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During the last decades, the interest to search for non-antibiotic fed alternatives 

to improve the performance of laying hens and broilers through gastrointestinal 

microbial modulations without causing antimicrobial resistance has increased 

considerably. From the nutritional perspective, one of the approaches is based on the 

dietary inclusion of prebiotics to benefit the intestinal microbial composition, and 

therefore animal health and performance. The main objective of the present thesis was 

to evaluate the prebiotic potential of the inclusion of dry whey powder (DWP), as a 

lactose source, in the formulation of laying hens and broilers’ feed. In this context, five 

studies were conducted to determine the feasibility of the use of DWP when added to 

corn-soybean or whey-barley based diets. Moreover, DWP effectiveness through its 

simultaneous supplementation with other non-antibiotic feed additives was also 

assessed.  

The first study determined the effect of supplementing corn-soybean based diets 

of laying hens with DWP, Pediococus acidilactici (PA), and the combination of both as 

synbiotic (DWP-PA) on the productive performance, egg quality traits, and cecal 

microbial counts. The results showed that cecal counts of Bifidobacterium spp. were 

increased with the addition of DWP, while an interaction between DWP and PA levels 

was found on egg production and on cecal counts of Clostridium perfringens, so that the 

addition of DWP increased egg production and reduced C. perfringens colony counts 

only when PA was not used. According to these results, the addition of DWP modulated 

the target cecal bacteria and increased egg production.  

The second study was carried out with the same animals used in study 1. The 

aim of this was to analyze the cecal microbial composition, using Illumina amplicon 

sequencing of the 16S rRNA gene, and the cecal microbial functional profile, using 

DNA sequencing through Illumina HiSeq2500 platform, of laying hens fed with DWP, 

PA, and DWP-PA. The results revealed that microbial communities of hens fed with 

control and PA were different from those fed with DWP and DWP-PA, while no 

differences were found between control and PA, and between DWP and DWP-PA. 

Feeding with DWP and DWP-PA mainly promoted the presence of Olsenella spp. 

Lactobacillus crispatus, and Megamonas spp. in comparison with the remaining diets. 

Metagenomics approach revealed that a core of main functions was shared between all 

metagenomes (45.5%), although DWP stimulated that microbiota encoded more unique 

functions (22.5%) compared with control, which showed the lowest percentage (1.6%). 
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Major presence of genes encoding the metabolism of butanoate, propanoate, galactose, 

and inositol phosphate were especially stimulated by DWP. Results from this 

experiment indicated that each dietary supplementation influenced the cecal microbial 

community, but these changes did not imply a disturbance in their main biological roles. 

However, some specific metabolic functions encoded by the community, were present 

or absent depending on the source of supplementation.  

In the third study, apparent ileal digestibility (AID), pH of gastrointestinal 

content at various segments, duodenal histomorphometry, cecal microbial counts, and 

productive performance of broilers were studied in response to DWP and fat-coated 

calcium butyrate (CaB) supplementation to corn-soybean based diets. The results 

indicated that with the addition of DWP, the AID of dry matter, crude protein, Ca and P 

increased, and cecum pH decreased only when CaB was also added. Similarly, with the 

addition of DWP, villus height, villus height to crypt depth ratio, and villus surface area 

were increased only when CaB was also added, while the supplementation of WP 

increased Bifidobacterium spp. colony counts only when CaB was no added. In relation 

to performance results, it was observed that with the dietary supplementation of DWP, 

the average daily gain (ADG) and feed intake (FI) increased during starter-grower 

finisher periods, and the entire feeding period only when CaB was also added. 

However, with the addition of DWP, feed conversion ratio (FCR) decreased in broilers 

fed without CaB, but it increased in those fed with CaB during the grower-finisher and 

entire feeding periods. These findings suggest that the supplementation of DWP without 

CaB addition improve FCR of broilers. However, the joint supplementation of DWP 

and CaB improve duodenal development, increases nutrient AID, and the weight and 

feed ingestion of broilers. 

The fourth study was carried out to assess the influence of supplementing corn-

soybean broiler diets with DWP and whey protein concentrate (WPC) on AID, 

productive performance and cecal microbiota composition at the end of the productive 

period, using Illumina amplicon sequencing of the 16S rRNA gene. The results showed 

that 60-DWP increased the AID of Ca, while 80-WPC improved both AID of Ca and P 

when compared to control diet. Feeding broilers with 60-DWP and 80-WPC increased 

their BW, ADG, and FI during the starter and grower-finisher periods, and during the 

entire feeding period. Supplementing 60-DWP and 80-WPC reduced FCR during the 

starter period, while 60-DWP reduced this parameter during the entire feeding period. 
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Cecal microbial communities of broilers fed with 60-DWP and 80-WPC differed from 

those fed with control diet. The abundance of Bacteroides fragilis, Bacteroides spp., 

Escherichia coli/Shigella flexneri and Megamonas furniformis increased when 60-DWP 

and 80-WPC were included, while the presence of Helicobacter pullorum decreased. 

Lactobacillus salivarius consistently increased in chickens with better FCR, which were 

those fed with 60-DWP. These results indicate that growth of chickens is improved by 

60-DWP and 80-WPC supplementation because of a higher mineral digestibility, 

increased FI, and modulation of cecal microbiota communities.  

The fifth study was conducted to investigate the effect of supplementing wheat-

barley based diets with 60-DWP, chitosan (5-QUIT), DWP-QUIT, and Inulin (20-INU) 

on duodenal histomorphometry, productive performance and cecal microbiota 

composition at days 21 and 42 of age, using Illumina amplicon sequencing of the 16S 

rRNA gene. The results indicated that feeding chickens with any of the tested additives 

diminished their BW, ADG, and FI during the starter period. This was also observed 

during the entire feeding period, except for INU supplementation that showed similar 

values to control. At day 21, no differences in microbiota composition of control, 60-

DWP, 5-CHIT and 20-INU birds were found, which ceca were highly harboured by 

Lactobacillus gallinarum, although only control promoted greater BW, ADG, and FI. 

Control and 60-DWP treatments did not differ in their ceca communities at day 42, 

although only control increased BW, ADG, and FI. In both cases, ceca showed higher 

abundance of Lactobacillus gallinarum and Bacteroides vulgatus, and lower abundance 

of Escherichia coli/Shigella flexneri and Bacteroides fragilis. The present findings 

indicate that chicken growth is reduced by supplementing wheat-barley based diets with 

DWP, CHIT, DWP plus CHIT, and INU, at the tested doses, as a consequence of a 

reduction in FI. Moreover, the results revealed that cecal microbiota composition was 

influenced by diet at every stage of life, although no clear association between 

microbiota and performance was detected.  
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Durante las últimas décadas se ha observado un incremento en la búsqueda de 

alternativas alimenticias diferentes a los antibióticos que mejoren el rendimiento 

productivo de gallinas de puesta y pollos de engorde mediante la modulación de las 

poblaciones microbianas del tracto gastrointestinal. Desde la perspectiva del manejo 

alimenticio, uno de los enfoques se centra en la inclusión de prebióticos en la dieta que 

actúen modulando la composición microbiana de manera beneficiosa, y por ende el 

estatus sanitario y productivo de los animales. De este modo, el principal objetivo de la 

presente tesis fue evaluar el potencial prebiótico del lactosuero en polvo (LP), como 

fuente de lactosa, en gallinas de puesta y pollos de engorde. Para ello se desarrollaron 

cinco estudios con el fin de determinar la factibilidad de incluir LP en dietas con 

matrices cereales de maíz-soja y trigo-cebada. Además, la presente tesis también evaluó 

alternativas para aumentar la efectividad del LP mediante su suplementación simultánea 

con otros aditivos de naturaleza no antibiótica. 

El primer estudio determinó el efecto de la inclusión de LP, Pediococus 

acidilactici (PA), y la combinación de los dos como simbiótico (DWP-PA) en dietas 

para gallinas ponedoras con base cereal de maíz y soja sobre el rendimiento productivo, 

la calidad de los huevos y los recuento microbianos cecales. Los resultados mostraron 

que los recuentos cecales de Bifidobacterium spp. incrementaron con la inclusion de LP. 

Del mismo modo, se observó una interacción entre los niveles de LP y PA en la 

producción de huevos y en los  recuentos cecales de Clostridium perfringens, ya que la 

adición de LP incrementó la producción de huevos y redujo las unidades formadoras de 

colonia de C. perfringens sólo cuando PA no fue adicionado a la dieta. De acuerdo con 

estos resultados, se puede inferir que la adición de LP moduló la composición 

bacteriana cecal e incrementó la producción de huevos. 

