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ABSTRACT: Graphene plasmons (GPs) exhibit extreme confinement of the 

associated electromagnetic fields. For that reason, they are promising candidates for 

controlling light in nanoscale devices. However, despite the ubiquitous presence of 

surface corrugations in graphene, very little is known on how they affect the 

propagation of GPs. Here we perform a comprehensive theoretical analysis of GP 

scattering by both smooth and sharp corrugations. For smooth corrugations, we 

demonstrate that scattering of GPs depends on the dielectric environment, being 

strongly suppressed when graphene is placed between two dielectrics with the same 

refractive indices. We also show that sharp corrugations can act as effective GP 

reflectors, even when their dimensions are small in comparison with the GP 

wavelength. Additionally, we provide simple analytical expressions for the 

reflectance of GP valid in an ample parametric range. Finally, we connect these 

results with potential experiments based on scattering scanning near-field optical 

microscopy (s-SNOM) showing how to extract the GP reflectance from s-SNOM 

images. 

KEYWORDS: graphene plasmon, graphene corrugations, plasmon scattering 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Universidad de Zaragoza

https://core.ac.uk/display/289993916?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 
 

Graphene plasmons (GPs) - collective oscillations of free Dirac charge carriers in 

graphene coupled to electromagnetic fields - have an extremely short in-plane 

wavelength and are strongly confined to graphene sheet [1-5]. In addition, the GP 

wavelength depends on the Fermi level in graphene, and therefore can be manipulated 

by electrostatic gating. Lately, a great deal of attention has been devoted to the 

scattering characteristics of GPs by different inhomogeneities, as this is of particular 

importance for analyzing and controlling the GP propagation. GP efficient reflection 

has been already proved at graphene edges [6, 7], grain boundaries [8, 9], nanogaps in 

SiC terraces [10], boundaries introduced by ion beams [11], and at one-dimensional 

electrostatic barriers arising from a line of charges [12]. All previous cases can be 

related to conductivity inhomogeneities. Additionally, graphene also presents relief 

defects. In fact, free standing graphene is not flat. But neither it is graphene placed on 

a substrate (supported graphene), which has a tendency to form corrugations due to 

either imperfections of the substrate [13 - 15] or to the formation of graphene 

wrinkles (characterized by widths between one and tens of nm, heights below 15 nm 

and lengths above 100 nm) [16 - 21], ripples (which are corrugations with comparable 

height and width and smaller than wrinkles) [22] or bubbles (out-of-plane graphene 

deformations, with different shapes and sizes from tens to hundreds of nm in diameter 

and tens of nm in height, which accumulate air or other gas residuals between 

graphene and the substrate) [23 - 28].  

 

The propagation of GPs can be strongly affected by the presence of these 

corrugations. However, very little is known about the scattering process, with the 

notable exception of ref. [28], which describes how a field hotspot can be formed by 

launching GPs in nano-bubbles. 
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In this paper, we theoretically study the GP scattering by corrugations in graphene. 

We focus on the effect of the change in spatial profile and assume that the 

conductivity is uniform along the defect. This is expected to be a good approximation 

for smooth corrugations [29, 30], while the realistic treatment of sharp corrugations 

would require a precise knowledge on how the graphene conductivity changes along 

the defect. In this last case, the results presented in this manuscript, together with 

those found for conductivity defects in flat graphene [9], can serve as a reference for a 

future theory on the scattering by a defect presenting both relief and conductivity 

changes.  

 

We use both rigorous full-wave numeric simulations (see Methods) and an analytical 

approximation (valid for smooth corrugations), based in the Rayleigh expansion of 

the electromagnetic fields [31] and perturbation theory. Finally, we connect our 

theoretical analysis with potential scattering scanning near-field optical microscopy 

(s-SNOM) experiments. We simulate the near-field images that would be observed in 

s-SNOM experiments, and show how to extract the reflectance from them. 

