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Abstract 

The traditional hedonic model postulates that housing prices depend on their 
characteristics and their location. However, this model assumes a constant relationship 
between the dependent and the independent variables. This assumption is unrealistic 
because empirical studies have shown that the regression coefficients depend on the 
housing location. For this reason, it is necessary to use models with spatially varying 
coefficients. The approaches proposed in the literature used to estimate this type of 
models do not incorporate the uncertainty associated with the estimation and selection 
of models and/or are computationally expensive. To improve these aspects, this paper 
proposes spatial filtering techniques to parsimoniously model the spatial dependencies 
of the hedonic coefficients and an adaptive MCMC algorithm of Bayesian variable 
selection to select the most appropriate filters. The method is illustrated through an 
application to the real estate market of Zaragoza, and a comparison with alternative 
procedures is conducted. Our results show that our valuation methodology has better 
goodness of fit and predictive performance properties than alternative methods. 
Although our proposal assumes normality and homoscedasticity of the model error 
distribution, the method is easy to implement and not very computationally demanding, 
which makes this approach attractive and useful from a practical viewpoint. 
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1. Introduction 

 Real estate activities are linked to many sectors of the economy, including 

construction, finance, and insurance. Therefore, updated fair market housing values are 

extremely valuable to financial regulators and institutions, municipal assessors, housing 

index compilers, real estate developers, investors, and many others. Hedonic modelling 

is the most widely used method to estimate housing prices.  

The traditional hedonic model postulates that housing prices mainly depend on 

their characteristics and locations. The model accounts for locational attributes (location 
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of the dwelling and proximity to central business districts), neighbourhood attributes 

(availability of public schools, income levels and population density) and random 

spatial effects. However, it does not account for spatial interaction effects among 

dwellings. Empirical evidence shows that prices of neighbouring houses tend to be 

similar because they share common local factors, such as physical characteristics (age, 

size, and exterior and interior features) and amenities (socioeconomic status, access to 

employment opportunities, shopping, public service facilities, and schools). Moreover, 

information spillovers exist in housing markets, which are manifested through the 

spatial autocorrelation in prices (Wheeler et al., 2014). Besides, the hedonic model 

assumes a constant relationship between the dependent variable and the independent 

variables, which is an unrealistic assumption in housing markets, where it has been 

observed that the regression coefficients depend on housing location (Goodman and 

Goodman and Thibodeau, 1998; Fotheringham et al., 2002; Páez et al., 2008; Wheeler 

et al., 2014). 

Several reasons could explain the existence of relationship patterns that could be 

identified as market segments (Fotheringham et al., 2002; Wheeler et al., 2014). One 

reason relates to sampling variation because we would not expect the parameter 

estimates obtained from different samples to be the same. A second reason would be the 

spatial variations in the attitudes or preferences of people. For instance, the influence of 

the existence of a garage or a storage room on the price of a house is probably higher if 

the dwelling is located in the centre or the periphery of a city. A third reason could be 

the gross misspecification of the model due to omitted spatial explanatory variables or 

the assumption of an incorrect functional form. Hedonic theory provides little guidance 

on the choice of the functional form for the hedonic specification (Fleming, 1999).   

To capture this spatial heterogeneity in housing markets, several modelling 

techniques have been proposed. Eckert (1990) suggested that, based on the assumption 

that subsets are characterized by a lower variance, models generated for housing 

submarkets should yield greater explanatory power (and predictive accuracy) than those 

computed at the overall market level. Goodman and Thibodeau (1998) introduced the 

concept of hierarchical linear modelling, whereby housing characteristics, 

neighbourhood characteristics, and submarkets interact to influence housing prices. 

Both of these approaches assume that the submarkets are previously known. 

Brunsdon et al. (1996), Fotheringham et al. (1996, 2002) and Páez et al. (2002 a, 

b) did not assume a previous knowledge of submarkets and proposed to estimate the 
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regression coefficients for each dwelling using local geographically weighted regression 

(GWR) techniques. Using this method, an exploration of the variation of the parameters 

as well as a statistical analysis of the significance of this variation can be carried out. 

This methodology has received considerable attention in recent years, and some papers 

have applied GWR to housing markets (Brunsdon et al., 1999; Pavlov, 2000; 

Fotheringham et al., 2002, Yu, 2006 or Páez et al., 2008 among others). However, this 

method has been criticized because of the multicollinearity problems in the estimation 

of the parameters, which are due to the very similar characteristics of houses in the same 

area, which makes the estimation of the regression coefficients difficult (Wheeler and 

Tiefelsdorf, 2005; Griffith, 2008; Páez et al., 2011; Bárcena et al., 2014). 

Several solutions have been proposed to address this problem. Wheeler (2007, 

2009) and Bárcena et al. (2014) used penalized versions of GWR based on 

regularization methods (ridge and lasso regression) to build parsimonious models that 

weaken the multicollinearity problem and have good predictive and goodness of fit 

properties. Another alternative are the Bayesian spatially varying coefficients models 

(SVC) (Gelfand et al., 2003, 2004, Wheeler and Calder, 2007, Bárcena et al., 2014, 

Wheeler et al., 2014), which specify a single Bayesian hierarchical model that uses 

spatially varying coefficient processes to globally model the non-constant linear 

relationships between the variables.  

 SVC models have better performance than traditional linear regression models 

and GWR for both the estimation and prediction of hedonic prices (Wheeler and Calder, 

2007; Wheeler et al., 2014). However, they are technically demanding, and their 

estimation procedures are very computationally intensive for larger samples (Páez and 

Wheeler, 2009).  

Another solution was proposed by Griffith (2008), who formally established an 

indirect linkage between GWR and spatial filtering via interaction terms and noted how 

GWR could be viewed as a special case of indirect spatial filtering. The study used the 

spatial filters developed by Griffith (2000, 2003) to parsimoniously capture the spatial 

dependencies between the regression coefficients, which significantly alleviated the 

multicollinearity problem. This methodology is easier to implement than alternative 

methods and furnishes a way to include non-spatially varying coefficients in the model 

specification. However, the method is limited by the ability to compute the eigenvectors 

of a transformed contiguity matrix, and it is computationally intensive due to the large 

number of possible filters, which increases with the sample size. To solve this last 
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problem, Griffith (2008) proposed the use of forward-selection variable procedures to 

select the most relevant filters. Nevertheless, these methods only select one model and 

do not consider the uncertainty associated with the model selection process or that 

several models with similar fitness to the data may be possible.  

In this paper, we focus our attention on this method, and we propose the use of 

the adaptive Monte Carlo Markov Chain (MCMC) algorithm from Lamnisos et al. 