El segundo estudio fue llevado a cabo empleando los mismos animales del 

primer estudio. En este caso, el objetivo fue la evaluar la composición microbiana cecal 

mediante la secuenciación del gen ribosomal  RNA 16S, así como el perfil funcional 

microbiano mediante la secuenciación completa del ADN bacteriano de gallinas de 

puesta alimentadas con LP, PA y LP-PA. Los resultados mostraron que las 

comunidades microbianas de gallinas alimentadas con la dieta control y PA fueron 

diferentes de aquellas alimentadas con LP y LP-PA, mientras que no se observaron 

diferencias entre la dieta control y PA, ni entre LP y LP-PA. La suplementación de LP y 

LP-PA en la dieta incrementó la presencia de Olsenella spp. Lactobacillus crispatus, y 
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Megamonas spp. en comparación con los tratamientos restantes. En relación con el 

perfil funcional, se observó que los todos los metagenomas bacterianos comparten un 

núcleo de funciones comunes (45.5%). Sin embargo, fue evidente que la adición de LP 

en la dieta causó que la microbiota codificara más funciones únicas (22,5%) en 

comparación con la dieta control, la cual mostró el porcentaje más bajo (1.6%). La dieta 

que contenía LP favoreció el incremento de las funciones microbianas relacionadas con 

el metabolismo del butanoato, propanoato, galactosa e inositol fosfato. Los resultados 

de este experimento indican que cada uno de los suplementos empleados influenció la 

comunidad microbiana cecal, pero que estos cambios no implicaron una alteración en 

los principales roles funcionales de la misma. Sin embargo, algunas funciones 

metabólicas microbianas estuvieron presentes o ausentes dependiendo de la fuente de 

suplementación. 

En el tercer estudio se evaluó la digestibilidad ileal aparente (DIA), el pH del 

contenido gastrointestinal de varios segmentos, la histomorfometría duodenal, los 

recuentos microbianos cecales y el rendimiento productivo de pollos de engorde en 

respuesta a la adición de LP y butirato de calcio recubierto con grasa (BCa) en dietas 

con base de maíz y soja. Los resultados muestran que con la adición de LP se 

incrementó la DIA de la materia seca, proteína cruda, Ca y P, y se redujo el pH cecal 

sólo cuando BCa también fue adicionado a la dieta. También observamos que la 

suplementación de LP incrementó la altura de las vellosidades, el ratio altura de la 

vellosidad:profundidad de la cripta, y el área de la superficie de las vellosidades 

solamente cuando BCa fue suplementado de manera conjunta, mientras que la 

suplementación de LP incrementó los recuentos de colonias cecales de Bifidobacterium 

spp. sólo cuando BCa no fue suplementado. En relación con los resultados de 

rendimiento productivo, se observó que la ganancia media diaria (GMD) y la ingestión 

de alimento (IA) incrementó durante los periodos de arranque y finalización, y durante 

todo el periodo de alimentación cuando LP fue suministrado de manera conjunta con 

BCa. Sin embargo, el índice de conversión alimenticia (ICA) se redujo con la adición de 

LP en ausencia de BCa y viceversa. Estos resultados sugieren que la suplementación de 

LP en ausencia de BCa, o de BCa en ausencia de LP mejora el ICA de los pollos de 

engorde. Sin embargo, la suplementación conjunta de LP y BCa mejoró el desarrollo 

duodenal, incrementó la digestibilidad de los nutrientes, y el peso e ingestión 

alimenticia de los animales.  
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El cuarto estudio fue desarrollado con el fin de evaluar la inclusión de LP y 

concentrado proteico de lactosuero (CPL) en dietas para pollos de engorde con base 

cereal de maíz y soja, sobre la DIA, el rendimiento productivo y la composición de la 

microbiota cecal empleando la secuenciación del gen ribosomal RNA 16S en la 

plataforma de Illumina. Los resultados mostraron que la dieta 60-LP incrementó la DIA 

del Ca, mientras que la dieta 80-CPL mejoró la DIA del Ca y P en comparación con la 

dieta control. Del mismo modo, las dietas 60-L y 80-CP incrementaron el peso vivo 

(PV), la GMD y la IA durante los periodos de arranque, de crecimiento y finalización, y 

durante el periodo completo de alimentación. Las dietas 60-LP y 80-CP redujeron el 

ICA durante el periodo de arranque, mientras que 60-LP redujo este parámetro durante 

el periodo completo de alimentación. Las composición de comunidades microbianas 

cecales de los pollos alimentados con 60-LP y 80-CP fueron diferentes de aquellos 

alimentados con la dieta control. La abundancia de Bacteroides fragilis, Bacteroides 

spp., Escherichia coli/Shigella flexneri y Megamonas furniformis incrementó por 

alimentar a los animales con 60-LP y 80-CP, mientras que la presencia de Helicobacter 

pullorum se vio disminuida. La abundancia de Lactobacillus salivarius incrementó de 

manera consistente en los pollos con mayor ICA, que fueron aquellos alimentados con 

60-LP. Los resultados de este estudio permiten concluir que el crecimiento de los pollos 

se puede mejorar por la suplementación con 60-LP y 80-CP debido a la mayor 

digestibilidad de los minerales, al incrementó en la IA y a la modulación en la 

composición de la microbiota cecal.   

El quinto y último estudio se realizó con el fin de investigar el efecto de 

suplementar 60-LP, quitosano (5-CHIT), DWP-CHIT e inulina (20-INU) en dietas para 

pollos de engorde con base cereal de trigo y cebada, sobre la histomorfometría 

duodenal, el rendimiento productivo y la composición de la microbiota cecal a los 21 y 

42 días de vida, mediante la secuenciación del gen ribosomal RNA 16S en la plataforma 

Illumina. Los resultados de este estudio indicaron que la alimentación de los animales 

con cualquiera de los aditivos suministrados redujo el PV, la GMD y la IA durante el 

periodo de arranque. Esto también fue observado durante todo el periodo de 

alimentación, excepto para el tratamiento 20-INU, que mostró valores similares al grupo 

control. En relación a las comunidades microbianas cecales, no se observaron 

diferencias entre el grupo control, 60-LP, 5-QUIT y 20-INU al día 21 de vida, en los 

cuales el ciego estuvo principalmente colonizado por Lactobacillus gallinarum, aunque 
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sólo el control promovió un mayor PV, GMD e IA. El grupo control y 60-LP no 

difirieron en sus comunidades cecales al día 42, aunque sólo el tratamiento control 

incrementó el PV, la GMD, y la IA. En ambos casos, el ciego tuvo una alta abundancia 

de Lactobacillus gallinarum and Bacteroides vulgatus, y una baja de Escherichia 

coli/Shigella flexneri and Bacteroides fragilis. Estos resultados indican que el 

crecimiento de los pollos de engorde se redujo por la suplementación de LP, QUIT, LP 

más QUIT e INU a las dosis evaluadas, como consecuencia de una disminución en la 

IA. Además, los resultados ponen en evidencia que la composición de la microbiota 

cecal fue modulado por la dieta en cada una de las edades muestreadas, aunque no se 

observó una asociación clara entre esta y el rendimiento productivo. 
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1. BACKGROUND OF THE USE OF ADDITIVES IN POULTRY FEEDING 

AS GROWTH PROMOTERS IN THE POST-ANTIBIOTIC ERA 

 

Antibiotics at sub-therapeutic doses have been widely included in the animal diet 

formulation as growth promoters (AGPs) from early 1950’s. Noticeably, AGPs made it 

possible to improve animal health and performance, therefore increasing the 

profitability of production systems (Huyghebaert et al., 2011). However, 

supplementation of antibiotics at low levels during extended periods of time has also 

contributed to the appearance of antimicrobial resistance in some pathogenic and non-

pathogenic strains (Redondo et al., 2014). As a result, the transference of resistance 

genes from animal to human microbiota occurred, compromising the therapeutic 

effectiveness of antibiotics in veterinary and human medicine (Brown et al., 2017). This 

risk led to the ban of the use of AGPs in the European Union since 2006 (European 

Commission Regulation No. 1831/2003), and to the exhaustive control of antibiotic 

supplies in USA (FDA, 2015). The impact of its gradual elimination on poultry farms 

resulted in the increment of the incidence of enteric diseases, with the associated 

increase in the use of therapeutic antibiotics and subsequent economic cost (Mateos et 

al., 2002; Patterson and Burkholder, 2003). Consequently, poultry farmers are subjected 

to the pressure of having to use safe feed additives that guarantee profitable yields, 

similar to those obtained with AGPs (Huyghebaert et al., 2011). 

Therefore, the challenge for modern animal nutrition is to develop and implement 

new alternatives to improve the performance of the animal farming industry through 

GIT microbial modulations that do not result in antimicrobial resistance (Brown et al., 

2017). One way is to use specific feed additives or dietary raw materials that benefit 

GIT microbiota composition or its metabolism (Tuohy et al., 2005; Gaggìa et al., 2010). 

Indeed, diet formulation focused on specific effects on the gut microbiota ecosystem is 

gaining importance in the monogastric animal industry (Redondo et al., 2014; 

Angelakis, 2017). In this scenario, the addition of enzymes to the diet, the inclusion of 

whole grains, or the supplementation with organic acids, probiotics, prebiotics, 

phytobiotics, and immunostimulants are considered as a feasible alternative 

(Huyghebaert et al., 2011; Angelakis, 2017). The special interest of the present work 

lies on the use of prebiotics and its effects on the performance of laying hens and 

broilers. 
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2. THE USE OF PREBIOTICS IN THE FEEDING OF LAYING HENS AND 

BROILERS 

 

With the industrialization of poultry farming systems, the world production of 

laying eggs and broiler meat has grown, from 2003 to 2013, at a rate of 2.3% and 4.1% 

per year respectively, as a result of the parallel increment on per capita consumption 

(FAO, 2017). The appropriate nutritional management of birds is one of the key factors 

to reach the goal of production (Callaway, 2012). Higher productive performance is 

usually the result of higher feed intake, better digestion and absorption of nutrients, as 

well as of a certain balance in the qualitative and quantitative microbial load of the 

animal gut (Huyghebaert et al., 2011). The appropriate maintenance and possible 

modulation of microbial populations with new additives such as prebiotics has become 

an attractive alternative that is creating new nutritional possibilities. Although 

knowledge about the role and effects of prebiotics on animal production has increased, 

essential information concerning their mechanisms of action is still required to better 

comprehend their role on animal physiology and metabolism.  

