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ABSTRACT 

The management and valorization of residual organic matter, such as sewage sludge 1 

and manure, is gaining interest because of the increasing volume of these residues, their 2 

localized generation and the related problems. The anaerobic digestion of mixtures of 3 

sewage sludge and manure could be performed due to the similarities between both 4 

residues. The purpose of this study is to evaluate the feasibility of the co-pyrolysis of 5 

sewage sludge (SS) and digested manure (DM) as a potential management technology for 6 

these residues. Pyrolysis of a sewage sludge/manure blend (50:50%) was performed at 7 

525 ºC in a stirred batch reactor under N2 atmosphere. The product yields and some 8 

characteristics of the product were analyzed and compared to the results obtained in the 9 

pyrolysis of pure residues. Potential synergetic and antagonist effects during the co-10 

pyrolysis process were evaluated. Although sewage sludge and manure seem similar in 11 

nature, there are differences in their pyrolysis product properties and distribution due to 12 

their distinct ash and organic matter composition. For the co-pyrolysis of SS and DM, the 13 
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product yields did not show noticeable synergistic effects with the exception of the yields 14 

of organic compounds, being slightly higher than the predicted average, and the H2 yield, 15 

being lower than expected. Co-pyrolysis of SS and DM could be a feasible management 16 

alternative for these residues in locations where both residues are generated, since the 17 

benefits and the drawbacks of the co-pyrolysis are similar to those of the pyrolysis of each 18 

residue.  19 

KEYWORDS: sewage sludge; manure; co-pyrolysis; stirred batch reactor. 20 

1. INTRODUCTION 21 

The management and valorization of residual organic matter is a subject of growing 22 

interest because of the increasing volume of these residues, their localized generation and 23 

the associated environmental, economic and social issues. Sewage sludge and manure are 24 

two of the most abundant residues of this kind in Spain. The annual production of sewage 25 

sludge and livestock manure was 2.6 and 6 Mt (on a dry basis), respectively, in recent 26 

years in Spain (Eurostat, 2014). The residues are similar in nature, in terms of high water 27 

and nutrient (N and P) content. For this reason, one of the traditional disposal methods 28 

for both residues is land application. However, this practice is limited by environmental 29 

regulations and transportation costs. The improper application of these residues to fields, 30 

especially in those regions with high concentrations of intensive livestock production, 31 

provokes surface and groundwater pollution, odor and air emissions (ammonia and 32 

greenhouse gases), and the accumulation of heavy metals in soils. In the specific region 33 

of Aragón in Spain, only its capital is densely populated (Zaragoza, around 34 

700,000 inhabitants). Rural areas around it are scarcely populated but some of them have 35 

a flourishing farming sector. As a result, around 82 kt/year of sewage sludge are 36 

generated, most of them in the area of Zaragoza. On the other hand, more than 11.5 and 37 

2.3 Mt/year of pig and cattle manure are generated in Aragón. This quantity largely 38 

2 
 



exceeds the local demand for agricultural fertilizers (in terms of N content). Thus, at least 39 

a portion of these residues could be co-processed together with sewage sludge. This 40 

possibility is encouraged by the Integrated Waste Management Plan of Aragón (GIRA), 41 

which aims to achieve a better valorization of the residue flows within the region, while 42 

enabling the optimum operation of existing and new treatment plants. Moreover, 43 

integrated approaches are demanded for the valorization of residual organic matter such 44 

as sewage sludge, manure and/or municipal solid wastes. Therefore, the development of 45 

alternative technologies for the management of these kinds of residues is required. In this 46 

regard, the pyrolysis of anaerobically digested organic-based wastes appears as a potential 47 

method for valorizing these residues. This process stabilizes them, reduces their volume, 48 

and produces three product fractions (solid, liquid and gas) valuable for energy and/or 49 

chemical production. 50 

The EU Framework Programme for Research and Innovation establishes the need for 51 

seeking innovative and sustainable technologies for the management of manure and other 52 

effluents from livestock production. A similar approach is applied to sewage sludge. The 53 

pyrolysis of each one of these residues has been investigated in the past; for instance, the 54 

pyrolysis of sewage sludge has been widely studied for liquid production (Fonts et al., 55 

2012) and also for obtaining solid products that can be used as adsorbents (Smith et al., 56 

2009). Most of the works on liquid obtained from sewage sludge pyrolysis have been 57 

focused on its application as a fuel, but its high nitrogen content hinders this usage. For 58 

this reason, more recently the use of sewage sludge pyrolysis liquid as a source of 59 

valuable chemicals has been investigated (Fonts et al., 2016). Regarding manure 60 

pyrolysis, most research works have been devoted to producing biochar for its application 61 

as a soil conditioner, showing several benefits as an organic amendment (Meng et al., 62 

2013; Subedi et al., 2016). Studies on manure pyrolysis to produce bio-oil have been 63 
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sparse (Cao et al., 2011; Jeong et al., 2015) and mainly focused on poultry manure 64 

(Agblevor et al., 2010; Das et al., 2009), showing, as in the case of the bio-oil from sewage 65 

sludge, a relatively high nitrogen content compared to lignocellulosic biomass bio-oils.  66 

Other authors have evaluated the co-pyrolysis of sewage sludge and lignocellulosic 67 

biomass in order to enhance the properties of the liquid for use as a fuel (Alvarez et al., 68 

2015; Samanya et al., 2012) and to reduce the heat demand of the pyrolysis process (Ding 69 

and Jiang, 2013), proposing this co-pyrolysis as a viable solution for the valorization of 70 

sewage sludge (Alvarez et al., 2015) without external energy input (Ding and Jiang, 71 

2013). The co-pyrolysis of manure with lignocellulosic biomass (Troy et al., 2013) and 72 

with agricultural plastic wastes (Ro et al., 2014) has also been evaluated with the aim of 73 

decreasing the energy requirements in the manure pyrolysis process without affecting the 74 

biochar properties. 75 

Due to the similarities between sewage sludge and manure, the anaerobic digestion of 76 

their mixtures could be performed in locations where both residues are generated locally. 77 

Therefore, it would seem desirable to assess the co-pyrolysis of digested sewage sludge 78 

and manure with the aim of evaluating the feasibility of their joint valorization. However, 79 

the co-pyrolysis of both residues and its potential benefits has been scarcely studied 80 

