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Recent advances in laser technology allow us to follow electronic motion at its natural time-scale
with ultra-fast time resolution, leading the way towards attosecond physics experiments of extreme
precision. In this work, we assess the use of tailored pumps in order to enhance (or reduce) some
given features of the probe absorption (for example, absorption in the visible range of otherwise
transparent samples). This type of manipulation of the system response could be helpful for its full
characterization, since it would allow us to visualize transitions that are dark when using unshaped
pulses. In order to investigate these possibilities, we perform first a theoretical analysis of the
non-equilibrium response function in this context, aided by one simple numerical model of the
Hydrogen atom. Then, we proceed to investigate the feasibility of using time-dependent density-
functional theory as a means to implement, theoretically, this absorption-optimization idea, for more
complex atoms or molecules. We conclude that the proposed idea could in principle be brought to
the laboratory: tailored pump pulses can excite systems into light-absorbing states. However, we
also highlight the severe numerical and theoretical difficulties posed by the problem: large-scale
non-equilibrium quantum dynamics are cumbersome, even with TDDFT, and the shortcomings of
state-of-the-art TDDFT functionals may still be serious for these out-of-equilibrium situations.

I. INTRODUCTION

Time-resolved pump-probe experiments are power-
ful techniques to study the dynamics of atoms and
molecules: the pump pulse triggers the dynamics, which
is then monitored by measuring the time-dependent re-
sponse of the excited system to a probe pulse. The time-
resolution of this technique has increased over the years,
and nowadays, it can be used to observe the electron dy-
namics in real time, giving rise to the field of attosecond
physics [1, 2].

A suitable setup to observe charge-neutral excitations
is the time-resolved photoabsorption or transient absorp-
tion spectroscopy (TAS), where the time-dependent op-
tical absorption of the probe is measured. TAS can
of course be used to look at longer time resolutions:
if we look at molecular reaction on the scale of tens
or hundreds of femtoseconds, the atomic structure will
have time to re-arrange. These techniques are thus
mainly employed in femtochemistry [3, 4] to observe and
control modification, creation, or destruction of bonds.
TAS has been successfully employed, for example, to
watch the first photo-synthetic events in cholorophylls
and carotenoids [5] (a review describing the essentials of
this technique can be found in Ref. [6]). If, on the con-
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trary, one wants to study the electronic dynamics only,
disentangling it from the vibronic degrees of freedom,
then one must perform TAS with attosecond pulses [7],
a possibility recently demonstrated [8, 9].

The theoretical description of these processes, which
involve non-linear light-matter interaction, and the en-
suing non-equilibrium electron dynamics, is challenging.
Time-dependent density functional theory (TDDFT)
[10–12] is a well-established tool to compute the response
of a many-electron system to arbitrary perturbations.
Traditionally, the vast majority of TDDFT applications
have addressed the first-order response of the ground-
state system to weak electric fields – which can provide
the absorption spectrum, the optically-allowed excitation
energies and oscillator strengths, etc. Nevertheless, the
extension of TDDFT to the description of excited state
spectral properties and its ability to simulate transient
absorption spectroscopy (TAS) has recently been demon-
strated [13, 14].

In this work, we are not only interested in simulating
attosecond TAS of atoms and molecules, but in study-
ing the possibility of tailoring the pump to control the
spectra. In fact, the measurement and control of ultra-
fast processes are inherently intertwined: quantum op-
timal control theory (QOCT) [15, 16] can be viewed as
the inverse of theoretical spectroscopy: rather than at-
tempting to predict the reaction of a quantum system to
a perturbation, it attempts to find the perturbation that
induces a given reaction in a given quantum system. It
is the quantum version of the more general control the-
ory [17–21], which was needed given the fast advances in
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experimental quantum control [22–31].

The possibility of combining QOCT with TDDFT has
been established recently [32]. Furthermore it has been
shown, that it can be used to optimize strong-field ioniza-
tion [33], photo-induced dissociation [34] and is compati-
ble with Ehrenfest dynamics [35]. Very recently, Krieger
et al. used TDDFT to study the influence of laser inten-
sity, frequency and duration on the laser-induced demag-
netization process in bulk materials, which takes place
on time scales of < 20 fs [36].

Here, we take the first steps towards the use of this
combination of TDDFT with QOCT to control excited
state spectra of finite systems. This idea is very much re-
lated to the concept of electromagnetically induced trans-
parency [37, 38]. Control of the absorption spectra may
mean its elimination or reduction, or its increase. Our
gedanken setup throughout this paper is the following:
for a certain time interval [0, T ] a quantum system is
driven by a “classical” pump pulse E (t) whose precise
shape can be manipulated. After the pump has ended,
the (linear) response of the system to some later per-
turbation is calculated. Our goal is to design the shape
of the pump pulse in such a way, that the response to
some later perturbation is optimal in some given way. In
particular, we demonstrate how the tailored pump pulses
may be used to transform a transparent atom or molecule
into an excited one that absorbs in the visible.

This paper is structured as follows. In Section II, we
analyze the optical linear response of a system in an ex-
cited state, looking at the location and the shape of the
resulting spectral peaks and their time-dependence. In
Section III we present the theory of quantum optimal
control and how it can be applied to optimize spectral
properties of systems in excited states. We then bring
these concepts into application in Section IV. In Sec-
tion IV A we illustrate the conclusions gained in Sec-
tion II using the analyticly solvable Hydrogen atom. We
then proceed to demonstrate control of the excited state
properties in this system. In Section IV B we finally com-
bine our methodology with time-dependent density func-
tional theory, first for the Helium atom, and then for the
Methane molecule. We conclude our work in Section V.

II. SHORT REVIEW OF
OUT-OF-EQUILIBRIUM (PUMPED)

ABSORPTION SPECTRA

In pump-probe spectroscopy, the probe may arrive af-
ter, during, or even before the pump; in this work, we
consider a non-overlapping regime in which the probe
arrives after the pump has vanished. The time evolution
of a system after the end of the pump is described by the
Hamiltonian (atomic units will be used hereafter):

Ĥ(t) = Ĥ + F (t)D̂µ , (1)

where Ĥ is the static Hamiltonian, that describes the
system itself and F (t)D̂µ is the coupling to a probe pulse
via the dipole operator

D̂µ = −
N∑
i=1

r̂(i)
µ (2)

in which N is the number of electrons in the system, and
µ = x, y, z determines the polarization direction. Note,
that the implementation of the coupling via the dipole
operator is an approximation and could be removed in
practical implementations since the theory handles non-
dipolar fields. Also note, that we work in the length
gauge all over the paper.

If, at the time t = T , the system has been driven by the
previous pump E to the state |Ψ [E ] (T )〉, the complete
dipole-dipole response function for the perturbation at
later times is given by:

χD̂µ,D̂ν [E ] (t, t′) = (3)

−iθ(t− t′)〈Ψ [E ] (T )|
[
D̂µI(t), D̂νI(t

′)
]
|Ψ [E ] (T )〉 ,

where the operators are expressed in the interaction pic-
ture.

