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We have investigated the magnetic properties of Ni nanoaggregates produced by ion

implantation in ZnO single crystals. Several deviations from classical models usually adopted to

describe the magnetic properties of nanoparticle systems were found. The strain between host

and Ni nanoaggregates induces a magnetic anisotropy with a preferred direction. We show that

these anisotropy effects can be misinterpreted as a ferromagnetic or antiferromagnetic coupling

among the nanoaggregates similar to that of an oriented, interacting nanocrystal ensemble.
VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4890498]

I. INTRODUCTION

Nanostructured materials are the key component of

many technological systems due their specific physical prop-

erties. In particular, magnetic nanoparticles (NPs) have been

used for applications in magnetic recording media, ferro-

fluids, hybrid sensors and for biomedical applications such as

drug delivery or magnetic hyperthermia. This makes the

understanding of the properties of magnetic nanoparticles one

of the leading problems in the study of magnetic materials.

The formation of magnetic NPs embedded in a semicon-

ducting matrix is also important for applications on optical

active devices as well as from the point of view of the funda-

mental physics of nanostructured materials. Recently, doped

ZnO is being explored for spintronic applications displaying

relevant spin coherence relaxation times.1 However, the ex-

perimental results on doped ZnO strongly depend on the

preparation conditions of ZnO and on the doping process,

implying different reported results for the electrical and mag-

netic properties of similar systems. In particular, the room

temperature magnetic behavior of transition metal (TM)

doped ZnO can vary from paramagnetic2 to superparamag-

netic3 and ferromagnetic.4–6 The superparamagnetic behav-

ior is associated with the formation of stable nanosized

clusters of the magnetic TM ions even if the clusters are not

detected by standard x-ray diffraction. In this respect, ion im-

plantation has been shown to be an appropriate technique for

the synthesis of magnetic nanoparticles with controlled size

and composition embedded in a crystalline matrix with opti-

cal and mechanical functionalities such as ZnO.7–10

The physical and chemical properties of the magnetic NPs

can be very different from those of their bulk counter-part.11

Theoretical and experimental studies have recognized that the

magnetic anisotropy can be an important factor affecting the

magnetic properties of magnetic nanoparticle systems above

TB.12–14 Vargas et al.13 predicted that the uniaxial anisotropy

effect in a system of non-interacting NP with aligned easy

magnetization axes can be misinterpreted as a ferromagnetic

or antiferromagnetic coupling among the NP, depending on

the angle between the anisotropy axes and the magnetic field.

We focus on the magnetic properties of an assembly of

texturized Ni aggregates synthesized by ion implantation of

single crystals of ZnO and present results for the magnetic ani-

sotropy effects in such systems. The results are discussed con-

sidering the role of the magnetic anisotropy on the magnetic

properties of oriented nanocrystals according with the predic-

tion of the theoretical model developed by Vargas et al.13

II. EXPERIMENTAL

ZnO single crystals with dimensions 10� 10� 0.5 mm3

and (0001) orientation (c-axis perpendicular to the crystal

surface) were implanted with Ni at 300 K with an implanta-

tion energy of 200 keV and fluences of 0.5� 1017 and

1.0� 1017 cm�2. Structural characterization of the samples

was carried out by Rutherford backscattering spectroscopy

(RBS), RBS in combination with the channeling effect and
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x-ray diffraction (XRD) and was presented elsewhere.15,16

Local morphology and structure determination were studied

by scanning transmission electron microscopy (STEM) in an

FEI Titan 60–300 microscope. Magnetization measurements

were performed using a SQUID magnetometer (Quantum

Design MPMS). Zero field cooling (ZFC) magnetization was

measured upon warming with an external field applied after

cooling the system in zero magnetic field. Field cooling (FC)

magnetization was measured upon warming under the same

applied field used during the cooling.