(Sanchez et al., 2007). Sánchez et al. carried out a pilot-scale pyrolysis process for the 81 

treatment of a mixture of sewage sludge and cattle manure to evaluate the energetic 82 

valorization of the co-pyrolysis products, concluding that the co-pyrolysis products can 83 

be used as a fuel provided that the combustion gases are treated (Sanchez et al., 2007). In 84 

order to study the technical feasibility of co-pyrolizing these residues it would be 85 

necessary to assess the possible antagonist or the synergetic effects of the mixture of 86 

sewage sludge and manure on the pyrolysis product properties. However, these effects 87 

have barely been analyzed. Furthermore, it would be also interesting to assess the 88 
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economic feasibility of this process (Brown et al., 2013; Wright et al., 2010). 89 

The purpose of this study is to compare the main properties of the pyrolysis products 90 

obtained from digested sewage sludge (SS) and digested manure (DM) and to ascertain 91 

the potential synergetic and antagonist effects during the co-pyrolysis process.  92 

2. MATERIALS AND METHODS 93 

2.1 Materials. 94 

The anaerobically digested and thermally dried SS used for this work was supplied by 95 

an urban wastewater treatment plant located in Madrid (Spain). The DM was supplied by 96 

the HTN Biogas Company located in Navarra (Spain) and was obtained by anaerobic co-97 

digestion of cattle manure with food and agro-industry wastes. The anaerobically digested 98 

manure was separated in a decanter centrifuge and the solid fraction was dried at 105 ºC. 99 

The proximate and ultimate analysis, the higher heating value, the density and pH of these 100 

materials contents are displayed in Table 1. The extractive content of both materials, also 101 

shown in Table 1, was determined by Soxhlet extraction with dichloromethane. The 102 

content of other organic macromolecules in SS and DM are also displayed in Table 1.  103 
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Table 1. Properties of the materials (wet basis). 104 

Properties Analytical standard SS DM 

Ultimate analysis 

(wt. %) 
  

 

Carbona  27.9 31.7 

Hydrogena,b  4.7 4.2 

Nitrogena  4.5 1.9 

Sulfura  1.4 0.5 

Oxygenc  34.6 50.7 

Proximate analysis  

(wt. %) 
  

 

Dry matter ISO-589-1981 93 87 

Ash ISO-18122-2015 40 20 

Volatiles ISO-5623-1974 50 54 

Fixed carbond  3 13 

Others    

HHVe (MJ·kg-1) ISO-1928-2009 12.5 13.9 

Densityf (kg·m-3)  0.87 0.26 

pHg  7.3 8.3 

Extractives (wt. %)  3.5 1.0 

Protein (wt. %) EN-13342:2001 28 12 

Neutral detergent fiber 
(NDF) (wt. %) 

XP U44-162 26.78 49.54 

Acid detergent fiber (ADF) 
(wt. %) 

XP U44-162 4.26 46.77 

Lignin (wt. %) XP U44-162 0.03 16.34 

NDF-ADFh (wt. %)  22.52 2.77 
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ADF-Lignini (wt. %)  4.23 30.43 

aUltimate analysis was performed using Carlo Erba 1108. bThe wt.% of hydrogen includes 105 
hydrogen from the moisture. cOxygen (% wt) = 100-Carbon (%)-Hydrogen (%)-Nitrogen (%)-106 
Sulfur (%)-other elements contained in the ash (%) (see Table 2). dBy difference. eHHV was 107 
determined using IKA C 2000 Basic Calorimeter. fA known volume of material (25 mL) was 108 
weighed and the density was calculated. g1 g of solid is stirred for 1.5 h in demineralised water. 109 
hThis fraction includes components such as hemicellulose. iThis fraction includes components 110 
such as cellulose.  111 

 112 

Compared to lignocellulosic biomass wastes, SS and DM have higher ash, nitrogen 113 

and sulfur contents. The lower ash content of DM (half of that from SS) explains the 114 

higher higher heating value (HHV) of this type of residue. The higher oxygen content for 115 

DM is not only due to its higher moisture content, but also to its organic chemical 116 

composition. This higher oxygen content justifies the lower HHV (if expressed in dry ash 117 

free basis) of DM than that of SS (20 vs. 23 MJ·kg-1). Another difference between both 118 

raw materials lies in their density, this being much lower for DM. Finally, the extractive 119 

and protein content was higher in SS than in DM. The extractives are the most non-polar 120 

compounds. The composition of the extractives was analyzed by Gas Chromatography 121 

and Mass Spectrometry (GC-MS). The compounds found in the extractives from SS were 122 

mainly fatty acids, toluene, benzene derivatives and steroids. The extractive compounds 123 

from DM were also fatty acids, toluene and phenolic compounds. DM contains larger 124 

amounts of lignin.  125 

The high ash content in both materials could affect the pyrolysis process, since ash has 126 

been shown to have some catalytic effects (Aznar et al., 2007). The inorganic compounds 127 

found in the ash could increase the yield of char and non-condensable gases (NCG), and 128 

decrease the yield of liquid (Sekiguchi and Shafizadeh, 1984). According to Nik-Azar et 129 

al. (1997) Na and K have stronger catalytic effect than calcium. Table 2 displays the metal 130 

content of the wastes determined by Inductively Coupled Plasma-Atomic Emission 131 
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Spectroscopy (ICP-AES).  132 

As can be seen in Table 2, calcium and iron are the most abundant metals in DM and 133 

SS ash, respectively.  134 

Table 2. Metal content of SS and DM. 135 

Element SS (g·kg-1) DM (g·kg-1) 
Al 21.75 9.04 
As <0.035 <0.035 
Ba  0.333 0.024 
Ca  22.99 55.4 
Cd  <0.004 <0.004 
Co  <0.007 <0.007 
Cr  0.080 <0.065 
Cu 0.41 <0.034 
Fe 66.80 7.86 
K 5.03 8.64 
Mg 6.81 8.09 
Mn 0.25 0.30 
Mo <0.165 <0.165 
Ni <0.021 <0.021 
P 30.81 15.16 
Pb 0.183 <0.133 
Ti 1.5 <0.023 
Zn <0.026 0.33 
Hg <0.026 <0.026 
Na 2.33 4.83 
Si 48.8 0.39 

 136 

Figure 1 shows the Fourier transform infrared (FTIR) spectra of both residues.  137 
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 138 