The difference between Eq. (3) and the equilibrium re-
sponse function [39] or the response function of a system
in a many-body eigenstate is that the two times t and
t′ cannot be reduced to only one by making use of the
time-translational invariance. Since |Ψ [E ] (T )〉 depends
on the pump, the first-order response of the system does
explicitly depend on both the pump E and the probe F .
It is given by:

D(1)
µν [E , F ] (t) =

∫ t

T

dt′F (t′)χD̂µ,D̂ν [E ] (t, t′) . (4)

An intuitive physical meaning can be gained from this
equation for the response function: it is the first order of
the system response, if we consider a sudden perturbation
at t′ = T + τ : F (t) = δ(t− (T + τ)), where τ denotes the
delay between the end of the pump and the perturbation:

χD̂µ,D̂ν [E ] (t, T + τ) = D(1)
µν [E , δT+τ ] (t) . (5)

This object contains all the necessary information about
the interacting system to compute the absorption of any
given probe, as long as it is weak enough for the response
to be linear. In order to analyze it, it is useful to take
the Fourier transform with respect to the variable t, and
expand Eq. (3) in an eigenbasis of the static Hamiltonian

Ĥ

|Ψ [E ] (T )〉 =
∞∑∫
j=1

γj |Φj〉, Ĥ |Φj〉 = εj |Φj〉 , (6)

obtaining a Lehmann representation for the time-
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dependent non-equilibrium response function:

χD̂µ,D̂ν [E ] (ω, T + τ) = (7)∑∫
jkm

dµjmd
ν
mk

{
γjγ
∗
ke
iωjkτ

ω + ωjm + iΓ/2
−

γ∗j γke
−iωjkτ

ω − ωjm + iΓ/2

}

in terms of the exact energy differences ωjk = εk−εj , the

dipole-matrix elements dµjm = 〈Φj |D̂µ|Φm〉 ∈ R and the
pump-probe delay τ . Note that here, we introduced the
infinitesimal parameter Γ in order to obtain the Lehmann
representation; physically, Γ can be used as an effective
way to account for the line broadening. A similar rep-
resentation in the case of non-equilibrium spectroscopy
has been recently presented in a similar context [40]. By
writing γj = |γj |eiϕj Eq. (7) turns into

χD̂µ,D̂ν [E ] (ω, T + τ) = (8)∑∫
jkm

dµjmd
ν
mk|γjγk|

{
eiΘkj(τ)

ω + ωjm + iΓ/2
− e−iΘkj(τ)

ω − ωjm + iΓ/2

}

with

Θkj(τ) = ϕj − ϕk − ωkjτ . (9)

Since the absorption depends on the imaginary part of
the response function, we get from Eq. (8):

=χD̂µ,D̂ν [E ] (ω, T + τ) =
∑∫
jkm

dµjmd
ν
mk|γjγk|

{
cos(Θkj(τ))L(ω − ωjm) + sin(Θkj(τ))R(ω − ωjm)

− cos(Θkj(τ))L(ω + ωjm) + sin(Θkj(τ))R(ω + ωjm)
}

(10)

with the Rayleigh peaks

R(ω̄) =
ω̄

ω̄2 + Γ2/4
(11)

and the Lorentzian peaks

L(ω̄) =
Γ/2

ω̄2 + Γ2/4
. (12)

The absorption cross section tensor is:

σµ,ν(ω) =
4πω

c
=χD̂µD̂ν (ω) , (13)

and for a random sample, the absorption will be its ori-
entational average, i.e. the absorption coefficient :

σ̄(ω) =
1

3
Trσ(ω) . (14)

Since we are only interested in the trace, in the follow-
ing, we concentrate on the diagonal terms, we will omit

hereafter the orientation indexes in order to ease the no-
tation.

We now analyze Eq. (10) in more detail. First, as al-
ready pointed out in Ref. [40], in this non-overlapping
regime the dependence of the spectrum on both the
pump-pulse and the delay time enters through the modifi-
cation of the peak amplitudes and shapes exclusively: the
peak positions are intrinsic properties of the many-body
system. Second, for the analysis of the effect of the pump
pulse and of the pump-probe delay on the spectrum, we
can distinguish between three cases: (i) the system is in
its ground state, (ii) the system is in an excited eigen-
state, (iii) the system is in a non-stationary state, i.e. in a
linear combination of non-degenerate eigenstates. In all
cases we focus on the positive part of the energy range,
which we denote by ω+. The following shape analysis
in terms of Lorentzian and Rayleigh contributions is for
discrete peaks only. We denote this by replacing

∑∫
by
∑

(we will comment on the continuum part later on in this
section).

In case (i) γi = δi0 and =χD̂,D̂ [E ] (ω+) reduces to
the usual Lehmann representation for the ground state
spectrum:

=χD̂,D̂ [E ] (ω+) =
∑
m

|d0m|2L(ω+ − ω0m). (15)

All peaks are positive and have Lorentzian shape. In
case (ii), where γi = δiξ, the system is in an excited
eigenstate Φξ, and therefore in the positive energy part
of the spectrum we can find both positive and negative
peaks of Lorentzian shape:

=χD̂,D̂[E ] (ω+) = (16)∑
ξ<m

|dξm|2L(ω+ − ωξm)−
∑
ξ>m

|dξm|2L(ω+ + ωξm) .

Note, that in both cases (i) and (ii), the spectrum is time-
independent and has only Lorentzian contributions. This
is the main difference to the case (iii), for non-stationary
states. In this case, the spectrum can be divided into two
parts, one time-independent and one oscillatory part due
to interferences between the involved states:

=χD̂,D̂[E ] (ω+, T + τ) = (17)

=χ0
D̂,D̂

[E ] (ω+) + =χINT
D̂,D̂

[E ] (ω+, T + τ)

The equilibrium term consists of the sum over the sta-
tionary state spectra of the eigenstates involved, scaled
by their occupations:

=χ0
D̂,D̂

[E ] (ω+) =
∑
j

|γj |2 × (18)∑
j<m

|djm|2L(ω − ωjm)−
∑
j>m

|djm|2L(ω + ωjm)

 .

Its peaks are always of Lorentzian shape and depend nei-
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ther on time nor on the initial phase difference ϕj − ϕk.
It is influenced by the pump laser only through the oc-
cupations |γj |2. The phase- and time-dependency of the
spectrum enters through the interference term

=χINT
D̂,D̂

[E ] (ω, T + τ) =
∑
j 6=k;m

djmdmk|γjγk| {

cos Θkj(τ)L(ω − ωjm) + sin Θkj(τ)R(ω − ωjm)

− cos Θkj(τ)L(ω + ωjm) + sin Θkj(τ)R(ω + ωjm)
}
(19)

which in turn is governed by the phase differences Θkj ,
which have contributions from both the phase difference
ϕj − ϕk at the end of the laser and from its time evolu-
tion ωkjτ . Θkj mixes real and imaginary part of the re-
sponse function and converts Lorentzian line shapes into
Rayleigh line shapes and vice versa. This conversion hap-
pens periodically with the frequency given by the energy
differences ωkj between the occupied states involved. The
time-dependence of a spectrum is therefore a clear sign
of a non-stationary state. Experimentally, this periodic
beating pattern was recently observed by Goulielmakis et
al [8]. This demonstrates, how using a pump to imprint
an internal phase difference ϕj−ϕk onto a state and con-
trolling the delay time τ between pump and probe laser
can be used to change a spectrum, converting absorption
into emission peaks (and vice versa) as well as chang-
ing the overall shape of the lines. In Section IV A we
demonstrate these line shape changes using the example
of an exactly solvable Hydrogen atom. Furthermore we
demonstrate, how to use a laser to control these features.

