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Abstract 

Background: Complexes of imidazole derivatives with transition metal ions have attracted much attention because 
of their biological and pharmacological activities, such as antimicrobial, antifungal, antiallergic, antitumoural and 
antimetastatic properties. In addition, imidazoles occupy an important place owing to their meaningful catalytic activ-
ity in several processes, such as in hydroamination, hydrosilylation, Heck reaction and Henry reaction. In this work, we 
describe the crystallization of two halogenometallate based on 2-methylimidazole. Their IR, thermal analysis, catalytic 
properties and antibacterial activities have also been investigated.

Results: Two new isostructural organic-inorganic hybrid materials, based on 2-methyl-1H-imidazole, 1 and 2, were 
synthesized and fully structurally characterized. The analysis of their crystal packing reveals non-covalent interactions, 
including C/N–H···Cl hydrogen bonds and π···π stacking interactions, to be the main factor governing the supramo-
lecular assembly of the crystalline complexes. The thermal decomposition of the complexes is a mono-stage process, 
confirmed by the three-dimensional representation of the powder diffraction patterns (TDXD). The catalytic structure 
exhibited promising activity using MeOH as solvent and as the unique source of acetalization. Moreover, the antimi-
crobial results suggested that metal-complexes exhibit significant antimicrobial activity.

Conclusion: This study highlights again the structural and the biological diversities within the field of inorganic–
organic hybrids.

Keywords: Halogenometallate, X-ray diffraction, Thermal analysis, Antibacterial activities, Hydrogen bonds, 
Supramolecular architecture, Catalysis
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Introduction
The chemistry of organic–inorganic hybrid materials 
constitutes one of the most flourishing areas of research 
in solid-state chemistry [1–3]. These hybrids are of inter-
est because of their wide range of technologically advan-
tageous properties, astounding compositional breadth, 

and exceptional diversity of structure. Thus, as a result 
of structural integration of organic cations and inorganic 
counterparts, magnetic [4–6], optical [7, 8], metallic con-
ductivity [9] and catalytic [10, 11] properties have arisen 
in this class of chemical hybrid systems. Moreover, these 
materials may be used as model compounds for biologi-
cal applications [12].

In our research, we particularly focus our attention 
on the preparation and the development of reactive 
transition metal complexes containing imidazole func-
tion for new, more selective or more widely catalytic 
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and biological applications. Various metal complexes, 
especially these containing imidazole groups, occupy 
an important place owing to their meaningful catalytic 
activity in several processes, such as in hydroamination 
[13–16], hydrosilylation [17, 18] Heck reaction [19–23] 
and Henry reaction [24]. In addition, imidazoles play an 
important role in medicinal chemistry, because many of 
its derivatives have demonstrated significant biological 
activity. For example, in many metalloenzymes the imida-
zole rings of histidines play a pivotal role in metal-enzyme 
coordination. In consequence, the metal complexes of 
imidazoles have been widely used as model compounds 
of metalloenzymes [25–29]. It is well known that metal 
ions present in complexes accelerate the drug action and 
the efficacy of the organic therapeutic agents [30]. The 
pharmacological efficiencies of metal complexes depend 
on the nature of the metal ions and the ligands [31]. It is 
declared in the literature that different ligands and differ-
ent complexes synthesized from same ligands with dif-
ferent metal ions possess different biological properties 
[30, 32, 33]. So, there is an increasing requirement for the 
discovery of new hybrid compounds having antimicrobial 
activities. However, this work has been quite selective. In 
this study, as an extension of our efforts into the develop-
ment of new metal based antimicrobial complexes with 
2-methylimidazole [34], we describe the crystallization 
of bis(2-methyl-1H-imidazolium)tetrachlorocobaltate(II) 
 (C4H7N2)2[CoCl4] (1) and bis(2-methyl-1H-imidazolium)
tetrachlorozincate(II)  (C4H7N2)2[ZnCl4] (2), along with 
their crystal packing and crystal supramolecularity analy-
ses. Their IR, thermal analysis, catalytic properties and 
antibacterial activities have also been investigated.

