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ABSTRACT 

Symmetrical Donor-Acceptor-Donor (D-A-D) 2H-benzo[d][1,2,3]triazole derivatives have been 

designed by DFT calculations and prepared by a multistep synthetic protocol. The design strategy 

involved the identification of a suitable acceptor benzotriazole core and modification of the steric 

volume and donor strength of the branches in order to modulate the Intramolecular Charge 

Transfer (ICT) process and, consequently, the band gap. Self-assembly of the reported triazoles 

afforded organized supramolecular structures, the morphologies of which were visualized by 

SEM imaging. The outcomes demonstrated the effect that the donor moiety has on the emission 

properties and the morphologies of the aggregates. The aggregates that had a crystal-like structure, 

with smooth surfaces and flat end facets, exhibited optical waveguide behaviour with tunable 

colour emission. Depending on the initial design, the different emission wavelengths are related 

to the band gap of the benzotriazole derivatives. 
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Self-Assembly 

T-shaped 2H-benzo[d][1,2,3]triazole 

 

1. Introduction 

Organic molecules that exhibit intense and tunable emission have received a great deal of 

attention and play an important role in next-generation of electronic applications due to their 

processability, flexibility, ultrathin aspect and large area. Among these organic nanomaterials, 

one-dimensional (1D) nanostructures have proven to be effective building blocks for miniaturized 

devices. In this respect, it is worth highlighting tunable color displays, like Organic Light-

Emitting Diodes (OLEDs) [1], Organic Field-Effect Transistors (OFETs) [2], chemical sensors 

[3] and optical and optoelectronic devices such as lasers [4] and optical waveguides [5]. 

1D organic nano- and micro- structures have emerged as effective flexible media to generate or 

propagate and manipulate light efficiently on the sub-wavelength scale and these are considered 

to be fundamental elements and interconnectors in optical circuits. Within this framework, 

organic molecular crystals can serve as active optical waveguides [6,7] since higher crystallinity 

improves the photon-crystal lattice interactions and the charge-transport mobility. A number of 

articles have been published to date regarding the use of organic compounds as optical 

waveguides. In many cases these compounds emit light from 400 to 600 nm. However, examples 

of organic waveguide materials with a red emission above 600 nm are still rare. [8]   

The modification or alteration of chemical structures is a common approach to tune the solid-state 

luminescence properties of organic materials. Most 1D organic waveguides are fabricated from 

small molecules with a π-conjugated structure due to their capacity to delocalize (move) electrons. 

[9] This property, along with the ready availability, facile synthesis and high purity, makes these 

compounds attractive components for device applications.  

The absorption in these π-conjugated systems can be modulated by the construction of low band 

gap organic materials in which electron donor (D) and electron acceptor (A) moieties are 

incorporated into the molecular building blocks. This design facilitates intramolecular charge 

transfer (ICT). [10] As a consequence, the band gap levels and other related optical properties can 



be readily tuned through the modification of donors and acceptors. Compared to the conventional 

D-A systems, other donor-acceptor-donor (D-A-D) types of chromophore will facilitate stronger 

ICT and lower the band gap energy further. [11] Moreover, the modification of moieties and 

substituents in conjugated structures not only provides strong ICT but also modulates the self-

assembly behavior, facilitates crystal packing and contributes to their luminescence or the 

chromogenic phenomenon.  

The introduction of heterocycles or heteroatoms into π-conjugated systems is also a useful 

approach for the construction of ICT compounds. [12] In this regard, benzotriazole is a moderate 

electron acceptor moiety for which it is assumed that the polarizable imine unit is responsible for 

its electronic character. [13] The introduction of different substituents on the nitrogen in the 2-

position offers the possibility of modulating the electron acceptor properties. [14] 

We are actively working on the synthesis of 4H-1,2,4-triazole and 2H-benzo[d][1,2,3]triazole 

derivatives that form aggregates which are capable of acting as tunable optical waveguides. [15-

17] The latter series has a T-shaped geometry with spatial overlap between the HOMO and the 

LUMO, which is necessary for the large transition dipole moments that give rise to intense 

absorptions. 

In this context, and as part of our ongoing research, we describe here the synthesis of T-shaped 

2H-benzo[d][1,2,3]triazole D-A-D derivatives, the design of which was based on a computational 

study aimed at modulating the photoluminescent properties and self-assembly behaviour based 

on the peripheral donor groups. The properties of these aggregates as organic waveguides with 

tunable colour emission were studied. 

 

 
2. Results and Discussion 

Our initial goal was to develop a new series of T-shaped D-π-A-π-D benzotriazole derivatives 

with ICT character. The target compounds contain two electron-donor arms with different features 

and the benzotriazole unit as the electron-acceptor core. This design allows the efficient tuning of 

the HOMO-LUMO gap by changing the donor and acceptor groups. [18] 



Structural modifications in molecular aggregates have a marked influence on their fluorescence 

properties such as the emission wavelength. [19] For this reason, a variety of aromatic moieties 

have been incorporated at the periphery of the D-A-D triad in order to modulate the aggregation 

process. This strategy provides an insight into structures-property relationships and this in turn 

enables the design of future derivatives. 

 

2.1. Theoretical Approach 

A very important aspect for the synthesis of compounds today is to implement a rational design 

strategy in order to obtain useful products and avoid the synthesis of unnecessary molecules – an 

approach that contributes to the sustainable development of chemistry. In this respect, 

Computational Chemistry is a useful tool to achieve this goal. [20] 

With the above aim in mind, we initially performed computational calculations in order to gain 

an in-depth insight into the molecular geometries and the molecular orbital profiles of these 

compounds and to determine the photophysical and electrochemical properties. The theoretical 

outcomes were compared with the experimental results in order to direct future syntheses. 

In an effort to modulate the emission properties, we first inserted different electron-withdrawing 

2-arylsubstituents such as trifluoromethyl (1a), cyano (1b) and nitro (1c) in the 2-aryl-

benzotriazole moiety (Figure 1). The decoration of the D-A-D triads with these acceptor moieties 

should decrease the LUMO energy of the designed materials, thus facilitating charge separation 

at the donor-acceptor heterojunction. The frontier molecular orbital profiles are shown in Figure 

1. 