Note, that in the discussion above, the lineshape anal-
ysis is valid for isolated peaks without contribution from
continuum states. If coupling to continuum states is in-
volved, an additional shaping comes from the dependence
of the matrix elements djm on the energy. This is e.g. the
case for Fano line-shapes which may acquire a complex
Fano q factor [41].

III. QUANTUM OPTIMAL CONTROL OF
EXCITED STATE SPECTRA

In this work we employ Quantum Optimal Control
Theory (QOCT) to optimize the response of a system in
the situation described in the previous section. QOCT
is concerned with studying the optimal Hamiltonian (in
practice, a portion of the Hamiltonian, such as the tem-
poral profile of the coupling of an atom or molecule to
a laser pulse) that induces a target system behaviour.
In the following, we present its specific application to
the problem of optimizing response functions of excited
states. We will also show how, if the problem can be
reduced to a small model, it can be solved analytically.

Let us consider a quantum mechanical system gov-
erned by the Schrödinger equation during the time in-

terval [0,T]:

i
∂Ψ

∂t
(x, t) = Ĥ[E , t]Ψ(x, t) , (20a)

Ψ(x, 0) = Ψ0(x) , (20b)

where x is the full set of quantum coordinates, and E
is the control field, an external potential applied to the
system (in our case, the pump pulse). In order to perform
optimizations the field must be discretized, for example
with the help of a sine Fourier basis. In our numerical
simulations:

Ec(t) =
M∑
n=1

cn sin(ωnt) (21)

where M is the dimension of the optimization search
space, and c is the set of all the parameters that de-
termine the field: c = c1, . . . , cM . The frequencies, and
their maximum value or cut-off frequency, may be chosen
at will.

The specification of E , together with an initial value
condition, Ψ(0) = Ψ0 determines the full evolution of
the system, Ψ[E ], via the propagation of the Schrödinger
equation. The behaviour of the system must then be
measured by defining a “target functional” F , whose
value is high if the system evolves according to our goal,
and small otherwise. In many cases, it is split into two
parts, F [Ψ,E ] = J1[Ψ] + J2[E ], so that J1 only depends
on the state of the system, and J2, called the “penalty”,
depends explicitly on the control E . Regarding J1, it may
depend on the full evolution of the system during the time
interval [0, T ], or only on the system state at time T , as it
is the case in this work. Often, the functional is defined
through the expectation value of an observable Ô:

JT1 [Ψ(T )] = 〈Ψ(T )|Ô|Ψ(T )〉 . (22)

The mathematical problem is then reduced to the
problem of maximizing a real-valued function G:

G[c] = F [Ψ[Ec],Ec] . (23)

The absorption of light is related to the average absorp-
tion coefficient σ̄[Ec](E) [Eq. (14)]. The larger the ab-
sorption coefficient at a certain energy, the more light is
absorbed at this energy. In order to find a laser pulse to
make a system, that is transparent in its ground state,
absorb as much light as possible, we therefore optimize
the absorption coefficient in the visible by taking the in-
tegral of σ̄[Ec](E) over the respective energy range. We
employed two different control targets:

GAτ [c] =

∫ Emax

Emin

dE σ̄τ [Ec](E) , (24a)

GBτ [c] =

∫ Emax

Emin

dE σ̄τ [Ec](E)e

(
−γ N0−NT [E ]

N0

)
, (24b)

where σ̄τ [Ec](E) [in the following we will call it just σ̄(E)]
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is the average absorption coefficient of the system at a
given time delay τ after the pump pulse E (t), and Emin
and Emax define the optimization region - the energy
range, where the absorption is optimized. In the second
target function we have introduced an exponential factor
that depends on N0 and NT , the number of electrons in
the system at the beginning and the end of the pump
pulse, respectively. The reason to introduce this factor
is to avoid ionization, i.e. we wish to lead the system to
a state with the desired absorption properties, but keep-
ing the ionization probability low. Keeping the ioniza-
tion low is particularly important in the TDDFT calcula-
tions, if performed with adiabatic functionals, since with
current state-of-the-art adiabatic functionals, ionization
of the system leads to unphysical shifts in the position

of the absorption peaks. The term exp
(
−γN0−NT [E ]

N0

)
therefore inflicts a penalty, whose strength can be mod-
ulated by γ, to pump pulses that produce strong ioniza-
tion. We implement ionization using absorbing bound-
aries and thus the total number of electrons is, in general,
not conserved during time. In practice, one can also com-
bine the two target functions: one may start optimiza-
tions using GAτ , and later continue with GBτ , restarting
from the previous optimum.

Once the target is defined one is left with the prob-
lem of choosing an optimization algorithm to find the
maximum (or maxima) of G. Two broad families can be
distinguished: gradient-free procedures, which only re-
quire the computation of G given a control input E , and
gradient-based procedures, that also require the compu-
tation of the gradient of G with respect to E . QOCT pro-
vides an expression for the gradient that can be adapted
for this case (see appendix A for details). This approach,
however is numerically unfeasible for the target covered
in this paper. For this reason, in our simulations, we em-
ployed the gradient-free Simplex-Downhill algorithm by
Nelder and Mead [42].

In principle, if the system can be reduced to a few-
level model, the optimal fields can be found analytically.
To illustrate this approach, below we briefly illustrate a
simple example of controlling the absorption properties
of a single Hydrogen atom. Instead of directly optimizing
GA,Bτ we here derive a laser that drives the system into a
state with the wanted optical properties. Let us suppose
that the situation can be approximated by a three-level

Hamiltonian Ĥ with eigenstates |Φa〉, |Φb〉 and |Φc〉 and
the corresponding eigenenergies εa, εb and εc. We define
the transition energies ωab = εb − εa, ωbc = εc − εb and
ωac = εc − εa. The dipole coupling between the states is
given by dab and dac (both assumed to be real numbers),
and we further consider the case where the coupling be-
tween the states |Φb〉 and |Φc〉 is dipole forbidden.

The system is pumped by a laser field composed of two
carrier frequencies ω1,2 of the form:

E (t) = ε̃1(t) cos(ω1t+ ϕ1) + ε̃2(t) cos(ω2t+ ϕ2), (25)

with phases ϕ1,2, amplitudes ε1,2 and envelope ε̃1,2(t)

defined by

ε̃1,2(t) = 2ε1,2 sin2

(
π
t

T

)
. (26)

Our goal is to find a laser pulse that drives the system
from state |Ψ(t = 0)〉 = |Φa〉 into a target state |Ψ̄〉

|Ψ̄〉 = α|Φa〉+ β|Φb〉+ γ|Φc〉 (27)

in a given time T – α, β, and γ are complex coefficients.
Since the spectral properties of this state can be then eas-
ily obtained using Eqs. (17), (14), the problem of finding
a pulse giving the desired optical properties translates
to the one of maximizing the overlap |〈Ψ(T )|Ψ̄〉|2 while
keeping the functional form of the laser fixed – i.e. chang-
ing only ω1,2, ϕ1,2, and ε1,2. If we choose ω1,2 resonant
with the transition frequencies ωab, ωac and assume they
are sufficiently separated in energy we can apply the ro-
tating wave approximation and obtain the laser parame-
ters as function of α, β, γ as (see Appendix B for details):

ε1 =
2

T

arccos(|α|)
sin(arccos(|α|)

|β|
dab

(28a)

ε2 =
2

T

arccos(|α|)
sin(arccos(|α|)

|γ|
dac

(28b)

and

ϕβ = ϕ1 − π + ωbaT (28c)

ϕγ = ϕ2 − π + ωcaT . (28d)

We will come back to this example below in Sec. IV A.