(2013), which is very useful in linear regression problems with a high number of 

independent variables. This Bayesian selection method allows us to carry out an 

exhaustive exploration of the model space and takes into account the uncertainty 

associated with the model estimation and selection processes, which can be very 

important when the number of filters is high. In addition, and given that the analysis is 

conjugate, the method is easy to implement and not very computationally demanding. 

The proposed method is illustrated with an application to the real estate market in the 

Spanish city of Zaragoza, and a comparison with alternative procedures is also carried 

out. 

The paper is structured as follows. Section 2 reviews the spatial filters model of 

Griffith (2008), and Section 3 describes the methodology. In Section 4, a case study on 

the housing prices in the Zaragoza real estate market is presented, and a comparison 

with alternative methods is carried out. In addition, we present a sensitivity study on 

several of the model hyperparameters. Section 5 presents the conclusion and identifies 

future lines of research. A mathematical appendix containing the description of the 

comparison criteria used in the paper is also included. 

2. Spatial filtering in linear regression models with space-varying coefficients 

Let {Pi; i = 1,…,N} be the sale prices of a set of N dwellings and let {xi = (xi1, 

…, xip); i = 1,…,N} be the values of their hedonic characteristics (X1, …, Xp)’. 

Let 

i 0 i i ik k i i i
k=1

y  = β (u ,v )+ x β (u ,v )+ε
p

 ; i = 1,…, N          (1) 

be a hedonic linear regression model with spatially varying coefficients where yi = 

log(Pi) is the logarithm of the sale price of dwelling i; (ui, vi) denotes the UTM 

coordinates of the location of dwelling i; {i; i = 1,…,N} are independent and 

identically distributed, verifying that E[i] = 0 and Var(i) = . 
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This model allows the regression coefficients {(ui,vi) = (1(ui,vi), …, P(ui,vi))’; 

i = 1,…,N} to vary across space to capture the local effects of the influence of the 

dwelling covariates (X1, …, Xp) on the price of the dwelling. 

It seems sensible to assume that observations close to an observation i should 

have a greater influence on the estimation of the regression coefficients (ui,vi). Based 

on ideas of local regression, Fotheringham et al. (2002) proposed estimating these 

coefficients using the weighted least squares estimator: 

                           1

i i i i i i
ˆ u ,v ' u ,v ' u ,v


β X W X X W Y                                           (2) 

where X’ = (x1,…,xN) and W(ui,vi) is an (NxN) matrix of the weights that inversely 

depend on the distance dij from (ui,vi) to other locations (uj,vj); j = 1,…,N.  

However, as Wheeler and Tiefelsdorf (2005) and Bárcena et al. (2014) show, 

estimations using expression (2) usually have serious multicollinearity problems 

because geographically close transactions often have similar hedonic characteristics. 

Among the suggested solutions to this problem, we can highlight that of Griffith (2008) 

who proposed the use of spatial filters to capture the most relevant spatial dependencies 

among the coefficients {k(ui,vi); k = 0,1,…p; i = 1,…,N}.  

Griffith (2008) uses linear expressions of the form: 

 k(ui,vi) = k + 
j

N

kE j,i
j=1

α E  for k = 0,…,p (3) 

where {Ej = (Ej,1, …, Ej,N)’; j = 1,…,N} are the eigenvectors of the matrix 

1 1
' '

N N
       
   
I 11 C I 11  sorted in a non-decreasing way and C = (cij) is an (NxN) 

matrix of connectivity between dwelling locations {(ui,vi); i = 1,…,N}. C is usually a 0-

1 binary array so that cij = 1 if locations (ui,vi) and (uj,vj) are geographically connected 

and 0 otherwise. Griffith (2000, 2003) shows that the first eigenvector, E1, provides a 

set of numerical values with the highest value of the spatial correlation Moran 

coefficient attainable by any set of real numbers observed at the locations {(uj,vj); j = 

1,…,N} whose spatial connections are described by C. The second eigenvector, E2, has 

the next highest value of the Moran coefficient that is uncorrelated with E1. The third 

eigenvector, E3, has the next highest value of the Moran coefficient that is uncorrelated 

with E1 and E2, and so on. As Griffith (2000) argues, these eigenvectors provide 

different map patterns describing possible spatial dependencies between locations 

{(uj,vj); j = 1,…,N} whose connectivities are described by C. 
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 Using (3), model (1) can be written as 

 
j j

p pN N

i 0 0E j,i k ik kE ik j,i i
j=1 k=1 k=1 j=1

y  = α α E + α x α x E +ε    ; i = 1,…,N (4) 

If N or p is large, expression (4) contains an excessively large number of 

parameters, most of which might not be significant. Griffith (2008) used forward 

selection variable procedures to determine which coefficients should be incorporated 

into the model. However, his approach neglects the uncertainty associated with the 

estimation and selection of models. To avoid this uncertainty, in the following section, 

we propose the use of Bayesian procedures that take this uncertainty into account and 

carry out a deeper exploration of the model space.  

3. Statistical Methodology 

In this section, we set up a Bayesian variable selection approach to the problem 

and describe an adaptive MCMC algorithm to solve it based on the method proposed by 

Lamnisos et al. (2013). Finally, we detail several methods to carry out the model 

selection using the information provided by our proposed algorithm.  

3.1. Bayesian set-up 

 Let us consider the model M given by the expression: 

 Y = 1 + Z +  with  = (, …, )’ ~ N(0,IN) (5) 

where   

Y = (y1, …, yN)’;   

1 is the vector of N ones;

 =  'pEpEpE1E11E0E0 N1N1N1
,...,,,...,,...,,,,...,   p(N+1)+N

0,1 ;  

 is a vector of indicators whose components take a value of 1 or 0 depending on 

whether the corresponding variable is included in the model or not 

Zand denote the submatrices of matrix Z and vector containing the columns and 

components corresponding to the indicators of  taking the value 1, respectively.   

Z =  1 N 1 1 1 1 N p p N,..., , , ,..., ,..., ,...,E E X X E X E X X E    where Xj = (x1j, …, xNj)’ is the 

vector of observed values of the variable Xj for j = 1,…, p and ◦ denotes the Hadamard 

product.  

 =  
1 N 1 N N0E 0E 1 1E 1E p pEα ,...,α ,α ,α ,...,α ,...,α ,...,α '  
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3.1.2. Model Estimation 

 The estimation of the parameters of model M is performed from their posterior 

distribution calculated using Bayes theorem. As done by Lamnisos et al. (2013), for the 

intercept, we take the commonly used non-informative improper prior for location 

parameters:  

 ()  1 (6) 

while for the regression coefficients,  we use the multivariate normal prior: 

  2 2
p| , ,M ~N 0,


 γ γ γ γα Z V    (7) 

where V = pc
γ

I (c>0) and p  is the dimension of γα . For the error variance 2, we use 

the usual non-informative improper prior: 

  2
2

1
  


  (8) 

Finally, we take (i = 1) = 
2

1 , independently, for i = 1,…, p(N+1)+N. 