 
 
 



 
Figure 1. Topologies of the frontier molecular orbitals computed at CPCM-M06-2x/6-
311+G(2d,p)//CPCM-M06-2x/6-31G*for compounds 1a–c.  

 

The introduction of two nitro groups (1c) decreases the band gap due to LUMO stabilization 

(Figure 1) but in this compound the LUMO is anchored on the nitro groups, thus preventing the 

necessary overlap of the frontier orbitals for the molecules to undergo a charge transfer process. 

In contrast, the introduction of trifluoromethyl or cyano groups (1a and 1b, respectively) allows 

spatial overlap between the HOMO and the LUMO, which is necessary to achieve the large 

transition dipole moments that give rise to intense absorptions. In both cases, the band gap values 

were not modified substantially. Several examples have been reported in the literature of devices 

bearing trifluoromethylphenyl groups [21]. These compounds exhibit excellent electron-

accepting properties and show a unique stacking tendency attributed to specific intermolecular 

interactions (C-F···H-C and C-F··· π). [22] Moreover, the densely packed fluorinated substituents 
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1a: R1= CF3
1b. R1= CN
1c: R1= NO2

  Compound          1a                                  1b                                 1c   

 HOMO             -7.11eV                      -7.14eV               -7.15eV    

   LUMO            -2.21eV                        -2.31eV                              -2.44eV    

   H-L gap         4.90                             4.83                                    4.71 



hinder the access of water and oxygen and also provide kinetic barriers to improve the ambient 

stability. For these reasons, [2-(3,5-bis(trifluoromethyl)phenyl]-4,7-bis(phenylethynyl)-2H-

benzo[d][1,2,3]triazole (1a) was selected as the acceptor core. 

We also selected several donor moieties with different characteristics to be attached to the 

acceptor unit (Compounds 1d–m) (Figure 2). Aromatic moieties with different geometries were 

introduced: i.e., planar (1d–j) in order to favor aggregation by π-π stacking or twisted and bulky 

groups (1k–m) to decrease the π-π interactions in an effort to avoid low fluorescence quantum 

efficiency, which is mainly caused by π-π stacking of the planar backbones. [22] These structural 

modifications allowed the study of different aspects that could play an important role in the 

aggregation.   

In the optimized structure the central 2-phenyl-4,7-bis(phenylethynyl)-2H-

benzo[d][1,2,3]triazole unit is planar, with dihedral angles close to 0° (Figure 3a).  
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Figure 2. Set of designed ICT compounds (1d–m). 

 



As expected, compounds 1d–j have a planar arrangement (Figure 3a) whereas chromophores 1k–

m have a dihedral angle that deviates by 105–130° from planarity due to the increased steric 

hindrance between the benzotriazole ring and the arylalkynyl substituent (Figure 3b). 

It is worth noting that in those cases in which there are two possible conformations, the most 

stable one is that in which the Ar group is closer to the nitrogen atoms of the triazole ring, since 

this structure is favoured by the formation of hydrogen bonds (Compounds 1e, 1f and 1i) (Figure 

3c). It can be seen in Figure 3c that the most stable conformers of compounds 1e and 1f are 

stabilized by the formation of two H-bonds between N1 and an aromatic proton (2.5 Å) and by 

two H–F interactions (2.7 Å). Compound 1i is stabilized by two H-bonds between the S atom and 

the ortho-proton of the 2N-aryl group (2.8 Å) and another two between the 2H-thienyl and a 

fluoro-substituent (2.7 Å). This situation leads to a subtle curvature of the triple bond. 

Furthermore, in compound 1f a rotation of the N-aryl group occurs in order to form the H-bonds.  

In all cases, the frontier molecular orbital profiles show an overlap between the HOMO and 

LUMO on the central acceptor core, which facilitates charge transfer from the electron-donating 

and electron-withdrawing units (Figure 4 and Table S1). The calculated HOMO-LUMO energies 

are collected in Table 1. 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Optimized structures at M062x/6-31G* of different 2H-benzo[d][1,2,3]triazole 
derivatives. 
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Figure 4. Topology of molecular orbitals computed at CPCM-M06-2x/6-311+G(2d,p)//CPCM-

M06-2x/6-31G* for compound 1l. 

 

Table 1. Energy values (eV) of frontier molecular orbitals and HOMO-LUMO gaps for all 

compounds computed at the CPCM-M06-2x/6-311+G(2d,p)//CPCM-M06-2x/6-31G* theory 

level. 

Compound EHOMO (eV) ELUMO (eV) HOMO-LUMO 

gap (eV) 

1a –7.11 –2.21 4.90 

1b –7.14 –2.31 4.83 

1c –7.15 –2.44 4.73 

1d –7.00 –2.19 4.71 

1e –6.64 –2.00 4.64 

1f –6.72 –2.32 4.40 

1g –6.64 –2.32 4.32 

1h –6.44 –2.31 4.13 

1i –6.98 –2.27 4.71 

1j –6.52 –2.06 4.46 

1k –6.38 –2.29 4.09 

1l –6.82 –2.28 4.54 

1m –6.52 –2.32 4.20 

 

 

These outcomes indicate that the HOMO-LUMO gap can be modulated by introducing different 

electron-donating groups. The lowest gaps correspond to substituents that bear a nitrogen with an 

available electron pair (compounds 1j, 1k and 1m; Table 1) or thiophene derivatives (compounds 

1g, 1h; Table 1) due to the more effective π-conjugation. The HOMO-LUMO gap values for 



compounds 1h and 1i are markedly different despite the structural similarity (Table 1). Thus, 

compound 1h has more effective π-conjugation and this results in stronger intramolecular 

interactions and a lower band gap. 

2.2. Synthetic Procedure 

 

Benzotriazoles 2 were prepared by the synthetic approach described by Höger from 1-nitro-2-

nitrosobenzene and 3,5-bis(trifluoromethyl)aniline. [14] Bromination of 2 afforded the 

dibromobenzotriazole 3 in good yield (Scheme 1). A double Sonogashira C–C cross-coupling 

reaction between dibromobenzotriazole 3 and arylacetylenes 4 using reusable Pd-EnCat TPP30, 

1,5-diazabicyclo[5.4.0]undecene-5-ene (DBU), CuI and MW irradiation as the energy source 

afforded arylalkynylbenzotriazoles 1 within 20 minutes in good to excellent yields. We recently 

employed this sustainable procedure for the preparation of triazole and benzotriazole derivatives. 