III. THEORETICAL BACKGROUND

The study of single-domain magnetic systems is based

on the uniform rotation of magnetization according to the

classical Stoner-Wohlfarth (SW) model.17 However, the SW

model does not consider inter-domain magnetic interactions

and does not take explicitly into account thermal fluctua-

tions. The thermal fluctuation of the magnetization of single-

domain systems was introduced by N�eel and Brown consid-

ering uniform magnetization and uniaxial anisotropy.18,19 In

this context, the thermal equilibrium is mediated by thermal

fluctuation following the Arrhenius switching probability,

s ¼ s0 expðKV=kBTÞ; (1)

where the characteristic time constant s0 is normally taken in

the range 10�11–10�9 s, kB is the Boltzmann constant, K is

the uniaxial anisotropy constant, and V is the particle vol-

ume. KV represents the energy barrier between two easy

directions. Bean and Livingston considered that for an as-

sembly of noninteracting single-domain particles at a given

observation time (sobs) there is a critical temperature, called

the blocking temperature (TB), above which the system

behaves as a superparamagnet. On the contrary, below TB

the system is said to be blocked. This superparamagnetic

approach is widely used in the study of the magnetic proper-

ties of nanostructurated magnetic systems. In more recent

models, some additional effects such as the magnetic anisot-

ropy and inter-grain magnetic interactions have been

included.20

A. Temperature dependence of coercive field

The temperature dependence of both coercive field and

remanence obtained from the M(H) curves measured at dif-

ferent temperatures can be used to estimate the magnetic ani-

sotropy value.

The HC(T) behavior for a real system has been described

by a simple model in which both blocking temperature distri-

bution and unblocked particles contribution are considered.21

According to this model, the coercive field of the blocked

particles is obtained by means of

HCB ¼ a
2K

MS
1� T

hTBiT

� �1
2

" #
; (2)

where a is a parameter that takes the value a¼ 1 if the parti-

cle easy axes are aligned or a¼ 0.48 if randomly ori-

ented.17,22 hTBiT is the average blocking temperature, which

takes into account only the volume fraction of blocked par-

ticles at temperature T.

As any real system has a distribution of particles volume

(and consequently a blocking temperature distribution,

f(TB)), the total coercive field can be calculated by averaging

the magnetization of superparamagnetic and blocked par-

ticles, thus yielding

hHCiT ¼
Mr Tð Þ

vS Tð Þ þ Mr Tð Þ
HCB Tð Þ

; (3)

where Mr(T) is the remanence for different temperatures and

vS(T) the susceptibility of the particles that are superpara-

magnetic at a certain temperature T. To obtain hHCiT
through Eq. (3), three terms must be determined from experi-

ments: Mr(T), vS(T), and HCB(T).21,23,24

IV. RESULTS AND DISCUSSION

In two previous publications,15,16 we have shown that

despite the heavy damage caused by implantation there is no

amorphization of the ZnO matrix. Furthermore, the XRD

results showed that the Ni forms textured aggregates with

one of the h111i directions of Ni parallel to the h0001i direc-

tion of ZnO. Below, we will discuss our results with refer-

ence to the Ni particles rather than the substrate and when

we refer to h111i of Ni we mean only that direction that is

parallel to the c-axis of ZnO (or equivalently, perpendicular

to the crystal surface).

From the study of the magnetic properties based on the

superparamagnetic models, we have estimated the average di-

ameter (D) for the Ni nanoparticles the value of (2.2 6 0.2)

nm and (2.6 6 0.2) nm for the samples implanted with fluen-

ces of 0.5� 1017 and 1.0� 1017cm�2, respectively. We have

also shown that the magnetization curves display a typical

behavior of non-interacting single-domain particles. Particle

sizes obtained from magnetization are in good agreement

with the results of STEM analysis.16 In Fig. 1, we show Z

contrast STEM images obtained for the sample implanted

with 0.5� 1017 cm�2. Two magnifications of the cross section

of the implanted ZnO crystal are shown where we can observe

that the particles are formed separated from each other by dis-

tances of the order of 5 nm. For such distance and consider-

ing, the average magnetic moment of 296 lB obtained in Ref.

16, the dipolar interaction is smaller than 0.5 K. For the case

of the sample implanted with 1.0� 1017 cm�2 the average

magnetic moment is 443 lB and for a distance of 5 nm the

dipolar interaction would be 1 K. This allows us to confidently

disregard dipolar interactions between the particles.