 

2.1 Prebiotics definition and their mode of action 

 

The most recent definition of prebiotics refers to a substrate that is selectively 

metabolized by commensal microorganisms, conferring health benefits to the host 

through (Gibson et al., 2017). Prebiotics act as growth substrates (Patrascu et al., 2017) 

to enhance the activity of bacterial genera (Scott et al., 2015) such as bifidobacterial and 

butyrate-producing clostridia (Riviére et al., 2016). However, commensal 

microorganisms have a differential preference for prebiotics, since their genome 

determines the enzymes that they produce, and therefore their ability to utilize the 

prebiotic substrate (Wilson and Whelan, 2017). Previously, the effect of dietary 

supplementation with prebiotics was determined using the increase in Lactobacillus spp. 

and Bifidobacterium spp. counts as an standard reference (Gibson and Roberfroid, 

1995). Nevertheless, by using novel sequencing techniques, it is now known that, 

through a cross-feeding process, prebiotics modulate a wider range of microorganisms 

other than Lactobacillus spp. and Bifidobacterium spp. (Gibson et al., 2017). 
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To exclude antibiotics from the prebiotic concept, because they also induce gut 

microbiota changes and positive host effects when are added to the fed, it is essential to 

clarify that the prebiotic compound is metabolized by bacteria to organic molecules that 

can be later used by the host, whereas antibiotics do not. Likewise, restricting the 

prebiotic concept to compounds that exert their action through their metabolization by 

resident microbiota is important. Otherwise, any compound, medicament or feed 

ingredient that affects the gut microecosystem could be considered a prebiotic (Bindels 

et al., 2015).  

A prebiotic compound also needs to be resistant to gastric acidity, enzymatic 

hydrolysis and gastrointestinal absorption, must be selectively metabolized by 

beneficial commensal bacteria, and its fermentation should induce local or systemic 

benefits to the host (Gibson and Roberfroid, 1995). According to recent studies, only 

inulin and inulin-derived fructo-oligosaccharide products (FOS) fulfill all the criteria for 

prebiotic classification in livestock (Angelakis, 2017). However, galacto-

oligosaccharides (GOS), mannan-oligosaccharides (MOS), glycol-oligosaccharides, 

malto-oligosaccharides, xylo-oligosaccharides (XOS), gluco-oligosaccharides, pectins, 

lactose and its derivatives, including lactulose and lactosucrose, have also been 

recognized as candidate prebiotics (EFSA, 2017). However, it has been anticipated that 

this list will continue to expand as more knowledge about the interaction between feed 

components and GIT microbiome becomes available (Hutkins et al., 2016).  

The underlying mechanisms by which prebiotics improve poultry performance 

are mainly based on prebiotic-mediated changes in the GIT commensal microbiota 

(Rinttilä and Apajalahti, 2013; Pourabedin and Zhao, 2015). Given that prebiotics are 

usually fermentable substrates, their most obvious effect is their ability to modify the 

GIT microbiota composition towards the enrichment with resident microbial groups 

able to use prebiotic compounds as an energy substrate for their fermentative processes 

(Valcheva and Dieleman, 2016). Fermentation of prebiotics results in short-chain fatty 

acids (SCFAs) production, which reduce luminal pH, provide energy for epithelial cells 

and for the host. Moreover, a balanced bacterial population confers metabolic, 

protective, and trophic functions to the host through a wide range of products accessible 

to host cell, influencing host physiological processes locally and systemically (Verbeke 

et al., 2015; Ajuwon, 2016; Valcheva and Dieleman, 2016; Fig 1).  
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Fig 1. Potential mechanism of action of in-feed prebiotics. (Figure based on Pourabedin 

and Zhao, 2015). 

 

2.1.1 Prebiotics and host nutritional benefits 

 

Host nutritional benefits due to prebiotics supplementation are mainly related to 

its fermentation into SCFAs in the hindgut (mainly acetic, propionic, and butyric acids, 

as well as lactate). SCFAs are absorbed across the cecal epithelium by passive diffusion, 

providing up to 11% of metabolizable energy for mature birds (Annison et al., 1968). 

SCFAs could also improve mineral and protein availability because they reduce 

intestinal pH, promoting their solubilization (Feng et al., 2005; Resta, 2009).  

Microbial prebiotic-mediated changes also affect the synthesis of vitamins and 

nitrogen compounds, the degradation of dietary indigestible components, and facilitate 

the removal of undesirable dietary components. Broilers’ cecum microbiome encodes 

up to 5% of genes for co-factor and vitamin synthesis, and 10% for protein and amino 
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acid metabolism (Danzeisen et al., 2011) that could be used by the host or for the 

microbial metabolism itself (Pan and Yu, 2014). Moreover, metagenomics analysis in 

broilers revealed the presence of genes encoding lactase, cellulase, hemicellulase, and 

arabinoxylanse activity, contributing to the microbial digestion of these indigestible 

dietary components for SCFAs production (Qu et al., 2008; Sergeant et al., 2014), as 

well as amylase and protease activity (Xu et al., 2003). Microbial action also contributes 

to remove anti-nutritional factors such as saponins (García-Amado et al., 2007) and 

mycotoxins (Young et al., 2007), increasing the nutritional value of feedstuffs. 

 

2.1.2 Prebiotics-mediated changes on intestinal morphology, health status, and 

immune system 

 

 Increased proliferation of enterocytes, increment of villus height, villus:crypt 

ratio, and improvement of intestinal epithelial barrier by strengthening of tight-junctions 

are promoted by the fermentation of prebiotics into SCFAs, especially butyric acid 

(Abdelqader et al., 2013; Pourabedin et al., 2014). Improvements in gut morphology 

lead to positive effects on feed utilization, and also create a protective barrier against 

enteric diseases since an adequate epithelial integrity decreases both the risk of 

pathogens invasion and the permeability to endotoxins (Hooper and Gordon, 2001). 

Dietary prebiotics promote a balanced commensal GIT microbiota that acts 

protecting the host against the establishment of enteric pathogens. Commensal 

communities colonize the intestinal mucosa and form a dense layer of bacteria covering 

the mucosal surface. This layer of bacteria occupies diverse niches, blocking the 

attachment sites and subsequent colonization by enteric pathogens by means 

competitive exclusion (Nurmi et al., 1992). Bacteria also produce bacteriostatic and 

bactericidal substances that control the population of pathogens. Previous studies in 

broilers have shown that lactic acid and other SCFAs produced by commensal bacteria 

inhibit the growth of E. coli, Salmonella Typhimurium, and Clostridium perfringens by 

means of pH reduction and the bactericidal effect of undissociated form of SCFAs (van 

der Wielen et al., 2002a; Murry et al., 2004). Moreover, it has been determined that 

various strains of bacteria isolated from chicken GIT tract can also produce bacteriocins 

with inhibitory effects against Salmonella Enteritidis, Campylobacter jejuni (Stern et 

al., 2006), and Listeria monocytogenes (Shin et al., 2008). 
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Resident bacteria also stimulate mucosa mechanisms of defense, increasing the 

number of goblet cells and mucus production (Gaggìa et al., 2010). Moreover, 

microorganisms act as an antigenic stimulus for the maturation of the gut-associated 

lymphoid tissue, contribute to increase the number of intraepithelial lymphocytes and 

the immunoglobulin producing cells (Umesaki, 2014). 

 

2.2 Dietary factors affecting the effectiveness of prebiotics  

 

The type of cereal used in diet formulations is one of the factors influencing the 

effects of prebiotics, so that the commensal microbial profile of poultry fed with a corn-

based diet largely varies in diversity and community composition from those fed with 

wheat, barley or rice (Jia et al., 2009; Hammons et al., 2010; Rodríguez et al., 2012). In 

consequence, the resident gut bacteria able to ferment and use prebiotics as a growth 

substrate differ, as well as their metabolites, widely influencing the prebiotic-mediated 

effects. In particular, cereals containing high levels of indigestible, water-soluble, non-

starch polysaccharides (NSP) such as wheat, barley or rice, favor the proliferation of 

Clostridium perfringens or E. coli, whereas those cereals poorer in NSP do not (Jia et 

al., 2009). Moreover, even a slight variation in the type of cereal grain can affect 

intestinal bacteria at the strain level, as demonstrated by Hammons et al. (2010), who 

found that a standard corn-soybean ration with or without wheat middlings influence the 

strain of Lactobacillus agilis. Therefore, to properly evaluate the prebiotics efficacy and 

their usefulness in a poultry feeding context, they should be tested using different cereal 

matrixes.  