[17] All compounds gave satisfactory spectroscopic and analytical data. 
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Scheme 1. Synthesis of 2-(3,5-bis(trifluoromethyl)phenyl)-4,7-bis(phenylethynyl)-2H-

benzo[d][1,2,3]triazole derivatives (1) by a Sonogashira cross-coupling between 3 and 4. 

 

 



2.3. Photophysical Properties 

 
The electronic spectra of compounds 1d–m were theoretically calculated and experimentally 

measured. The theoretical spectra were calculated in chloroform solution using the conductor-like 

polarizable continuum model (CPCM) [23] and the time-dependent density functional theory 

(TD-DFT) approach. [24] The M06-2X [25] meta-exchange functional was employed. This 

functional was chosen based on the accurate results obtained in the calculation of systems with 

high spatial orbital overlap, which are even better than those provided by the more widely used 

CAM-B3LYP. [26] 

The electronic absorption and photoluminescence (PL) spectra were experimentally measured in 

CHCl3 solutions at a concentration of 10–5 M (Figures 5 and 6). The photoluminescence (PL) 

behaviour was explored by excitation of the molecules at their absorption maxima. The most 

meaningful photophysical data are summarized in Table 2. 
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Figure 5. UV/Visible absorption spectra of compounds 1d–m (298 K, CHCl3, 1 × 10–5 M).  
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Figure 6. Emission spectra of compounds 1d–m (298 K, CHCl3, 1 × 10–5 M). All PL spectra were 

measured after excitation at the maximum absorption peak of the corresponding compounds.  

Table 2. λabs, λem and Stokes shift (in nm) measured experimentally and calculated at the CPCM-
M06-2x/6-311+G(2d,p)//CPCM-M06-2x/6-31G* theory level for compounds 1d–m. 

 

Comp. λabs (nm) 

 exp 

λabs (nm) 

calc. 

λem (nm) 

exp. 

λem (nm) 

calc. 

Stokes shift 

(nm)(a) 

Φ (b) 

1d 412 405 529 503 127 (98) 0.71 

1e 421 426 529 530 108 (104) 0.61 

1f 439 434 531 522 92 (88) 0.35 

1g 455 460 562 587 107 (127) 0.17 

1h 424 492 485 617 61 (125) 0.53 

1i 411 414 514 513 103 (99) 0.78 

1j 434 437 569 555 135 (118) 0.49 

1k 464 453 572 562 108 (109) 0.32 

1l 414 416 512 518 98 (102) 0.86 

1m 384 398 510 522 126 (124) 0.32 

(a) Calculated Stokes shift in brackets. (b) Φ is measured in CHCl3 using Quinine Sulfate in 
H2SO4 1M (Φ=0.54) and 9,10-diphenylantracene in Ciclohexane (Φ=0.90)  
 



With the exception of compound 1h, the theoretical outcomes are in good agreement with the 

experimental results. 

The UV-Visible spectra of all of the studied compounds have common features. For the sake of 

simplicity, these characteristis are explained on the basis of the calculations performed on 1d. 

The lowest energy and most intense absorption band at 412 nm, assigned to a one-electron 

HOMO-LUMO transition, was calculated at 405 nm to have an oscillator strength (f) of 1.64. The 

topology of these orbitals reveals that this transition involves a charge transfer from the aromatic 

rings at the horizontal extremes to the bis(trifluoromethyl)phenyl ring at the lowest end of the 

vertical axis (see Figure S1). 

In contrast to the above, absorptions below 370 nm are the result of several overlapping transitions 

and, therefore, it is difficult to establish an unambiguous assignment. The calculations predict 

large absorption bands at 307 nm (f = 0.51) and 284 nm (f = 0.84) and a less intense absorption 

band at 290 nm (f = 0.28). Absorption at 307 nm is mainly due to a HOMO-4 to LUMO transition 

and therefore does not involve charge transfer since both molecular orbitals are localized on the 

vertical branch of the molecule. The absorptions at 290 and 284 nm involve HOMO-1 to LUMO 

and HOMO to LUMO+1 transitions, respectively. Both of these therefore have a charge-transfer 

character as electronic density is translated from the horizontal to the vertical branch of the 

molecule.  

The spectra of molecules 1e–m display a similar pattern but are further complicated due to the 

effect of substituents. The complete results are included in the supplementary information file. 

All of the PL curves of the D-A-D chromophores contain only one resolved ICT emission band 

(Figure 6). Compound 1k shows the longest absorption and emission peak and this is consistent 

with the bulky triphenylamine (TPA) skeleton, which makes efficient π-stacking difficult. In 

contrast, the flatter carbazolyl-containing 1l, which has similar electronic features to TPA, shows 

a hypsochromic shift of 50 nm in the absorption spectrum and 60 nm in the emission spectrum in 

comparison to 1k. Recently, it was reported that the high fluorescence of TPA is attributed not 

only to the bulky skeleton but also to the intercrossed excited state between the low-lying local 

exciton (LE) and charge transfer (CT) exciton resulting from the D-A structure. [27] This result 



is consistent with the calculated band gap values, since 1k has the lowest value of all the 

compounds reported here. 

It is remarkable that the stronger electron-donating ability of the thiophene ring in comparison to 

the benzene ring gives rise to more effective π-conjugation, which in turn results in stronger 

intramolecular interactions and a lower band gap. Thus, compound 1g shows a bathochromic shift 

in the spectrum in comparison to 1e. 

Large Stokes shifts of around 100 nm (Table 2) can be observed for all T-shaped chromophores 

and this finding is attributed to the ICT nature of the excited state. [28] Large Stokes shifts can 

improve the efficient waveguiding behaviour by avoiding the loss of light caused by self-

absorption. 