Notice that 

 (u,v) = 


























)v,u(

...

)v,u(

)v,u(

p

1

0

= 













































N

1j
,p,pjp

N

1j
,1,1j1

N

1j
,0,0j0

jj

jj

jj

...

EE

EE

EE

E

E

E

= 



























'
,p

'
,1

'
,

...

h

h

h0

0 
 
 γα

 = H
0 

 
 γα

 (9) 

for the appropriate vectors {hj,; j = 0,…,p}. Using this result, standard calculations 

prove that the posterior distribution of the regression coefficients (u,v)| M, Y, X will 

be  '
p γ γ γ γ γ

ˆˆt , , N-1H μ H Σ H , where tp(df) denotes the p-dimensional Student t-

distribution with mean vector , scale matrix  and df degrees of freedom. 

   YZVZZμ '1'ˆ 



 


,   1'2ˆˆ 

  VZZΣ


, 

  12 ' ' ' '1
ˆ

N 1



        


Y Y Y Z Z Z V Z Y
    

 

where    Z1Z ,


 and 1

0 '



 
  
 

0
V

0 V


. 
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3.2. Model Selection 

Given that  is unknown, we use a Bayesian model selection process based on 

the calculation of the posterior probabilities of each M model. Applying Bayes 

theorem, these probabilities are given by the expression: 

  (M|Y,X) = 
   
   

Γ

f | ,M π M

f | ,M π M



γ γ γ

γ γ γ
γ

Y Z

Y Z
  (10) 

where      2 2 2
γ 0 γ γ 0 γ γ 0 γf | ,M f | ,α , ,σ ,M π α , ,σ |M dα d dσ γ γY Z Y Z α α α  is the marginal 

density of M with  2
0 γ γπ α , ,σ |Mα  being the prior distribution of its parameters and 

M  



N

1i
i 

 p N 1 N

1

2  
 is its prior probability. In our case: 

        2/1N
'11'''2/12/1

1' ~~~~~~~~~
M,f













  YZVZZZYYYVVZZZY  (11) 

where Y
~

= Y
~

- NY1 , Y is the mean of the response Y and '
γ γ γ p Z Z Z 1


.  

The analytical expression for the marginal density,   M,f ZY , facilitates the 

application of adaptive MCMC methods for variable selection proposed by Lamnisos et 

al. (2009, 2013), which are very efficient when the number of independent variables is 

large. These algorithms are based on the Random Walk Metropolis sampler with three 

possible movements: “Addition”, “Deletion” and “Swapping” of regressors, which are 

uniformly chosen at random. If “Addition” is selected, then K(t) + 1 regressors are 

chosen to be added to those included in M ; if “Deletion” is selected, then K(t) + 1 

regressors are chosen to be removed from the model; and if “Swapping” is selected, 

then K(t) + 1 included regressors are swapped with K(t) + 1 excluded regressors without 

changing the model size (provided p  K(t) + 1; if not, the “Addition” step is chosen for 

p < K(t) + 1, and either the “Addition” or “Swapping” step is chosen for p = K(t) + 1). 

In the last two cases, the model proposal and reverse model proposal are slightly 

adjusted to consider these restrictions.  

Using this basic scheme, Lamnisos et al. (2013) proposed different algorithms 

for variable selection in linear and generalized linear regression models, which have 

large acceptance rates in the Hastings-Metropolis step and good mixing properties. In 

this paper, we use their Adaptive Metropolis-Hastings Linear Regression (ADMH-LR) 

algorithm, which proceeds as follows: 
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Algorithm (ADMH-LR)  

1. Select the parameters K (maximum number of variables that can be changed in a 

movement), 0 (initial probability of the number of variables proposed to be 

changed) and τ  (target acceptance rate of the movement). 

2. Draw (0) from its prior distribution and set (0) = 0. Fix itermax, which is the 

maximum number of iterations. Set the number of iterations t = 1. 

3. Draw K(t) from a binomial distribution Bi(K-1,(t)).  

4. Select a movement (Addition, Swapping or Deletion) at random: 

a. If “Addition” is selected, then min{K(t) + 1,p(N+1)+N- )1t(p  } regressors 

are chosen to be added to those included in )1t(M   to form 'M . 

b. If “Deletion” is selected, then min{K(t)+1, )1t(p  } regressors are chosen 

to be removed from the model )1t(M   to form 'M . 

c. If “Swapping” is selected, then K(t) + 1 included regressors are swapped 

with K(t) + 1 excluded regressors without changing the model size 

(provided p  K(t) + 1; if not, the “Addition” or “Deletion” step is chosen 

for p < K(t) + 1). In the last two cases, the model proposal and reverse 

model proposal are slightly adjusted to consider these restrictions. With 

the new regressors, form 'M . 

5. Set (t) = ’ with probability  

         
       



























)1t(1t)1t()1t()1t(

)1t(1t

)1t(

MMq M M,f

MMq M M,f
,1minM,M

'

''''

'
ZY

ZY
 

where 

 

 

 

 

p
K-jj-1 '

i
i 1

p
K-jj-1 '

i0
i 1'

p
K-jj-1 '

i
i 1

K-11
 1-    if    ,  addition

j-13

K-11
 1-    if    2 ,  swapping

j-13

K-11
 1-    if    ,  deletion

j-13

0             









 
  

 

 
    

 
  

 







γ

γ

γ

i

i

i

j

j
q M M

j

  

   

   

   

                           otherwise  












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  is the probability of the movement, |+| = the number of neighbouring models of 

M with dimension p + j, |0| = the number of neighbouring models of M  with 

dimension p and |-| = the number of neighbouring models of M with 

dimension p - j. Otherwise, set (t) = (t-1).  

6. Compute  

          ( t 1)

t t 1 t
's M , M τ




         

 where    













   1      if   1

0,1     if   

0      if    0

 and s(t) = 
t
0 . 