The efficacy of prebiotics could also be affected by the presence of other diet 

additives. Their dietary combination with probiotics (directly fed microorganisms), 

turning them into synbiotics, confers benefits beyond those achieved by prebiotics alone 

(Awad et al., 2009). When prebiotics are combined with probiotics in diets, they benefit 

the host by improving the survival and implantation of live microbial dietary 

supplements in the GIT by acting as their substrate (Gibson and Roberfroid, 1995). A 

more efficient probiotic implantation as well as the prebiotics stimulating effect on 

resident bacteria contribute to maintaining intestinal homeostasis and the general health 

status of the host. Indeed, performance and microbial GIT results are favored, in 

poultry, by the joint use of prebiotics and probiotics (Awad et al., 2009; Abdelqader et 
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al., 2013; Wang et al., 2016), although findings are inconsistent (Willis et al., 2007; 

Jung et al., 2008). Prebiotics efficacy could also be maximized by combine them with 

organic acids or natural antimicrobials, that reduce the gastrointestinal load of 

potentially pathogenic bacteria (Adil et al., 2010; Kong et al., 2010). Under these 

conditions, prebiotics could be selectively fermented and used as a substrate for 

beneficial commensal bacteria, conferring multiple benefits to the host as reported by 

Çinar et al. (2009) and Taherpour et al. (2012). These evidences indicate that it is worth 

evaluating the prebiotics combinations with other dietary substances to determine 

potential synergism.    

 

3. AN INSIGHT OF THE MICROBIOTA COMPOSITION OF THE AVIAN 

GASTROINTESTINAL TRACT 

 

The avian GIT is densely populated with microorganisms. Bacteria are by far the 

main colonizers, although archea, fungi, and viruses have also been identified (Wei et 

al., 2013). Microorganisms are found across the entire length of the GIT, where 

different sections are colonized by specialized microbiota adapted to the 

physicochemical conditions, host physiology, and nutrient availability (Borda-Molina et 

al., 2016). Nonetheless, microbial communities are tightly interconnected between GIT 

organs, influencing microbiota both up and down-stream (Stanley et al., 2014). 

Moreover, each microbial community exhibits a wide variation in their genome content, 

affecting their roles within the overall ecosystem (Mohd Shaufi et al., 2015).  

The crop and gizzard, where feed is temporally stored, fermented, and mechanically 

grinded, are highly dominated by lactic acid producing bacteria belonging mainly to 

Lactobacillus species (Witzig et al., 2015; Borda-Molina et al., 2016). The duodenum 

and ileum, where most of nutrient enzymatic digestion and absorption occurs, are 

mainly colonized by Lactobacillus species and, to a lesser extent, by Clostridium, 

Streptococcus, and Enterococcus (Stanley et al., 2014; Borda-Molina et al., 2016). The 

cecum, where complex non-digested substrates such as cellulose and other 

polysaccharides are fermented, consist of two blind pouches that have the longest 

residence time of digesta (12-20 hours) of all digestive organs (Pan and Yu, 2014). It is 

by far the most densely colonized organ in birds, and its bacterial diversity is much 

higher than that found in the upper GIT tract (Stanley et al., 2014; Mohd Shaufi et al., 
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2015). This organ can harbor more than 2,300 operational taxonomic units (OTUs; 95% 

sequence identity; Danzeisen et al., 2011), with the most abundant bacterial families 

belonging to Ruminococcaceae, Lachnospiraceae, Anaeroplasmataceae, 

Erysipelotrichaceae, Peptoccaceae, and Lactobacilaceae (Borda-Molina et al., 2016), 

although a significant proportion belonging to Bifidobacteriaceae and Coriobacteriaceae 

have also been identified (Apajalahti and Vienola, 2016). However, ceca microbial 

community description is still ongoing, what makes it the target organ to evaluate 

responses associated to poultry feeding practices (Rinttilä and Apajalahti, 2013; Stanley 

et al., 2014).  

Significant changes in the taxonomical composition of the GIT occur during the 

lifespan of laying hens and broilers (Oakley et al., 2014; Videnska et al., 2014; 

Ranjitkar et al., 2016). As animals grow, the complexity of the GIT increases. Certain 

bacteria may disappear or emerge in the intestinal microbiota of older animals over 

time, while others remain stable throughout their entire life. Members belonging to 

Firmicutes phylum are consistently identified in the ceca of hens and broilers during 

their life, whereas Proteobacteria members are abundant during the first week, but 

decrease at expenses of Bacteroidetes in older animals (Videnska et al., 2014; Ranjitkar 

et al., 2016). Despite this dynamic microbiota succession, Ranjitkar et al. (2016) 

suggested that a mature microbiota in broilers is stablished after 22 days of age, whereas 

Videnska et al. (2014) reported extensive successional changes during the lifespan of 

hens, identifying a stable microbiota composition only from 7 months of age onwards. 

Nevertheless, Oakley et al. (2014) reported that age-related microbiota changes can be 

strongly influenced by diet variations, suggesting that it would be relevant to study the 

diet effects at different poultry ages. This is because diet is also one of the major factors 

that shape the microbial profile and their encoded functions, having the potential to 

influence it towards a desired direction (Apajalahti et al., 2004; Rehman et al., 2007). 

However, the diet is usually formulated to meet poultry nutritional requirements, but its 

ability to influence the metabolically active microbiota is often overlooked (Apajalahti 

and Vienola, 2016). Microorganisms derive most of their energy from dietary 

compounds, which are either resistant to the attack of digestive enzymes and acids, or 

are absorbed so slowly by the host that bacteria can successfully compete for them 

(Apajalahti et al., 2004; Pan and Yu, 2014). As bacterial species have different nutrient 

preferences for maintenance and growth, the GIT microbial profile, and largely the 
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cecal profile, is commonly considered a reflection of the ingested feed, and the digested 

and absorbed nutrients in the proximal intestine (Apajalahti et al., 2004).  

 

4. DRY WHEY POWDER AS AN ALTERNATIVE PREBIOTIC SOURCE 

 

4.1 Whey production and end disposal management 

 

Whey is the residual liquid obtained after casein precipitation by action of acids 

or enzymes during cheese-making and casein manufacture processes (Smithers, 2008). 

The former, whose pH is ≤ 5, is called acid whey and it is obtained by direct 

acidification of milk, while the latter, whose pH is around 6, is called sweet whey and it 

is produced by the enzymatic coagulation of milk (Illanes, 2016). Usually, the 

production of one kilogram of cow cheese is associated with the generation of 9 liters of 

liquid whey, although it is almost half of that amount for sheep or goat cheese 

(Guimarães et al., 2008).  

The steady growth in the production of dairy products has led to a concomitant 

increase in the volume of whey produced. Recent statistics have shown that the total 

worldwide cheese production has increased at a rate of 2.3% per year from 2004 to 

2014. In parallel, liquid whey has grown at a rate of 2.2% per year in the same period of 

time (FAO, 2017). In Spain, the evolution of cheese production during those years 

showed a fluctuant increase of 0.5%, while registers for whey are scarce but show an 

increase of 2.4% from 2012 to 2014 (Fig 2). In any case, whey is the major co-product 

of dairy industries, and is usually considered a nuisance (Smithers, 2015). 

Dairy companies have sought out the most economical end disposal methods for 

whey, which are usually based on the premise that whey is a waste product with little 

value (Gajendragadkar and Gogate, 2016). Such strategies have included spraying it in 

open fields, discharging into water bodies or treatment through municipal sewage 

systems (Smithers, 2008), without considering that whey has more polluting power than 

a typical sewage effluent (Ryan and Walsh, 2016). While these practices provided at 

least a partial and quick solution, all of them lead to legislative punishments for 

contamination and therefore low economical return (Smithers, 2008; Gajendragadkar 

and Gogate, 2016). Moreover, these methods have never provided a sustainable solution 

for whey management.  
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Fig 2. Worldwide and Spanish liquid whey and cheese production. Data of liquid whey 

includes all dairy sources of whey (FAO, 2017). 

 

Legislative restrictions on whey disposal have encouraged the exploration of its 

physical, chemical, nutritional and biological properties, showing that whey is a 

relevant source of nutrients. Liquid whey retains about 55% of the milk solids (Siso, 

1996), of which the great majority are lactose (accounting to 70-72%), followed by 

whey proteins (12%), and minerals (10%; Table 1). Therefore, its inadequate end 

disposal means a loss of nutrients as well (Gajendragadkar and Gogate, 2016). In fact, 

whey valorization commenced with approaches concerning to lactose utilization as a 

primary whey solid component (Gänzle et al., 2008). Afterwards, the possibility of 

taking advantage of whey proteins gained importance because of their remarkable 

biological value, which exceeds that of other common edible proteins such as eggs by 

5%, and meat or soybean by up to 30% (Smithers, 2008). As a result of the intrinsic 

value of whey components, the challenge consists in turning it from a waste product 

into a valuable raw material to be used by the animal feeding, agri-food, biotechnology, 

or pharmacological industries (Smithers, 2015; Chen and Gänzle, 2017). 
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Table 1. Chemical composition of liquid and dry whey. 