Figure 1. FTIR spectra of SS and DM. 139 

 140 

In general, the SS used shows a similar spectrum to others previously reported (Abrego 141 

et al., 2009), the main differences (e.g. lower peak intensities) being attributable to the 142 

effect of the anaerobic digestion, which greatly reduces the intensity of some bands 143 

(Cuetos et al., 2013). The DM used in this work was also anaerobically digested and thus 144 

also exhibits broad bands with lower intensities. The comparison between both materials 145 

shows some similarities and several differences. Both of them show a band in the 1200-146 

1000 cm-1 range attributed to polysaccharides. However, DM shows a distinctive band 147 

centered at 1409 cm-1 that could be explained by C=O stretching and OH deformation 148 

from carboxylic acids (Socrates, 2004). The presence of a higher number of these 149 

functional groups in DM could partly explain the higher O content of this material. On 150 

the other hand, the bands related to compounds with a protein origin (1790–1500 cm−1) 151 

(Cuetos et al., 2013) are much more intense in the case of SS, which is in accordance with 152 

the higher N content of this material. The peak at 2800-3000 cm-1 indicates the presence 153 

of aromatic and aliphatic structures. The broad band between 3000-3700 cm-1 154 

corresponds to the O-H stretching in water, alcohols, phenols and carboxylic acids, as 155 

well as N-H stretching from amides and amines (Alvarez et al., 2015). Finally, the very 156 
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high calcium content in DM could be evidenced by the sharp peak appearing in its 157 

spectrum at around 875 cm-1, corresponding to calcium carbonate (Abrego et al., 2009). 158 

Another characteristic band for this compound appears at around 1420 cm-1 and could 159 

contribute to the previously mentioned band found at 1409 cm-1.  160 

As detailed in the next Section, both materials were pyrolyzed in the pyrolysis reactor 161 

without prior grinding. The particle size distributions for SS and DM are shown in Table 162 

3. 163 

Table 3. Particle size distribution for the raw materials. 164 

Size (mm) DM (wt. %) SS (wt. %) 
Φ > 4 23 2 
3 < Φ < 4 9 54 
2 < Φ < 3 17 40 
0.8 < Φ 2 30 2 
Φ < 0.8 21 2 

 165 

2.2. Experimental system and procedure 166 

Thermogravimetric analyses were performed prior to the pyrolysis runs in the stirred 167 

batch reactor. Both experimental systems are briefly described below. 168 

2.2.1. Thermogravimetric analysis (TGA) 169 

Thermogravimetric analyses were performed in order to study the thermal degradation 170 

behavior of each residue and of the 50:50% blend. A Netzsch STA 449 Jupiter® 171 

thermobalance was used. The two materials were ground and sieved to a particle size 172 

lower than 50 µm. The SS/DM blend (50%:50%) was prepared by blending both wastes, 173 

ground and sieved. The operating conditions used were the same for the three samples 174 

(SS, DM and SS/DM). The samples (ca. 20 mg) were heated up to 900 ºC at a heating rate 175 

of 10 ºC·min-1 under N2 atmosphere (flow rate of 50 mL (STP)·min-1). Two replicates 176 
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were performed for each feedstock. 177 

2.2.2. Pyrolysis tests in the stirred batch reactor. 178 

A bench-scale stirred batch reactor was used to pyrolyze each residue alone (SS and 179 

DM) and also the 50:50% blend (SS/DM). Figure 2 illustrates the laboratory scale setup. 180 

The cylindrical reactor has a diameter of 107 mm and a length of 294 mm. The reactor 181 

capacity depends on the bulk density of the solid material fed. Since the bulk density of 182 

SS is higher, the amount of sample placed in the reactor was approximately 600 g for SS 183 

pyrolysis runs and around 300 g for DM and SS/DM runs. Four K-type thermocouples 184 

were used to register the temperature profiles in the reactor. The pyrolysis experiments 185 

were performed under N2 atmosphere (250 mL (STP)·min-1) at 525 ºC as the final 186 

temperature and at a heating rate of around 8 ºC·min-1 (this was the maximum heating 187 

rate achievable by the experimental system). The final temperature was maintained for 188 

30 min. The vapors produced during the pyrolysis process passed through the condensing 189 

zone. The condensable fraction (water and organic compounds) was collected in two ice-190 

cooled condensers and one electrostatic precipitator. The composition of NCG was 191 

analyzed by a micro-gas chromatograph (micro-GC) connected online. Specifically, the 192 

analyzed gases were CO2, CO, H2, CH4, C2H2, C2H4, C2H6 and H2S. The experiments 193 

were conducted in duplicate. 194 
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 195 

Figure 2. Laboratory scale pyrolysis setup. 196 

 197 

2.2.3 Characterization of pyrolysis products 198 

The mass yields of each one of the pyrolysis products (ηproduct) were calculated as the 199 

percentage ratio between the mass of pyrolysis product and the mass of feedstock 200 

introduced into the reactor. The mass of solid (char) and liquid obtained was determined 201 

gravimetrically. The mass of gas obtained was calculated taking into account the gas 202 

composition provided by the micro-GC and the known volumetric flow of nitrogen 203 

introduced.  204 

The lower heating value of the gas (free of N2) (LHVgas) was calculated considering 205 

the gas composition and the lower heating value of each gas compound. The ultimate and 206 

proximate analyses and the higher heating value of the char (HHVchar) obtained in each 207 

experiment were determined. The FTIR analysis of the char was also performed and the 208 

results were compared to the FTIR spectra of the different residues. 209 
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The liquid, which separated into two phases (aqueous phase (AP) and organic phase 210 

(OP)) in all the experiments performed, was centrifuged at 4500 rpm (2038 x g) for 211 

30 min using a Heraeus Megafuge 16 Centrifuge to separate both phases. The phases were 212 

stored in a fridge at between 3 °C and 5 °C until they were analyzed. The water content 213 

(WC, mass fraction %) of each phase was determined by the Karl-Fischer titration 214 

method. The density of both phases was determined using a portable Mettler Toledo 215 

densimeter (model Densito 30 PX). The ultimate analysis and the higher heating value of 216 

the organic phase (HHVOP) were also measured. The organic compounds present in both 217 

phases were identified and semi-quantified by GC-MS and GC-FID. The 218 

chromatographic methods used for both phases showed certain differences. The capillary 219 

column used for analyzing the aqueous phases was a 50 m x 200 µm x 0.3 µm HP-FFAP 220 