 

MODEL 

 

We consider a one-dimensional relief defect in graphene, placed in the surface 

defined by 𝑧 = ℎ(𝑥). The region above graphene  (𝑧 > ℎ(𝑥)) is filled by a superstrate 

characterized by a dielectric permittivity 𝜀1, while in the semi-infinite region 𝑧 < 0 

the permittivity is 𝜀3 . The intermediate region  (ℎ(𝑥) > 𝑧 > 0)  is filled with a 

dielectric with permittivity 𝜀2. This configuration allows us to treat the scattering by 

both substrate corrugations (when  𝜀2 = 𝜀3 , see Figure 1a), and by bubbles and 
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wrinkles (when 𝜀2 ≠ 𝜀3 , see Figure 3a). In this work we limit ourselves to single 

defects characterized by a Gaussian-shape corrugation [35]: 

ℎ(𝑥) = ℎ exp[− 4 𝑥2 𝑤2⁄ ], where 𝑤 is the characteristic half-width and ℎ = ℎ(0) is 

the corrugation height in its center (𝑥 =  0). We assume that the corrugation is 

shallow, i.e. |ℎ| ≪ 𝜆𝑝 . This profile provides a good approximation to realistic 

wrinkles on graphene arising for example in doped CVD grown graphene [20], or 

formed by the wedging transfer method [21]. We will analyze two differentiated main 

cases: (i) smooth defects, where 𝑤 ≫ ℎ (for which | 𝜕𝑥ℎ| ≪ 1) and (ii) sharp 𝑤 < ℎ 

graphene corrugations.  

 

Graphene is characterized by its conductivity 𝜎(𝜔)  (or the related adimensional 

conductivity 𝛼 = 2𝜋 𝜎 𝑐⁄ , which we take from the random phase approximation 

(RPA) expressions [32-34]. As we are interested in defects that span a region smaller 

than the plasmon propagation length, we neglect absorption in graphene. Also, for 

definiteness, all results are presented assuming a Fermi energy 𝐸𝐹  =  0.2 𝑒𝑉, but this 

choice is not essential, as results only depend on 𝐸𝐹  through the value of the GP 

wavevector.  

 

In order to calculate the scattering coefficients, we consider a monocromatic GP (with 

frequency 𝜔  corresponding to a free-space wavelength 𝜆, and plasmon wavelength 

𝜆𝑝) coming towards the defect from the region 𝑥 < 0 and propagating along the 𝑥 −

 axis (see Figure 1a). After scattering, the GP can either reflect back, transmit to the 

region x > 0, or radiate out of the graphene surface. 
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However, in all considered cases, the out-of-plane scattering amplitude is orders of 

magnitude smaller than the reflection amplitude, due to the much larger density of 

plasmon modes than of radiation ones [9]. Thus, the GP scattering problem is 

characterized by providing either the transmission (𝑡) or reflection (𝑟) amplitudes. 

These quantities are linked, as energy flux conservation implies 𝑇 + 𝑅 = 1, where 

𝑇 = |𝑡|2 is the transmittance and 𝑅 = |𝑟|2 is the reflectance.  

 

RESULTS AND DISCUSSION 

 

Smooth corrugations in graphene. Let us start by considering scattering by smooth 

substrate corrugations ( 𝜀2 = 𝜀3). Figure 1b shows the numerically calculated 

reflectance spectra for corrugations in both symmetric (𝜀1 = 𝜀2 = 𝜀3 = 1, green solid 

curve) and non-symmetric ( 𝜀1 = 1, 𝜀2 = 𝜀3 = 2.5, red solid curve) dielectric 

environments. In both cases, the GP reflectance spectrum presents two spectral 

regions where scattering is negligible. For small wavelengths, the scattering regime is 

adiabatic (the GP "follows" the graphene profile), while for large GP wavelengths 

(larger than the defect dimensions) the scattering enters the "Rayleigh" regime [9, 31, 

35-37]. In between these two limiting regimes, when  𝜆𝑝~𝑤 , the plasmon neither 

follows adiabatically the corrugation not it encounters a defect of comparatively 

negligible size, and the reflectance presents a maximum.  