IV. APPLICATIONS

Any QOCT formulation is constructed on top of a
given model for the physics of the process under study.
In this paper we study and optimize the absorption
spectra of atoms and molecules using either analyti-
cally solvable model Hamiltonians or obtaining the spec-
tra by using time-dependent density functional theory
(TDDFT) [11, 12] – the time-dependent counterpart of
DFT [43].

Based on the Runge-Gross theorem [10] TDDFT es-
tablishes a one-to-one correspondence between the time-
dependent density and the time-dependent external po-
tential of a many-electron system. Together with the
Kohn-Sham (KS) scheme [44] it allows us to recast the
many-body time-dependent problem into a simpler one
where the interacting electrons are replaced by a ficti-
tious set of non-interacting electrons with the same time-
dependent density. This system of non-interacting elec-
trons can then be represented with a single Slater deter-
minant formed by a set of KS orbitals leading to great
computational simplifications.

In the following we will work with spin-compensated
systems of N electrons doubly occupying N/2 spatial
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orbitals. The time evolution of these orbitals ϕi (i =
1, N/2), is governed by the time-dependent Kohn-Sham
equations

i
∂

∂t
ϕi(r, t) = −1

2
∇2ϕi(r, t) + vKS[n](r, t)ϕi(r, t) ,(29)

n(r, t) = 2

N/2∑
i=1

|ϕi(r, t)|2 , (30)

where vKS[n](r, t) is the KS potential. It is, in general,
a functional of the density and is defined as

vKS[n](r, t) = v0(r) + v(r, t) + vH[n](r, t) + vxc[n](r, t) ,
(31)

where v0(r) represents the static (ionic) external poten-
tial, v(r, t) = E(t) · r is the coupling to the time depen-
dent electric field E(t) in the dipole approximation (in
the length gauge), vH[n](r, t) =

∫
d3r′ n(r, t)/|r′−r| is the

classical electrostatic Hartree potential, and vxc[n](r, t) is
the exchange and correlation potential accounting for the
many electron effects [11, 45]. In our simulations the ions
are clamped to their equilibrium positions. All numerical
calculations were performed using the octopus code [46].

A. One Electron Systems: the Hydrogen Atom

In Section II we have discussed how the amplitudes
and shapes of excited state absorption spectra depend
on the relative phases ϕi of the expansion coefficients γi.
Here, we illustrate this effect in a Hydrogen atom, which
is initially pumped into the state

|Ψ̄〉 =
√

0.4|2pz〉+
√

0.6eiϕ|3pz〉 . (32)

Let us first vary ϕ to show the effect of the phase on the
final spectrum. For our pumped state the stationary part
of the spectrum is composed of the weighted stationary
state spectra coming from |2pz〉 and |3pz〉:

σ̄0(ω) = 0.4σ̄2pz (ω) + 0.6σ̄3pz (ω) , (33)

whereas the phase-dependent interference term is

σ̄INT(ω, ϕ) = 0.4 · 0.6 · 4πω

3c

[∑∫
m

d2p,mdm,3p{
cosϕL(ω − ω3p,m) + sinϕR(ω − ω3p,m)

− cosϕL(ω − ω3p,m) + sinϕR(ω − ω3p,m)
}

+
∑∫
m

d2p,mdm,3p{
cosϕL(ω − ω2p,m)− sinϕR(ω − ω2p,m)

− cosϕL(ω − ω2p,m)− sinϕR(ω − ω2p,m)
} ]

(34)

Note the change in the sign of the Rayleigh terms in
both sums. Fig. 1 shows the different contributions and

Figure 1. Absorption coefficient σ̄(ω) of the state defined
in Eq. (32) with ϕ = 0, (1/2)π, π and (3/2)π. The total
spectrum (black line) is the sum of two phase-independent
terms 0.4σ̄2pz (red shaded) and 0.6σ̄3pz (blue shaded) coming
from the excited state spectra of the respective states, plus the
phase-dependent interference term σ̄INT(ω, ϕ) (green dashed
line), which is responsible for the change of the spectrum with
the delay time.

the complete spectrum for ϕ = 0, (1/2)π, π and (3/2)π,
which are the cases, where the interference term is ei-
ther purely Lorentzian (ϕ = 0, π) or purely Rayleigh
(ϕ = 1/2π, 3/2π). The shaded areas indicate the
weighted equilibrium contributions, the dotted line shows
the interference terms, and the solid line the complete
spectrum. The energy range shown includes the transi-
tions from n = 2 to all higher states and from n = 3 to
all higher states and to n = 2. Transitions to the ground
state lie outside of this region.

As can be learnt from Eq. (34), the interference terms
require the existence of states which are dipole-coupled
to both 2pz and 3pz. This is the case for s- and d-orbitals.
This means, that e.g. for Hydrogen in a linear combina-
tion of the states 2s and 4f , all the interference terms
would vanish and the spectrum would be purely the sum
of the weighted equilibrium contributions.

Let us take a closer look at the structure of the in-
terference terms. We start with the interference term at
ω23 = 0.069 Ha having contributions from terms with
m = 2s, m = 3s and m = 3d. All contributions have dif-
ferent prefactors with the ones coming from the 2s-state
having the opposite sign compared to the ones coming
from 3s and 3d states. For the other peaks, the inter-
ference terms are much smaller at the energies ω3n than
their counterparts at ω2n (compare the purely blue to
the purely red peaks in Fig. 1). From Eq. (34), it is ap-
parent that the amplitude of each interference term is
the same for ω2n and ω3n with the same n. The differ-
ence comes purely from the factor 4πω

3c – note that the
sign of the Rayleigh contributions is opposite in these
pairs of peaks. This variation of amplitude has the fol-
lowing consequences for the change of the overall spec-
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trum: At ω3n the spectrum has positive contributions
from σ̄3pz and contributions from the interference terms,
but since the interference terms are much smaller than
σ̄3pz , the spectrum changes only slightly for different ϕ’s.
This is different for the peaks at energies ω2n. Here, the
spectrum has positive, phase-independent contributions
from σ̄2pz (ω), but the contributions from the interfer-
ence terms are much larger and dominate the spectrum
leading to a strong dependence of the spectrum in this
energy range on the phase ϕ. For ϕ = 0 and ϕ = π,
σ̄INT(ω, ϕ) only contains Lorentzian peaks and conse-
quently the whole spectrum only contains Lorentzians.
Nevertheless, σ̄INT(ω, ϕ) changes sign between ϕ = 0 and
ϕ = π, switching the sign of all peaks at ω2n. This is a
demonstration of, how the manipulation of the internal
phase ϕ can lead to a switch from gain (negative peaks)
to loss (positive peaks) regime and vice versa. Finally,
for ϕ = (1/2)π and ϕ = (3/2)π, the interference spec-
trum contains purely Rayleigh peaks. Together with the
small contributions from the stationary-state contribu-
tions, the final spectrum consists of slightly asymmetric
Rayleigh peaks, again with different signs for ϕ = (1/2)π
and ϕ = (3/2)π. One can therefore not only change
peaks from emission to absorption peaks, but also manip-
ulate their shape. The phases ϕ therefore play a critical
role in the spectral weights and the peaks of the photo-
absorption spectrum.