Component (%) Liquid whey
 

Sweet dry whey 
a 

   

Lactose 5.0 70 

Total protein 
b 

1.0 12 

Fat 0.2 2.9 

Sodium chloride  0.3 3.0 

Ash 0.7 8.6 

Calcium 0.05 1.55 

Phosphorous 0.04 1.00 
a 

Consolidated data from Shingoethe (1975), Smithers (2015), and Neiker-Tecnalia 

analysis. 
b 

Whey protein comprises ~50% of β-lactoglobulin, ~20% α-lactalbumin, 

~20% glycomacropeptide, and ~10% among immonuglobulins, lactoferrin, 

lactoperoxidase, serum album, lysozyme, and growth factors. 

 

4.2 Use of whey in animal feeding  

 

 Whey has been considered as a highly nutritive co-product that can be used to 

feed farm animals in liquid, condensed or dried form, or as dried whey products 

(Schingoethe, 1975; Siso, 1996). However, since whey contains more than 90% of 

water and high amounts of readily fermentable components, it is difficult to supply it 

under sanitary acceptable conditions (Illanes, 2016). As a result, the use of dry whey 

powder is widely preferred, as well as the use of sweet whey because it has better flavor 

and less salt content than acid whey (Siso, 1996).  

The valorization of whey for animal feeding has been mainly focused on the use 

of lactose as the major solid component (Gänzle et al., 2008; Smithers, 2008), 

representing an energy source. Its energy value for ruminants and pigs is comparable to 

the energy value of corn and wheat, and slightly higher than barley (Table 3). In 

newborn calves, dry whey is frequently included in the milk replacer formula as the 

major carbohydrate component (Pantophlet et al., 2016), while in dairy cows at late 

stage of lactation, both whey and pure lactose have successfully replaced cornstarch 

(DeFrain et al., 2004). Similarly, dry whey has been included in weanling and growing 

pigs’ diets (Grinstead et al., 2000; Lutz et al., 2017). However, for laying hens and 

broilers, whey represents less energy supply than other cereals, but the positive 

properties rely on the prebiotic-lactose effects (Morishita et al., 1982; van der Wielen et 

al., 2002a). Moreover, the use of other whey derivatives in poultry feeding, like whey 

proteins, has also recently been explored (Szczurek et al., 2013).  
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Table 2. Energy content of dry whey, corn, wheat, and barley 
1  

 Dry whey Corn Wheat Barley 

Dairy cows 
2
 1.07 1.06 1.05 1.00 

Beef 
3
 1.09 1.08 1.06 1.00 

Growing pigs 
4
 14.11 14.94 14.94 14.11 

Broilers and laying hens 
5
 8.58 14.00 13.46 11.64 

1
 Data obtained from FEDNA (2010). 

2 
Energetic values expressed as Feed Units for 

Lactation. 
3
 Energetic values expressed as Feed Units for growth. 

4
 Energetic values 

expressed as Digestible Energy (MJ/kg). 
5
 Energetic values expressed as Apparent 

Metabolizable Energy corrected by N (EMAn, MJ/kg). 

 

4.2.1 Lactose as prebiotic in poultry and its effects on performance 

 

Lactose (4-0-b-galactopyranosyl-D-glucopyranose, C12H22O11) is a disaccharide 

consisting of galactose bound to glucose. Lactose can be considered as a prebiotic-like 

compound because it is non-digested by poultry host, but may promote the growth of 

beneficial intestinal bacteria. To be metabolized, lactose requires the hydrolysis by the 

lactase-brush border enzyme in the intestine (Deng et al., 2015). However, lactase 

activity in the proximal intestine of birds is negligible (Denbow, 2000), entering to the 

large intestine at higher concentrations than other sugars (Morishita et al., 1982). Thus, 

undigested lactose is fermented by large intestinal microbiota (Siddons, 1972), affecting 

the intestinal microorganisms composition and their fermentation products (Atkinson et 

al., 1957; van der Wielen et al., 2002a; Venema, 2012). It is known that inadequate high 

amounts of lactose might result in formation of gas causing intestinal discomfort, 

bloating, and osmotic diarrhea (Morishita et al., 1982; Shariatmadari and Forbes, 2005). 

Nevertheless, microbial lactose fermentation is considered beneficial to the poultry host 

if side effects are avoided by supplementing appropriate amounts to the diet (Venema, 

2012).  

Studies about the influence of lactose on the GIT microbiota composition of 

chickens began about 90 years ago, reporting the consistent finding that lactose acts as 

prebiotic, increasing Lactobacillus spp. and Bifidobacterium spp. cecal counts 

(Ashcraft, 1933; Atkinson et al., 1957; Samli et al., 2007; Radfar and Farhoomand, 

2008). Moreover, other findings reinforced the lactose-prebiotic effects, showing that it 

reduces Salmonella enteriditis (Tellez et al., 1993) and Salmonella typhimurium counts 

(DeLoach et al., 1990; Hinton et al., 1991). However, a more comprehensive research 
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about the detailed effects of lactose on the GIT microbiota composition using culture-

independent methods are lacking so far. One option to expand the knowledge is to use 

the technical progress in the field of next-generation sequencing and bioinformatics 

analysis, which overcome the cultivation biases and offer detailed information on 

microbial composition, diversity structure, and functionality of biological samples (Qu 

et al., 2008; Deusch et al., 2015). 

Regarding the performance effects promoted by lactose, results consistently 

indicate that its supplementation to corn-soybean based diets improve broilers’ body 

weight gain (Gulsen et al., 2002; Kermanshahi and Rostami, 2006; Radfar and 

Farhoomand, 2008; Khani et al., 2015) and laying hens’ egg production (Aghaei et al., 

2010), together with the increase on Lactobacillus spp. and Bifidobacterium spp. cecal 

counts, although knowledge about the lactose-prebiotic effects using a cereal matrix 

other than corn have not yet been reported. Further lactose-induced effects such as the 

maintenance of the immune system, and the improvement on ileum morphology 

(Gulsen et al., 2002) have also been attributed, while little is known about its effect on 

nutrient digestibility and duodenal histomorphology. Moreover, to the best of our 

knowledge, studies related to the search of synergies between lactose and other feed 

additives on poultry feeding have not been described up to now. 
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MAIN OBJETIVE 

 

To evaluate the prebiotic potential of dry whey powder on laying hens and broilers 

feeding, and its influence on productive performance, cecal microbiota profile and 

digestive parameters. 

 

Specific objectives 

1. To assess the effect of supplementing corn-soybean based diets for laying hens 

with dry whey powder alone or combined with a probiotic on the productive 

performance, egg quality traits, and cecal microbial counts (Chapter 1). 

 

2. To provide an insight into the cecal microbiome changes in response to dietary 

inclusion of dry whey powder alone or combined with a probiotic (Chapter 2). 

 

3. To evaluate the effect of supplementing corn-soybean based diets for broilers 

with dry whey powder alone or combined with calcium butyrate on the 

productive performance, duodenal morphometry, nutrient digestibility, and cecal 

bacteria counts (Chapter 3).  

 

4. To evaluate the effect of supplementing corn-soybean based diets for broilers 

with dry whey powder and whey protein concentrate on the productive 

performance, nutrient digestibility, and ceca microbiota community (Chapter 4). 

 

5. To evaluate the effect of supplementing wheat-barley based diets for broilers 

with dry whey powder and other non-antibiotic feed additives on performance, 

duodenal histomorphometry, and cecal microbiota community (Chapter 5).  
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ABSTRACT 

 

Probiotics, prebiotics, and synbiotics have been proposed as safe additives in 

animal feeding. The purpose of this study was to assess the effect of supplementing 

corn-soybean diets of laying hens with dry whey powder (prebiotic), Pediococcus 

acidilactici (probiotic), and the combination of both (synbiotic) on the productive 

performance, egg quality traits, and cecal microbial counts. A total of 300 laying hens, 

57 wk of age, were randomly allocated to floor pens for 70 d. Pens were assigned to 1 

of 4 experimental diets with 5 pens per treatment and 15 laying hens per pen. The 

experiment consisted of a 2×2 factorial arrangement of treatments with 2 levels of 

inclusion of dry whey powder (DWP, 0 and 60 g/kg of diet) and 2 levels of P. 

acidilactici (PA, 0 and 2 g/kg of diet). Cecal counts of Bifidobacterium spp. were 

increased with the addition of DWP (8.4 vs. 6.5 log10 cfu/g cecal content, P = 0.012). 

An interaction between levels of DWP and PA was found on egg production (P = 0.008) 

and on cecal counts of Clostridium perfringens (P=0.047), so that the addition of DWP 

increased egg production (82.5 vs. 75.6%) and reduced Clostridium perfringens colony 

counts (4.3 vs. 5.8 log10 cfu/g cecal content) only when PA was not used. In conclusion 

the joint addition of DWP and PA in hens’ diets during the late stage of production did 

not improve productive performance or change the cecal microbial population. 

However, the addition of DWP increased Bifidobacterium spp. cecal counts and only 

reduced the Clostridium perfringens counts together with an increase on egg 

production, when PA was not added. 