 

Remarkably, the reflectance maximum strongly depends on whether the environment 

is symmetric or not. There are two apparent differences. First, 𝑅 (𝜆 ) peaks at a 

different wavelength: 𝜆 = 8.8 𝜇𝑚 for symmetric surrounding and 𝜆 = 15.4 𝜇𝑚 non-

symmetric surrounding, respectively. This can be readily explained by the 
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dependence of the GP wavelength dielectric environment:  𝜆𝑝 ≈

 2𝜆 Im(𝛼) (𝜀1 + 𝜀2)⁄ . 

 

Second, the GP reflectance by the corrugation is 2 orders of magnitude smaller in the 

symmetric environment than in the non-symmetric one. This change can be 

understood by noticing that, in the left panels of Figure 1a, a rotation of 180
0
 around 

an axis perpendicular to the page transforms the corrugation ℎ(𝑥) into −ℎ(𝑥) and, 

simultaneously, transforms incidence from the left into incidence from the right. In a 

symmetric environment, the scatterer remains the same (the rotation being equivalent 

to looking at the scatterer from 𝑧 < 0, instead of doing it from 𝑧 > 0). As the system 

presents time reversal symmetry, the reflection amplitude is the same for left- and 

right- incidence. Thus, in a symmetric environment  𝑟(ℎ) = 𝑟(−ℎ), implying that the 

Taylor series of 𝑟 contains only even order terms. Thus, for small defects, 𝑟~ℎ2. In 

contrast, in the asymmetric environment an 180
0
-rotated protrusion (ℎ(𝑥) > 0) would 

transform into a dielectric-filled indentation, which is different from the corrugation 

defined by −ℎ(𝑥), which would be an air-filled indentation (see bottom left scheme 

in Figure 1a). Thus, in this case the two scattering geometries are not related and, in 

general, 𝑟(ℎ) ≠ 𝑟(−ℎ). This means that the Taylor expansion of 𝑟 contains a linear 

term 𝑟~ℎ. Since for small ℎ the GP reflection amplitude is determined by the first 

term in its Taylor expansion in ℎ, our general symmetry considerations can explain 

the significantly smaller GP reflection from the corrugation in the symmetric 

surrounding compared to that one in the non-symmetric surrounding. Note that such a 

dramatic difference in the GP reflectance between symmetric and non-symmetric 

dielectric environments does not occur for conductivity defects in flat graphene [9]. 
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Up to now, our results have been based on the full-wave numeric simulations and 

general fundamental physical considerations. However, for shallow (|ℎ| ≪ 𝜆𝑝) and 

smooth (ℎ ≪ 𝑤)  corrugations, analytical expressions for the reflectance can be 

obtained by a perturbation expansion of the electromagnetic fields, expressed within 

the Rayleigh approximation [31, 37]. 

 

We present all cumbersome derivations in the Methods and Supporting Information 

and give here the final result. The GP reflectance in the first-order Born 

approximation (FOBA) for a Gaussian-shape corrugation reads simply as:  

 𝑅𝐹𝑂𝐵𝐴 = |𝑟𝐹𝑂𝐵𝐴|2 =  
𝜋

4
(𝑘𝑝𝑤)

2
𝑒−(𝑘𝑝𝑤)

2
2⁄ 𝛿2, (1) 

where 𝑘𝑝 ≈ 2𝜋 𝜆𝑝 ⁄ is the GP wavevector and the 𝛿 factor is given by  

 𝛿 = 2
𝜀2−𝜀1

𝜀2+𝜀1
𝑘𝑝ℎ . (2) 

Figure 1b illustrates the comparison of 𝑅(𝜆) calculated within the FOBA (red dashed 

curve) and the one computed with the help of the full wave numerical simulations 

(red solid curve). The excellent agreement between FOBA and full wave simulations 

validates the simple analytical expression given by eq. (1), and allows the 

computation of the reflectance of GP from corrugations without the need to perform 

numerical calculations, that are usually time-consuming due to the large different 

between the free space wavelength and the dimensions of the corrugation. 