Polyethylene Glycol TP. Helium of 99.999% purity was used as the carrier gas and the 221 

injector temperature was set at 300 ºC. The temperature program adopted was the 222 

following: initial oven temperature at 60 ºC held for 6 min followed by an increase to 223 

80 ºC at a rate of 1.5 ºC·min-1 and held for 5 min, consequently increased to 200 ºC at a 224 

rate of 1 ºC·min-1 and held for 5 min, and finally increased to 240 ºC at a rate of 1.8 ºC 225 

min-1 where it was held for 30 min. The capillary column used for the organic phases was 226 

60 m x 250 µm x 0.25 µm DB-17ms. The carrier gas and the injector temperature were 227 

similar to those used for the aqueous phases. The temperature program was as follows: 228 

initial oven temperature at 60 ºC held for 5 min followed by an increase to 250 ºC at a rate 229 

of 1.5 ºC min-1 and held for 5 min, and finally an increase to 310 ºC at a rate of 2 ºC·min-230 

1 and held for 5 min. The analysis procedure used considers all the response factors to be 231 

similar. It therefore does not give quantitative results but is suitable for comparing relative 232 

percentages of compounds in pyrolysis liquids. 233 

The energy yield of the different products, defined according to equation [1], was 234 
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calculated for each run. 235 

energy yield𝑖𝑖 = 𝜂𝜂𝑖𝑖𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖
𝐻𝐻𝐻𝐻𝐻𝐻

× 100       [1] 236 

where ηi and HHVi are the mass yield and the higher heating value of each pyrolysis 237 

product (gas, organic liquid phase and char, respectively) and HHV is the higher heating 238 

value of the material introduced into the reactor (or the average of HHVs in the case of 239 

SS/DM). 240 

Finally, the energy requirement for the pyrolysis process was estimated for each waste 241 

and the blend. The procedure followed to solve the energy balances was similar to those 242 

used by other researchers (Abrego et al., 2013; Atienza-Martinez et al., 2015; Gil-243 

Lalaguna et al., 2014). 244 

 245 

3. RESULTS AND DISCUSSION 246 

3.1 TGA experiments  247 

The mass loss (TG) and derivative mass loss (DTG) curves are displayed in Figure 3. 248 

Both materials show total mass loss greater than 50% at the final temperature of 900 ºC 249 

and a main decomposition stage in the temperature interval between 200 and 400 ºC. This 250 

stage begins slightly later for DM than for SS (DTG peaks at 325 ºC and 310 ºC, 251 

respectively) which could be explained by the higher cellulose content in DM. 252 

Immediately after this main decomposition stage, SS shows additional mass loss 253 

evidenced by a shoulder in its DTG curve, which can be associated with protein 254 

decomposition. The region between 500 and 650 ºC is quite similar for both materials, 255 

with relatively constant mass loss. Major differences arise at higher temperatures, with 256 

more significant mass loss for DM peaking at 715 ºC. This peak may be attributed to 257 
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calcium carbonate decomposition (Abrego et al., 2009). This compound has been 258 

identified in the FTIR spectrum of DM (Figure 1). Furthermore, calcium is the most 259 

abundant component of the DM ashes, and the manure pH, higher than 7, indicates a 260 

significant proportion of carbonates in the ashes (Schumacher, 2002). 261 

 262 

Figure 3. Mass loss (TG) and derivative mass loss (DTG) curves for SS and DM.  263 

 264 

The experimental and the predicted (arithmetic average from the results obtained for 265 

each material) DTG curves for SS/DM are compared in Figure 4 in order to assess 266 

potential synergistic effects. In order to better compare the main decomposition features, 267 

the drying region, below 100 ºC, is not shown in the figure. The predicted and the 268 

experimental curves were quite similar. The region below 500 ºC was almost identical, 269 

with a minor difference in the DTG peak maximum (the predicted curve showed a DTG 270 

peak maximum at 318.5 ºC, whereas the experimental curve gave 312.5 ºC). At higher 271 

temperatures, experimental data showed lower mass loss than predicted, especially from 272 

700 ºC. It seems that the carbonate decomposition region already shown for DM in Figure 273 

3 was affected in two ways by the presence of SS. On the one hand, the experimental 274 

DTG temperature peak was 698.5 ºC vs. the predicted peak at 713.5 ºC. On the other hand, 275 

the total mass loss in this stage was lower than the arithmetic average of both 276 
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contributions. 277 

 278 

Figure 4. Experimental and predicted TG and DTG curves for SS/DM blend. 279 

 280 

3.2 Product yields in the stirred batch reactor 281 

Mass balance closure was higher than 90% for all the experiments performed. 282 

Pyrolysis product yields from the pyrolysis of each residue and from the co-pyrolysis of 283 

both are displayed in Figure 5. The predicted average yields are also shown in Figure 5. 284 
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 286 

Figure 5. a) Product yields, expressed on feedstock basis, from the pyrolysis of SS, 287 

DM and SS/DM b) Product yields, expressed on a dry ash free basis, from the pyrolysis 288 

of SS, DM and SS/DM. 289 

 290 

Although sewage sludge and manure are not very different in nature, their pyrolysis 291 

product distribution showed certain differences. The pyrolysis of DM produced a higher 292 

gas yield, and lower char and liquid yields than the pyrolysis of SS (Figure 5a). The higher 293 

ash content of SS explains its higher char yield. However, if expressed on a dry ash free 294 

basis, the char yield from the DM pyrolysis is higher than that from SS (see Figure 5b). 295 

These results are in accordance with the higher fixed carbon content of the DM (see Table 296 

1), which could be justified by its higher lignin content and lower extractives content. It 297 

is known that the char yield from the pyrolysis of lignin is high (Qu et al., 2011) whereas 298 

the char yield from the pyrolysis of lipids or extractives is low. Sewage sludge contains a 299 

higher proportion of proteins and the char from the pyrolysis of proteins is also high 300 

(Kebelmann et al., 2013), but not as high as that from lignin. The higher gas yield from 301 

the pyrolysis of DM could be attributed to the catalytic activity of the metals present in 302 

the ash (Manya et al., 2006). DM contains higher concentrations of Ca and Na than SS 303 

(5.5% and 0.5% for Ca and Na in DM vs. 2.3% and 0.2%, respectively, in SS). These 304 
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species would promote the degradation of the organic matter, favoring the gas formation 305 