7. Set t = t+1. If t ≤ itermax, return to step 3. Otherwise, stop. 

As a result of the algorithm, we obtain a sample of models 

 maxiter,...,1Bt;Mˆ
)t( 


 from the posterior distribution (M|Y,X), where B is a 

burning period to achieve convergence to this distribution. From this sample, we can make 

inferences about the regression coefficients (u,v) and the valuations of the price Pnew of a 

house with some given hedonic characteristics xnew = (xnew,1, …, xnew,p)’ and UTM 

coordinates (unew,vnew). In this paper, we compare the results of three methods commonly 

used in the literature. The first model is based on the use of the most likely model 
maxˆM γ  so 

that (
maxˆM γ |Y,Z) = ˆmax

γ Γ  {(M|Y,Z)}. The second model is the median model 
medianˆM

proposed in Barbieri and Berger (2004), which verifies that i,median̂  = 1 if (i = 1|Y,Z) ≥ 

0.5 and 0 otherwise, where (i = 1|Y,Z) =  
i

ˆ : 1

M |
 

 γ
γ Γ γ

Y,Z . Finally, the third procedure 

consists of using a mixture of models Γ̂ so that the inference for any quantity of interest  

is based on the following mixture:  

      


 
ˆ

,|Mˆ,,M|f,|ˆ ZYZYZY  (12)  

with      
   





 




ˆ

M,M|f

M,M|f
,|Mˆ

ZY

ZY
ZY . 

 In particular, if  = ynew = log(Pnew), we calculate the values of the explanatory 

variables znew and the inferences about the price Pnew will be made using a Monte Carlo 

method from the posterior predictive distributions:  
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  ZYz ,,,M|yf new,ˆˆnew maxmax   if we use 
maxˆM γ  (13) 

  ZYz ,,,M|yf new,ˆˆnew medianmedian   if we use 
medianˆM  (14)  

or  

    


 
ˆ

new,new ,|Mˆ,,,M|yf ZYZYz  (15) 

if we use the mixture (12). In cases where the number of models in ̂ is large and, 

therefore, the calculation of (15) is computationally demanding, we have found it very 

convenient to use the Occam window 
 
  




















max

ˆ
C

,|Mˆ

,|Mˆ
:ˆ~ max

ZY

ZY
 from Madigan 

and Raftery (1995). When Cmax = 100, the results from the Occam window are 

indistinguishable from those obtained with (15).  

4. Empirical application: analysis of the Zaragoza real estate market. 

In this section, the methodology described in Section 3 is applied to the 

Zaragoza real estate market. To provide a more exhaustive study, we compare our 

methodology with a set of alternative procedures widely used in the literature that 

correspond to several strategies used to estimate model (4).  

4.1. Data 

The analysed data correspond to 1,268 resale housing transactions in Zaragoza in 

2013. The Colegio Nacional de Registradores de la Propiedad provided us with the 

data on the registered price, the living area, the age of the building and the geographical 

position measured by UTM coordinates for each dwelling. 

Table 1 shows the characteristics of the dwellings. The maximum price 

corresponds to an apartment located in the centre of Zaragoza, the maximum living area 

corresponds to a house in an area of luxury chalets, and the maximum age of the 

building corresponds to an apartment in the old part of the city.  

(Insert Table 1 about here) 

 To clarify the interpretation of each regression coefficient, the variables living 

area and age of the building are centred. Thus, the intercept 0(u,v) can be interpreted 

as the logarithm of the price of a dwelling with mean characteristics located at the 

geographic coordinates (u, v). 

The connectivity matrix C was given by cij = 1 if dij ≤ dmax = 300 metres and 0 

otherwise and it is based on the procedure used by the estate agents of the housing 
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market of Zaragoza to assess housing prices. The eigenvectors {Ei; i = 1,…, 1268} were 

calculated, and those that verified i
min

max

100 c 25%


 


 were selected, where i is the 

eigenvalue associated with Ei described in Section 2, and max is the maximum of the 

eigenvalues of C. This value of cmin was selected after carrying out an out-of-sample 

validation procedure for a series of values of cmin (from 0 to 100 with increases of 1%). 

To do this, we took a random estimation sample of 1,000 transactions and a validation 

sample of 268 transactions, and we repeated this procedure 100 times using a stepwise 

procedure.  

Finally, 54 eigenvectors were selected, and as p = 2 in our example, we had a 

selection problem of 3x54-1 = 161 independent variables, which results in 2161 = 2.923 

x 1048 models, a figure that is clearly unworkable. For this reason, it is necessary to 

design efficient searching methods to locate the models that best fit the data. 

4.2. Estimation and model selection procedures 

 We used 7 estimation and model selection procedures, namely: 

a) Constant: A constant model where we assume that the regression 

coefficients (u,v) =  are constant and without any spatial dependence. 

Therefore, we take Z = (X1,…, Xp).  

b) Stepwise: A stepwise selection procedure implemented using the routine 

stepwisefit programmed in MATLAB R2015 b with an input p-value of 0.05 

and output p-value of 0.10.  

c) Lasso: A Bayesian lasso estimation procedure implemented using the routine 

blasso programmed in R and included in the package monomvn. This 

provides inferences for Bayesian lasso by Gibbs sampling from the Bayesian 

posterior distribution augmented with a Reversible Jump for model selection 

(Park and Casella, 2008). 

d) Ridge: A Bayesian ridge estimation procedure implemented using the routine 

bridge programmed in R and included in the package monomvn. This is a 

special case of blasso with the argument case =“ridge”. 

e) Most Probable: Algorithm ADMH-LR, selecting the most likely model 

maxˆM  . 

f) Median: Algorithm ADMH-LR, selecting the median model of Barbieri and 

Berger (2004). 
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g) Mixture: Algorithm ADMH-LR, using the Bayesian mixture (12) to make 

inferences. 

In the Stepwise procedure, the estimations of the regression coefficients were 

obtained using the maximum likelihood method and, for confidence intervals of 95% 

and 99%, we assumed asymptotic normality for the estimator. In the Bayesian Lasso, 

the Bayesian Ridge and the ADMH-LR procedures, we took c = 100, and we calculated 

the posterior median as the point estimate together with the Bayesian credibility 

intervals of 95% and 99%, which were obtained from the corresponding quantiles. In 

addition, in the ADMH-LR algorithm, we used the values proposed in Lamnisos et al. 

(2013) with N = 4, 0 = 0.5,   = 0.3 and we took itermax = 100,000 iterations with a 

burning period B = 10,000. The computations were completed using the programs 

MATLAB R2015 b and R 3.3.2. 

 Constant was chosen to test if there were significant spatial dependencies in the 

regression coefficients. Stepwise is similar to that proposed by Griffith (2008), and it is 

used as a reference. Lasso and Ridge are widely used in the literature as alternatives to 

the ordinary least squares (OLS) method, and they improve the average prediction error 

and implicitly provide a variable selection procedure (Hans, 2009). Finally, Most 

Probable, Median and Mixture are the Bayesian procedures proposed in this paper. 

Only the Mixture procedure takes into account the uncertainty associated with the 

estimation and the model selection processes because it builds a mixture of all the 

relevant models found weighted by their posterior probability. These probabilities 

measure their fit to the data. 