Equation (1) provides a number of valuable points. First, 𝑅𝐹𝑂𝐵𝐴 is proportional 

to  (𝜀2 − 𝜀1)2 , thus vanishing for a symmetric dielectric environment. This is in 

accordance with our previous discussion that, in the symmetric environment, the 

reflection amplitude is given by higher-order terms in the Born series (leading to 

higher orders in ℎ).  
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Second, with the help of eq. (1), we can find the wavelength 𝜆𝑚𝑎𝑥 at which 𝑅(𝜆) has 

a maximum. To do this, we use the graphene conductivity in the Drude approximation 

[32-34]: Im(𝛼) ≈ 𝜆 𝛼0𝐸𝐹 𝜋ℏ𝑐⁄ , (where 𝛼0 = 1/137is a fine-structure constant) and 

substitute it to eq. (1). Then, taking the derivative of 𝑅𝐹𝑂𝐵𝐴  with respect to 𝜆 and 

equating it to zero, we find  

 𝜆𝑚𝑎𝑥 =  𝜋√
ℏ𝑐(𝜀1+𝜀2)

2 𝛼0𝐸𝐹
𝑤 . (3) 

and a maximum value of the reflectance: 

 𝑅𝐹𝑂𝐵𝐴
𝑚𝑎𝑥 = 𝑅(𝜆𝑚𝑎𝑥) =  

16𝜋

𝑒2 (
𝜀2−𝜀1

𝜀2+𝜀1
)

2 ℎ2

𝑤2.  (4) 

Equation (3) shows that the spectral position of the reflectance 𝜆𝑚𝑎𝑥 depends upon 

the dielectric permittivities of both superstrate and substrate, thus confirming our 

previous arguments regarding the shift of 𝜆𝑚𝑎𝑥 for the GP in the symmetric and non-

symmetric surroundings (see red and blue curves in Figure 1b). 

 

In Figure 2 we show the reflectance spectra for smooth corrugations within an ample 

range of geometric parameters. Figure 2a renders 𝑅(𝜆) for corrugations of different 

height, ℎ, and the same width, 𝑤; while Figure 2b shows 𝑅(𝜆) for the corrugations of 

different 𝑤 and the same ℎ. In all cases, the reflectance presents a maximum, with a 

spectral position that is more sensitive to the change of 𝑤 than to the change of ℎ (in 

agreement with the FOBA result, which predicts a 𝜆𝑚𝑎𝑥 independent of ℎ) and with a 

magnitude that is sensitive to the aspect ratio 𝑤/ℎ. The spectral position of 𝜆𝑚𝑎𝑥 

predicted by FOBA (eq. (3)) and the corresponding values 𝑅𝐹𝑂𝐵𝐴
𝑚𝑎𝑥  are shown by the 

square symbols in Figures 2a and 2b, matching well the maxima in the 𝑅(𝜆) 

calculated with the help of full wave simulations.  
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Equations (3) and (4) suggest a universal scaling 𝑅 𝛿2⁄  as a function of 𝑤 𝜆𝑝⁄ . 

Figure 2c confirms the validity of this scaling for small smooth defects. In this 

representation, the maximum in reflection occurs when 𝑤 𝜆𝑝⁄ ≈ 1/√2𝜋  (being 

independent of 𝛿) and equals to ( 𝑅𝐹𝑂𝐵𝐴 𝛿2⁄ )𝑚𝑎𝑥 =  𝜋/2𝑒 ≈ 0.58.  

 

Corrugations on supported graphene can be also formed due to the buckling of the 

graphene sheet [23, 24]. Then, air (or other gases) can accumulate between the 

graphene corrugation and the substrate. This buckle-induced corrugations form both 

nano-scale bubbles and wrinkles [23 – 27, 28]. Here we analyze the reflection of the 

GP by a wrinkle – a two-dimensional analog of bubble – with a dielectric substance 

(characterized by a dielectric permittivity, 𝜀2 ) accumulated between the graphene 

layer and the substrate (see schematics in the inset to Figure 3a).  