The M(H) curves measured at 2.0 K for a sample with a

fluence of 1.0� 1017 cm�2 for field applied either parallel

and perpendicular to the Ni h111i direction are shown in

Fig. 2. According to the Stoner and Wohlfarth model for a

single-domain particle with uniaxial anisotropy, it is

expected that values of HC and Mr increase as the angle

between the applied field and the easy axis decreases. Some

features are noticed when we consider the difference

between the magnetization measured for different directions

of the external magnetic field such as shown in Fig. 2. Most
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noticeably, the M(H) curve taken for external field applied

perpendicular to the Ni h111i direction has the highest Mr

and lowest saturation field suggesting that the Ni aggregates

have anisotropy with easy magnetization in the plane perpen-

dicular to the Ni h111i direction. The same features are

observed for the sample implanted with 0.5� 1017 cm�2.

An individual particle with uniaxial anisotropy has two

stable states for the magnetic moment pointing up or down.

In real systems even with oriented easy axis (e.g., ensemble

of magnetic nanowires) there are other factors such as dipo-

lar interaction, competition of magnetic anisotropy of differ-

ent origins, that contribute to the total energy resulting in a

deviation of the magnetization of the system as a whole from

a pure bi-stable magnetic state.13,25,26 In addition, bulk Ni

has a cubic magnetic anisotropy with easy magnetization

direction along [111].27 However, the M(H) results obtained

for our samples indicate that the Ni h111i parallel to h0001i
ZnO axis is a hard direction of magnetization, consequently,

one can infer that the magnetic anisotropy of the aggregates

is strongly dependent on the interfacing with the host matrix.

In order to obtain more information about the magnetic

properties of these systems, the M(H) curves taken at differ-

ent temperatures were also investigated and are plotted in

Fig. 3 for both samples. Figure 4 shows the variation with

temperature of Mr for the sample implanted with a fluence of

1.0� 1017 cm�2, obtained from the M(H) curves measured at

different temperatures. For a system with oriented easy-axes,

the remanence is observed to vary according to28

MrðTÞ ¼ aMrð0Þ 1�
ðT

0

f ðTBÞdTB

" #
: (4)

Thus, the temperature derivative of the remanent mag-

netization reflects the distribution of blocking temperature,

f(TB), of the systems. We have considered a log-normal distri-

bution of blocking temperatures to fit Eq. (4) to the tempera-

ture dependence of Mr by using the width (r) and the average

blocking temperature hTBi as free parameters. The solid line

in Fig. 4 shows the fitting result and the corresponding distri-

bution is shown in the inset of the same figure.

Figures 5(a) and 5(b) show the temperature dependence

of HC of sample 0.5� 1017 cm�2 and 1.0� 1017 cm�2,

FIG. 1. TEM images showing a cross

section of the ZnO crystal implanted

with Ni with a fluence of

0.5� 1017 cm�2.

FIG. 2. Magnetization loop curves measured, with the field applied parallel

and perpendicular to the Ni h111i direction, for sample with the fluence of

1.0� 1017 cm�2 at 2.0 K. The inset shows the results for the full range of

applied magnetic field.

FIG. 3. Magnetization loop curves taken at different temperatures with the

field applied parallel to Ni h111i direction for samples 0.5� 1017 cm�2 and

1.0� 1017 cm�2.
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respectively. We can observe that although the temperature

dependence of the coercivity is similar for both samples, the

values of HC depend on the direction of magnetization mea-

surement. This result could be related to the texturization of

Ni aggregates in the ZnO host according to Eq. (2). Here, we

consider that the value of a for the magnetization measured

with the magnetic field applied parallel to the Ni h111i direc-

tion (akK) is different from the one obtained for the magnet-

ization measured with the magnetic field parallel to the

surface of the crystal (a?K). Indeed, we simulated the

temperature dependence of hHCiT using Eqs. (2) and (3),

and f(TB) obtained from Mr curves. The result is plotted as a

solid line in Fig. 5. As can be seen, the agreement between

theoretical and experimental curves is good for the complete

temperature range. A shift between the theoretical and exper-

imental values in such curves has been previously attributed

to interparticle interaction effects.21,24 Here such a shift is

not observed, confirming that the intercluster interactions are

not an important factor influencing the magnetic properties

of our samples. We use MS¼ 485 emu/cm3 (bulk Ni value),27

and consequently, the only free parameter used in the fit was

the product akK (a?K) for HC(T) curve obtained from M(H)

measured parallel (perpendicular) to the Ni h111i direction.