 

1. INTRODUCTION 

 

It is well known that nutrition, age, and health status, as well as housing system, 

are key factors influencing the productive performance of laying hens (Ahmadi and 

Rahimi, 2011). Their health status, egg production, and quality will decrease after the 

laying peak (Liu et al., 2013). Because the use of medication is being minimized to 

avoid potential residues in eggs, producers rely on nutritional measures to improve the 

persistency on egg production and the resistance against intestinal disorders (Lensing et 

al., 2012; Yörük et al., 2004). As a consequence, the use of prebiotics, probiotics, and 

synbiotics in diets could be a safe alternative to improve animal performance and health 
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(Janczyk et al., 2009; Patterson and Burkholder, 2003). Whey is a coproduct of cheese-

making process, with lactose being its major component (about 70% of dry matter; 

Aghaei et al., 2010). Lactose can be used as a prebiotic in non-mammalian animals, 

because they lack the enzyme lactase (Allaart et al., 2013). Lactose is not digested, and 

is thus fermented by the cecal microflora, which could decrease pH, promote lactic-acid 

bacteria growth, and suppress pathogenic bacteria (Gülsen et al., 2002; van der Wielen 

et al., 2002). Probiotics, such as Pediococcus acidilactici, are beneficial live 

microorganisms that confer health benefits to the host mainly through the regulation of 

the intestinal microbial homeostasis (Gaggìa et al., 2010). Synbiotic is known as the 

combination of probiotics and prebiotics. Prebiotics beneficially affect the host because 

improve the survival and implantation of probiotics in the gastrointestinal tract (Awad 

et al., 2009). 

We hypothesize that the beneficial effect of Pediococcus acidilactici could be 

enhanced by the simultaneous addition of dry whey powder so as to obtain additional 

benefits beyond those achieved when provided alone. Therefore, the purpose of this 

study was to assess the effect of diets supplemented with dry whey powder (prebiotic), 

P. acidilactici (probiotic), or their combination (synbiotics), on the productive 

performance, egg quality traits, and cecal microbial populations of floor-housed laying 

hens during the late phase of production. 

 

2. MATERIALS AND METHODS 

 

2.1 Animal housing and experimental diets 

 

The experiment followed the European Union (2010/63/EU) and Spanish 

regulations (RD 53/2013) for animal experimentation, and was conducted at the 

experimental facilities of Neiker-Tecnalia (Vitoria-Gasteiz, Spain). A flock of 300, 57 

wk-old hens (ISA Brown strain, Avigán Terralta S.A, Tarragona, Spain) with uniform 

body weight (2,035.4 ± 52 g) was used in an experiment lasting 70-d. Hens were 

randomly allocated, in groups of 15, to 2.5 m
2
 floor pens with wood shavings. They had 

been fed with the same commercial diet, and had been subjected to the light program 

established by commercial guidelines previous to the experiment (ISA, 2010).  
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Pens were randomly assigned to 1 of 4 experimental treatments, each with 5 

replicates, consisting in 4 dietary treatments: no supplementation of dry whey powder 

(DWP) or P. acidilactici/kg of diet (PA), inclusion of 60 g of DWP/kg of diet, 2 g of 

PA/kg of diet, or a mixture of 60 g of DWP and 2 g of PA/kg of diet. Dry whey powder 

was a commercial sweet powder (Sueromancha S.L, Toledo, Spain; 703 g of lactose/kg 

of product). The commercial probiotic (Bactocell, Lallemand, France) contained a live 

culture of P. acidilactici (strain MA 18/5, 1010 cfu/g). All experimental diets were 

formulated to meet laying hens’ requirements (FEDNA, 2008), with ingredients and 

composition shown in Table 1. Feed and water were provided ad libitum and the light 

cycle program was 16 L:8D throughout the experiment. 

 

2.2  Sample collection 

 

The feeder from each pen was weighted weekly to calculate feed intake. Total 

eggs produced per pen were recorded daily to calculate egg production. Last day of the 

experiment, 3 hens per treatment were randomly selected and slaughtered by CO2 

inhalation. The cecal content was collected from each hen for bacterial counts. 

 

2.3  Calculations and measurements 

 

Feed intake was calculated as the difference between initial and final feeder 

weight. Feed conversion ratio (FCR) was expressed as the amount of feed (kg) to 

produce 1 kg of eggs or 12 eggs. Egg measurements started 2 wk after the beginning of 

the experiment. Egg production was calculated weekly as described by Ajakaiye et al. 

(2010). Eggs laid during the last day of each week were individually weighed and 

graded according to European Commission (2008). Egg quality traits were measured on 

12 eggs per pen laid on three consecutive days. Measurements of egg weight, shell 

thickness and albumen height were made according to Keener et al. (2006). Yolk index 

was calculated as the ratio of yolk height to yolk diameter, while egg-shape index was 

calculated as the ratio of egg width to egg length. Haugh units score were estimated 

using the formula Haugh=100×log (T–1.7× W0.37+7.57), where H=height of the 

albumen (mm) and W=egg weight (g). Escherichia coli culture and counts were 

determined on chromogenic medium (ChromID coli, BioMérieux, France) and 
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Clostridium perfringens on tryptone sulphite neomycine agar (Scharlab, Spain). 

Bifidobacterium spp. and Lactobacillus spp. were cultured and enumerated on the man, 

rogosa and sharpe agar (Becton, Dickinson and Company, New Jersey, USA) according 

to O’Sullivan et al. (2011). 

 

Table 3. Dietary ingredients and composition of the experimental diets (as-fed basis). 

Item  

  

PA 
1
 (g/kg) 

 
0 0 2 2 

DWP
 2
 (g/kg) 
 

0 60 0 60 

Ingredients (g/kg)    

Yellow corn  413 455 409 451 

Soybean meal  252 250 253 251 

Wheat  100 100 100 100 

Barley  100 0 100 0 

Soybean oil  23.1 25.1 24.4 26.3 

DWP  0 60 0 60 

PA  0 0 2 2 

Dicalcium phosphate  17.5 15.8 17.5 15.8 

Sodium chloride   3.3 2.2 3.3 2.2 

Vitamin-mineral   
6 6 6 6 

premix and pigments 
3
 

Other components
4
  85.2 85 85.2 85 

      

Chemical composition      

AMEn 
5
, MJ/kg   11.5 11.5 11.5 11.5 

Crude protein, g/kg  173 173 173 173 

Ca, g/kg   38 38 38 38 

Available P
 6 

, g/kg  3.7 3.7 3.7 3.7 
 1 

PA = Pediococcus acidilactici. Bactocell (strain MA 18/5, 10
10

 cfu/g; Lallemand, 

Blagnac, France). 
2 

DWP = dry whey powder. Dry sweet powder (703 g of lactose/kg of 

product; Sueromancha S.L, Toledo, Spain Toledo). 
3 

Providing the following per 

kilogram of diet: vitamin A, 8,000 IU; vitamin D3, 1,600 IU; vitamin E, 16 mg; 

thiamine, 1 mg; riboflavin, 3 mg; pyridoxine, 1 mg; vitamin B12, 0.01 mg; vitamin K, 1 

mg; pantotenic acid, 7 mg; nicotinic acid, 16 mg; Mn, 70 mg; ZnO, 50 mg; Fe (FeSO4 

H2O), 30 mg; Cu (CuSO4 5H2O), 4 mg; I (KI), 1 mg; Co, 0.2 mg; Se (Na2SeO3), 0.1 

mg; CL, 240 mg; phytase, 300 units; ethoxyquin, 110 mg; xanthine, 0.6 mg, and 

canthaxanthin, 0.4 mg. 
4 

Providing the following per kilogram of diet: L-Methionine, 

1.2; Sodium bicarbonate, 0.6; Calcium carbonate, 83.4. 
5 

AMEn: Apparent 

metabolizable energy corrected by N, calculated according to FEDNA (2010). 
6 

Calculated value.  
 

2.4 Statistical analysis 
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Pen was considered the experimental unit. Data were analyzed considering a 2×2 

factorial arrangement of treatments using the MIXED procedure of SAS (SAS Inst. Inc., 

Cary, NC, US). The results were considered significant if P < 0.05. 

 

3. RESULTS 

 

No deaths occurred during the experiment. Results relative to productive 

performance, egg quality traits and cecal microbial counts are shown in Table 2. An 

interaction between levels of DWP and PA was found on egg production (P = 0.008) 

and on cecal counts of Clostridium perfringens (P = 0.047), so that the addition of DWP 

increased egg production (82.5 vs. 75.6%) and reduced C. perfringens (4.3 vs. 5.8 log10 

cfu/g cecal content) only when PA was not used. Cecal counts of Bifidobacterium spp. 

was increased with the addition of WP (P = 0.012). However, these microbial results 

should be viewed with caution because of the reduced number of replicate pens with 1 

hen per pen. The remaining performance results, including egg quality traits, and cecal 

counts were not affected by the evaluated levels additives. 

 

4. DISCUSSION 

 

To the best our knowledge no studies until today have reported the joint use of 

DWP and PA in poultry diets. The mixture of DWP and PA did not result in a synergic 

effect leading to a positive modulation of cecal bacteria and to better performance, as 

previously reported with different mixtures of prebiotics and probiotics in poultry diets 

(Gaggìa et al., 2010). PA are usually found in the gastrointestinal tract of healthy 

chickens (Ghareeb et al., 2012), and thus their adaptation to gut host conditions should 

not be a problem when is externally supplemented. However, the simultaneous presence 

of DWP could stimulate the development of other bacteria populations that could 

compete with PA for sites of attachment to the gut or for the usage of growth substrates, 

limiting the PA growth and their beneficial function on hens. Other possible reasons for 

the lack of a synergic effect during the present study would be the type of 

microorganisms chosen as probiotics, the evaluated dose, the prebiotic sources, or a 

combination of all these aspects (Chambers and Gong, 2011). Therefore, further 
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research is necessary to determine the adequate additive doses, or to find another 

complementary additive with a better synergistic effect with those tested in this study. 