Experimental section
Materials
All the employed chemicals [Cobalt(II) chloride hexahy-
drate  (CoCl2·6H2O), Zinc(II) chloride  (ZnCl2), Hydro-
chloric acid (HCl; 37%) and 2-methyl-1H-imidazole 
 (C4H6N2)] were commercial products (Sigma-Aldrich), 
which were used without further purification. All culture 
media and standard antibiotic were purchased from Bio-
Rad laboratories, France).

Synthesis
The two new compounds  (C4H7N2)2[CoCl4] (1) and 
 (C4H7N2)2[ZnCl4] (2) were obtained by slow evapora-
tion, at room temperature. 2-Methyl-1H-imidazole 
(2mim) was dissolved with either  CoCl2·6H2O or  ZnCl2 
in 10  mL of distilled water and hydrochloric acid HCl 
(pH ≈ 2.5) with the metal/amine molar ratio of 1:2. The 
clear solutions were stirred for 10 min until the complete 
dissolution and allowed to stand at room temperature. 
Transparent block crystals with the specific color of the 

metal appeared after few days. Then, the products were 
filtered off and washed with a small amount of distilled 
water before being dried in ambient air. Otherwise, they 
are also stable for a long-time in normal conditions of 
temperature and humidity.

Single‑crystal data collection and structure determination
Small crystals of the two compounds 1 and 2 were glued to a 
glass fiber mounted on a four-circle Nonius KappaCCD area-
detector diffractometer with graphite monochromatized Mo 
Kα radiation, using an Oxford Cryosystems cooler. Data col-
lection, absorption corrections frame scaling and unit cell 
parameters refinements were carried out with CrysAlisCCD 
and CrysAlisRED [35]. The structures analyses were car-
ried out with the monoclinic symmetry, space groups C2/c, 
according to the automated search for space group available 
in Wingx [36]. Structures of 1 and 2 were solved with direct 
methods using SHELXS-97 [37] and refined by a full-matrix 
least squares technique with SHELXL-97 [37] with aniso-
tropic thermal parameters for all non H-atoms. H atoms 
bonded to C and N atoms were positioned geometrically and 
allowed to ride on their parent atoms, with C–H = 0.95 Å 
and N–H =  0.88  Å. The drawings were made with DIA-
MOND program [38]. The main crystallographic data and 
refinement parameters are presented in Table 1.

Infrared spectroscopy
All IR measurements were performed using a Perkin 
Elmer 1600FT spectrometer. Samples were dispersed 
with spectroscopic KBr and pressed into a pellet. Scans 
were run over the range 400–4000 cm−1.

Thermal analyses
TGA–DTA measurements of 1 and 2 were performed on 
raw powders with a TGA/DTA ‘SETSYS Evolution’ (Pt 
crucibles,  Al2O3 as a reference) under air flow (100 mL/
min). The thermograms were collected on 9 mg samples 
in the temperature range from 25 to 650 °C (heating rate 
of 5 °C/min).

Powder X‑ray diffraction
The variable-temperature X-ray powder diffraction (VT-
XRPD) for 1 and 2 was performed with a PANalytical 
Empyreanpowder diffractometer using CuKα radiation 
(λKα1 =  1.5406  Å, λKα2 =  1.5444  Å) selected with the 
Bragg–Brentano  HD® device (flat multilayer X-ray mir-
ror) from PANalytical and equipped with an Anton Paar 
HTK1200N high-temperature oven camera. Powder 
X-ray diffraction was used to support the structure deter-
mination and to identify the crystalline phases of 1 and 2. 
The thermal decompositions were carried out in flowing 
air from 20 to 670 °C. Patterns were collected every 7 °C, 
with a heating rate of 7 °C h−1 between steps.
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Catalytic studies
Complex 1 (4.7  mg, 0.01292  mmol) or 2 (4.8  mg, 
0.01292  mmol) and aldehydes 3a–i (0.323  mmol) were 
dissolved in MeOH (0.25 mL) in a test tube. The resulting 
mixture was stirred at 40  °C during 24 h. The reactions 
were monitored by thin-layer chromatography. The yield 
of the reaction is given by 1H NMR.