 

Figure 3a shows the full wave numerical simulations for the reflectance spectra of GP 

impinging on a wrinkle (with dimensions that roughly correspond to those of the 

elongated bubble discussed in [23, 27, 28]), for different substances accumulated 

underneath. As expected from our previous analysis (see Figure 1 and Figure 2), in all 

cases the GP reflectance spectra present a maximum. This maximum blueshifts (from 

𝜆 = 21.6 𝜇𝑚  to 𝜆 = 20.8 𝜇𝑚 ) with the decrease of  𝜀2 (from 𝜀2 = 𝜀3 = 4.5  to 

𝜀2 = 𝜀1 = 1), as indicated by the discontinuous black line, which serves as an eye-

guide. We explain the blueshift by the change of the local plasmon wavelength in the 

wrinkle region ( −𝑤 < 𝑥 < 𝑤 ) originated by the modification of the dielectric 

environment (notice that the similar change of 𝜆𝑝 in graphene nanobubbles has been 

reported in [28]). Indeed, when 𝜀2 decreases, the local GP wavelength in the wrinkle 

region increases as ∝ (𝜀1 + 𝜀2)−1. From the point of view of the GP, the increase of 
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𝜆𝑝 implies an effective decrease of the wrinkle size (in particular, the wrinkle width). 

This interpretation allows the qualitative understanding of the results in Figure 3a in 

terms of those in Figure 2b, where the decrease of the wrinkle width results in the 

blueshift of the GP reflection maximum. Monitoring the shift of the GP reflection 

maximum can potentially allow for sensing of the dielectric permittivity of the 

substance accumulated under graphene wrinkles, specially, if this substance presents 

resonances in the spectral region where the GP reflectance is not negligible.  

 

Small sharp graphene corrugations. Let us now consider the GP reflection from 

small (𝑤 < 𝜆𝑝) Gaussian-shaped corrugations with aspect ratio 𝑤 ℎ⁄ ≲ 1.  

 

Figure 4a shows the GP reflectance (calculated with the full wave numerical 

simulations) as a function of the corrugation half-width, w, for several corrugation 

heights, h and a fixed 𝜆𝑝 = 120 𝑛𝑚. For this value of  𝜆𝑝, the exponential decay of 

the GP in the direction perpendicular to the graphene layer is characterized by the 

confinement length of  𝐿𝑧 =  𝜆𝑝 (2𝜋) ≈ 19 𝑛𝑚⁄ . Thus, even nanometer size defects 

(as those studied in Fig. 4) should strongly modify the plasmon wavefield. In the case 

of smooth defects we have seen that this modification is largely adiabatic but, as 

shown in Figure 4a, abrupt defects present very different scattering properties. In the 

two considered cases where ℎ >  𝐿𝑧 , there is a corrugation shape where the GP 

reflectance nearly reaches unity, 𝑅 ≈ 1, thus showing that the corrugation can act as a 

perfect reflector. Additionally, the GP reflectance can also present an “anti-

resonance”, where the GP propagates without reflection, i.e. 𝑅 ≈ 0 (see the case ℎ =

50 𝑛𝑚, 𝑤 = 16.4 𝑛𝑚). Both the large dependence of the spectral position of the 

maximum of 𝑅 with ℎ (as compared to the case of smooth corrugations, where 𝜆𝑚𝑎𝑥 
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is independent of ℎ) and the presence of a reflectance anti-resonance indicates that the 

scattering of GP by abrupt corrugations is very different for that by smooth ones.  

 

In order to get physical insight in the scattering process, in Figure 4b-4d we show the 

spatial distribution of |𝐸𝑧(𝑥, 𝑧)|  for the corrugations with ℎ = 50 𝑛𝑚  and widths 

labeled by points P1-P3 in Figure 4a. 

 

In the case of a relatively wide corrugation 𝑤 > 𝜆𝑝 2⁄  (point P1, where 𝑤 =  80 𝑛𝑚), 

|𝐸𝑧(𝑥, 𝑧)|  clearly shows interference fringes on the left of the corrugation (the 

incidence side), arising from a partial reflection of the GP (𝑅 =  0.18 according to 

Figure 4a). These fringes also appear for the case 𝑤 = 36 𝑛𝑚 (point P2 in Figure 4a) 

but, contrary to the previous case, the field in the transmission region is negligible, as 

corresponds to near unity reflectance. The fact that the field extends beyond the 

corrugation maxima points out to an interference effect between partial scattering 

events at both sides of the corrugation apex. Finally, Figure 4d renders |𝐸𝑧(𝑥, 𝑧)| for 

reflection anti-resonance, (𝑤 = 16.4 𝑛𝑚 , point P3 in Figure 4a). Here the rapid 

modulation of the field inside the nano-defect indicates that the transmission occurs 

through GP tunneling.  