We now look at the variation of the spectrum with
time, assuming that an initial, yet unknown pump laser
created the state of Eq. (32) with ϕ = ϕ32 = 0 at t =
T and we probe the system at different delay times τ .
Figure 2 shows the corresponding time-resolved spectrum
σ̄(ω, τ) of |Ψ̄〉. Since the eigenenergies of |2pz〉 and |3pz〉
are different, the phase Θ32(τ) in Eq. (9) evolves with
the frequency ω32. At τ = 0, τ = π

2ω32
, τ = π

ω32
and

τ = 3π
2ω32

, the spectra of Fig. 1 are reproduced. One sees
the strong changes of σ̄ in the energy range of the peaks
ω2n, while the peaks ω3n remain almost unchanged. The
spectrum is periodic with T = 2π

ω32
≈ 91 a.u..

 0
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Figure 2. Time-resolved spectrum of the initial state√
0.4|2pz〉 +

√
0.6|3pz〉 of Hydrogen. Because the phases of

the |2p〉 and |3p〉 states evolve with different velocities, the
spectral weights of each of the peaks changes with time,
leading to a time-dependent spectrum with a periodicity of
T = 2π

ω32
≈ 91a.u..

We now move on to the control problem – i.e. the de-
sign of a pump pulse driving the system into a state
with specific optical properties. For this problem, we
will use the three-levels model, and the analytical equa-
tions of control presented in Section III. The target
state will again be the one defined in Eq. (32) |Ψ̄〉 =√

0.4|2pz〉+
√

0.6eiϕ|3pz〉 with a relative phase of ϕ = 0:

|Ψ̄〉 =
√

0.4|2pz〉+
√

0.6|3pz〉. The three active states are
then |1s〉, |2pz〉 and |3pz〉. Note that since |2pz〉 and |3pz〉
have the same symmetry, they are decoupled in the dipole
approximation, and in consequence the system fits into
the framework described in Section III. We may therefore
write down the shape of a control pulse, assuming a total
pulse time of T = 3200 a.u:

E (t) =
2π

T

( √
0.4

d1s→2p
cos(ω1s→2p(t− T ) + π) (35)

+

√
0.6

d1s→3p
cos(ω1s→3p(t− T ) + π)

)
sin2

(
π
t

T

)
.

We numerically solved the TSDE in order to check the
validity of the three-level approximation. To this end
we discretized the equations on a spherical grid of radius
R = 60 a.u., spacing of ∆x = 0.435 a.u. and with 20 a.u.
wide absorbing boundaries placed at the edges. The re-

0

0.4

0.8

0 30001000 2000
t [a.u.]

Po
pu

la
tio

ns

Figure 3. Time-evolution of the populations of the 1s−, 2pz−
and 3pz− state. Dashed lines show the analytic model, solid
lines the numerical results. The total pump-laser (upper
panel, black) has two carrier-frequencies, one resonant to the
transition |Ψ1s〉 → |Ψ2p〉 (green), the other resonant to the
transition |Ψ1s〉 → |Ψ3p〉 (blue). The lower panel shows the
phase difference ϕ3p − ϕ2p.

sults are collected in Figure 3 where we show the time-
evolution of the populations |a(t)|2, |b(t)|2 and |c(t)|2 of
the states |1s〉, |2pz〉 and |3pz〉 respectively. The numeri-
cal values (solid lines) follow closely the ones correspond-
ing to the model (B10) (dashed lines) except for a small
superimposed oscillatory behavior. A frequency analysis
of the additional oscillations shows, that they are due to
the components neglected in the rotating wave approx-
imation. The small deviation in the final populations
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from the analytic prediction comes from the excitation
into the 3d-states (not shown). The coupling to these
orbitals was neglected in the three-level approximation.
This population transfer to the 3d-states nonetheless is
less than 4% , and we achieve a transfer into the target
wave function |Ψ̄〉 of 96%. Furthermore the transfer is
obtained precisely with the desired relative phase ϕ = 0
as reported in the bottom panel of Figure 3.

B. More Than one Electron: Results Based on
TDDFT

We here turn to systems with more than one electron,
and investigate the possibility to drive the absorption of
atoms and molecules into the visible using a laser pulse
optimized with the gradient-free optimization algorithm
presented in Section III in combination with TDDFT.

1. Helium

As a first example we study the one-dimensional soft-
Coulomb Helium atom. This model is defined by the
Hamiltonian:

H(t) = T + Vext(t) + Vee , (36)

where

Vext(t) = − 2√
1 + x2

1

− 2√
1 + x2

2

+ E(t)(x1 + x2) (37)

is the external potential with softened Coulomb inter-
action and the dipolar coupling to the external time-
dependent field E(t) The electron-electron interaction
is also described by a soft-Coulomb function Vee =

1√
1+(x1−x2)2

. For the optimization we solve the equa-

tions discretized on a regular grid of size L = 100 a.u. and
spacing ∆x = 0.2 a.u. with 20 a.u. absorbing boundaries
at the borders of the simulation box. Results obtained
with the optimized pulse were further converged in a box
of size L = 200 a.u. with 70 a.u. absorbing boundaries.
Time was discretized with a time step of ∆t = 0.025 a.u.
for a maximum propagation time of 1250 a.u. during op-
timization and 2250 a.u. for convergence. The duration
of the pump pulse was chosen to be TP = 800 a.u. and
the delay between pump and probe was set to τ = 50 a.u.
for all the calculations. Finally the target region for op-
timization was chosen between 0.06 a.u. and 0.23 a.u.
(≈ 200 nm and 800 nm). We carried out optimizations
at two different theory levels: exact (TDSE) and TDDFT
with the adiabatic EXX functional (TDEXX) [47].

Let us first focus on the optimization obtained by
solving the exact TDSE as illustrated in Figure 4(b)
where the ground state spectra are compared to the
spectra of the systems excited by the optimized pump-
pulses E100(t) obtained after 100 iterations. In the exact

case, the search space was constructed from two wave
lengths λ = 800 nm and λ = 1450 nm and their first
nine odd harmonics as shown in Figure 4(a). Optimiza-
tion is achieved transferring population from the ground
state (at ε0 = −2.238 a.u.) into the first excited state
(at ε1 = −1.705) with the help of the 9th harmonic of
λ = 1450 nm at ωP13 = 0.534 a.u.. Due to this popula-
tion transfer, the peak at ω0→1 = 0.533 a.u. turns from
positive to negative and peaks coming from the first ex-
cited state (ω1→2 = 0.076 a.u. and ω1→4 = 0.159 a.u.)
arise in the excited-state spectrum, where the peak at
ω1→2 is located in the visible part of the energy range.
At the same time, population is transfered into the sec-
ond excited state (ε2 = −1.629 a.u.), leading to e.g. the
peaks at ω2→3 = 0.062 a.u. and ω2→5 = 0.103 a.u.. This
interpretation is confirmed by the population analysis in
Figure 4(d) where |〈Ψ(t)|Φi〉|2 is plotted over time. In
particular it is apparent that at the end of the pump
only ≈ 8% of the electrons remain in the ground state,
whereas the rest has been transfered into higher lying
states thus explaining the appearance of the new peaks
in the spectrum. To complete the picture in Figure 4(c)
we show the evolution of the control function GA with
the number of iterations. As can be seen, GA shows a
steady increase during the optimization.