4.3. Results 

4.3.1. Estimations of the regression coefficients 

Table 2 shows the correlations between the estimations of the parameters 

{k(ui,vi);i = 1,…,N} for k = 0,1,2 and Figure 1 shows the scatter plot matrix of the 

estimations obtained by each procedure1. Except for the Constant procedure, which 

estimates 0 1 2
ˆ ˆ ˆ11.4348,  1.0285 and 0.2548       , all procedures provide very 

similar estimations with correlations larger than 0.89, 0.80 and 0.65 between the 

intercept, living area and building age regression coefficients, respectively. This result 

can also be seen in Figure 1, where a non-parametric regression line was added to each 

                                                 
1 Stepwise estimations were obtained by MLE. For the rest of the procedures, the estimations were equal 
to the posterior median. 
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scatter plot that it is approximately linear for most of them. The larger differences 

correspond to those obtained with the Ridge and Lasso procedures (especially in the 

living area and building age coefficients). A slight shrinkage effect towards 0, which 

provides a trend to obtain smaller absolute values of these coefficients, can be seen.  

 (Insert Table 2 and Figure 1 about here) 

Figures 3-5 show the estimations of parameters 0 (Figure 3), 1 (Figure 4) and 

2 (Figure 5) for the logarithm of the price of a dwelling with average characteristics 

and the price elasticities relative to the living area and the age of the building, 

respectively. Additionally, Figure 2 displays a map of the city in which the names of the 

main districts are shown to make it easier to read the results. Given that the three 

ADMH-LR Bayesian methods provided essentially the same results, Figures 3-5 only 

show the estimations corresponding to the Mixture procedure and they are compared 

with those provided by the Stepwise, Lasso and Ridge procedures. 

 (Insert Figure 2 about here) 

The prices of a dwelling with average characteristics are distributed among the 

different urban areas of the city as expected (see Figure 3). The highest prices are in the 

centre and residential areas (Actur and Universidad), and the lowest prices are in the old 

part of the city and the traditionally working-class neighbourhoods (Las Fuentes, San 

José, Las Delicias and the oldest houses of Torrero and El Rabal). 

 (Insert Figure 3 about here) 

The signs of the price elasticities with respect to the living area and the age of 

the building were as expected: positive for the living area, indicating that the bigger the 

living area, the higher the price (see Figure 4), and negative for the age of the building, 

reflecting an age penalization on the price of a dwelling (see Figure 5). 

The strongest effects of the living area correspond to houses located in the San 

José district and residential areas near the centre of the city, all with heterogeneous 

living areas. The weakest effects correspond to working-class neighbourhoods, such as 

Las Delicias or the old part of Torrero, where houses are fairly homogeneous in living 

areas, and to the most expensive dwellings in downtown areas where the location is 

more important than living area. The major differences among the methods compared 

are found in some peripheral parts of the city (Actur, Casablanca, Montecanal and 

Valdespartera). The Bayesian estimations (Lasso, Ridge and Mixture methods) are more 

reasonable because these dwellings are very homogeneous in living area, so its 
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influence must be lower. In these areas, the shrinkage effect towards 0 of the Lasso and 

Ridge methods is more notable, providing lower absolute values than the other two 

methods.  

(Insert Figure 4 about here) 

The strongest effect of the age of the building can be seen in the Las Delicias 

district where there is more heterogeneity of dwellings with respect to age. By contrast, 

the weakest effects are found in the areas that are more homogeneous in age such as El 

Rabal and Casco Histórico (old houses in both cases) or the new part of Torrero (new 

housing). The major differences among the methods compared are seen in Las Fuentes, 

Actur and some peripheral parts (Montecanal, Valdefierro, Valdespartera, Casablanca). 

Again, the Bayesian estimations seem more realistic in Las Fuentes due to the 

coexistence of ancient poor-quality dwellings and higher quality houses, which leads to 

notable differences in price and a strong influence of age. In contrast, all other areas 

correspond to expansion zones of the city where the ages of the dwellings are very 

similar and therefore the influence of age is lower. Finally, in these areas, the shrinkage 

effect towards 0 of the Lasso and Ridge procedures can also be seen.  

(Insert Figure 5 about here) 

4.3.2. Goodness of fit and intra-sample model comparison  

Table 3 shows the intra-sample value of the predictive criteria described in the 

Appendix for the seven estimation and model selection procedures. Most of the 

Bayesian methods yield similar results, and they are better than those from the Stepwise 

procedure (and the Most Probable method, which selects the same model) in all criteria. 

The worst performance in all criteria corresponds to the Constant procedure, which 

provides statistical evidence against the constant regression coefficient hypothesis. The 

most significant differences correspond to the LPRED criterion (and, with lower 

intensity, to the LOSS-GR criteria), which evaluates the goodness of fit of models in 

terms of the posterior predictive density. The Mixture procedure has the best 

performance, highlighting the advantages of considering the uncertainty associated not 

only with the estimation of the parameters of the model but also with the model 

selection process. 

Empirical coverage levels of the predictive intervals are well fitted at 99% but 

show a significant tendency for over-coverage at 95% in all procedures, which is most 

likely due to the use of a normal distribution for the error term. It would be interesting 
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to use more general distributions (Student t and GED), which will be left for future 

research. 

 (Insert Table 3 about here) 

 Figure 6 compares the point forecast of the logarithm of the prices with their true 

values and shows the 95% and 99% limits of the credibility intervals obtained by the 

Mixture procedure. The behaviours of the predictions obtained by all procedures are 

very similar and reasonable, and the confidence bounds adequately reflect the 

uncertainty associated with these predictions. 

(Insert Figure 6 about here) 

4.3.3 Out-of-sample analysis 

Finally, an out-of-sample validation process was performed, where 1,000 

transactions were taken at random to estimate the model and the rest were used for the 

validation, resulting in a total of 268 out-of-sample observations. The process was 

repeated 100 times. Table 4 presents the values of the comparison criteria while Figure 

7 shows the boxplot of their values. In general, all methods adequately capture the 

evolution of prices with coverage levels of the predictive intervals similar to their 

confidence/credibility levels. The worst performance again corresponds to the Constant 

method, so the hypothesis of constant regression coefficients is rejected. The best 

performance corresponds to the Lasso procedure with the exceptions of the PMAD and 

LPRED criteria where the Mixture procedure performs better. However, the differences 

are small with the only exception being the LPRED criterion, in which the ADMH-LR 

procedures have a significantly better performance than the rest. This difference 

highlights the advantages of these algorithms for obtaining a better goodness of fit to 

data in terms of the posterior predictive density. 