Compounds 1d, 1e, 1i and 1l are high emissive with a fluorescence quantum yields of 0.71, 0.61, 

0.78 and 0.86, respectively 

The prepared chromophores were further investigated by studying solvatochromic effects. Only 

compounds 1j, 1k and 1m showed a solvatochromic effect (Figures 7 and S2, S3). The ICT 

absorption band of these compounds changed slightly on increasing the permittivity of the 

solvent. In contrast, the emission peak moved markedly on increasing the solvent polarity from 

cyclohexane to DMF (Figure 7c–d). This effect is ascribed to a large dipole moment in the excited 

state when compared to that in the ground state. [29] Therefore, a more polar solvent is able to 

stabilize such a polarized excited state by reorientation of the solvent molecules to accommodate 

the increased dipole, thus lowering the energy of the system and thereby leading to a more distinct 

bathochromic shift in the PL spectra. 
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Figure 7. UV-Vis absorption (a) and fluorescence (c) spectra in different solvents with varying 
polarities for compound 1k. The concentration of each sample was 10–5 M. Luminescence 
photographs of 1k in hexane, cyclohexane, CHCl3, toluene, dichloromethane, THF, acetone and 
dimethylformamide upon excitation at 254 nm (b) and 365 nm (d). 

2.5. Electrochemical Properties 

The redox properties of the reported T-shaped benzotriazoles derivatives were followed by Cyclic 

Voltammetry (CV) and Differential Pulse Voltammetry (DPV). The oxidation potential is 

determined by the anodic peak of the voltamogram (DPV). The redox potentials were also 

calculated theoretically (Table 3). It can be seen that there is reasonable agreement between the 

calculated and experimental values. Most of the compounds show two irreversible waves 

corresponding to both the oxidation of the donor and the reduction of the acceptor moieties 

(Figures S4-S13).  

Compounds 1d–1m have different donor moieties and their strength is mirrored by the decrease 

of Eox. In contrast, the Ered does not show any noticeable variations. 

Compounds 1j, 1k and 1m have substituents with one available electron pair on a nitrogen atom 

in their structure and these compounds show better donor properties than compound 1l (without 

an available nitrogen lone pair) (Table 3, entries 7, 8, 10).  

c) 
d) 



Moreover, the behaviour of compounds 1g, 1h and 1i (with a thiophene moiety in the spacer) 

hinders, as one would expect, the oxidation and reduction processes. This behaviour can be related 

to the delocalisation of the positive and negative charges in the electrogenerated ion radicals. The 

delocalisation disrupts the aromaticity of the thiophene ring, thus leading to a higher energetic 

cost (Table 3, entries 4, 5, 6). 

On passing from 1d to 1j there is a shift in the Eox value towards a less anodic potential and this 

shows the superior donor ability of the nitrogen derivative 1j compared to the oxygen derivative 

1d. This finding is in good agreement with the calculated trends for redox potentials (Table 3, 

entries 1, 7) and the corresponding EHOMO and ELUMO values (Table 1, entries 4,10). 

 

 Table 3. Electrochemical properties of compounds 1d–m 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

[a] versus Ag/AgCl. [b] 1-5 × 10-4 M in CHCl3, glassy carbon working electrode, Pt counter 
electrode, 20 °C, 0.1 M NBu4PF6, 50 mV s–1 scan rate. Ferrocene internal reference E1/2 = +0.51 
V. [c]Eox=E1/2 

 

Entry  Eox
[a] Ered

[a] 

  Calcd. exp[b] Calcd. exp[b] 

1 1d 1.63 1.38 –1.63 -1.12 

2 1e 1.61 1.50 –1.54 -1.06 

3 1f 1.40 1.48 –1.63 -1.15 

4 1g 1.40 1.49 –1.52 -1.00 

5 1h 1.16 1.58 –1.54 -1.06 

6 1i 1.63 1.69 –1.49 -1.17 

7 1j 1.07 0.87 –1.72 -1.05 

8 1k 1.17 1.13[c] –1.64 -1.13 

9 1l 1.58 1.50 -1.48 -1.03 

10 1m 1.44 0.85[c] -1.51 -1.00 



 

 

 

 

 

 

 

 

 

Figure 8. Cyclic Voltammograms of compounds 1d (a) and 1m (b). 

 
 

Compounds 1d–1m have different donor moieties and their strength is mirrored by the decrease 

in Eox. In contrast, the Ered values do not vary significantly. Compounds 1j, 1k and 1m bear 

substituents that contain a nitrogen atom and these show better donor properties than compound 

1l (without an available nitrogen lone pair) due to the presence of the electron pair on this 

heteroatom (Table 3, entries 7, 8, 10).  

Moreover, the behaviour of compounds 1g, 1h and 1i indicates that the presence of a thiophene 

moiety in the spacer hinders the oxidation and reduction processes. This behaviour can be related 

to the delocalization of the positive and negative charges in the electrogenerated radical ions. The 

delocalization disrupts the aromaticity of the thiophene ring, thus leading to a higher energetic 

cost (Table 3, entries 4, 5, 6).  

On passing from 1d to 1j there is a shift in the Eox value towards a less anodic potential and this 

shows the superior donor ability of the nitrogen derivative 1j compared to the oxygen derivative 

1d. This finding is in good agreement with the calculated trends for redox potentials (Table 3) 

and the corresponding EHOMO and ELUMO values (Table 1) used to modulate HOMO-LUMO gaps. 
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2.6. Self-Assembly 

 
The formation of organized structures is a crucial aspect in the applicability of organic materials 

in a variety of research areas such as organic photovoltaics, emitting diodes and even catalysis. 

[30] With this target in mind, and on the basis of the optoelectronic and electrochemical properties 

shown by the compounds described above, we focused our attention on the formation of 

supramolecular structures with potential applications in organic optoelectronic devices, 

particularly as optical waveguides.  

When compared with the vapour phase deposition method, self-assembly in a liquid phase is a 

more facile and low-cost way to construct organic crystalline micro-/nanostructures. The slow 

diffusion technique was employed to achieve the supramolecular structures with benzotriazoles 

1d–m. Thus, a dilute solution (10–4 M) of these compounds in a good solvent, like CHCl3 or THF, 

was gently placed in a vessel containing a poor solvent (MeOH, CH3CN or hexane). After several 

days of slow diffusion, a precipitate was observed in the vial. CHCl3/MeOH proved to be the best 

mixture of the six combinations evaluated. This mixture led to the formation of aggregates of all 

compounds except for 1d. In our previous studies it was observed that MeOH induces the 

formation of well-defined morphologies. [15-17] The as-prepared aggregates were studied by 

scanning electron microscopy (SEM) on glass substrates. SEM images showed the formation of 

aggregates with different morphologies depending on the chemical structure of the peripheral 

substituent. 