Figure 4. Optimization of the absorption of one-dimensional
Helium: TDSE vs. TDEXX. (a) Power spectrum of the initial
and optimized laser pulses: The green line shows the initial
laser used for the TDSE; the green shaded area shows the
initial laser used for the TDEXX optimization (these two
only differ by the indicated peaks at ω = 0.534 a.u. and
ω = 0.549 a.u.); the blue and red lines are the optimal pulses
obtained when using TDSE and TDEXX, respectively. (b)
Ground state (dashed line) and excited state (shaded) spec-
tra of optimized one-dimensional Helium, in blue and red for
the TDSE and TDEXX cases, respectively. The excited state
transitions of the exact calculations are indicated. (c) The
control function GA as a function of the number of iterations,
also in blue and red for the TDSE and TDEXX, respectively.
(d) The populations |〈Ψ(t)|Ψi〉|2 of the exact time propaga-
tion under the influence of the optimized pump pulse for the
(red) ground state, (green) first excited state, (blue) second
excited state, (pink) third excited state and (turquoise) fourth
excited state.
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Figure 5. (Top) Transient Absorption Spectrum of Helium
after the excitation with a 45 cycle sin2 laser pulse of intensity
I = 5.26·1011Wcm−2 with a carrier frequency resonant to the
excitation energy from the ground to the first excited state
for exact (a) and adiabatic EXX (b) with ωexact = 0.534 a.u.
and ωEXX = 0.549 a.u.. Time-evolution of the absorption
cross-section at selected energies ωn = 0.2 (red), 0.4 (blue),
0.6 (purple) 0.8 (turquoise) a.u. for exact (c) and adiabatic
EXX (d). In the exact case the curve at 0.6 a.u. is offset by
-0.1 for clarity. In all cases, the time interval T = 2π/(ε1−ε0)
is shown.

For the TDEXX case we adapted the search space
by replacing the laser component at the carrier fre-
quency ω = 0.534 a.u. (in resonance with the first ex-
citation in the TDSE case) by a laser component with
ω = 0.549 a.u., which is its TDEXX equivalent. In our
experience failing to meet this requirement resulted in
poor optimizations. The resulting optimization is shown
in Figure 4(b). The results follow a trend similar to
the exact case. However the TDEXX optimization is
smaller and the 1 → 2 peak present in TDSE seems to
be missing. The difference between TDEXX and TDSE
can be tracked down to a known problem of the adia-
batic approximation in TDDFT. In particular, the lack
of memory in the adiabatic approximation, causing a
spurious time dependence of the exchange potential, is
responsible for the poor population transfer and the ex-
cess of asymmetric peaks in the spectrum [14, 48]. This
problem is further amplified by the ionization of the sys-
tem, which results in an unphysical shift of the peaks
to higher energies (compare the ground state and the ex-
cited state spectrum in Figure 4). These effects, however,
strongly depend on the fraction of the total density that
gets driven out of equilibrium and therefore become more
dominant with decreasing size of the system – with He-
lium being the worst case. In large molecules with many
electrons we expect the error to be greatly reduced (as
has been empirically shown in studies of light induced
charge transfer in organic photovoltaic blends [49, 50]).

A different perspective on the same problem can be
obtained by comparing the time evolution of an excited
state spectrum in TDSE and TDEXX as shown in Fig-

ure 5. The systems were excited by a 45 cycle sin2

laser pulse resonant with the excitation energy from the
ground state into the first excited state. After the pulse
the systems are in a superposition of these two states and
the spectra should contain time-dependent interference
terms, which oscillate with the period time T = 2π

ε1−ε0 ,
which is T = 11.76 a.u. for TDSE and T = 11.26 a.u.
for TDEXX. However, on the scale of Figure 5(a) the
TDSE spectrum hardly presents any oscillation. There-
fore, in Figure 5(c) we report cuts at ωn = 0.2, 0.4, 0.6
and 0.8 a.u. From the figure it is apparent that, albeit
with different phases, each cut presents oscillations with
the expected period of T = 11.76 a.u.. The TDEXX cal-
culations, in Figure 5(b) and (d), present a different pic-
ture. First of all, the amplitude of the oscillations is much
larger than in the exact case and, second, the oscillations
are two times faster than expected. We conclude, that
the TDEXX description seems to have a similar structure
to the exact case, in the sense, that the energy difference
of the involved states is reflected in the periodicity of the
oscillations of the spectrum. Nonetheless, there are ma-
jor differences in the behaviour, which is reflected in the
factor of two in the periodicity.

2. Methane Dication

Finally, we apply our scheme to a poly-atomic
molecule: doubly-ionized Methane, CH+2

4 . The goal here
is to design a laser capable to turn this molecule, trans-
parent in nature, visible. To this end we used the same
strategy as we did before for Helium, namely we opti-
mize the laser on a small simulation box and then con-
verge the results with the optimized laser on a larger
box. During the optimization routine the simulation box
has a radius of R = 15 a.u., including 5 a.u. absorbing
boundaries while the results are converged in a box of
R = 30 a.u. with 15 a.u. absorbing boundaries. We dis-
cretize the TDDFT equations on a three-dimensional grid
with a spacing of ∆x = 0.3 a.u.. The reason for this box
choice is the fact that the computational costs of three-
dimensional calculations scale with the third power of
the simulation box radius. The maximum propagation
time is 850 a.u. during the optimization and 1600 a.u.
for convergence. In all cases, the pump duration was
600 a.u., the time step was ∆t = 0.04 a.u. and the delay
was τ = 0 a.u..

The optimization region was chosen as the interval be-
tween 0.057 a.u. and 0.139 a.u. (328 and 750 nm) and in
order to discourage the algorithm from exciting too many
electrons into the continuum, we used the target func-
tional GBτ (24b), which includes an exponential “penalty”
for ionization.

To obtain a good description of states close to the
ionization threshold, we employed the average density
self-interaction corrected (ADSIC) LDA functional [51],
which is asymptotically correct.

The inclusion of resonant frequencies in the search
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space is a good practice that facilitates transitions be-
tween eigenstates and enables the optimization algo-
rithm to populate excited eigenstates. These molecular
excitation frequencies can easily be obtained from the
ground-state spectrum reported in Figure 6. By popu-
lating the correct eigenstates, the system might absorb
in the visible region: consider two eigenstates with en-
ergies εh and εT , that differ by an energy in the visible:
0.057 a.u. ≤ εh − εT ≤ 0.139 a.u.. By exciting the sys-
tem into the lower “target” state εT one might obtain
transition peaks in the visible, due to the transition to
the higher one. Note, however, that this fact is not guar-
anteed since the transition might be dipole forbidden.
We cannot rule out this possibility since our ground-
state linear-response TDDFT calculation does not pro-
vide this information. The ground state spectrum shows,

Figure 6. Ground state spectrum of doubly-ionized Methane
CH2+

4 . Peaks are numbered for later reference (as discussed
in the text). The shaded grey area marks the optimization
range.

that the first possible target state is ε3. The energy dif-
ference between ε3 = 0.690 a.u. and ε4 = 0.816 a.u. is
ω3→4 = 0.126 a.u. and lies – with 362 nm – at the red
end of the visible spectrum. Also ε4 provides a tran-
sition in the visible range – into ε5 = 0.938 a.u. with
ω4→5 = 0.122 a.u. = 373 nm. Starting from ε5, the
states have even more than one transition in the visi-
ble. We must therefore choose a frequency search space,
that allows the construction of a pump pulse, that excites
electrons from the ground state into ε3 and higher lying
states either directly or by successive excitations.

