrd � atrn is satisfied and
false in other case.

6.3 Application to the example
The mapping information for the first query:

Q1’: rf(number-of-pages) for getall multimedia document

is the following:

f �� rep2.rec.003$[24-27]=“m”

(rep2.rec),rep2.rec.010$a,rep2.rec.300$a,str,-,int� g

This expression cannot be optimized because there is
not a combination of restrictions over the same role nor
information about data dependencies.

The mapping information for the second query:

Q2: getall magazine and atleast(1,doc-author-name) and
atmost(1,doc-author-name)

is the next one:

f �� � � count � � ((locF count(name) (� series title=“magazine”

(doc)�(name=name) rep1.doc))),rep1.doc.loc,str� g

However, it can be optimized taking into account that
there exists the functional dependencyrep1.doc.loc �
rep1.doc.name. The optimized mapping information is:

f�� rep1.doc.series title=“magazine” (rep1.doc),rep1.doc.loc,str� g

where the computation of a join and an aggregate function
are avoided.

7 Correlation of the answer
Each optimized mapping information previously obtained
has to be translated into a plan that depends on the concrete
data repositories. A different wrapper that translates the
mapping information into the concrete query language is
needed for each kind of data organization involved in the
Global Information System.

The corresponding SQL query in the repository rep1 (it is
an object-oriented relational database) for the next mapping
information

f�� rep1.doc.series title=“magazine” (rep1.doc),rep1.doc.loc,str� g

would be:

select loc
from doc
where series title="magazine"

The corresponding query in the repository rep2 (it is a
MARC [Pie94] file system) for the next mapping informa-
tion

f �� rep2.rec.003$[24-27]=“m”

(rep2.rec),rep2.rec.010$a,rep2.rec.300$a,str,-,int� g

would be:

Files: /home/grad/MARC/UGA/oclcwkly.unicat
Projections: 010$a | 300$a
Conditions: 008$[24-27] = m

This information would be processed by a wrapper that
accesses MARC files and retrieves the records that satisfy
the corresponding conditions.

The final correlation of the answer is made in the cache
memory. Different answers to the subqueries are loaded in
the cache memory and then the answer is obtained from the
cache memory using the DL system query capabilities.

In cases where it is decided not to cache all the subqueries
answers, correlation should be performed outside the DL
system.

8 Conclusions
We propose to use pre-existing Ontologies in order to
facilitate to the user the task of querying about stored
data in heterogeneous and distributed data repositories. In
this paper we have presented a strategy that solves the
specific problem of giving answers to formulated queries
over one Ontology by accessing data stored in different data
repositories connected to that Ontology. This strategy makes
up a subpart of the global query processing strategy defined
for a set of loosely-coupled Ontologies. In the proposed
solution, we have shown first, how to obtain a semantically
equivalent query that eliminates redundant elements and
detects others that may increment the efficiency of the
query processing. This new equivalent query expression is
obtained by using the capabilities of the DL systems. In this
step inconsistent queries are also detected and intensional
answers may be given to the user. Next, we have explained
the test to verify if the query can be answered from the
cache memory. This test has to be checked only if a
cache memory is available. Then, we have presented a
set of heuristics applied in order to perform an efficient
decomposition process of the query. Last, we have shown
how optimized mapping informations corresponding to the
decomposed subqueries can be obtained as a previous step
to generate the sentences in the query languages used in the
underlying data repositories. In summary, we can say that
our work treats all the steps needed to answer queries in
the considered context and presents new proposals for all
of them, although due to space limitations each step is not
explained in detail.

References
[AKS96] Y. Arens, C.A. Knoblock, and W. Shen. Query

reformulation for dynamic information integration.
Journal of Intelligent Information Systems, 6(2-3):99–
130, 1996.

[Alt] Altavista. http://www.altavista.digital.com.

[ASD�91] R. Ahmed, P. Smedt, W. Du, W. Kent, M. Ketabchi,
and W.A. Litwin. The Pegasus heterogeneous multi-
database system. IEEE Computer, 24:19–27, Decem-
ber 1991.

[BBMR89] A. Borgida, R.J. Brachman, D.L. McGuinness, and
L.A. Resnick. CLASSIC: A structural data model for
objects. In Proceedings ACM SIGMOD-89, Portland,
Oregon, 1989.

[Bor92] A. Borgida. From type systems to knowledge rep-
resentations: Natural semantics specifications for de-
scription logics. International Journal on Intelligent
and Cooperative Information Systems, 1(1), 1992.

[CHS91] C. Collet, M. N. Huhns, and W. Shen. Resource
integration using a large knowledge base in CARNOT.
IEEE Computer, pages 55–62, December 1991.

[Dev93] P.T. Devanbu. Translating Description Logics to
Information Server Queries. In Proceedings of the
ISMM International Conference on Information and
Knowledge Management CIKM, 1993.

[FRV96] D. Florescu, L. Raschid, and P. Valduriez. A method-
ology for query reformulation in CIS using semantic
knowledge. International Journal of Cooperative In-
formation Systems, 5(4):431–467, 1996.

[GIMB97] A. Goñi, A. Illarramendi, E. Mena, and J.M. Blanco.
An optimal cache for a federated database system.
Journal of Intelligent Information Systems, 9(2):125–
156, September/October 1997.

[Gru93] T. Gruber. A translation approach to portable on-
tology specifications. Knowledge Acquisition, An
International Journal of Knowledge Acquisition for
Knowledge-Based Systems, 5(2), June 1993.

[Gru94] T. Gruber. Theory BIBLIOGRAPHIC-DATA,
September 1994. http://www-ksl.stanford.edu/-
knowledge-sharing/ontologies/html/bibliographic-
data/index.html.

[Inf] Infoseek. http://www.infoseek.com.

[KS96] V. Kashyap and A. Sheth. Semantic and Schematic
Simililarities between Databases Objects: A Context-
based approach. The VLDB Journal, 5(4), December
1996.

[LSK95] A.Y. Levy, D. Srivastava, and T. Kirk. Data model
and query evaluation in global information systems.
Journal of Intelligent Information Systems, 5(2):121–
143, September 1995.

[MP97] S. Milliner and M. Papazoglou. Scalable information
elicitation in large heterogeneous database networks.
To be published in IEEE Internet Journal, 1997.

[Pie94] S. Piepenburg. Easy MARC: A simplified guide
to creating catalog records for library automation
systems: Pre-format integration, 1994.

[vLNPS87] K. von Luck, B. Nebel, C. Peltason, and A. Schmiedel.
The anatomy of the BACK system. Technical Report
KIT Report 41, Technical University of Berlin, Berlin,
F.R.G., 1987.