The inclusion of DWP in the diets, however, increased egg production by 9% 

together with a concomitant reduction of 26% in C. perfringens counts only when PA 

was not added. We consider that lactose contained in DWP promoted the observed 

changes. Lactose is not absorbed in the intestine of poultry, but is fermented to short 

chain fatty acids (SCFAs) instead (Gülsen et al., 2002). High energy metabolites such as 

SCFAs would supply more energy for poultry metabolism (Józefiak et al., 2004) and 

stimulate greater egg production. It is also known that the absence of detrimental 

bacteria may improve performance in poultry (Torok et al., 2011). Therefore, the 

favourable modulation of cecum bacteria populations may also explain the enhanced 

egg production. 

Feeding with DWP increased Bifidobacterium spp. counts by 30%. Lactose is 

used by Bifidobacterium spp. as a source of energy (Goodfellow et al., 2012), what 

could explain their increase. Larger amounts of health-promoting bacteria such as 

Bifidobacterium spp. might suppress other potentially pathogenic by competitive 

exclusion (Gaggìa et al., 2010), improving then the health status of hens. 
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Table 2. Effect of the experimental diets on animal performance, egg quality, classification, and cecal microbial counts. 

Item  
PA 

1
 (g/kg) 0 0 2 2 SEM 

3
 P-value 

DWP 
2
 (g/kg) 0 60 0 60  DWP PA WP×PA 

Performance (n = 5 pens/treatment; 15 hens/pen) 

Weight gain (g/d) 1.5 2 2 1.1 0.2 0.123 0.329 0.424 

Egg production (%) 75.6 82.5 82.6 76.9 2.0 0.771 0.684 0.008 

Egg weight (g) 66 66.2 65 65.7 0.8 0.720 0.915 0.581 

Feed intake (g DM/d) 86 97 99 100 6.9 0.268 0.468 0.478 

Feed conversion ratio (kg/kg eggs) 1.7 1.8 1.8 2 0.3 0.485 0.598 0.632 

Feed conversion ratio (kg/dozen eggs) 1.4 1.5 1.4 1.6 0.1 0.52 0.666 0.392 

Egg quality (n = 5 pens/treatment; 12 eggs/pen) 

Yolk index 0.48 0.47 0.47 0.48 0.01 0.899 0.896 0.389 

Egg-shape index 74.5 74.3 74.2 74.6 0.2 0.720 0.954 0.384 

Shell thickness (mm) 0.4 0.4 0.4 0.4 0 0.447 0.645 0.341 

Haugh units 90.7 88.7 88.5 89.3 1.1 0.551 0.211 0.179 

> 73 g 5.8 8.8 9.7 9.2 2.1 0.335 0.561 0.435 

63 to 73 g 64.8 58.7 65.3 55.3 4.2 0.876 0.918 0.669 

53 to 62 28.9 31.4 24.9 35 4.4 0.101 0.79 0.371 

< 53 0.4 0.2 0.9 0.5 0.1 0.542 0.637 0.432 

Cecal microbial counts (Log10 cfu/g of cecal content) (n = 3 pens/treatment; 1 hen/pen) 

Bifidobacterium spp. 6.5 8.4 5.2 7.2 6.8 0.012 0.074 0.996 

Lactobacillus spp. 9 9 9.8 9.2 9.3 0.310 0.111 0.277 

Clostridium perfringens 5.8 4.3 4.8 4.9 4.9 0.071 0.631 0.047 

E. coli 6.3 6.6 7.0 6.5 6.6 0.819 0.448 0.264 
1 

PA = Pediococcus acidilactici; 
2
 DDWP = dry whey powder; 

3 
SEM: Standard error of the mean. 
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5. CONCLUSION 

 

In conclusion the joint addition of DWP and PA in hens’ diets during the late 

stage of production did not improve productive performance or change the cecal 

microbial population. However, the addition of DWP increased Bifidobacterium spp. 

cecal counts and only reduced the Clostridium perfringens counts together with an 

increase on egg production, when PA was not added. 
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ABSTRACT 

 

Diet plays an important role in modulating the cecal microbiome. On this study 

we aim to assess the effects, on the ceca of laying hens, of supplementing diets with dry 

whey powder as prebiotic, Pediococcus acidilactici as probiotic, and the combination of 

both as synbiotic for 70 days. Cecal microbiota composition was determined using 16S 

rRNA Illumina amplicon gene sequencing, while functional profiling was studied by 

whole DNA sequencing. Targeted sequencing results showed a clear grouping of the 

samples per diet at operational taxonomic unit (OTU) level. Bacteroidaceae and 

Ruminococcaceae were the most representative families in all diets followed by 

Porphyromonadaceae, while Lachnospiraceae and Coriobacteriaceae were notably more 

detected in the synbiotic diet. Moreover, prebiotic and synbiotic diets promoted the 

presence of Olsenella spp. and Lactobacillus crispatus. In relation to the metagenomics 

approach, it showed that a core of main functions was shared between all metagenomes 

(45%). The prebiotic diet promoted the presence of more unique functions (22.5%) 

compared with control, which showed the lowest percentage (1.6%). Major presence of 

genes encoding the metabolism of butanoate, propanoate, galactose, and inositol 

phosphate were especially stimulated by prebiotic diet. On the other hand, probiotic 

increased the abundance of ascorbate and aldarate metabolism-related genes, while 

synbiotic increased those related to starch and sucrose metabolism. Control showed 

higher presence of genes related to β-lactam resistance, being those absent in synbiotic.  

The results indicated that each dietary supplementation influenced the cecal microbial 

composition, but these changes did not imply a disturbance in their main biological 

roles. However, some specific functions were evident depending on the source of 

supplementation. 

 

1. INTRODUCTION 

 

It is widely recognized that diet is one of the contributing factors shaping the 

composition and functions encoded by the microbiota in the gastrointestinal tract 

(Borda-Molina et al., 2016). Dietary supplements such as prebiotics, probiotics, and 

synbiotics have frequently been used in poultry industry as a feasible alternative to 

increase animal health and performance (Angelakis, 2017). It has been proposed that 



____________________________________________________________CHAPTER 2 

60 

 

underlying mechanisms by which these additives improve animal conditions are mainly 

mediating changes in the gastrointestinal microbiota (Angelakis, 2017). Successful 

productive results in laying hens have been reported due to the inclusion of dry whey 

powder (DWP) as prebiotic (Pineda-Quiroga et al., 2017), and Pediococcus acidilactici 

MA 18/5 (PA) as probiotic (Mikulski et al., 2012), while productive results were 

inconclusive when DWP and PA were used as synbiotic (Pineda-Quiroga et al., 2017). 

However, to the best of our knowledge not many efforts have been done to explore the 

GIT microbial community and its corresponding functionality in laying hens receiving 

these types of additives.  

The ceca are the primary site of fermentation of the avian GIT and it harbor the 

most complex and yet not fully characterize microbial community. Ceca resident 

microorganisms are responsible for a wide range of catabolic pathways, resulting in the 

synthesis of a range of products that are accessible to the host (Stanley et al., 2014). A 

better understanding of the phylogenetic structure and functional capacity of the ceca 

microbial consortia, in response to dietary interventions is essential to elucidate their 

roles in the host physiology and productivity. Sequencing technologies and the 

development of bioinformatic tools allow us to investigate in depth such challenges by 

avoiding the cultivation biases (Sergeant et al., 2014). Therefore, this study aims to give 

a preliminary insight into the microbiota changes in response to the dietary inclusion of 

DWP, PA, and a mixture of both through the analysis of the microbial community 

structure and function usign high throughput sequencing technologies. 

 

2. MATERIALS AND METHODS 

 

2.1 Animals, experimental diets, sample collection, and DNA extraction 

 

The experiment followed the European Union (2010/63/EU) and Spanish 

regulations (RD 53/2013) for the care and use of animals for experimental and other 

scientific purposes. The study was conducted at the experimental farm of Neiker-

Tecnalia in Arkaute (Vitoria-Gasteiz, Spain). A total of 300 laying hens (ISA Brown 

strain, Avigán Terralta S.A, Tarragona, Spain) with 57 weeks of age were managed and 

fed during 10 weeks as described in Pineda-Quiroga et al. (2017). The treatments 

involved a control diet (corn-soybean basal diet without supplementation of DWP or 
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PA), prebiotic (60 g/kg of inclusion of DWP), probiotic (2 g/kg of inclusion of PA), and 

synbiotic (a mixture of 60 g/kg of DWP and 2 g/kg of of PA). The DWP was a 

commercial sweet powder (Sueromancha S.L, Toledo, Spain; 703 g of lactose/kg of 

product) and the probiotic was a commercial probiotic “Bactocell” (Lallemand, France), 

containing a live culture of P. acidilactici (strain MA 18/5, 10
10

 CFU/g). Feed and water 

were provided ad libitum throughout the experiment. 