(Insert Table 4 and Figure 7 about here) 

In summary, the ADMH-LR procedures tend to select models with better 

goodness of fit properties in terms of predictive densities both intra-sample and out-of-

sample. These procedures have a similar performance to the other procedures with 

respect to the rest of the criteria. In particular, the Mixture procedure, which takes into 

account not only the uncertainty associated with the estimation of the parameters but 

also that associated with the model selection process, tends to have the best predictive 

performance. Our recommendation is to use the Mixture procedure to estimate linear 

regression models with spatially varying coefficients.   
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4.4. Sensitivity studies 

In this section, we carry out a sensitivity study with respect to some of the model 

hyper-parameters. We study the sensitivity of the results to the diffuseness of parameter 

c of the prior distribution and to the cmin and dmax thresholds, which determine the 

number of eigenvectors {Ei; i = 1,…, 1268} and the connectivity matrix C used to 

describe the spatial dependencies of the regression coefficients, respectively. In all 

cases, we use our preferred Mixture procedure to carry out the estimation and model 

selection processes. 

4.4.1. Sensitivity analysis with respect to the prior 

 We considered four different priors (7) of increasing orders of magnitude for 

non-informativeness corresponding to c = 10, 100, 1,000 and 10,000. The rest of the 

hyperparameters were fixed at their previous values, i.e., cmin = 25% and dmax = 300. 

Table S.12 shows the distribution of the number of variables selected by the ADMH-LR 

algorithm. The greater the non-informative character of the prior, the fewer variables 

selected.  

This is a consequence of the well-known Lindley paradox (Lindley, 1957) which 

proved that a very non-informative prior could favour the selection of excessively 

parsimonious models. In our case, and given that the amount of data is large, it follows 

from (11) that if c is large, then 

      p N 1 /211/2' ' ' ' '2f ,M c
   

        Y Z Z Z Y Y Y Z Z Z Z Y           

where the term 

p

2c


 penalizes complex models (large p) by decreasing their posterior 

probabilities and making their selection more difficult. For this reason, it is convenient 

to study the sensitivity of the results obtained by this parameter.  

Table S.2 and Figure S.1 show the correlations and the scatter plot matrix 

between the point estimations of the regression coefficients, respectively. In general, all 

correlations are high with values above 0.75 (see Table S.2) and Figure S.1 also 

displays a high level of concordance between all estimations. The closer the values of c, 

the higher the correlations. Furthermore, the higher the values of c, the lower the 

shrinkage effect towards 0 of the prior (7). This result provides estimations of the 

regression coefficients, especially those of the living area and building age variables, 

                                                 
2 All tables and figures referring to this sensitivity analysis have been placed in the Supplementary 
Material section. Therefore, their numbering begins with the letter S, for example, ... Table S.1, Table S.2, 
.... Figure S.1, Figure S.2, .... 
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which are slightly smaller in absolute value. The maps of the coefficients estimated 

using each prior did not reveal the existence of patterns significantly different from 

those shown in Figures 3 to 5 and are omitted for the sake of brevity but are available on 

request.  

 Finally, Table S.3 and Figure S.2 show the results of the intra-sample and out-

of-sample validation of the models selected for each prior3. The results of the empirical 

coverage levels of the predictive intervals are very similar in all cases and are similar to 

their confidence/credibility levels with the only exception being the 95% intra-sample 

predictive intervals, in which a significant tendency for over-coverage is observed. The 

values of the intra and out-of-sample comparison criteria of the selected models are very 

similar. The selected models with c = 10 have the best performances in most of the 

criteria. Only in the LPRED criterion are there significant differences among the models 

selected with c = 10, 1,000 and 10,000, with the first having a better performance. This 

fact highlights the importance of carrying out sensitivity studies with respect to the prior 

distribution to avoid the selection of models with poor goodness of fit due to the effects 

of the Lindley paradox. 

4.4.2. Sensitivity analysis with respect to cmin 

 This parameter controls the number of eigenvectors {Ei; i = 1,…, 1268} that are 

used to model the spatial dependencies of the regression coefficients. The higher the 

value of cmin, the bigger the number of eigenvectors and, therefore, the higher the 

flexibility of the model to capture more complex spatial dependencies and the greater 

the possibility of capturing spurious dependencies. We considered three different values 

of cmin (20%, 25% and 30%) while the rest of the hyperparameters were fixed at their 

previous values, i.e., c = 100 and dmax = 300.  

Table S.4 shows the distribution of the number of variables selected by the 

ADMH-LR algorithm. It can be observed that this number is very similar for cmin = 20% 

and 25% and slightly smaller for c = 30%.  

Table S.5 and Figure S.3 show the correlations and the scatter plot matrix of the 

estimations of the regression coefficients, respectively. Table S.6 and Figure S.4 show 

the results of the intra-sample and out-of-sample validation of the models selected for 

each value of cmin, respectively. In general, all correlations are high with values above 

0.60 and a high level of concordance between all solutions (see Figure S.3). The closer 

                                                 
3 As in Section 4.3.3, we selected 1,000 observations to estimate the model and 268 to validate it, and we 
replicated this process 100 times in all sensitivity studies. 
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the values of cmin, the higher the correlations and the concordance of the estimations. 

The main differences are between the estimations obtained with cmin = 20% and 30%, 

especially in the living area and building age coefficients (see Figure S.3), where the 

smallest values of the correlation are obtained (see Table S.5). This difference is due to 

the elimination of some eigenvectors {Ei; i = 1,…, 1268} when cmin = 30%, which 

reduces the flexibility of the model to describe the spatial dependency modelling 

process and lowers the intra-sample goodness of fit and the predictive performance of 

the selected models. However, a map of the coefficients estimated by each model did 

not reveal the existence of patterns significantly different from those shown in Figures 3 

to 5. Furthermore, the out-of-sample performances of the three estimated mixture 

models are very similar (see Table S.6 and Figure S.4). Therefore, we conclude that our 

results are reasonably robust to the value of cmin. 

4.4.3 Sensitivity analysis with respect to dmax 

The hyperparameter dmax determines the values of the connectivity matrix C and 

the neighbouring transactions of a given transaction in such a way that the higher its 

value, the larger the number of neighbouring transactions. We considered three different 

values of dmax (250, 300 and 350 metres) while the rest of the hyperparameters were 

fixed at their previous values, i.e., c = 100 and cmin = 25%. 

Table S.7 shows the distribution of the number of variables selected by the 

ADMH-LR algorithm. Table S.8 and Figure S.5 compare the estimations of the 

regression coefficients. Finally, Table S.9 and Figure S.6 show the results of the intra-

sample and out-of-sample validation of the selected models.  

The more complex models selected correspond to dmax = 300, which tend to have 

the best intra-sample and out-of-sample performances for most criteria. The regression 

coefficients estimated by the mixture models selected when dmax = 250 and 350 are 

significantly correlated with those estimated when dmax = 300; all of the correlations are 

larger than 0.5. Finally, a map of the coefficients estimated by each method did not 

reveal the existence of patterns significantly different from those shown in Figures 3 to 

5. Therefore, we can conclude that the value of dmax provided by the estate agents of 

Zaragoza is well supported empirically.  