 

A detailed analysis of the intriguing phenomena observed in the scattering of GP by 

sharp corrugations goes beyond the scope of this manuscript. Nevertheless, we 

speculate that the strong GP reflection caused by the sharp corrugations (as well as 

the qualitatively different shift of the reflectance maxima as compared to that of 

smooths corrugations) can be explained by the excitation of localized GP modes 

(“cavity” modes) of the corrugation. A concentration of the electric field on the apex 
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of the narrow corrugation (seen in Figure 4d) can serve as a supporting argument in 

our hypothesis, although the latter has to be carefully checked in future studies. Note 

that the existence of the localized GPs in isolated graphene deformations has been 

already reported for wedges and grooves [38], bumps [39] and nanobubbles [28]. Our 

results suggest that graphene-based metasurfaces based on engineered sharp substrate 

corrugations should present a strong interaction with GP and thus be interesting for 

the control of their excitation and propagation.  

 

Prospects for potential near-field experiments. The reflection of GP by 

corrugations can be characterized experimentally, by means of near-field microscopy. 

Currently, s-SNOM is the only experimental tool able to visualize plasmons in 

graphene in real space [40, 41]. s-SNOM utilizes an atomic force microscopy (AFM) 

tip which is illuminated with an external infrared laser beam. The tip converts the 

incident radiation into a strongly confined near-field at the tip apex, providing the 

necessary momentum to launch plasmons in graphene. When the GPs are back-

reflected at the corrugations, characteristic interference patterns are observed in the 

near-field images. Analyzing the near-field images, it is possible to extract GP 

reflectance. Such technique is known as GP interferometry [6, 10, 28].  

 

We perform a simple numerical simulation of a potential s-SNOM experiment, using 

a point-dipole source (see Figure 5a). As has recently been shown [42], the vertical 

component of electric field below the dipole, 𝐸𝑧 , can serve as a good qualitative 

approximation for the s-SNOM signal. Therefore, we calculate the field below the 

dipole, 𝐸𝑧, as a function of the dipole position (𝑥, 𝑦) and simulate a near-field (NF) 

image, |𝐸𝑧(𝑥, 𝑦)|, [10, 42]. In this simulation, and in contrast to previous sub-sections, 
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we take into account the absorption in graphene by retaining the real part of the 

graphene conductivity. 

 

An example of the NF image of a corrugation on graphene is shown in Figure 5b. In 

the NF image we observe several fringes (composed of the alternating NF minima and 

maxima) parallel to the corrugation indicating the interference of the GPs launched by 

the dipole and the GPs reflected by the corrugation. The distance between 

neighboring NF minima (or maxima) far from the corrugation equals approximately 

to half of the GP wavelength, 𝜆𝑝/2. Due to the finite propagation length of the GP, 

the amplitude of the fringes decays along the graphene sheet in both directions across 

the corrugation. The cross-sections of the near-field images across the corrugation 

(the NF profiles) for different illumination wavelengths, 𝜆, are shown in Figure 5c. As 

𝜆 increases the fringes broaden and the spacing between them increases, as expected 

from the increase of 𝜆𝑝 with 𝜆.  

 

Previous analysis of the NF images reported for terrace steps [10] revealed the 

reflection of GPs and allowed extracting the GP reflectance. Here we treat our 

simulated images as a numerical experiment, and find out whether we can extract 

from them the value of the GP reflectance. The reflectance can be found by fitting the 

NF profiles in Figure 5c with the function corresponding to the field profile of a 

scattered GP (see Methods). The results of our analysis are shown in Figure 5d. An 

excellent agreement between 𝑅  extracted from the simulated NF profiles (square 

symbols) and 𝑅 calculated from the GP scattering problem (black solid curve) proves 

the possibility to quantitatively characterize GP reflection by graphene corrugations 

by means of s-SNOM imaging. 
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CONCLUSION 