 
Compounds 1f and 1k showed a very low tendency to form organized aggregates and only 

amorphous precipitates were obtained (Figures S14 and S15). The low solubility of the pyrene 

derivative prevented the formation of aggregates (1f) and the bulky triphenylamine moiety (1k) 

makes efficient π-π interactions between the aromatic units difficult. Similar behaviour was found 

for the amino derivative 1j, which aggregated as an amorphous solid but only when chloroform 

was used as the good solvent (Figure S16). In contrast, bisthienyl derivative 1g formed organized 

aggregates in all solvent mixtures tested. The morphology of these aggregates depended on the 

solvent employed. In some cases, the precipitates showed ribbon-like structures aggregated 



around a nucleation centre (Figure 9a) or flower-like structures when hexane was used as the poor 

solvent (Figure 9b). 

 

 

 

 

 

 

 

 

Figure 9. SEM images (glass substrate, 298 K) of the aggregates formed by 1g (obtained by slow 

diffusion of THF/CH3OH (a) and THF/Hexane (b)). 

 

It was previously observed that the presence of methoxyl groups on the periphery played an 

important role in the formation of aggregates, since the methoxyl group induces non-covalent 

interactions by hydrogen bonds between neighbouring molecules. [16,17] Unexpectedly, the 

methoxy derivative 1d showed a low tendency to form organized aggregates and lace-like 

structures were obtained on using chloroform or THF as the good solvent and methanol and 

hexane as the poor solvents (Figure 10).  
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a) b) 



Figure 10. SEM images (glass substrate, 298 K) of the aggregates formed by 1d (obtained by 

slow diffusion of THF/CH3OH (a) and THF/Hexane (b)). 

 

The aggregates obtained from the benzotriazole derivative with a phenoxazine as the peripherical 

group (1m) were organized into rod-like structures in CHCl3/CH3CN (Figure 11). The use of 

CH3OH as the poor solvent in the slow diffusion process resulted in an amorphous material. 

 
Figure 11. SEM images (glass substrate, 298 K) of the aggregates of 1m (obtained by slow 

diffusion of CHCl3/CH3CN). 

 

 

 

 

 

 

 

 

 

 

Figure 12. SEM images of the supramolecular structures formed by the self-assembly of 

benzotriazole derivatives 1e (a); 1h (b); 1i (c) and 1l (d). The samples in (a) and (b) were obtained 

by the slow diffusion technique on using CHCl3 and Hexane as good and poor solvents, 

a) b) 

c) d) 



respectively. The samples in (c) and (d) were prepared with THF/MeOH. All samples were 

prepared at a concentration of 10–4 M. 

 

Finally, the self-assembly of compounds 1e, 1h, 1i and 1l using different solvent mixtures gave 

rise to thick and long crystalline needle-like structures (Figure 12) required for the desired 

waveguide behaviour. These rod-like aggregates have well-defined edges, probably due to the 

more efficient stacking of the aromatic moieties. It is worth noting that compound 1h is the most 

prone to aggregation and it formed well-defined needles with a length of 700 µm and a width of 

13 µm (Figure 12b). 

2.7. Optical waveguide behaviour 
 

Considering previous results on the optical waveguide features exhibited by triazoles [15-17] and 

in order to gain further insights into the light waveguide behaviour of organic 

micro/nanostructures, we investigated the propagation of light along the aggregates formed by 

the 2H-benzo[d][1,2,3]triazole derivatives discussed above. 

Only aggregates that have a single-crystal structure, smooth surfaces and flat end facets can act 

as optical waveguides. For this reason, and on the basis of the SEM images, compounds 1d, 1e, 

1h, 1i, 1l and 1m were selected for this study. The optical waveguide behaviour was evaluated 

using a fluorescence microscope. The abovementioned aggregates were irradiated with a light 

beam at different λ and the fluorescence was assessed.  

The photoluminescence (PL) images of needle aggregates of compounds 1d, 1e, 1h, 1i, 1l and 

1m are shown in Figure 13. All of these compounds exhibited bright luminescence spots at the 

two ends and a relatively weak emission from the bodies, which is characteristic of optical 

waveguides. This finding indicates the ability of these aggregates to absorb light and propagate 

PL towards the ends. 

The waveguide behaviour of these aggregates can be explained by considering the separation 

between the emission and absorption bands mentioned above. This separation avoids re-



absorption of the emitted light by the aggregates. Furthermore, the well-defined smooth surface 

of the aggregates strongly contributes to the efficient propagation of light. It is well established 

that the presence of defects in the surface of the supramolecular structures produces light 

scattering due to internal reflections. [31] 

As in our previous studies, compound 1d, which has the highest band gap value, shows blue 

emission of light at both ends of the aggregates. Following this reasoning, in compounds with 

lower band gaps (1e, 1h, 1i, 1l), green-red emission was detected at the ends of the thick filaments 

generated by self-assembly of these benzotriazole derivatives. The ability of these aggregates to 

emit at two wavelengths should be highlighted and this phenomenon is currently under 

investigation.   

Finally, the aggregate of compound 1m, which has the lowest band gap, only gave red emission 

and showed the longitudinal propagation of the light and highly brilliant spots that were visible 

at the opposite extremes of the aggregate. 

The initial goal of our work was to model the band gap of benzotriazole derivatives in order to 

obtain aggregates that exhibit waveguide behaviour with different emission wavelengths and 

tuneable colours. The outcomes obtained show that this goal was achieved. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Fluorescence microscopy images of the aggregates of 1d, 1e, 1h, 1i, 1l and 1m.  
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3. Conclusions  

T-shaped 2H-benzo[d][1,2,3]triazole derivatives with Internal Charge Transfer (ICT) behaviour 

have been studied by DFT/TD calculations. Several compounds were then synthesized using a 

sustainable methodology, i.e., microwave irradiation as the energy source, a marked decrease in 

the amount of solvent and the use of a reusable catalyst. The introduction of different donor 

substituents in the horizontal arm of these compounds allowed the HOMO-LUMO gap to be 

modulated in order to tune the emission properties.  