(Zabeti et al., 2012). The higher moisture content of DM could explain the higher water 306 

yield from the pyrolysis of DM. However, the water yield expressed on dry ash free basis 307 

was lower using DM as the feedstock (see Figure 5b). The water generated by the 308 

pyrolysis reactions was higher in the case of the SS pyrolysis. The higher H/O molar ratio 309 

in SS (H/O = 2.2 for SS vs. H/O = 1.1 for DM, expressed on dry basis) makes it possible 310 

that a greater amount of the organic oxygen present in the starting material may be 311 

converted into water during the pyrolysis process (Mullen and Boateng, 2011). Other 312 

authors have observed that the pyrolysis of biomass with high protein content results in 313 

higher water production because of the reaction of nucleophilic amine groups with 314 

electrophilic oxygen groups releasing water (Mullen and Boateng, 2011). The DM used 315 

in this study has lower protein content than the SS, which could produce lower amounts 316 

of pyrolytic water and consequently a lower water yield, expressed on dry ash free basis. 317 

The amount of condensable organic compounds generated by pyrolysis was much lower 318 

for DM. DM has a lower amount of extractives than SS. Lipids generate a high level of 319 

volatiles (Kebelmann et al., 2013) which could explain the higher organic compound 320 

yield from SS. Furthermore, the presence of a higher content of some alkali metals such 321 

as Ca and Na in DM could also provoke a reduction in the yield of organic compounds, 322 

promoting the gas yield (Zabeti et al., 2012).  323 

For the co-pyrolysis of SS and DM, the product yields showed an expected behavior, 324 

i.e. there were no noticeable synergistic effects, with the exception of the yield of organic 325 

compounds. The product yields obtained from the pyrolysis of the blend of SS and DM 326 

was approximately the average of the yields obtained from each individual residue 327 

(Figure 5a). However, the yield of organic compounds obtained from the pyrolysis of the 328 

SS/DM blend was slightly higher than the predicted average. This might be attributed to 329 
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the reduction in the alkali metal content in the SS/DM blend feedstock compared to DM, 330 

causing the secondary reactions to occur to a lesser extent. Other authors have observed 331 

important synergies in the co-pyrolysis of sewage sludge and different types of 332 

lignocellulosic biomass, such as poplar sawdust (Zuo et al., 2014), rice husk (Zhang et 333 

al., 2015) and sawdust(Alvarez et al., 2015), which they have attributed to the catalytic 334 

activity of the ash present in the sewage sludge. The synergy resulted in increasing gas 335 

yields and decreasing bio-oil yields. The more similar ash content in SS and DM in 336 

comparison with lignocellulosic biomass could explain the lesser synergistic effect on the 337 

product yields between the two materials studied in this work.  338 

3.3. Gas characterization 339 

The yields of NCG obtained from the pyrolysis of each residue and the co-pyrolysis 340 

are displayed in Figures 6a and 6b. The major gas compound in all the experiments was 341 

CO2. The pyrolysis of SS produced lower yields of CO2 and CO and higher yields of H2 342 

and H2S than the DM pyrolysis. CO2 and CO derived from decarboxylation and 343 

decarbonylation reactions, respectively. The higher proportion of carbonyl and carboxyl 344 

groups in DM enhanced the formation of both CO2 and CO. Furthermore, Na and Ca, 345 

which are present in higher proportions in DM, are active catalysts for generating CO2 346 

and CO during pyrolysis (Zabeti et al., 2012). The higher molar ratio H/C in SS (1.6 for 347 

SS vs. 0.9 for DM, expressed on dry basis), together with the higher content of Al2O3 in 348 

the SS ashes which might promote H2 production (Azuara et al., 2013), could explain the 349 

higher H2 yield in the SS pyrolysis. Furthermore, the higher lignin content in DM 350 

disfavors H2 production, since lignin devolatilization generates less H2 than other 351 

chemical constituents, such as cellulose or hemicellulose (Li et al., 2004). The lower H2S 352 

yield from the pyrolysis of DM could be explained by the lower S content in this material. 353 

As can be seen from Figure 6, no relevant synergistic effects regarding the gaseous 354 
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products were found when pyrolyzing SS/DM, with the exception of H2. The yield of H2 355 

from the co-pyrolysis was lower than that calculated as the predicted average. This 356 

antagonist effect might be attributed to the reduction in the Al content in the SS/DM blend 357 

feedstock compared to SS. 358 

 359 

 360 

Figure 6. NCG yields from the pyrolysis of SS, DM and SS/DM blend a) CO2, CO, 361 

and CH4 yields, b) H2, H2S, C2H4, and C2H6 yields. 362 

 363 

According to the gas composition, the LHVgas (N2 free) from the DM pyrolysis 364 

(6 ± 1 MJ·m-3
STP) was lower than that from the SS pyrolysis (10 ± 1 MJ·m-3

STP). The 365 

LHVgas from the SS/DM co-pyrolysis (6 ± 1 MJ·m-3
STP) was similar to the LHVgas from 366 

DM and lower than predicted average value (8 ± 1 MJ·m-3
STP) since, as already indicated, 367 

the H2 yield is also lower. In any case, the LHV of the NCG produced from the three 368 
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types of feedstock could be enough to use the gas as a fuel, although a system for cleaning 369 

combustion gases would be required. 370 

3.4. Liquid characterization 371 

The liquid product obtained from the pyrolysis of each residue is heterogeneous, 372 

showing two different phases (AP and OP, as stated in the Experimental Section). The 373 

AP was the major liquid phase in all the runs (Table 4). The OP yield was much lower 374 

from the DM than from the SS pyrolysis. However, the AP yield was similar for all the 375 

runs (Table 4). The OP yield obtained from the co-pyrolysis seemed to increase slightly 376 

more than the amount explainable by a predicted average, as was the case with the yield 377 

of organic compounds. Water was the major component present in the liquid. Table 4 378 

shows the water content of the liquid phases obtained. The OP from the DM pyrolysis 379 

and from the co-pyrolysis showed a higher water proportion than the OP obtained from 380 

the SS pyrolysis. More polar organic compounds can be expected in the OP from the DM 381 

pyrolysis. 382 

Table 4. Liquid phase yields (expressed on a feedstock basis) and water content. The 383 

values are expressed as mean ± standard deviation 384 

Feedstock Liquid phase yields (wt. %) Water content (wt. %) 
 OP AP OP AP 

SS 13 ± 1 28 ± 1 7 ± 2 63 ± 1 
DM 5.5 ± 0.5 29.8 ± 0.5 17 ± 6 75 ± 1 
SS/DM 11 ± 1 29 ± 1 15 ± 5 68 ± 2 
Predicted average 9 ± 1 29 ± 1 12 ± 6 69 ± 1 