Antimicrobial activity
Antimicrobial activity was essayed against three species of 
Gram negative bacteria [Salmonella typhimurium (ATCC 
19430), Pseudomonas aeruginosa (ATCC 27853), Kleb-
siella pneumonia (ATCC 13883) and five species of Gram 
positive bacteria (Enterococus faecalis (ATCC 9763), 
Bacillus thuringiensis (ATCC 10792), Staphylococcus 
aureus (ATCC 25923), Micrococcus luteus (ATCC 4698) 
and listeria]. All microorganisms were stocked in appro-
priate conditions and regenerated twice before using.

Antimicrobial activity assays were performed accord-
ing to the method described by Berghe and Vlietinck [39]. 

Steril enutrient agar medium was prepared and distrib-
uted into Petriplates of 90  mm diameter. A suspension of 
the previously prepared test microorganism (0.1  mL of 
 106  UFCmL−1) was spread over the surface of agar plates 
(LB medium for bacteria). Then, bores (3 mm depth, 5 mm 
diameter) were made using a sterile borer and loaded with a 
concentration of 5 mg/mL of all samples. Before incubation, 
all petri dishes were kept in the refrigerator for 2 h to ena-
ble pre-diffusion of the substances into the agar. After that, 
they were incubated at 37 °C for 24 h. Ampicillin was used 
as positive reference. The diameters of the inhibition zones 
were measured using a ruler, with an accuracy of 0.5 mm. 
Each inhibition zone diameter was measured three times 
(in two different plates) and the results were expressed as an 
average of the radius of the inhibition zone in mm.

Results and discussion
Infrared spectra
The IR active bands of the 2-mim ring as well as the 
stretching vibrations of the N–H bond could be identified 

Table 1 Crystal data and structure refinement details for  (C4H7N2)2[CoCl4] (1) and  (C4H7N2)2[ZnCl4] (2)

Compound (1) (2)

Chemical formula (C4H7N2)2[CoCl4] (C4H7N2)2[ZnCl4]

Compound weight 366.96 373.40

Temperature (K) 100 (2) 100 (10)

Crystal system Monoclinic Monoclinic

Space group C2/c C2/c

a (Å) 26.9330 (17) 26.871 (8)

b (Å) 7.8842 (2) 7.9031 (18)

c (Å) 15.0925 (5) 15.077 (5)

β (°) 111.001 (5) 111.23 (5)

V (Å3) 2991.9 (2) 2984.5 (15)

Z 8 8

ρcal (g cm−3) 1.629 1.662

Crystal dimension,  mm3 0.45 × 0.37 × 0.13 0.50 × 0.42 × 0.12

Habit-colour Block, blue Block, transparent

μ  (mm−1) 1.85 2.35

θ range (deg) θmin = 2.7, θmax = 30.7 θmin = 2.7, θmax = 30.7

Index ranges − 26 ≤ h ≤ 38 − 38 ≤ h ≤ 29

− 10 ≤ k ≤ 10 − 9 ≤ k ≤ 11

− 21 ≤ l ≤ 21 − 21 ≤ l ≤ 21

Unique data 4253 4197

Observed data [I > 2σ(I)] 3254 3731

F(000) 1480 1504

R1 0.053 0.050

wR2 0.132 0.121

GooF 1.012 1.17

No. param 156 157

Transmission factors Tmin = 0.334;  Tmax = 0.804 Tmin = 0.387;  Tmax = 0.766

Largest difference map hole Δρmin = − 1.11, Δρmax = 1.44 Δρmin = − 0.63, Δρmax = 2.36
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in the IR spectra of both compounds (Fig. 1). Indeed, it is 
known that the narrow bands at 3147.3 and 3120.9 cm−1, 
for 1 and 2 respectively, correspond to the νC–H stretch-
ing modes of the 2-mim ring [40]. Moreover the stretch-
ing vibration ν(NH) has been identified at 2724 and 
3752 cm−1, for 1 and 2, respectively. This agrees well with 
the structural study which proved the protonation of the 
2-mim cation. The bands located in the region 1400–
1650  cm−1 are assignable to C–C and C–N stretching 

vibration of 2-mim ring. The νC=N mode can be found at 
1438 and 1492 cm−1 for 1 and 2, respectively. Addition-
ally, the vibrational bands from 1002 to 1438  cm−1 can 
be assigned to the ring stretching frequency of the 2-mim 
cation (νring) [41]. Finally, the bands remaining in the 
686–859  cm−1 region can be associated with the defor-
mations of the imidazole ring.