Here we present results for two possible search spaces.
The first search space includes frequencies that are either
resonant to the ground state excitation energies εn, or to
excited state excitations εm− εn. To avoid ionization, all
carrier frequencies are smaller than ε7 = 1.0 a.u.. The
second frequency search space was designed using the ion-
ization potential IP of the system (which is equal to mi-
nus the energy εH of the highest occupied KS orbital ϕH)
and the energy differences IP − εn. One frequency is IP
itself, while all others are resonant with relaxations bring-

ing down states at that ionization threshold to bound ex-
cited states (ε3 to ε8). The idea is that the system could
be excited into the ionization threshold, and then relax
into one of the target states. The laser frequencies, that
were included in the search spaces and the corresponding
resonances are summarized in Appendix C.

Figure 7. Ground state (black line) and excited state
(shaded) spectra of doubly-ionized Methane (CH2+

4 ) for two
different pump pulses E I (red) and E II (blue). The grey
shaded box marks the optimization area, the blue shaded area
the visible region of the spectrum.

The optimized spectra are shown in Figure 7. It can be
seen that both search spaces include optimal lasers that
cause the molecule to loose its transparency and absorb
in the visible. The achieved opacity can be quantified in
terms of the control function GA (24b) being the inte-
gral over the absorption spectrum in the visible range of
the spectrum. Comparing the opacity achieved in search
space I (GAI = 0.017) with the one achieved in search
space II (GAII = 0.020), we conclude that search space
II is better suited for the pursued optimization. Thus,
including energy levels at the ionization threshold in the
search space might be a useful strategy in further opti-
mizations.

V. CONCLUSIONS

In this work, we assessed the possibility of using tai-
lored pumps in order to enhance some given features of
the probe absorption – for example, the absorption in
the visible range of otherwise transparent samples. We
first detailed a theoretical analysis of the non-equilibrium
response function in this context, aided by one simple
numerical model of the Hydrogen atom. Then, we inves-
tigated the feasibility of using TDDFT theory as a means
to implement, theoretically, this absorption-optimization
idea, for more complex atoms or molecules.

The theoretical analysis of the response function can be
done by writing it in a generalized form of the Lehmann
representation, valid for systems that have been pumped
out of equilibrium by a first pulse, and whose response
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to a probe pulse (in our case, assumed non-overlapping
with the first one) needs to be studied and manipulated.
The peaks of this response functions are always fixed to
the differences in the system energies, but their strength
and shape varies depending on the pump shape, and on
the pump-probe delay. Furthermore, the response func-
tion is a sum of a stationary part (the only one present
if the pumped state is itself a stationary state), and a
time-dependent, oscillatory term, caused by interferences
between the populated eigenstates.

We then used this dependence of the non-equilibrium
response with respect to the pump pulse shape to ma-
nipulate it by means of QOCT. We demonstrated the
idea first with a small model, that could be treated an-
alytically. This could be a viable alternative for larger
systems, if they can be reduced to few-level models. How-
ever, for full generality we also showed how QOCT can
be combined with TDDFT. We showed how this avenue
is tractable, but we also highlighted the key numerical
difficulties and theoretical challenges. For this purpose,
we performed first calculations on a model for the Helium
atom that could be solved both exactly with the TDSE
equation, and with TDDFT within the adiabatic EXX
approximation. Then we concluded with simulations of
the methane dication.

From our results we conclude that the proposed idea
could be brought to the laboratory: tailored pump pulses
can excite systems into light-absorbing states. Theoret-
ically, the scalability of TDDFT could in principle per-
mit studying these processes for larger systems. How-
ever, our results have also highlighted the severe nu-
merical and theoretical difficulties posed by the problem:
large-scale non-equilibrium quantum dynamics are cum-
bersome, even with TDDFT, and moreover the short-
comings of state-of-the-art TDDFT functionals may still
be serious for these out-of-equilibrium situations. Our
findings confirm recent investigations about the conse-
quences of these shortcomings for the use of coherent
control schemes [52, 53].
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Appendix A: Quantum Optimal Control Equations

For completeness, we derive here the equations for the
computation of the gradient of a target functional de-

signed to optimize the response of a system. In general,
the equation for the gradient provided by QOCT is given
by:

∇cG[c] = ∇cF [Ψ,Ec]
∣∣
Ψ=Ψ[Ec]

+

2=
∫ T

0

dt 〈χ[Ec](t)|∇cĤ[Ec, t]|Ψ[Ec](t)〉 (A1a)

Note that a new “wave function”, χ[E ], has been in-
troduced; it is given by the solution of:

i
∂χ[E ]

∂t
(x, t) = Ĥ†[E , t]χ[E ](x, t) (A1b)

χ[E ](x, T ) =
δJT1

δΨ∗[E ](x, T )
. (A1c)

This is similar to the original Schrödinger equation (20),
although the initial condition is given at the final time
t = T , which implies it must be propagated backwards.
For a detailed derivation of Eqs. (A1) we refer the reader
to Refs. [18, 19, 54, 55].

The computation of the gradient or functional deriva-
tive of G, therefore, requires Ψ[E ] and χ[E ], which are
obtained by first propagating Eq. (20a) forwards, and
then Eq. (A1b) backwards. The maxima of G are found
at the critical points ∇cG[Ec] = 0.

We may now apply these general equations for a tar-
get functional designed to optimize the response of a sys-
tem after the excitation by a pump pulse. This setup is
consistent with the non-overlapping regime described in
Section II, where the Hamiltonian that governs the sys-
tem, once that the pump has passed (t ≥ T ) has the form
(1). If, at time t = T , the system has been driven to the
state |Ψ(T )〉, the response function for the perturbation
at later times is given by (3) and the first-order response
of the system is given by (4).

The key point is the definition of a target: for example,
let us assume, that we wish to enhance the reaction of
the system at a given frequency to a sudden perturbation
at the end of the pump F (t′) = δ(t − T ). As seen in
(5), the time-dependent dipole-dipole response is then
directly given by the response function χD̂,D̂ [E ] (t, T ) =

D(1) [E , δT ] (t) and its Fourier transform by

χD̂,D̂ [E ] (ω, T ) = D(1) [E , δT ] (ω)

=

∫ ∞
T

dt′ e−iωt
′
D(1) [E , δT ] (t′) .(A2)

It can be easily seen that the problem fits into the frame-
work discussed above, i.e. the target functional is given
by the expectation value of some operator:

JT1 [Ψ(T )] = −i

〈Ψ(T )|
∫ ∞
T

dt′ e−iωt
′
[
ei(t

′−T )H D̂e−i(t
′−T )H , D̂

]
|Ψ(T )〉 .