 385 

As shown in Table 5, the HHV of the organic phases obtained from each residue 386 

reflected the potential of these fractions for their use as liquid fuels. However, their 387 

nitrogen and sulfur contents, which are relatively high, hinder this application, since their 388 

combustion may lead to NOx and SOx generation. The N content in the organic phase 389 
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from the pyrolysis of DM was lower than that of the OP from the pyrolysis of SS because 390 

the N content in SS is higher. Nevertheless, the application of these OPs as a source of 391 

valuable chemical products, such as N-containing compounds (amides, imidazoles and 392 

pyridines, among others), could represent an opportunity for SS and DM, since there are 393 

not too many renewable sources for these types of compound (Fonts et al., 2016). No 394 

noticeable synergistic effects were reflected for the SS/DM blend in either the ultimate 395 

analysis or the H/C and O/C molar ratios.  396 
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Table 5. Ultimate analysis (dry basis), molar ratios H/C and O/C (dry basis), and higher 397 

heating value of the organic phases (wet basis). The values are expressed as mean ± 398 

standard deviation 399 

 SS DM SS/DM Predicted average 

Carbon (wt. %) 69 ± 1 69 ±5 65 ± 8 69 ± 5 

Hydrogen (wt. %) 9 ± 0.2 7.2 ± 0.4 7 ± 2 8.0 ± 0.4 

Nitrogen (wt. %) 8.3 ± 0.2 4.9 ± 0.2 6.9 ± 0.4 6.6 ± 0.2 

Sulfur (wt. %) 1.9 ± 0.2 1.4 ± 0.3 1.9 ±0.5 1.7 ± 0.3 

Oxygen (wt. %)a 12 ± 1 18 ± 5 19 ± 8 15 ± 5 

H/C 1.6 1.3 1.3 1.4 

O/C 0.1 0.2 0.2 0.2 

HHV (MJ kg-1) 34 ± 2 29 ± 2 29 ± 4 32 ± 2 

aCalculated by difference. 400 

 401 

Table 6 shows the ultimate analyses of the aqueous phases and the pH of these phases. 402 

As can be observed, the pH of the AP from the DM pyrolysis was lower than that of the 403 

SS pyrolysis.  404 
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Table 6. Ultimate analysis (dry basis) and pH for the aqueous phases. The values are 405 

expressed as mean ± standard deviation 406 

 SS DM SS/DM Predicted average 

Carbon (wt. %) 27 ± 1 23 ± 1 24 ± 1 25 ± 1 

Hydrogen (wt. %) 7.2 ± 0.3 7.6 ± 0.2 6.6 ± 0.4 7.4 ± 0.2 

Nitrogen (wt. %) 16 ± 1 6 ± 1 11 ± 2 11 ± 1 

Sulfur (wt. %) 1.2 ± 0.1 0.43 ± 0.05 0.69 ± 0.03 0.8 ± 0.1 

pH 9.5 ± 0.5 6 ± 1 8.7 ± 0.2 8 ± 1 

 407 

3.4.1 Composition of the organic phases 408 

The organic compounds identified by GC-MS in the OP have been grouped into 409 

chemical families. The area percentage of each family identified is shown in Figure 7. 410 

 411 

Figure 7. Composition of the OP obtained from the pyrolysis of SS, DM and SS/DM.  412 

 413 

Table 7 shows the chromatographic area percentages of certain organic compounds 414 

identified in the organic phase obtained in the co-pyrolysis of SS and DM, and of those 415 

derived from the pyrolysis of each material independently. 416 
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Table 7. Chromatographic area percentage of certain organic compounds identified in the 417 

OP obtained from the pyrolysis of SS, DM and SS/DM blend. 418 

 SS (%) DM (%) SS/DM (%) 
Carboxylic acids 31.8 13.0 10.7 
Alcohols 1.3 3.2 2.5 
Nitriles 3.2 0.0 2.9 
Phenols 10.0 31.9 31.1 
Cholestenes 12.2 1.3 8.4 

 419 

 420 

Oxygen-containing aliphatic compounds (mainly carboxylic acids), as well as steroids 421 

and their derivatives, were the main compounds in the OP from the pyrolysis of SS. 422 

However, the main organic compounds from the pyrolysis of DM were nitrogen and/or 423 

oxygen-containing aromatic compounds (mainly phenols). Fatty acids stem from their 424 

direct devolatilization from SS and DM, since the extractives of both residues also contain 425 

these compounds. The lower extractives content in DM could explain the lower 426 

proportion of steroids in the organic phase from DM. The OP from the pyrolysis of DM 427 

exhibited a lower proportion of non-polar compounds, which could justify its higher 428 

water content. Phenols, more abundant in the OP from the pyrolysis of DM, could come 429 

from lignin and protein decomposition. DM is characterized by its lignin and protein 430 

content, which could generate phenolic compounds during pyrolysis (especially lignin) 431 

(Amen-Chen et al., 2001; Parnaudeau and Dignac, 2007). The greater lignin content of 432 

DM could explain the greater proportion of phenols in the OP from the pyrolysis of this 433 

residue than in the OP from the pyrolysis of SS. Furthermore, it is noteworthy that no 434 

nitrogen-containing aliphatic compounds (such as nitriles) were present in the OP from 435 

the pyrolysis of DM. Aliphatic nitriles come from the reaction between fatty acids and 436 

ammonia, both produced during pyrolysis. Not enough fatty acids and/or ammonia were 437 
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generated during the DM pyrolysis to generate aliphatic nitriles. However, the proportion 438 

of fatty acids decreased and the proportion of aliphatic nitriles increased in the OP from 439 

the pyrolysis of the SS/DM blend in comparison to the predicted average proportions. 440 