Crystal structure
Compounds 1 and 2 are isostructural, confirmed by their 
single crystal structural analyses (Table  1). Compound 
1 was taken as an example to understand the struc-
tural details. Complex 1 crystallizes in the monoclinic 
centrosymmetric space group C2/c and its basic struc-
ture unit consists of one  [CoCl4]2− ion and two crystal-
lographically inequivalent 2-mim cations, as shown in 
Fig. 2.

The Co(II) ion is tetrahedrally bound by four chlo-
rine atoms, with Co–Cl bond distances ranging from 
2.246(9) to 2.287(9)  Å and Cl–Co–Cl bond angles 
between 106.45(4)° and 111.87(3)°, which are slightly 
deviated from the ideal value of 109.28° (Table 2). There-
fore, the coordination geometry around the  CoII ion can 
be described as a slightly irregular tetrahedron. Cobalt 
atoms are stacked one over the other along the three 
crystallographic axes and are isolated from each other 
with a shortest distance Co⋯Co  =  7.330(4)  Å which 
is more than the sum of the van der Waals radii of the 
cobalt ions tetrahedrally coordinated (4 Å). Hence, there 

Fig. 1 The infrared absorption spectra of compounds 1 and 2, 
dispersed in a KBr pellet

Fig. 2 A view of the asymmetric unit cell of 1. Displacement ellipsoids for non–H atoms are presented at the 50% probability level
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is no metallophilic Co⋯Co interaction in this compound 
as proposed by Das et al. [42]. One of the main cohesive 
forces responsible for molecular arrangements of halogen 
derivatives is the pattern of halogen⋯halogen intermo-
lecular interactions. It is worth mentioning here, that in 
bis(2-methyl-1H-imidazolium)tetrachlorocobaltate(II) 
the shortest Cl⋯Cl contacts between copper sites related 
by unit cell translations along the a or c directions are 
5.242 and 3.941  Å, respectively, thus proving the weak 
halogen interactions in these directions (Fig. 3).

As far as the cation is concerned, all the bond lengths 
and bond angles observed in aromatic rings of the 2-mim 
present no unusual features and are consistent with those 
observed in other homologous derivates (Table  2) [40, 
43]. The 2-methylimidazolium cation is essentially planar 
(maximum deviation from the mean plane through the 
imidazole ring is 0.0150 Å).

The packing of the structure can be regarded as alter-
nating stacks of anions and layers of cations. The iso-
lated molecules are involved in many intermolecular 
interactions leading to layers that are parallel to bc plane 
(Fig. 4). These layers are stabilized and governed signifi-
cantly through extensive C/N–H⋯Cl hydrogen bonding 
between the inorganic and organic moieties and π⋯π 
stacking interactions between the aromatic rings of the 
amine molecules themselves (Table 3). Indeed, the C⋯Cl 
distances vary from 3.422 (4) to 3.628 (4)  Å, while the 
N⋯Cl distances vary from 3.160 (3) to 3.273 (3) Å. The 
centroid–centroid distance and dihedral angle between 
the aromatic rings are 3.62 Å and 0.00°, respectively, dis-
playing typical π⋯π stacking interactions (Fig. 5). These 
values are almost comparable to the corresponding val-
ues for intermolecular π⋯π interactions, showing that 
π⋯π contacts may further stabilize the structure. Then, 
both C/N–H⋯Cl and π⋯π stacking interactions are the 
driving forces in generating a three-dimensional supra-
molecular network.