The results obtained in the photophysical and electrochemical studies are consistent with the 

theoretical predictions and this validated the design strategy.  

The aggregates generated from the self-assembly of the synthesised 2H-benzo[d][1,2,3]triazoles 

by the slow diffusion technique were studied by SEM imaging and the results demonstrate the 

enormous effect exerted by the peripheral substitution on the morphology of these aggregates. 

According to our initial hypotheses, aggregates 1d, 1e, 1h, 1i, 1l and 1m, which have a tailored 

band gap, single-crystal structures, smooth surfaces and flat end facets, all show optical 

waveguide behaviour. A lower band gap led to a bathochromic displacement in the emission. In 

this sense, new compounds have been obtained that aggregate and can act as optical waveguides 

with tunable colour emissions between blue and red. 

 

4. Experimental  

4.1. General 

Reagents were used as purchased. All air-sensitive reactions were carried out under an argon 

atmosphere. Flash chromatography was performed using silica gel (Merck, Kieselgel 60, 230–

240 mesh or Scharlau 60, 230–240 mesh). Analytical thin layer chromatography (TLC) was 

performed using aluminium-coated Merck Kieselgel 60 F254 plates. NMR spectra were recorded 

on a Varian Unity 500 (1H: 500 MHz; 13C: 125 MHz) spectrometer at 298 K using deuterated 

solvents an internally referenced against the residual protio solvent signal. Coupling constants (J) 

are denoted in Hz and chemical shifts (δ) in ppm. Multiplicities are denoted as follows: s = singlet, 

d = doublet, t = triplet, m = multiplet, br = broad.  



MALDI-TOF mass spectra were obtained on a Bruker Autoflex III TOF/TOF spectrometer 

(Bremen, Germany) operated in reflector mode and using dithranol as the matrix. Accurate mass 

measurements were performed using polyethylene glycol as internal standard and the spectra were 

calibrated using the [HO(C2H4O)nH + Na ]+ ions as reference masses. In a typical experiment, 

matrix (20 mg/mL), sample (1 mg/mL) and polyethylene glycol (10 mg/mL) were separately 

dissolved in methanol, mixed in a 5/1/1 ratio, deposited on the MALDI probe and air-dried. 

SEM images were obtained on a JEOL JSM 6335F microscope working at 10 kV. The samples 

for SEM imaging were prepared by a controlled precipitation using the appropriate solvent or by 

slow diffusion by using mixtures of solvents, depending on their solubility properties (see the 

corresponding Figure Caption for a detailed description). The corresponding solid was deposited 

onto a glass substrate and the remaining solvent was slowly evaporated. 

Electrochemical measurements were performed with a µ-Autolab ECO-Chemie potentiostat, 

using a glassy carbon working electrode, Pt counter electrode, and Ag/AgCl reference electrode. 

The experiments were carried out under argon, in CHCl3, with Bu4NPF6 as supporting electrolyte 

(0.1 mol L–1). The scan rate was 50 mV s–1 (Cyclic voltammetry) and 0.01 V s-1 (DPV). 

Modulation amplitude and modulation time were 0.025 V and 0.05 s-1 respectively. 

UV-vis spectra were recorded on a Varian Cary model 5000 UV-Vis-NIR spectrophotometer, 

using standard quartz cells of 1 cm width and solvents of spectroscopic grade. 

Fluorescence images were recorded on a Leica TCE SP2 confocal microscope with a mercury 

lamp capable of excitation at any wavelength. However, a series of filters was used to select the 

excitation wavelength and absorption. These correspond to wavelengths in the blue (λexc = 320–

380 nm, λem = 410–510 nm), green (λexc = 4500–490 nm, λem = 515–565 nm) or red (λexc = 475–

495 nm, λem = 520–570 nm). 

Density functional theory (DFT) calculations were performed with the Gaussian 09 [32] suite of 

programmes using the M06-2X functional.[25] Solvent effects on molecular geometries and 

energies were estimated by means of polarization continuum models (CPCM) [23] using 

chloroform as solvent. Geometry optimizations were performed using the medium-sized 6-31G* 

basis set and frequency calculations were performed to confirm the nature of ground state 



stationary points. Absorption spectra were calculated using single point time-dependent density 

functional theory (TD-DFT) [24] calculations and the large 6-311+G(2d,p) [33] basis set.  

For the calculation of emission spectra, TD-DFDT calculations were performed at the optimized 

geometry of the first excited state using an identical model chemistry (M06-2x/6-

311+G(2d,p)//M06-2x/6-31G*) and solvation model. 

Ground state redox potentials were calculated from the difference in Gibbs free energy between 

neutral molecules and oxidized (or reduced) radical ions in solution using the CPCM solvation 

model [34]. The calculations of Gibbs free energies used M06-2x/6-311-G (2d,p) energies with 

thermal corrections calculated at the M06-2x/6-31G* level. 

 

4.2. Preparation of 2-(3,5-bis(trifluoromethyl)phenyl)-4,7-bis(arylethynyl)-2H-benzo[d][1,2,3] 

triazoles 1. 

General procedure: A mixture of 2-(3,5-bis(trifluoromethyl)phenyl)-4,7-dibromo-

2Hbenzo[d][1,2,3]triazole (3) (0.100 g, 0.2 mmol), the corresponding acetylene derivative (4) 

(0.4 mmol), DBU (0.061 g, 0.40 mmol), CuI (0.002 g, 0.01 mmol) and Pd-EncatTM TPP30 (0.018 

g, 0.007 mmol) was charged under argon to a dried microwave vessel. CH3CN (1 mL) was added. 

The vessel was closed and irradiated at 130 °C for 20 min. The crude reaction product was purified 

by chromatography, eluting with hexane/ethyl acetate to give analytically pure products 1. 