 

In our paper we have performed a comprehensive theoretical analysis of the GP 

reflection by both sharp and smooth corrugations in graphene. For shallow and 

smooth corrugations we have provided simple analytical results for the GP 

reflectance, demonstrating its universality and validity in an ample range of geometric 

parameters and dielectric environments. We have shown that the breaking of the 

environment symmetry leads to a significant increase of the GP reflectance, which is 

proportional to  𝑅 ~ (𝜀2 − 𝜀1)2. We have found that a sharp corrugation can act as 

total GP reflector, even though both its width and height are smaller than the GP 

wavelength. Finally, we have performed the simulation of the potential s-SNOM 

experiment, showing that it is possible to extract the GP reflectance from the near-

field images. 

 

 

 

 

 

 

 

 

 

 

 

 



15 
 

Figures 

 

Figure TOC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



16 
 

 

Figure 1: GP reflection from a graphene corrugation in symmetric and non-

symmetric environment. (a) Schematics for GP scattering by corrugations, both for 

graphene on a substrate and for graphene in a symmetric dielectric environment. (b) 

Reflectance spectra 𝑅(𝜆)  for a GP impinging on a shallow Gaussian-shaped 

corrugation, for graphene on a substrate (𝜀1 = 1, 𝜀2 = 2.5 , red solid and dashed 

curves) and graphene in symmetric dielectric surrounding (𝜀1 = 𝜀2 = 1, green solid 

curve). The corrugation width is 𝑤 =  100 𝑛𝑚 and the height is ℎ =  5 𝑛𝑚 . (c) 

Snapshot of Re(𝐸𝑥) for a GP propagating and impinging on the corrugation. The 

distance between maximum (red colored fringe) and minimum (blue colored fringe) 

of the electric field is equal to the half of the GP wavelength, 𝜆𝑝 2⁄ .  
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Figure 2: Reflectance spectra for a GP impinging on a Gaussian-shaped 

corrugation with different geometric parameters. (a) GP reflectance for 

corrugations of different heights and a fixed width 𝑤 = 100  𝑛𝑚 (b) GP reflectance 

for corrugations of different widths and a fixed height ℎ = 5 𝑛𝑚 (b). Square symbols 

in panels (a) and (b) correspond to 𝜆 = 𝜆𝑚𝑎𝑥 and 𝑅 =  𝑅𝐹𝑂𝐵𝐴
𝑚𝑎𝑥  calculated according to 

eqs. (3) and (4). (c) 𝑅 𝛿2⁄  as function of 𝑤 𝜆𝑝⁄ , for Gaussian-shaped corrugations 

with the same parameters as in the panels (a) and (b). 
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Figure 3: GP reflectance by a corrugation with different substances accumulated 

underneath. (a) Reflectance spectra for a GP impinging on a Gaussian-shaped 

corrugation with different 𝜀2 of the substances between graphene and substrate. The 

corrugation half-width is 𝑤 =  125 𝑛𝑚 and the height is  ℎ =  16 𝑛𝑚 . The 

discontinuous black line serves as an eye-guide to indicate the blueshift of the 

maximum. (b) Snapshot of Re(𝐸𝑥) for a GP impinging on the corrugation with 𝜀2 =

1. 
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Figure 4: Reflectance of GPs from sharp corrugations. (a) Reflectance of a GP 

impinging on a sharp Gaussian-shaped corrugation as a function of corrugation half-

width 𝑤 , for different corrugation heights, ℎ . The dielectric permittivity of the 

substrate is 𝜀2 = 2.5, and the considered free-space wavelength is 𝜆 = 10 𝜇𝑚 

( 𝜆𝑝 = 0.12 𝜇𝑚).  (b) - (d) Spatial distribution of |𝐸𝑧| corresponding to the points P1-

P3 in (a).  
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Figure 5: Simulation of an s-SNOM experiment. (a) Schematics of the simulation. 

We model the AFM tip by a simple electric dipole point-source. The dipole is located 

80 𝑛𝑚 above graphene. (b) Simulated near-field image  |𝐸𝑧(𝑥, 𝑦)| at 𝜆 =  12 𝜇𝑚. 