Thermal decomposition
The two compounds show similar thermal behavior, 
which further support their isomorphic structures. Thus, 
for simplicity the thermal properties of 1 only have been 
discussed. Thermogravimetric analyses of compound 
1 were undertaken in the temperature range from 25 
to 650  °C under flowing  N2 atmosphere with a heating 

Table 2 Selected bond distances (Å) and angles (°) for 1 
and 2

Within the mineral moiety Within the organic moiety

(C4H7N2)2[CoCl4] (1)

 Co1–Cl1 2.2741 (9) N1A–C4A 1.325 (5)

 Co1–Cl2 2.2767(10) N1A–C2A 1.380 (5)

 Co1–Cl3 2.2870 (9) N2A–C4A 1.327 (5)

 Co1–Cl4 2.2464 (9) N2A–C3A 1.372 (5)

 Cl2–Co1–Cl1 106.45 (4) N1B–C4B 1.331 (4)

 Cl3–Co1–Cl1 108.69 (3) N1B–C2B 1.374 (5)

 Cl3–Co1–Cl2 110.55 (3) N2B–C4B 1.331(4)

 Cl3–Co1–Cl4 109.09 (4) N2B–C3B 1.370 (5)

 Cl2–Co1–Cl4 110.16 (4) C2A–C3A 1.345(5)

 Cl1–Co1–Cl4 111.87 (3) C4A–C5A 1.479 (6)

C2B–C3B 1.348 (5)

C4B–C5B 1.478 (5)

C4A–N1A–C2A 110.0 (3)

C4A–N2A–C3A 110.1 (3)

C4B–N2B–C3B 110.2 (3)

C4A–N2A–C3A 110.1 (3)

C3B–C2B–N1B 106.5 (3)

C3A–C2A–N1A 106.3 (3)

C2B–C3B–N2B 106.7 (3)

C2A–C3A–N2A 106.8 (3)

N1A–C4A–N2A 106.8 (3)

N1A–C4A–C5A 126.5 (4)

N2A–C4A–C5A 126.7 (4)

N1B–C4B–N2B 106.5 (3)

N1B–C4B–C5B 126.8 (3)

N2B–C4B–C5B 126.6 (3)

(C4H7N2)2[ZnCl4] (2)

 Zn–Cl1 2.2780 (11) N1A–C2A 1.325 (5)

 Zn–Cl2 2.2779 (13) N1A–C3A 1.381 (6)

 Zn–Cl3 2.2392 (16) N2A–C2A 1.335 (5)

 Zn–Cl4 2.2945 (13) N2A–C4A 1.386 (6)

 Cl2–Zn–Cl1 106.45 (5) C1A–C2A 1.438 (6)

 Cl3–Zn–Cl1 112.11 (4) C3A–C4A 1.347 (6)

 Cl3–Zn–Cl2 110.49 (5) N1B–C2B 1.336 (5)

 Cl3–Zn–Cl4 109.43 (5) N1B–C3B 1.372 (6)

 Cl2–Zn–Cl4 109.98 (4) N2B–C2B 1.332 (5)

 Cl1–Zn–Cl4 108.31 (4) N2B–C4B 1.380 (6)

C1B–C2B 1.471 (6)

C3B–C4B 1.348 (6)

C3A–C4A–N2A 106.7 (4)

C2A–N2A–C4A 109.8 (3)

N1A–C2A–N2A 106.8 (4)

N1A–C2A–C1A 126.6 (4)

N2A–C2A–C1A 126.6 (4)

C4A–C3A–N1A 106.7 (4)

C2B–N1B–C3B 110.3 (4)

C2B–N2B–C4B 110.3 (3)

N2B–C2B–N1B 106.2 (4)

Table 2 continued

Within the mineral moiety Within the organic moiety

N2B–C2B–C1B 126.6 (4)

N1B–C2B–C1B 127.2 (4)

C4B–C3B–N1B 106.8 (4)

C3B–C4B–N2B 106.4 (4)
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rate of 5 °C/min, leading to the simultaneous TGA/DTA 
profiles. The simultaneous (TG–DTA) curves and the 
three-dimensional representation of the powder diffrac-
tion patterns are shown in Figs.  6 and 7, respectively. 

As shown in Fig.  6, the small mass gain observed at 
room temperature on the TG curve is explained by the 
strong hygroscopic character of the sample, as also 
observed when the sample is ground for XRPD analysis. 