 

4.2.1. 2-(3,5-bis(trifluoromethyl)phenyl)-4,7-bis((3,4,5-trimethoxyphenyl)ethynyl)-2H-

benzo[d][1,2,3]triazole (1d): From 5-ethynyl-1,2,3-trimethoxybenzene (4d) (0.077 g, 0.40 

mmol), derivative 1d (0.114 g, 80%) was obtained as a yellow solid by chromatography eluting 

with hexane/ethyl acetate (5/1). M. p.: 172–174 °C. 1H-NMR (CDCl3, ppm) δ: 9.01 (s, 2H, o-N-

Ph), 8.00 (s, 1H, p-N-Ph), 7.66 (s, 2H, H-benzotriazole), 6.94 (s, 4H, o-Ph), 3.93 (s, 12H, m-

OCH3), 3.91 (s, 6H, p-OCH3). 13C-NMR (CDCl3, ppm) δ: 153.2, 145.5, 141.0, 139.6, 133.5, 

131.8, 123.8, 122.6, 121.0, 117.6, 114.3, 109.2, 97.7, 84.0, 61.0, 56.2. MS calcd for 

(C36H27F6N3O6) M+· 711.1799, found 711.1830. 

 



4.2.2. 2-(3,5-bis(trifluoromethyl)phenyl)-4,7-bis(phenanthren-1-ylethynyl)-2H-

benzo[d][1,2,3]triazole (1e): From 1-ethynylphenanthrene (4e) (0.081 g, 0.40 mmol), derivative 

1e (0.112 g, 77%) was obtained as a yellow solid by chromatography eluting with hexane/ethyl 

acetate (3/1). M. p.: 267–269 °C. 1H-NMR (CDCl3, ppm) δ: 9.13 (s, 2H, o-N-Ph), 8.91 (d, J = 7.8 

Hz, 2H, H7-phenanthrene), 8.72 (d, J = 7.8 Hz, 2H, H6-phenanthrene), 8.26 (s, 1H H2-

phenanthrene), 8.18 (d, J = 7.8 Hz, 2H, H3-phenanthrene), 8.16 (s, 1H, p-N-Ph), 7.95 (d, J = 7.8 

Hz, 2H, H10-phenanthrene), 7.83 (s, 2H, H-benzotriazole), 7.83–7.77 (m, 4H, H5,H8-

phenanthrene), 7.73 (t, J = 7.8 Hz, 2H, H4-phenanthrene), 7.65 (t, J = 7.8 Hz, 2H, H9-

phenanthrene). MS calcd for (C46H23F6N3) M+· 731.1791, found 731.1772. 

 

4.2.3. 2-(3,5-bis(trifluoromethyl)phenyl)-4,7-bis(pyren-1-ylethynyl)-2H-benzo[d][1,2,3]triazole 

(1f): From 1-ethynylpyrene (4f) (0.090 g, 0.40 mmol), derivative 1f (0.118 g, 76%) was obtained 

as a red solid by chromatography eluting with hexane/ethyl acetate (9/1). M. p.: 203–204 °C. MS 

calcd for (C50H23F6N3) M+· 779.1791, found 779.1779. 

 

4.2.4. 4,7-bis((2,2'-bithiophen)-5-ylethynyl)-2-(3,5-bis(trifluoromethyl)phenyl)-2H-

benzo[d][1,2,3]triazole (1g): From 5-ethynyl-2,2'-bithiophene (4g) (0.076 g, 0.40 mmol), 

derivative 1g (0.100 g, 71%) was obtained as a deep-red solid by chromatography eluting with 

hexane/ethyl acetate (9/1). M. p.: 177–179 °C. 1H-NMR (CDCl3, ppm) δ: 8.99 (s, 2H, o-N-Ph), 

8.00 (s, 1H, p-N-Ph), 7.64 (s, 2H, H-benzotriazole), 7.38 (d, J = 3.4 Hz, 2H, H5-thiophene), 7.24–

7.29 (m, 4H, H1,2-thiophene), 7.14 (d, J = 3.4 Hz, 2H, H3-thiophene), 7.06 (t, J = 3.4 Hz, 2H, 

H4-thiophene). 13C-NMR (CDCl3, ppm) δ: 145.1, 140.8, 140.3, 136.5, 134.1, 133.4, 131.4, 128.0, 

125.4, 124.6, 123.7, 121.0, 120.9, 114.0, 110.3, 110.0, 90.9, 89.7. MS calcd for (C34H15F6N3S4) 

M+· 707.0048, found 707.0042. 

 

4.2.5. 4,7-bis(benzo[b]thiophen-2-ylethynyl)-2-(3,5-bis(trifluoromethyl)phenyl)-2H-

benzo[d][1,2,3]triazole (1h): From 2-ethynylbenzo[b]thiophene (4h) (0.064 g, 0.40 mmol), 



derivative 1h (0.122 g, 94%) was obtained as an orange solid by chromatography eluting with 

hexane/ethyl acetate (9/1). M. p.: 273–274 °C. 1H-NMR (CDCl3, ppm) δ: 9.18 (s, 2H, o-N-Ph), 

8.14 (s, 1H, p-N-Ph), 7.81–7.86 (m, 4H, o-H-benzothiophene), 7.73 (s, 2H, H-benzotriazole), 7.72 

(s, 2H, H-thiophene), 7.39–7.42 (m, 4H, m-H-benzothiophene). 13C-NMR (CDCl3, ppm) δ: 145.2, 

140.8, 131.9, 130.1, 125.9, 125.8, 124.9, 124.2, 122.3, 122.0, 121.0, 114.2, 91.1, 90.2, 82.5. MS 

calcd for (C34H15F6N3S2) M+· 643.0606, found 643.0621. 