This could be provoked by the reaction of the fatty acids from the DM pyrolysis with the 441 

ammonia from the SS pyrolysis.  442 

3.4.2. Composition of the aqueous phases 443 

The organic compounds identified in the AP by GC-MS have been grouped into the 444 

chemical families whose area percentages are shown in Figure 8. 445 

 446 

Figure 8. Composition of the AP obtained from the pyrolysis of SS, DM and SS/DM 447 

blend. 448 

 449 

The area percentages of the different chemical families present in the AP from the 450 

pyrolysis of the SS/DM blend were similar to the predicted averages. In this regard, the 451 

synergistic effects were less pronounced on the AP than on the OP.  452 

Table 8 shows the chromatographic area percentages of certain organic compounds 453 

identified in the aqueous phases. 454 
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Table 8. Chromatographic area percentages of certain organic compounds identified in 455 

the AP from the pyrolysis of SS, DM and SS/DM blend. 456 

 SS (%) DM (%) SS/DM (%) 
Carboxylic acids 35.6 34.0 38.9 
Alcohols 0.5 6.2 2.1 
Ketones 0.4 8.7 1.7 
Lactones 0.0 4.7 1.4 
Amides 19.0 4.7 13.5 
Furans 0.0 4.3 2.2 
Pyrroles 9.1 4.1 5.8 
Imidazoles 7.5 1.3 7.1 
Phenols 1.7 7.5 3.5 
Pyridines 7.2 5.3 7.1 
Pyrazines 0.0 2.1 3.8 

 457 

Oxygen and nitrogen-containing aliphatic compounds, mainly amides, and oxygen-458 

containing aliphatic compounds, mainly carboxylic acids, were the most abundant 459 

families in the AP from the pyrolysis of SS. In the case of DM, carboxylic acids were by 460 

far the major organic compounds. Alcohols, ketones and lactones were also significant in 461 

the AP from the pyrolysis of DM, which would come from the devolatilization of 462 

cellulose or other polysaccharides in the DM (Parnaudeau and Dignac, 2007). Acetic acid 463 

was the organic compound found in the greatest proportion in the AP obtained from each 464 

individual residue and from the SS/DM blend, being more abundant in the AP from the 465 

pyrolysis of DM. This could explain its lower pH. Acetic acid comes from the elimination 466 

of acetyl groups present in polysaccharides (Prins et al., 2006), such as cellulose, which 467 

are more abundant in DM than in SS. The higher content in polysaccharides of DM could 468 

also explain the higher proportion of furans (Parnaudeau and Dignac, 2007) in the AP 469 

from the pyrolysis of this residue than that of SS. Again, the greater proportion of phenols 470 

in the AP from the pyrolysis of DM than that of SS could be attributed to the higher lignin 471 

content of DM. The total proportion of oxygen and/or nitrogen-containing heterocyclic 472 

aromatic compounds, mainly pyridines, pyrazines, pyrroles and imidazoles, was similar 473 
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for both materials. Pyridines and pyrazines could come from nucleic acids and amino 474 

acids with heteroatomic rings (Fullana et al., 2003). Pyridines, which could come from 475 

proteins which contain aniline, were more abundant in the AP from the pyrolysis of SS. 476 

Pyrazines, which could also derive from the Maillard reaction which involves the 477 

formation of N-heterocycles by amino acids interacting with sugars (Schnitzer et al., 478 

2007), were only present in the AP from DM. The higher proportion of pyrroles (Tsuge 479 

and Matsubara, 1985) and imidazoles in the AP from the pyrolysis of SS was also related 480 

to the higher protein content in this residue compared to DM. Acetamide, which could 481 

come from the pyrolysis of labile proteins that contain glycine (Parnaudeau and Dignac, 482 

2007; Zhang et al., 2013) or from cell wall amino sugars(Eudy et al., 1985), was present 483 

in a higher proportion in the AP from the pyrolysis of SS, due to the higher content of 484 

proteins in SS. This could contribute to the increase of the pH of the AP from the SS 485 

pyrolysis.  486 

3.5. Char characterization 487 

The properties of the chars obtained from the different pyrolysis runs are summarized 488 

in Table 9.  489 
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Table 9. Properties of the chars obtained from the pyrolysis of SS, DM and SS/DM blend. 490 

The values are expressed as mean ± standard deviation 491 

Properties SS DM SS/DM Predicted 

average 

Ultimate 

analysis (wt. %)  

Carbon 

Nitrogen 

Hydrogen 

Sulfur 

 

 

20 ± 2 

2.5 ± 0.1 

0.94 ± 0.06 

1.3 ± 0.1 

 

 

42 ± 2 

1.8 ± 0.1 

1.51 ± 0.04 

0.89 ± 0.01 

 

 

30 ± 0.4 

2.38 ± 0.03 

1.18 ± 0.08 

0.9 ± 0.2 

 

 

31 ± 2 

2.2 ± 0.1 

1.23 ± 0.06 

1.1 ± 0.1 

Proximate 

analysis (wt. %) 

Volatile matter 

Fixed carbon 

Ash 

 

 

20.2 ± 0.5 

5.7 ± 0.5 

74 ± 1 

 

 

20.2 ± 0.9 

37 ± 1 

42 ± 1 

 

 

19.5 ± 0.1 

18.2 ± 0.4 

62.2 ± 0.3 

 

 

20.2 ± 0.9 

21 ± 1 

58 ± 1 

HHV (MJ·kg-1) 8 ± 1 14 ± 2 11 ± 1 10 ± 3 

 492 

The char obtained from the DM pyrolysis exhibited, in principle, better characteristics 493 

for energetic applications than that from the SS pyrolysis: the ash content was lower and 494 

the fixed carbon content was higher in the DM char than in the SS char, which led to a 495 

higher calorific value in the former. Furthermore, the content of nitrogen and sulfur, 496 

which act as contaminants in a fuel, were lower in the DM char. Nevertheless, the ash, 497 

nitrogen and sulfur contents of the DM char were still high in comparison with chars from 498 

other types of biomass, such as lignocellulosic ones. The char obtained from SS/DM co-499 

pyrolysis shows no significant interactions between SS and DM. The uses of the char 500 
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obtained from the co-pyrolysis could be similar to those proposed for the char from the 501 

pyrolysis of each individual residue, such as adsorbent solids and soil amendments. 502 

However, the potential application of the char as soil amendment should be corroborated 503 

from an agronomic point of view. 504 

Figure 9 shows the FTIR results from the char obtained from the pyrolysis of DM, SS 505 

and SS/DM blend. 506 

 507 

Figure 9. FTIR spectra of SS, DM and SS/DM chars. 508 

 509 

A comparison with the FTIR spectra of the starting materials (shown in Figure 1) shows 510 

that pyrolysis causes the reduction or even disappearance of most of the previously 511 

identified peak regions. This can be correlated with some of the findings reported in the 512 

sections describing the composition of the OP and AP liquid fractions. In particular, the 513 

abundance of N-containing compounds, alcohols, phenols and fatty acids in the liquids 514 

might account for the absence of the previously identified N-H and O-H stretching (3000-515 