Fig. 3 The Cl⋯Cl interactions within the mineral layers, showing its supramolecular aspect

Fig. 4 Projection of the structure of 1 along the crystallographic b axis, showing C/N–H⋯Cl hydrogen bonding between the inorganic and organic 
moieties
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According to the TG curve, it is evident that compound 
1 undergoes a single stage weight loss observed between 
150 and 460  °C, accompanied by an intense endother-
mic peak at 195  °C and a shoulder endothermic peak at 
425  °C, on the DTA thermogram. This mass loss corre-
sponds to the elimination of the organic moiety and two 

chloride atoms, (observed weight loss, 64.01%, theoreti-
cal, 64.57%). This decomposition process is confirmed by 
the three-dimensional representation of the powder dif-
fraction patterns (Fig. 7). Indeed, the TDXD plot reveals 
that the precursor,  (C4H7N2)2[CoCl4], remains crystalline 
until 170  °C, while being subject to thermal expansion 
from room temperature, and then undergoes a complete 
structural destruction to become amorphous. The corre-
sponding oxides, CoO and  Co3O4, crystallize from 350 °C 
(ZnO for compound 2).

Catalytic study
The transformation of a carbonyl group into an acetal 
is one of the most recurrent methods for protecting 
carbonyl groups in organic synthesis [44]. However, 
although this is an extensive explored approach, it still 
presents some inconveniences that should be over-
come [45–56]. Therefore, the development of new cata-
lytic structures to successfully perform this protection 
is of high interest for the progress of this field. Despite 
the number of reported works regarding this reaction, 
to the best of our knowledge the use of Co- [57, 58] and 
Zn-based catalysts [59, 60] has been less explored in the 
literature until now. In this spectrum of properties, we 
envisioned the possibility of testing the effectiveness of 
our metallic species in the acetalization reaction of alde-
hydes as a benchmark process.

In order to explore the efficiency of both candidates, we 
firstly tested their activity in the model acetalization reac-
tion depicted in Table 4. Both catalytic structures shown 
the same order of reactivity at room temperature (com-
pare entries 1–4 and 6–9). With a more concentrated 
reaction medium and 4 mol% of catalyst better yields are 
obtained (compare entries 2 and 4, and entries 7 and 8). 
At 40  °C catalyst 2 exhibited a slightly better reactivity 

Table 3 Hydrogen-bonding geometry (Å, °) for 1 and 2

Symmetry codes for 1: [(i) x, y − 1, z; (ii) x, − y, z − 1/2]; Symmetry codes for 2: [(i) 
x, y + 1, z; (ii) x, − y − 1, z + 1/2]

D–H⋯A d (D–H) 
(Å)

d (H⋯A)  
(Å)

d (D⋯A) 
(Å)

∠ D–H⋯A 
(°)

(C4H7N2)2[CoCl4] (1)

 N1A–H1A⋯Cl4 0.88 2.43 3.273 (3) 161

 N2A–H2A⋯Cl4i 0.88 2.51 3.213 (3) 174

 N1B–H1B⋯Cl1 0.88 2.31 3.188 (3) 173

 N2B–H2B⋯Cl2ii 0.88 2.30 3.160 (3) 167

 C2A–H2A1⋯Cl4 0.95 2.75 3.422 (4) 128

 C3A–H3A⋯Cl4i 0.95 2.75 3.532 (4) 141

 C2B–H2B1⋯Cl1 0.95 2.69 3.576 (4) 155

 C3B–H3B⋯Cl2ii 0.95 2.71 3.628 (4) 163

(C4H7N2)2[ZnCl4] (2)

 N1A–H1A⋯Cl4i 0.88 2.34 3.222 (4) 176

 N2A–H2A⋯Cl4 0.88 2.45 3.281 (4) 158

 N1B–H1B⋯Cl1 0.88 2.30 3.158 (4) 164

 N2B–H2B⋯Cl3ii 0.88 2.32 3.199 (4) 173

Fig. 5 Crystal packing arrangement showing the π⋯π stacking 
interactions between the aromatic rings

Fig. 6 Simultaneous TG–DTA curves for the decomposition of 1, 
under flowing nitrogen (5 °C/min from 25 to 650 °C)
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with an almost complete conversion of the process (com-
pare entries 5 and 10). Although CH(OMe)3 is the com-
monly used source of acetalization in the protection of 
carbonyl compounds, interestingly, only MeOH is used 
in our protocol as the most accessible source.