5. Conclusions 

This paper has proposed a Bayesian procedure for selecting spatial filters to 

conduct valuation procedures for dwellings using regression models with spatially 
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varying coefficients. The procedure is based on the method proposed by Griffith (2008) 

and applies Bayesian techniques of variable selection and, more specifically, MCMC 

adaptive methods to determine the most relevant spatial dependencies in the data. Using 

the selected models, we have proposed three parameter estimation procedures: the most 

likely model, the median model and the Bayesian mixture model. The proposed 

methods are illustrated by applying them to the real estate market of Zaragoza, and a 

comparison with alternative procedures has been carried out.  

The methodology is very flexible and parsimoniously describes the spatially 

varying relationships of the regression coefficients. In addition, the method is easy to 

implement and not very computationally demanding, as it does not require excessively 

high computational times. In simulated examples similar to the empirical example 

considered in this study, the average CPU time of the estimation algorithm was 

approximately 320 seconds with a standard deviation of approximately 70 seconds 

using an Ultrabook Toshiba Kira computer with an Intel Core i7 processor. Moreover, 

the results show that the valuation methodology proposed in the paper and the Bayesian 

Mixture procedure improve the results obtained by alternative procedures and more 

adequately reflect the uncertainty associated with the estimation and selection of 

models. 

One limitation of our work is the assumption of the normality and 

homoscedasticity of the error distribution. Both of these hypotheses are questionable 

and might be responsible for the over-coverage at the 95% level observed in all 

procedures. A right-skewed error distribution or a heteroscedastic error might be more 

appropriate. It would be interesting to extend our procedures to address these situations 

in future studies.    

Other prior distributions of the regression coefficients could be used in the line 

of the g-priors of Zellner (1986) and Liang et al. (2008) to avoid problems of local 

multicollinearity. Moreover, given that the number of independent variables might be 

much higher than the number of data points, high dimensional statistical techniques of 

variable selection (Giraud, 2014) could be applied. Similarly, Bayesian comparison 

procedures of non-nested models could be used to select variables from several forms of 

the connectivity matrix C. 

An interesting alternative approach to those considered here is the structured 

additive regression (STAR) model of Fahrmeir et al. (2004, 2010). They proposed the 

use of Bayesian spatiotemporal extensions of generalized additive and varying 
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coefficients models for analysing space-time regression data, which include the GWR 

models. They used a two-dimensional version of penalized splines to capture the spatial 

dependencies of the regression coefficients and used MCMC methods (among other 

possibilities) to estimate the coefficients. Their methodology is very flexible and general 

and can be extended to generalized additive (Brezger and Land, 2006) and hierarchical 

regression models (Lang et al., 2014) and to variable selection problems (Fahrmeir et 

al., 2010). It would be interesting to compare the STAR methodology with our 

procedures in future research. All of these aspects are on our agenda for future research, 

the results of which will be presented in later papers. 
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APPENDIX 

Predictive criteria  

Let yval = (yval,1,…,yval,nval)’  be the sample of validation and yest = (yest,1,…,yest,nest)’ be the 

sample of estimation where nval and nest are the corresponding sample sizes. Let Zval = 

(zval,1,…,zval,nval) and Zest = (zest,1,…,zest,nest) be their corresponding covariates.  

In the in-sampling validation we take yval = yest = y and Zval = Zest = Z. In the out-sampling 

validation we take yest = (y1,…,ynest)’ and yval = (ynest+1, …, yn)’ and Zest = (z1,…,znest), Zval 

= (znest+1,…,zn) where the components of y have been previously randomly sorted.   

We have used the following criteria: 

1. Root of the Mean Square Error (RMSE) 

   
nval 2

nval,i val,i val,i est est
i 1

1 ˆRMSE y E y | , , ,
nval 

     z y Z M   

where M̂  is the model selected by the evaluated procedure; 

  '
ˆ ˆval,i val,i est est ,val,i

ˆ ˆE y | , , ,  
   z y Z M z μ , where N p Np

ˆ 1     in the case of the Lasso and 

Ridge procedures,  '

i
ˆ ˆ ;i 1,..., N p Np       with i̂ =1 if the i-th variable of Z is 

selected and 0 otherwise in the case of the Stepwise and Bayesian Most Probable and 

Median procedures; M̂  is the mixture given by  
ˆ

M , M


 γ γ
γ Γ

Y Z  in the case of the 

Bayesian Mixture procedure and  
ˆ

w M , M 

 γ γ
γ Γ

Y Z  with 

   
 

Γ̂

f | , ,M
M | ,

f | , ,M





γ γ

γ γ

γ γ
γ

Y Z Y
Z Y

Y Z Y
w ;  ˆˆ μ  is an estimation of  ''

ˆ0 ,  α  obtained by 

maximum likelihood from model ̂M  in the case of the Stepwise procedure, and equal 

to the posterior mean of  ''
ˆ0 ,  α  for the rest of procedures.  

2. Mean Absolute Deviation (MAD) 

  
nval

nval,i val,i val,i est est
i 1

1 ˆMAD y E y | , , ,
nval 

     z y Z M  
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3. Logarithm of the density of the predictive distribution  

 LPRED =   val val est est
ˆlogf | , , ,y Z y Z M  

where   val val est est
ˆf | , , ,y Z y Z M  denotes the predictive density of yval that is equal to 

  ' 2 '
ˆ ˆ ˆ

ˆˆ ˆ,nval val nval val valN I   Z μ Z Σ Z in the case of Stepwise procedure, 

  ' 2 '
ˆ ˆ ˆ

ˆˆ ˆ, , 1nval val nval val valT I nest    Z μ Z Σ Z in the case of the Most Probable and Median 

procedures and      ' 2 '

ˆ
,M , ˆˆ ˆ, , 1nval val nval val valest est IT nest  






  γ γZ Z μ Zy Σ Z  in the 

case of the Mixture procedure. Tp(denotes the p-dimensional Student t-distribution 

with mean vector , scale matrix  and  degrees of freedom. In the case of the Lasso and 

Ridge procedures,   val val est est
ˆf | , , ,y Z y Z M  is calculated by means of composition 

sampling.

4. Percentage Mean Absolute Deviation (PMAD) 

 PMAD = 
 nval val,i val,i val,i est est

i 1 val,i

ˆP Median P | , , ,1

nval P

   
z y Z M

  

where  val,i val,i est est
ˆMedian P | , , ,  z y Z M  =  '

ˆ ˆ,val,i ˆexp  z μ  is the median of the posterior 

distribution of the transaction prices in all the compared procedures with the sole 

exception of the Bayesian Mixture procedure, in which this median is calculated by 

simulation of the predictive distribution of   val,i val,i est est
ˆy | , , ,z y Z M 4. 