The field 𝐸𝑧 is computed 10 𝑛𝑚 above graphene, below the dipole. (c) Line profile, 

|𝐸𝑧(𝑥)|, normalized to the value of the field far from the corrugation. (d) Wavelength 

spectrum of the GP reflectance calculated by the full wave simulation (solid curve) 

and extracted from the NF line profiles (square symbols). The relaxation time of the 

charge carriers in graphene is 𝜏 = 0.1 𝑝𝑠. 
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METHODS 

 

Graphene parameters.  

We do not take into account the losses in the graphene sheet for the computation of 

the GP reflectance, R, calculated numerically in Figures 1 – 4. For the near-field 

simulations presented in Figure 5b, 5c we took the relaxation time of the charge 

carriers in graphene equal to 𝜏 = 0.1 𝑝𝑠. The good agreement between 𝑅 extracted 

from the simulated near-field images and calculated numerically seen in Figure 5d 

justifies the neglect of losses in graphene in the scattering problem.  

 

Perturbation theory. To treat the GP scattering problem analytically, we use the 

integral plane-wave expansion for the electromagnetic fields both in the superstrate 

(above graphene) and substrate (below graphene). We assume that all waves either 

propagate away, or decay from the graphene sheet (thus, no wave can propagate 

towards the sheet). Such approximate representation of the electromagnetic field is 

usually called Rayleigh expansion [31, 37]. Applying the boundary conditions for the 

electromagnetic fields at the graphene sheet and developing the series expansion of 

the resulting expressions in the small parameters |ℎ| 𝜆𝑝⁄  and  𝜕𝑥ℎ (up to the linear 

terms), we obtain a system of coupled integral equations for the scattered field 

amplitudes (see Supplementary information). These coupled integral equations must, 

in general, be solved numerically, by discretizing them in momentum space and 

appropriately truncating the resulting infinite discrete system of equations to 

guarantee the required precision. For smooth corrugations, the amplitude of the 

reflected GP can be analytically found from the solution of the coupled integral 

equations in the FOBA.  
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First principle numerical simulation. Full wave electromagnetic simulations were 

performed using the COMSOL software based on finite-element methods in 

frequency domain. The graphene layer was modelled as a surface current in the 

boundary conditions. In order to achieve convergence, the mesh element size in the 

vicinity of graphene was much smaller than both the plasmon wavelength and the 

corrugation height.  

 

Simulation of the s-SNOM experiment. In the simulation, the tip was modelled by a 

vertical point dipole source (polarized along 𝑧-axis). We assume that the vertical 

component of the field below the dipole, 𝐸𝑧, approximates the signal scattered from 

the tip [42]. We simulated the near-field images (as the one shown in Figure 5b) by 

recording the calculated 𝐸𝑧 as a function of the dipole position, 𝑥  (due to the 

translational symmetry of the problem along the 𝑦-axis, 𝐸𝑧 does not depend upon 𝑦).  

 

Extraction of the GP reflectance from the near-field profiles. The electric field at 

a position between the dipole and the graphene sheet consists of both the NF 

generated by the dipole and the field of the reflected GP. We also take into account 

the GP excited due to the scattering of the dipole radiation by the corrugation and 

propagating in the same direction with the reflected GP. Thus, 𝐸𝑧  can be 

approximated as  

 𝐸𝑧 = 1 +
𝑟

1+𝐶
 𝑒−𝑖(2𝑘𝑝𝑥+𝜑) +  

𝜂

1+𝐶
 𝑒−𝑖(𝑘𝑝𝑥+𝜙) (M1) 

where 𝑟  and 𝜑  are the GP reflection amplitude and phase, while 𝜂  and 𝜙 are the 

amplitude and phase of the GP launched by the corrugation. With the help of the 

parameter 𝐶 ≈ 1.53  we take into account an average background signal 
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(corresponding to the non-plasmonic near field generated by the dipole over the 

sample). By fitting the simulated near-field profiles (shown in Figure 5c) with the 

help of equation (M1) we find the GP reflectance, 𝑅 = |𝑟|2.  
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