 

4.2.6. 4,7-bis(benzo[b]thiophen-7-ylethynyl)-2-(3,5-bis(trifluoromethyl)phenyl)-2H-

benzo[d][1,2,3]triazole (1i): From 7-ethynylbenzo[b]thiophene (4i) (0.064 g, 0.40 mmol), 

derivative 1i (0.101 g, 77%) was obtained as a yellow solid by chromatography eluting with 

hexane/ethyl acetate (9/1). M. p.: 180–182 °C. 1H-NMR (CDCl3, ppm) δ: 9.16 (s, 2H, o-N-Ph), 

8.01 (s, 1H, p-N-Ph), 7.89 (d, J = 7.4 Hz, 2H, p-H-benzothiophene), 7.75 (s, 2H, H-benzotriazole), 

7.70 (d, J = 7.4 Hz, 2H, o-H-benzothiophene), 7.59 (d, J = 5.4 Hz, 2H, H2-thiophene), 7.45 (t, J 

= 7.4 Hz, 2H, m-H-benzothiophene), 7.44 (d, J = 5.4 Hz, 2H, H3-thiophene). 13C-NMR (CDCl3, 

ppm) δ: 145.6, 142.9, 140.9, 139.6, 133.4, 131.2, 127.8, 127.2, 124.6, 124.4, 124.3, 123.9, 120.9, 

117.1, 114.4, 95.4, 89.3. MS calcd for (C34H15F6N3S2) M+· 643.0606, found 643.0625. 

 

4.2.7. 4,4'-((2-(3,5-bis(trifluoromethyl)phenyl)-2H-benzo[d][1,2,3]triazole-4,7-diyl)bis(ethyne-

2,1-diyl))dianiline (1j): From 4-ethynylaniline (4j) (0.047 g, 0.40 mmol), derivative 1j (0.050 g, 

45%) was obtained as an orange solid by chromatography eluting with hexane/ethyl acetate (9/1). 

M. p.: 166–168 °C. 1H-NMR (CDCl3, ppm) δ: 8.92 (s, 2H, o-N-Ph), 8.02 (s, 1H, p-N-Ph), 7.55 

(s, 2H, H-benzotriazole), 7.29 (d, J = 7.8Hz, 4H, o-Ph), 6.59 (d, J = 7.8 Hz, 4H, m-Ph), 3.80 (s, 

4H, NH2). 13C-NMR (CDCl3, ppm) δ: 146.9, 144.8, 140.6, 133.4, 131.4, 130.7, 123.1, 121.1, 

114.5, 113.7, 111.3, 110.5, 84.3. MS calcd for (C30H17F6N5) M+· 561.1383, found 561.1371. 

 

4.2.8. 4,4'-((2-(3,5-bis(trifluoromethyl)phenyl)-2H-benzo[d][1,2,3]triazole-4,7-diyl)bis(ethyne-

2,1-diyl))bis(N,N-diphenylaniline) (1k): From 4-ethynyl-N,N-diphenylaniline (4k) (0.108 g, 0.40 



mmol), derivative 1k (0.150 g, 87%) was obtained as an orange solid by chromatography, eluting 

with hexane/ethyl acetate (99/1). M. p.: 168–170 °C. 1H-NMR (CDCl3, ppm) δ: 8.98 (s, 2H, o-N-

Ph), 7.98 (s, 1H, p-N-Ph), 7.61 (s, 2H, H-benzotriazole), 7.52 (d, J = 9.2 Hz, 4H, o-Ph), 7.05–

7.32 (m, 24H, H-arom). 13C-NMR (CDCl3, ppm) δ: 148.6, 147.0, 145.5, 140.9, 133.3, 133.0, 

132.9, 131.4, 129.5, 125.3, 123.9, 121.8, 121.0, 115.0, 114.3, 97.9, 84.3. MS calcd for 

(C54H33F6N5) M+· 865.2635, found 865.2643. 

 

4.2.9. 9,9'-(((2-(3,5-bis(trifluoromethyl)phenyl)-2H-benzo[d][1,2,3]triazole-4,7-diyl)bis(ethyne-

2,1-diyl))bis(4,1-phenylene))bis(9H-carbazole) (1l): From 1-ethynylpyrene (4l) (0.107 g, 0.40 

mmol), derivative 1l (0.122 g, 71%) was obtained as a pale orange solid by chromatography 

eluting with hexane/ethyl acetate (9/1). M. p.: 308–310 °C. 1H-NMR (CDCl3, ppm) δ: 9.04 (s, 

2H, o-N-Ph), 8.17 (d, J = 7.8 Hz, 4H, H4-carbazole), 8.02 (s, 1H, p-N-Ph), 7.95 (d, J = 7.8 Hz, 

4H, H1-carbazole), 7.75 (s, 2H, H-benzotriazole), 7.68 (d, J = 8.3 Hz, 4H, o-Ph), 7.49 (d, J = 8.3 

Hz, 4H, m-Ph), 7.45 (t, J = 7.8 Hz, 4H, H2-carbazole), 7.32 (t, J = 7.8 Hz, 4H, H3-carbazole). 

13C-NMR (CDCl3, ppm) δ: 145.6, 140.5, 138.4, 133.5, 133.3, 132.0, 130.8, 128.8, 126.9, 126.1, 

123.7, 123.3, 121.4, 120.4,120.3, 114.4, 110.0, 109.7, 96.7, 85.6. MS calcd for (C54H29F6N5) M+· 

861.2322, found 861.2345. 

 

4.2.10. 10,10'-(((2-(3,5-bis(trifluoromethyl)phenyl)-2H-benzo[d][1,2,3]triazole-4,7-

diyl)bis(ethyne-2,1-diyl))bis(4,1-phenylene))bis(10H-phenoxazine) (1m): From 10-(4-

ethynylphenyl)-10H-phenoxazine (4m) (0.082 g, 0.40 mmol), derivative 1m (0.140 g, 79%) was 

obtained as a red solid by chromatography eluting with hexane/ethyl acetate (9/1). M. p.: 343–

344 °C. 1H-NMR (CDCl3, ppm) δ: 9.02 (s, 2H, o-N-Ph), 8.02 (s, 1H, p-N-Ph), 7.93 (d, J = 7.8 

Hz, 4H, o-Ph), 7.73 (s, 2H, H-benzotriazole), 7.44 (d, J = 7.8 Hz, 4H, m-Ph), 6.61–6.73 (m, 12H, 

H-phenoxazine), 6.00 (d, J = 7.9 Hz, 4H, H4-phenoxazine). 13C-NMR (CDCl3, ppm) δ: 145.5, 

144.0, 140.9, 139.7, 134.7, 134.0, 133.1, 132.0, 131.2, 123.3, 123.2, 121.7, 121.1, 115.6, 114.4, 

113.3, 96.4, 85.9. MS calcd for (C54H29F6N5O2) M+· 893.2220, found 893.2260. 
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