5. Empirical Coverage of the 100(1-) predictive interval (COVY) 

 COVY(1-) =  
1 1

val,i , val,i,1
2 2

nval

val,i
ˆ ˆy ,yi 1

1
I y

nval
 



 
 
  

    0<

is the empirical coverage of the 100(1-)% predictive interval of the elements of yval, where 

IA(y) denotes the indicator function of a set A and val,i,ŷ  is the -quantile of 

 val,i val,i est est
ˆy | , , ,z y Z M  and  = 0.01 or 0.05.  

 
 

 

                                                 
4 The number of simulations was 1,000 



26 
 

6. Gneiting and Raftery Loss of the 100(1-) predictive interval (LOSS R-G) 

 LOSS R-G(1-) = 
nval

1 1
val,i,1 val,i,

i 1 2 2

1
ˆ ˆy y

nval  


  
     

  

   
(s)

1 1nval,i , nval,i ,12 2

nval nval

1 nval,i nval,i nval,i 1 nval,i
nval,i, nval,i,1ˆ,y ˆi 1 i 1 y ,2 2

2
ˆ ˆy y I y y y I y

 


             

 
                   

 

 

and    

The PMAD, RMSE and MAD criteria assess the point predictive performance of 

the model selected using the housing prices (PMAD) and the logarithm of these prices 

(RMSE and MAD). Likewise, the COVY(0.95) and COVY(0.99) criteria evaluate the 

performance of predictive intervals of 95% and 99% in terms of empirical coverages, 

while LOSS R-G() and LOSS R-G(), which denote the proper losses proposed 

by Gneiting and Raftery (2007), evaluate the behavior of these intervals in terms of their 

length and the size of the coverage errors. Finally, the LPRED criterion evaluates the 

goodness of fit to the data of the model selected in terms of the predictive density. 
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TABLES 

Table 1: Characteristics of the dwellings 

Price (thousands of €) Living area (m2) Building age (years) 
Mean 110.09 79.23 37.81 
Deviation 7.27 39.28 20.07 
Median 90.22 68.03 42.52 
Minimum 25.85 36.97 1.42 
Maximum 514.01 361.41 113.3 
Skewness 1.69 2.98 -0.023 
Kurtosis 3.56 12.5 0.04 
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Table 2: Correlations between the estimations of the coefficients 
{k(ui,vi); i = 1...,N; k = 0,1,2} obtained by each procedure 

Intercept Lasso Median Most Probable Mixture Ridge Stepwise 

Lasso 1.000 0.966 0.922 0.986 0.995 0.920 

Median  1.000 0.910 0.988 0.968 0.907 

Most Probable   1.000 0.935 0.897 0.999 

Mixture    1.000 0.984 0.933 

Ridge     1.000 0.895 

Stepwise     1.000 

Living Area Lasso Median Most Probable Mixture Ridge Stepwise 

Lasso 1.000 0.966 0.922 0.986 0.995 0.920 

Median  1.000 0.910 0.988 0.968 0.907 

Most Probable   1.000 0.935 0.897 0.999 

Mixture    1.000 0.984 0.933 

Ridge     1.000 0.895 

Stepwise     1.000 

Building Age Lasso Median Most Probable Mixture Ridge Stepwise 

Lasso 1.000 0.922 0.715 0.944 0.986 0.716 

Median  1.000 0.747 0.967 0.917 0.749 

Most Probable   1.000 0.812 0.655 0.999 

Mixture    1.000 0.937 0.814 

Ridge     1.000 0.657 

Stepwise     1.000 
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Table 3: Intra-sample predictive analysis of the estimation and model selection 

procedures (the best performance for each criterion is in bold) 

Procedures 

Criteria Constant Stepwise Ridge Lasso Most Probable Median Mixture 

RMSE 0.377 0.301 0.293 0.292 0.301 0.300 0.293 

MAD 0.302 0.234 0.227 0.225 0.234 0.232 0.227 

LPRED -563.05 -290.61 -295.80 -293.61 -290.61 -288.38 -269.89 

COV95 97.08 97.32 97.87 97.63 97.32 97.32 97.48 

COV99 99.21 99.05 99.29 99.37 99.05 99.05 99.13 

PMAD 0.312 0.240 0.233 0.230 0.240 0.238 0.233 

LOSS G-R(0.95) 1.744 1.493 1.490 1.477 1.496 1.499 1.461 

LOSS G-R(0.99) 2.208 1.935 1.952 1.919 1.941 1.910 1.902 
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Table 4: Out-of-sample predictive analysis of the estimation and model selection 

procedures (the best performance for each criterion is in bold) 

Procedures 

Criteria Constant Stepwise Ridge Lasso Most Probable Median Mixture 

RMSE 0.375 0.339 0.330 0.327 0.332 0.332 0.332 

MAD 0.302 0.260 0.252 0.253 0.253 0.253 0.253 

LPRED -117.23 -89.18 -103.20 -98.45 -81.14 -81.22 -80.69 

COV95 97.39 96.27 94.59 94.78 96.64 96.64 96.64 

COV99 99.25 98.51 98.51 98.51 98.88 98.88 98.88 

PMAD 0.312 0.274 0.265 0.265 0.264 0.264 0.263 

LOSS G-R(0.95) 1.730 1.723 1.622 1.599 1.679 1.681 1.673 

LOSS G-R(0.99) 2.522 2.442 2.248 2.195 2.356 2.352 2.362 
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FIGURES 

 

 

 

Figure 1: Scatter plot matrix of the regression coefficients together with a non-parametric 

regression line estimated for the Lasso, Median, Most Probable, Mixture, Ridge and 

Stepwise procedures   
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Figure 2: Map of Zaragoza with superimposed neighbourhoods 
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Figure 3: Estimations of the intercept (0) 

(left to right, top to bottom: Stepwise, Mixture, Lasso and Ridge procedures) 
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Figure 4: Estimations of the coefficients of the living area (1) 

(left to right, top to bottom: Stepwise, Mixture, Lasso and Ridge procedures) 
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Figure 5: Estimations of the coefficients of the building age (2)  

(left to right, top to bottom: Stepwise, Mixture, Lasso and Ridge procedures)  
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Figure 6: In-sample predictions of the logarithm of the price together with the 
95% and 99% limits of the Confidence/Bayesian credible intervals obtained by the 

Stepwise, Mixture, Lasso and Ridge procedures (in the blue diagonal line)   
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Figure 7: Boxplot of the out-of-sample values of the predictive criteria for the Constant 

(Ct), Stepwise (Spw), Lasso (Lass), Ridge (Rid), Most Probable (MP), Median (Med) and 

Mixture (Mxt) procedures 
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