After this screening, and with the best reaction condi-
tions in hand, we extended our strategy to different sub-
stituted aldehydes as shown in Table  5. As reported in 
Table 5, the desired acetals 4b–i were obtained with very 
good yields. The developed methodology was successfully 
applied to all aromatic aldehydes examined 3a–i giving 
rise to really clean reaction crudes. Interestingly, neither 
inert atmosphere nor dry or other special conditions 
were needed to carry out the reactions. As a proof of fact, 
the reactions were performed in the absence of catalysts, 
demonstrating the efficiency of our catalytic species, 
since no reaction was observed in the background pro-
cesses (< 5%). It seems that the electronic effects over the 
aromatic ring affects to the reactivity of the process, since 
activated aldehydes, with electron-withdrawing groups in 
their structure, rendered better yields in comparison with 
non-activated ones (compare entries 1–5 with entries 
6–8). Further catalytic studies are actually ongoing in our 
laboratory in order to explore additional reactions with 
both catalytic species.

In order to gain insight about the most active specie of 
our structures, we carried out some control experiments 
using the simplest species described in Scheme 1. In this 
sense,  CoCl2 and  ZnCl2 were used as direct precursors 
of the crystalline structures 1 and 2, under the best reac-
tion conditions above described in Table 5. Surprisingly, 
these metal species did not provide the acetalization 
reaction of aldehyde 3a. Then, we focused on the contra 
ion of the crystal structures 1 and 2, that is an imidazo-
lium cation. First, imidazole was tested in the reaction 
as plausible catalyst but the reaction did not work as 
expected, since this process is acid promoted. In contrast, 

Fig. 7 TDXD plot for the decomposition of 1 in air (7 °C h−1 from 20 to 670 °C)

Table 4 Screening of the reaction conditions to optimize 
the acetalization process

Otherwise indicated: a mixture of aldehyde 3a (0.323 mmol) and catalysts 1 or 
2 (4 mol%) in 0.25 mL MeOH, was stirred at 40 °C for 24 h. After this time the 
reaction crudes were analysed by 1H NMR
a Yields of 4a [61] determined by 1H-NMR spectroscopy

Entry Complex 
(mol%)

MeOH (mL) Temperature 
(°C)

Yield (%)a

1 1 (2) 0.25 r.t. 65

2 1 (4) 0.25 r.t. 78

3 1 (6) 0.25 r.t. 78

4 1 (4) 0.50 r.t. 59

5 1 (4) 0.25 40 92

6 2 (2) 0.25 r.t. 63

7 2 (4) 0.25 r.t. 83

8 2 (6) 0.25 r.t. 71

9 2 (4) 0.50 r.t. 67

10 2 (4) 0.25 40 97
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the generated chlorohydrate salt activated the reaction 
in a 68% as a weak acid catalyst. Since the crystal struc-
tures 1 and 2 bear two imidazolium molecules, the use 
of an 8 mol% of the acidic specie was also explored giving 
rise to an 86%. The activity observed with the imidazo-
lium salt supports that the reactivity found with catalysts 
1 and 2 is directly related with this salt species instead 
of the metal atom. This finding is also in agreement with 
the similar results observed when both species, 1 and 2, 
were initially screened (Table  4). However, at this point 
we cannot discard a plausible synergic effect of the whole 
complex structure, since the results obtained with cata-
lysts 1 and 2 are slightly better (Table  4, entries 5 and 
10, respectively) than the results obtained just with imi-
dazolium salt (Scheme 1). A possible acidification of the 
most acid proton in the imidazolium structure as a result 
of the interaction with the metal complex anion could be 

tentatively suggested. Although more studies should be 
necessary to support the mechanism of this process using 
complexes 1 and 2, a plausible catalytic cycle is proposed 
in Scheme 2 and the role of imidazolium salt, represented 
as  H+, is depicted. The weak acid would be involved in 
the first step of the cycle activating the aldehyde to pro-
mote the addition of the first molecule of MeOH [65].