The numerical values obtained from this analysis are shown

in Table I. We found higher values for ak as compared to a?
for both samples and the ratio a?/ak is shown in the table.

This ratio should vary between 0.48 (all particles have one

easy axis parallel to h111i of Ni and randomly aligned easy

axis perpendicular to that direction) and 1 (all easy axes ran-

domly oriented in all directions). In the system studied the

ratio a?/ak indicates that the larger particles have hard axis

orientations correlated with the h111i direction parallel to

h0001i of ZnO while for smaller particles this correlation

seems to be weaker. Furthermore, the value found for the

effective magnetic anisotropy is two orders of magnitude

larger than the effective magnetocrystalline anisotropy of

bulk Ni (the anisotropy corresponding to the energy barrier

between the two easy directions for cubic Ni, that at low

temperature is K1

12
� 1:0� 104 erg=cm3).27,29 It is worth men-

tioning that the fitting parameter in the HC analysis is MS/K
and by using the Ni bulk value for the saturation magnetiza-

tion of the particles we are overestimating the value of K

although this does not affect the value of the ratio a?/ak.
It is well known that the surface anisotropy plays an im-

portant role on the magnetic properties of nanoparticles and

its relative weight to bulk anisotropy increases as the diame-

ter of the nanoparticles decreases.30 However, our analysis

of coercivity shows that the anisotropy is smaller for the

smaller particles, indicating that surface anisotropy is not the

dominant term. Magnetoelastic anisotropy has been reported

to dominate in systems of transition-metal nanoparticles em-

bedded in ZnO crystal.8 In fact, mechanical stress can pro-

duce remarkable effects on the magnetization behavior of

polycrystalline Ni, including a strong change in the magnetic

permeability.27 A strain imposed by the ZnO crystal on Ni

aggregates may explain the difference between the magnet-

ization measured for different applied field directions (see

Fig. 2). The strain anisotropy energy is given by

E ¼ � 3
2
kr cos2h, where k is the magnetostriction coefficient

(k111¼�24� 10�6 for Ni), r is the induced strain and h is

the angle between magnetization and the deformation axis.31

We have estimated the magnetoelastic anisotropy consider-

ing the stress imposed by the ZnO matrix on the Ni nanopar-

ticles. The x-ray data show that Ni is strained along the

h111i direction with the distance between (111) planes 1 to

1.5% larger than the bulk value.15 We find that this tensile

strain induces an anisotropy (Kk) that is much larger than the

magnetocrystalline anisotropy of bulk Ni. Since the magne-

tostriction of Ni is negative, the tensile stress reduces the

FIG. 4. Remanence vs. temperature obtained for the sample with fluence of

1.0� 1017 cm�2. The inset shows distributions of blocking temperatures

obtained by derivation of the remanence vs. T curves.

FIG. 5. Coercive field vs. temperature obtained for the samples with fluences

of (a) 0.5� 1017 cm�2 and (b) 1.0� 1017 cm�2.
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permeability in the h111i direction, thus contributing to an

easy magnetization in the plane perpendicular to the h111i
direction of Ni. If we now consider a direction in the plane

of the crystal we expect a compressive strain since the unit

cell volume of Ni should remain constant, and therefore a

negative r. A negative r favours the magnetization lying in

the plane of the crystal. We see that analysis of the stress ani-

sotropy energy favours an easy magnetization orientation in

the plane of the crystal. The determination of the value of Kk

at room temperature is based on x-ray data while the value at

10 K (see Table I) is an estimate based on the thermal expan-

sion of Ni and ZnO.