3700 cm-1) and protein band (1500-1790cm-1), whereas the reduction of the C=O 516 

stretching (1409 cm-1) in the case of DM could lead to the formation of oxygenated 517 

compounds such as ketones, abundant in the AP from this material. SS/DM chars still 518 
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show the presence of calcium carbonate inherited from DM. 519 

3.6. Energy analysis 520 

The energy yields of the products, based on HHV, indicate the percentage of the initial 521 

energy content of the residue contained in each pyrolysis product. Table 10 displays the 522 

energy yield results.  523 

31 
 



Table 10. Energy yields of the products. The values are expressed as mean ± standard 524 

deviation 525 

 
SS (%) DM (%) SS/DM (%) 

Predicted 

average (%) 

NCG 6 ± 1 6 ± 2 4 ± 1 6 ± 2 

OP 35 ± 2 12 ± 2 24 ± 2 23 ± 2 

Char 33 ± 1 49 ± 5 40 ± 1 41 ± 5 

Total 74 ± 2 67 ± 5 68 ± 2 70 ± 5 

 526 

The total energy yield in the case of the SS pyrolysis was higher than that obtained for 527 

the pyrolysis of DM, mainly due to the lower energy recovery of the OP.  528 

The energy balances were calculated for the system shown in Figure 10 to compare the 529 

energy requirements for the pyrolysis of each individual residue and for the SS/DM blend. 530 

 531 

Figure 10. Energy balance system for pyrolysis of SS, DM and SS/DM. Reference 532 

temperature: 25 °C. Reference pressure: 1.01·105 Pa. 533 

 534 

The different feedstocks and the pyrolysis products have been considered to be at the 535 

reference conditions of pressure and temperature (25 °C and 1.01·105 Pa). This means 536 
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that the energy released from the cooling of the char and the NCG, and from the cooling 537 

and the condensation of the condensable vapors, was completely used. Assuming no heat 538 

losses in the system, the input energy (Hinput) included the feedstock chemical energy. The 539 

output energy (Houtput) included the chemical energy of all the products. The chemical 540 

energy of the feedstocks, the char and the OP has been calculated from their ultimate 541 

analyses and their HHVs. In the case of the AP, the chemical energy has been determined 542 

assuming that these phases were a blend of water and acetic acid, which was the most 543 

abundant organic component in the aqueous phases.  544 

Taking into account the aforementioned simplifications, the ΔH0, calculated using 545 

equation [2], indicates the energy requirement of the process (per kg of feedstock). 546 

∆H0=Houtput-Hinput=
∑ ηi·ΔHf,i

0
i

100
-ΔHf,feedstock

0       [2] 547 

where ηi is the yield of each product, ΔHf,i
0  the apparent enthalpy of formation of each 548 

product and ΔHf,feedstock
0  the apparent enthalpy of formation of the feedstock. 549 

The ΔH0 has been calculated for each one of the pyrolysis runs. The results are 550 

presented in Table 11. 551 

Table 11. ΔH0 obtained for pyrolysis of SS, DM and SS/DM. The values are expressed 552 

as mean ± standard deviation 553 

 ΔH0 (MJ·kg-1) 

SS -0.6 ± 0.1 

DM -4.2 ± 0.8 

SS/DM -2.1 ± 0.1 

Predicted average -2.4 ± 0.1 

 554 

All the values obtained for ΔH0 were negative which theoretically means that in the 555 

absence of heat losses, the energy that could be used from the cooling and condensation 556 
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of the products was higher than the energy required for the process. In these terms, the 557 

DM pyrolysis and co-pyrolysis of both residues showed much more exothermic behavior 558 

than the SS pyrolysis.  559 

However, the energy required for the drying of both residues should also be 560 

considered. The heat required to reduce the water content of the residues from 65% 561 

(typical minimum humidity value obtained from a mechanical dehydration system) to 7-562 

10%, which is recommended for the pyrolysis process, was approximately 4 MJ·kg-1 of 563 

dried residue (Gil-Lalaguna et al., 2014). Therefore, it is important to efficiently use the 564 

energy for the cooling and condensation of the pyrolysis products from an energetic point 565 

of view.  566 

4. CONCLUSIONS 567 

The co-pyrolysis of sewage sludge (SS) and digested manure (DM) has been 568 

investigated. The char yield from the pyrolysis of DM (dry ash free basis) was higher than 569 

that from SS, which is consistent with its higher lignin and lower extractive contents. The 570 

pyrolysis of SS produced a gas with higher LHV, but the DM char exhibited better 571 

characteristics for energetic applications. The organic compounds and water yields (dry 572 

ash free basis) were larger in the pyrolysis of SS, which could be due to its higher 573 

extractive and protein contents, respectively.  574 

The liquid obtained from the pyrolysis of each residue showed an aqueous phase and 575 

an organic phase. The main compounds in the organic phase from SS were carboxylic 576 

acids whereas phenols were the main compounds in the organic phase from DM. The 577 

aqueous phases from each residue were rich in carboxylic acids, but the aqueous phase 578 

from SS also contained amides in large proportions, which explains its higher pH.  579 

The product yields of the co-pyrolysis of SS and DM did not show noticeable 580 
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synergistic effects, with the exception of the yields of organic compounds being slightly 581 

higher than the predicted average. No remarkable synergistic effects were observed in the 582 

liquid phases properties. However, some interactions were detected in the chemical 583 

composition of the liquid phases. The proportion of fatty acids decreased and the 584 

proportion of aliphatic nitriles increased in the organic phase from the pyrolysis of the 585 

SS/DM blend in comparison to the predicted proportions. Finally, no important 586 

interactions were found from an energetic point of view. The similar ash contents in SS 587 

and DM could explain the small synergistic effect on their co-pyrolysis. Therefore, co-588 

pyrolysis of SS and DM could be a feasible management alternative for these residues in 589 

locations where both wastes are generated locally, since the benefits and the drawbacks 590 

of the co-pyrolysis are similar to those of the pyrolysis of pure residues.  591 
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