(A3)
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The equation for the gradient is therefore Eq. (A1a);
which must be completed with the equation of motion
for the co-state, Eq. (A1b), and, in particular, with its
boundary condition (A1c) at time t = T : this is the only
one that in fact depends on the definition of the target
operator:

|χ(T )〉 = −i∫ ∞
T

dt′ e−iωt
′
[
ei(t

′−T )H D̂e−i(t
′−T )H , D̂

]
|Ψ(T )〉 .

(A4)

Similar formulas can be obtained for more general defi-
nitions of the target functional in terms of the response
D(1)(ω), and for more general probe functions. In all
cases the computational difficulties associated to the
computation of this boundary condition are similar, and
are considerable. By inspecting the previous formula, it
can be learnt that various time-propagations of the wave
functions, forwards and backwards, are required. These
difficulties are even larger if the scheme is formulated
within TDDFT – in the previous derivation we have used
the exact many-electron wave functions. In consequence,
we decided to employ, for this type of optimizations,
gradient-free algorithms, such as the Simplex-Downhill
algorithm that we describe in next section.

Appendix B: Derivation of the Control Equations
for Three Level Systems

For the three-levels model described at the end of Sec-
tion III, we will start by considering a simpler situation
in which the field envelopes are constant, i.e.:

E (t) = ε1 cos(ω1t+ ϕ1) + ε2 cos(ω2t+ ϕ2) . (B1)

If the two carrier frequencies are sufficiently close to the
transition frequencies ωab and ωbc, one can apply the ro-
tating wave approximation (RWA), as it is done in the
theory of Rabi oscillations. In fact, we choose the car-
rier frequencies to be equal to the transition energies. In
addition, we also assume, that the laser frequencies are
sufficiently well separated in energy to apply the RWA a
second time:

|ω1 + ω2| � 0 , (B2a)

|ω1 − ω2| � 0 . (B2b)

Assuming the validity of the RWA mentioned in Sec-
tion III, the solution of the resulting differential equations
with the initial conditions a(0) = 1, b(0) = c(0) = 0,

leads to the following time-evolution of the coefficients:

a(t) = cos(Ω̄/2t) , (B3a)

b(t) =
dabε1e

−i(ϕ1−π)√
(dabε1)2 + (dacε2)2

sin
(
Ω̄/2t

)
, (B3b)

c(t) =
dacε2e

−i(ϕ2−π)√
(dabε1)2 + (dacε2)2

sin
(
Ω̄/2t

)
, (B3c)

with the Rabi-frequency

Ω̄ =
√

(dabε1)2 + (dacε2)2 . (B4)

Note that:

1. The Rabi-frequency is the Pythagorean mean of
the Rabi-frequencies of the single transitions: Ω̄ =√

Ω̄2
ab + Ω̄2

ac. Consequently, it is larger than each

of those single frequencies.

2. The maximum populations of the excited states de-
pend only on the ratio of the Rabi-frequencies be-

longing to the respective transitions |b(t)|
2

|c(t)|2 =
Ω̄2
ab

Ω̄2
ac

.

3. The relative phases of the expansion coefficients de-
pend on the phases of the applied lasers.

The target state is defined in Eq. (27): the goal is to
find a laser pulse that drives the system from the state
|Ψ(t = 0)〉 = |Φa〉 into this target state within the time
T . The evolution of the time-dependent wave function is
given by:

|Ψ(t)〉 = cos(Ω̄/2t)|Φa〉

+
dabε1 sin

(
Ω̄/2t

)√
(dabε1)2 + (dacε2)2

e−i(ϕ1−π+ωbat)|Φb〉

+
dacε2 sin

(
Ω̄/2t

)√
(dabε1)2 + (dacε2)2

e−i(ϕ2−π+ωcat)|Φc〉 .

(B5)

The condition |〈Φa|Ψ̄〉|2 = 1 leads to two sets of equa-
tions: one connecting the laser amplitudes ε1 and ε2 to
the populations |α|2, |β|2 and |γ|2

|α| = cos(Ω̄/2T ) , (B6a)

|β| = dabε1√
(dabε1)2 + (dacε2)2

sin
(
Ω̄/2T

)
, (B6b)

|γ| = dacε2√
(dabε1)2 + (dacε2)2

sin
(
Ω̄/2T

)
, (B6c)

and the other one connecting the laser phases to the rel-
ative phases ϕβ and ϕγ of the wave function

ϕβ = ϕ1 − π + ωbaT , (B7a)

ϕγ = ϕ2 − π + ωcaT . (B7b)
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Solving these sets of equations, we find the following am-
plitudes as one example of a control laser

ε1 =
2

T

arccos(|α|)
sin(arccos(|α|)

|β|
dab

, (B8)

ε2 =
2

T

arccos(|α|)
sin(arccos(|α|)

|γ|
dac

. (B9)

Note, however, that the solutions are not unique: other
sets {(2n + 1)ε1, (2n + 1)ε2} fulfill the equations above.
These solutions represent lasers that lead to an evolution
of the coefficients that covers (n+1) complete Rabi cycles
within the time T .

In practice one is often interested in pulses with time-
dependent envelope functions, such as the ones discussed
in Section III, in which the pulses have a sin2 envelope
with a period of 2T . The problem can be solved in an
analogue manner; the solutions for the amplitudes were
already given in Section III. In this case, the evolution of
the coefficients is given by:

a(t) = cos

(∫ t
0

Ω̃(t′)dt′

2

)
, (B10a)

b(t) =
dabε1e

−i(ϕ1−π)√
(dabε1)2 + (dacε2)2

sin

∫ t

0

Ω̃(t′)dt′

2
,(B10b)

c(t) =
dacε2e

−i(ϕ2−π)√
(dabε1)2 + (dacε2)2

sin

∫ t

0

Ω̃(t′)dt′

2
,(B10c)

where the “time-dependent Rabi-frequency” Ω̃(t) is given
by:

Ω̃(t) =
√

(dabε̃1(t))2 + (dacε̃2(t))2 = 2Ω̄ sin2

(
π
t

T

)
.

(B11)
and integrates as:∫ t

0

Ω̃(t′)dt′

2
=

(
1

2
t− T

4π
sin

(
2π

t

T

))
Ω̄ . (B12)

Appendix C: Laser Frequencies Used in the
Optimization of Methane

The laser frequencies (in a.u.) and the corresponding
resonances of the search spaces of the optimization of
CH2+

4 . The nomenclature follows the one in Fig. 6: εH
is minus the energy of the highest occupied KS state. ωI3
is the average of ε1 = 0.337 a.u. and ε3− ε1 = 0.353 a.u..
Since the frequencies are broadened by the finite pulse
duration, ωI3 covers both resonances.

Search Space I

ωI1 ωI2 ωI3 ωI4 ωI5
0.122 0.248 0.345 0.479 0.601

ε4 − ε5 ε3 − ε5 ε1 / ε1 − ε3 ε1 − ε4 ε1 − ε5
ωI6 ωI7 ωI8 ωI9 ωI10

0.654 0.690 0.816 0.938 1.000

ε2 ε3 ε4 ε5 ε7

Search Space II

ωII1 ωII2 ωII3 ωII4 ωII5 ωII6 ωII7

0.311 0.364 0.386 0.426 0.548 0.674 1.364

ε3 − IP ε4 − IP ε5 − IP ε6 − IP ε7 − IP ε8 − IP IP
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