In‑vitro antimicrobial activity
In this part and by way of comparison, we chose to 
study the antibacterial activity of the organic–inor-
ganic hybrid metal(II) halides with 2-methylimidazole. 
Then the synthesized compounds as well as the cop-
per complex based on 2-mim, recently published [34], 
were screened for their in vitro growth inhibiting activ-
ity against Gram-positive (Enterococus faecalis, Bacillus 
thuringiensis, Staphylococcus aureus, Micrococcus luteus 
and listeria) and Gram-negative (Salmonella typhimu-
rium, Pseudomonas aeruginosa and Klebsiella pneumo-
nia) bacteria. The antibacterial activity was measured as 
the diameter of the clear zone of growth inhibition and 
the results were presented in Table 6. As can be seen in 
this table,  (C4H7N2)2[CoCl4] (1),  (C4H7N2)2[ZnCl4] (2) 
and  (C4H7N2)[CuCl3(H2O)] (3) possessed variable inhi-
bition zones among the tested microorganisms ranging 
from 11 to 24 mm at the tested concentration (5 mg/mL). 
Cobalt complex was found to have a significant antibac-
terial activity against the Gram-negative bacteria tested 
compared to Gram-positive bacteria. In fact, compared 
to the ampicillin,  (C4H7N2)2[CoCl4] has the same diam-
eter inhibition zones (24  mm) against K. pneumoniae. 
 (C4H7N2)2[CoCl4] exhibits a greater activity (20  mm) 
than the ampicillin against S. Typhimurium. According 
to the results presented in Table 6,  (C4H7N2)2[ZnCl4] was 
found to have a moderate activity against E. faecalis, P. 
aeruginosa and S. Typhimirium. No inhibition zones were 
observed for all the tested chemical compounds against 
B. thuringiensis and M.l. In fact, from these results can 
be deduced that these two Gram-positive bacteria were 
found to be very resistant. The antimicrobial results sug-
gested that Co-complex exhibits higher biologically activ-
ity against microbial tested strains in comparison to the 
ampicillin antibiotic.

Conclusions
Two new isostructural organic–inorganic hybrid mate-
rials, based on 2-methyl-1H-imidazole, 1 and 2, were 
synthesized and fully structurally characterized. The 
basic unit structure of these compounds consists of one 
 [MIICl4]2− ion and two crystallographically inequivalent 
2-methylimidazolium cations. Furthermore, the analy-
sis of their crystal packing reveals non-covalent interac-
tions, including C/N–H⋯Cl hydrogen bonds and π⋯π 

Table 5 Scope of the acetalization reaction using cata-
lyst 2

a Yields determined by 1H-NMR spectroscopy
b Reaction performed in the absence of catalyst

Entry R Product Yield (%)a

1 4-ClPh, 3b 4b [62] 93

2 3-ClPh, 3c 4c [62] 81

3 4-BrPh, 3d 4d [62] 81

4 4-NO2Ph, 3e 4e [62] 94

5 4-CNPh, 3f 4f [63] 94

6 4-PhPh, 3 g 4g  [64] 67

7 Ph, 3 h 4 h [62] 75

8 1-Naphthyl, 3i 4i [62] 70

9b 3-NO2Ph, 3a 4a < 5

Scheme 1 Control experiments (n.r. no reaction observed)



Page 10 of 12Salah et al. Chemistry Central Journal  (2018) 12:24 

stacking interactions, to be the main factor governing the 
supramolecular assembly of the crystalline complexes. 
In view of the pivotal role of noncovalent interactions 
in the design of new materials, the theoretical calcula-
tion method of noncovalent interactions (NCI) is found 
to be an effective tool to understand the formation of 
these complex materials. The thermal decomposition 
of the complexes is a mono-stage process, confirmed by 
the three-dimensional representation of the powder dif-
fraction patterns (TDXD). Additionally, we have demon-
strated the efficiency of both metal complexes to act as 
catalysts in the acetalization reaction under very mild 

conditions in the presence of MeOH, as the solvent of 
the reaction and as the unique source of acetalization. 
Moreover, the antimicrobial results suggested that metal-
complexes exhibit significant antimicrobial activity. This 
study, in conjunction with the previous one [34], high-
lights again the structural and the biological diversities 
within the field of inorganic–organic hybrids.
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