To study in more detail, the effect of the anisotropy as a

function of temperature, we studied the ZFC and FC magnet-

ization curves taken for different orientations of the external

applied field. Figures 6 and 7 show the ZFC and FC curves

for samples with fluences of 0.5� 1017 cm�2 and

1.0� 1017 cm�2, respectively. As can be clearly seen in

Fig. 7, ZFC and FC magnetization depends on the orientation

of the external applied field, assuming higher values when

the field is applied perpendicular to the Ni h111i direction.

However, for each sample, the overall shape of the ZFC and

FC curves is similar with the same irreversibility temperature

and the same blocking temperature independently of the

direction of external applied field.

The insets in Figs. 6 and 7 show the inverse susceptibil-

ity as a function of temperature for the samples with fluences

0.5� 1017 cm�2 and 1.0� 1017 cm�2, respectively. For both

samples, the extrapolated temperature value resulting from a

Curie-Weiss law analysis depends on the orientation between

the external applied field and the easy axis. For fields applied

perpendicular to h111i of Ni (along the easy axis), the sus-

ceptibility curve resembles a system with ferromagnetic-like

interactions whereas for fields applied parallel to h111i of Ni

(orthogonal to the easy axis), an antiferromagnetic-like cou-

pling is obtained. The reason why this is not so clearly

observed for the sample with fluence 0.5� 1017 cm�2 is

explained by a deviation of the easy/hard magnetization axis

from Ni h111i direction as indicated by the HC analysis.

A theoretical work by Vargas et al.13 predicted a similar

behavior to that observed for our samples, considering the

effect of a uniaxial anisotropy on the magnetization of an en-

semble of noninteracting single-domain nanoparticles. We

have used this model to calculate the susceptibility for a sys-

tem of noninteracting magnetic single-domain particles con-

sidering the effective uniaxial anisotropy value that we

obtained from the HC vs. T analysis. The results are dis-

played in Fig. 8 for two angles between anisotropy axis and

external magnetic field.

The inset of Fig. 8 shows the inverse of the susceptibil-

ity as a function of temperature. Although an exact agree-

ment should not be expected when comparing actual

experimental data with the predictions of a simplified model

as the one shown here, the results agree qualitatively fairly

well with our experimental findings, as shown in the insets

of the Figs. 6 and 7. Therefore, the shift of the inverse sus-

ceptibility towards ferromagnetic-like or antiferromagnetic-

like interactions that we observe is surely associated to strain

TABLE I. Fitting parameters obtained by means of different analysis.

Results obtained by different studies

Sample/Fluence
x-ray Coercive field analysis

D (nm) Kk (erg/cm3)[10 K] Kk (erg/cm3)[300 K] akK (erg/cm3) a?K (erg/cm3) a?/ak

0.5� 1017 cm�2 2.2 6 0.2 1.0� 106 7.1� 105 4.6� 105 3.2� 105 0.70

1.0� 1017 cm�2 2.6 6 0.2 6.9� 105 4.7� 105 1.2� 106 5.7� 105 0.48

FIG. 6. ZFC and FC curves measured with the field applied both parallel

and perpendicular to the Nih111i direction for the sample with fluence of

0.5� 1017 cm�2. The inset shows the inverse ZFC and FC magnetization

curves.

FIG. 7. ZFC and FC curves measured with the field applied both parallel

and perpendicular to the Ni h111i direction for the sample with fluence of

1.0� 1017 cm�2. The inset shows the inverse ZFC and FC magnetization

curves.
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anisotropy of Ni nanoaggregates and not to interparticle

interactions.

V. CONCLUSIONS

We have investigated the magnetization process of tex-

tured Ni nanoparticles embedded in a ZnO single crystal.

Both M(H) and ZFC/FC curves exhibit magnetic properties

that depend crucially on the direction of measurement.

Although the systems have a small nanoparticle size distribu-

tion and negligible interaction, we observe that the ZFC/FC

magnetization curves above the blocking temperature devi-

ate from the behavior expected for a superparamagnetic sys-

tem. The results are interpreted considering the role of a

strain induced anisotropy that dominates the high tempera-

ture magnetization and gives the system a behavior similar

to that of an oriented non-interacting uniaxial anisotropy en-

semble described by the theoretical model of Vargas and co-

workers.
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