On the last day of the experiment, 12 hens (three per treatment) were randomly 

selected from different pens and euthanized by CO2 inhalation to isolate cecal digesta 

content. Samples were immediately stored at -80°C until further analysis. Total nucleic 

acid was extracted using the PowerSoil DNA extraction Kit (MOBIO Laboratories Inc., 

Carlsbad, CA, USA) according to the manufacturer recommendations. DNA was 

quantified with Nanodrop ND-1000 Spectrophotometer (Nanodrop Technologies, DE, 

USA) and DNA integrity was checked through agarose gel electrophoresis. 

 

2.2 16S rRNA gene amplification, Illumina sequencing, and bioinformatics 

analysis 

 

Cecal DNA of all sampled hens was used for Illumina amplicon library 

preparation. PCR amplifications of the V1-2 hypervariable region of the 16S rRNA 

gene were performed using PrimeSTAR HS DNA Polymerase (Clontech Labotatories, 

Mountain View, CA, USA) according to Camarinha-Silva et al. (2014). Libraries were 

sequenced using paired-end sequencing on an Illumina MiSeq platform. 

Bioinformatic analysis followed the Mothur Miseq SOP (Kozich et al., 2013). 

Primers and barcodes were trimmed and resulting sequences were aligned using 

SILVA-based bacterial reference alignment. Chimera sequences were checked and 

removed using UCHIME. Finally, 647.359 sequence reads, with a mean number of 

reads per sample of 53.947 ± 3.821 were obtained. These reads were then clustered into 

operational taxonomic units (OTUs) using a ≥ 97% sequence identity threshold. 

Singletons were deleted and OTUs with less than 10 reads per sample were removed 

from the analysis (< 0.002% of the total). Finally, a total of 934 OTUs were 

taxonomically assigned using the naive Bayesian RDP classifier. Sequences are 
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available at the European Nucleotide Archive, under the accession number 

PRJEB21237 in http://www.ebi.ac.uk/ena/data/view/PRJEB21237. 

Relative abundances of the OTUs were analyzed using multivariate statistical 

routines in PRIMER (version 7.0.9, PRIMER-E; Plymouth Marine Laboratory, 

Plymouth UK). Data was standardized by total, and a resemblance matrix was generated 

using Bray-Curtis similarity coefficient. The microbial community structure was 

explored with non-metric multidimensional scaling (nMDS) plots and the statistical 

comparison between diets was determined by means of a permutational analysis of 

variance (PERMANOVA, 999 permutations). Differences were studied based on pair-

wise tests using a permutation method, being considered significant if P < 0.05. 

Individual OTUs contributing to dissimilarity for each comparison were identified by a 

similarity percentage analysis (SIMPER). SIMPER was also used to determinate the 

average of similarity in ceca microbial community composition among the replicates. 

Pielou’s evenness index and Shannon-weaver index of diversity (H') were determined 

and analyzed using a Kruskal- Wallis test (R environment,V 3.3.3).  

 

2.3 Metagenomics sequencing and analysis 

 

Cecal DNA from one laying hen per diet was sequenced through Illumina 

HiSeq2500 platform. The sequencing generated an average number of 7.528.949 

sequences, with a length of 100 base pairs, which were cleaned and assembled using the 

CLC Main Workbench software version 9.0.1 (CLCbio
®
, Maryland, USA). 

Subsequently, genes annotations were done through the metagenomics RAST server 

version 4 (http://metagenomics.anl.gov/). The annotation considered the KEGG 

database for proteins and KEGG categories (KO) for taxonomy, working with default 

parameters from MG-RAST (minimum percentage identity cutoff of 60%, maximum e- 

value cutoff of 1e−5, and minimum alignment length cutoff of 15 bp). The metagenome 

sequences are publicly available under the MG-RAST project mgp21245 (Metagenome 

IDs: control [mgm4730023.3], probiotic [mgm4730065.3], prebiotic [mgm4730022.3] 

and synbiotic [mgm4730024.3]). 

For the data analysis, the log2fold change (LFC) in the presence of genes was 

calculated based on normalized reads with the DESeq R package (Love at al., 2014). 

Genes meeting the cut-off criteria of P-value ≤ 0.05 (Wald test), LFC ≥ 1, or LFC ≤ -1 

http://www.ebi.ac.uk/ena/data/view/PRJEB21237
http://metagenomics.anl.gov/


____________________________________________________________CHAPTER 2 

63 

 

were considered as differentially present. Venn diagram was depicted with those genes 

shared between each diet and their interactions, using the online tool Venny 2.1.0 

(http://bioinfogp.cnb.csic.es/tools/venny/index.html).  

 

3. RESULTS 

 

3.1 Microbial community analysis based on 16S rRNA gene amplicon 

sequencing 

 

Exploring the global bacterial community structure using a nMDS revealed that 

biological replicates grouped per diet (Fig 1). A clear separation was observed between 

samples from control and synbiotic, and also between probiotic and synbiotic diets. The 

average similarity within replicates of ceca samples was 67% in control diet, 69% in 

prebiotic and probiotic, and 59% in synbiotic. PERMANOVA analysis indicated that 

microbial communities of hens fed with control and probiotic were different from those 

fed with prebiotic and synbiotic (P = 0.001), while no differences were found between 

control and probiotic, and between prebiotic and synbiotic. Moreover, the lowest 

Pielou’s evenness and Shannon diversity were detected in synbiotic when compared to 

control (P < 0.030), while no differences were observed between the remaining diets 

(Fig 1).  

 

 

 

 

 

 

 

 

 

Fig 1. nMDS plot showing the distribution of the biological replicates on the diets. The 

diversity calculated with the Shannon index is plotted in the boxplot on the right bottom 

side.  

http://bioinfogp.cnb.csic.es/tools/venny/index.html
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Bacteroidetes was the most abundant phylum identified in all diets (46% on 

average), followed by Firmicutes (34% on average). Prebiotic and synbiotic diets 

promoted the increase on Actinobacteria (14 and 9% on average, respectively) and a 

decrease on Proteobacteria (2.5 and 4% on average, respectively) in comparison to 

control diet (4 and 3.5% on average, respectively), and probiotic (5 and 4% on average, 

respectively; Fig 2A).  

At family level, Bacteroidaceae was dominant in all diets (16% on average), 

followed by Ruminococcaceae (11.5% on average). In prebiotic and synbiotic 

treatments, Coriobacteriaceae and Lactobacillaceae abundance were higher in 

comparison to control and probiotic (10.5 and 4.2% on average for both treatments, 

respectively), while Prevotellaceae was lower (5.6% on average for both treatments) 

(Fig 2B). Porphyromonadaceae and Lachnospiraceae families were identified in similar 

abundances in all diets (8.11 and 6.5% on average, respectively), as well as members of 

less representative families of Spirochaetaceae, Rikenellaceae, Erysipelotrichaceae, and 

Elusimicrobiaceae (3.5, 2.5, 2.4 and 1.2% on average, respectively). At genus level, 

Bacteroides was the most abundant in all diets (14% on average; Fig 2A), whilst 

Olsenella and Lactobacillus were more abundant in prebiotic (6 and 11.5% on average, 

respectively) and synbiotic (4.1 and 4.4% on average, respectively) in comparison to 

control (2.5 and 3.0% on average, respectively) and probiotic (3.0 and 2.5% on average, 

respectively). Representatives of Parabacteroides, Alistipes, and Ruminococcus2 genera 

were detected in all diets with similar abundance (3.3, 2.5, and 2.0% on average, 

respectively), while Barnesiella, Sphaerochaeta, Faecalibacterium, Paraprevotella, 

Elusimicrobium, and Collinsella accounted for nearly 1.2% of the total abundance in all 

treatments.  

The percentage of dissimilarity of cecal microbiota from hens fed with prebiotic 

and control was 46%, prebiotic and probiotic was 38%, synbiotic and control was 39%, 

and synbiotic and probiotic was 43%. These results were mainly due to the higher 

abundance of OTUs associated to Olsenella spp. (OTU 1) and Lactobacillus crispatus 

(OTU 3) in prebiotic and synbiotic diets. Megamonas spp. (OTU 28) was also detected 

in both diets at 1.1% of abundance, although it was less present in control (0.02%) and 

probiotic diets (0.07%). In addition, OTU 2 was one of the most abundant phylotypes 

detected in prebiotic and synbiotic diets in comparison to the control and probiotic, but 

it was not possible to classify it taxonomically (Fig 3). 
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Fig 2. Taxonomical information related to the 16S rRNA gene amplicon sequencing (average relative abundance > 1%). A) The small bars 

indicate information at phylum level and the wider bars indicate information at the genus level. B) Abundance information at family level.

A) B) 



____________________________________________________________CHAPTER 2 

66 

 

OTUs 11, 16, 19, 20, 35 and 28 were detected with nearly 1% of abundance in all 

treatments, but there were not possible to classify them at genus or specie taxonomical 

levels.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3. Box-plots showing the most abundant OTUs. The color convention indicates 

yellow for control, blue for the probiotic, red for the prebiotic and green for the 

synbiotic treatment. Different symbols indicate statistical significance (P ≤  0.05). 

 

3.2 Metagenome analysis 

 

The proportion of bacterial sequences from the metagenome data-set was 99%, 

with the remainder of the reads belonging to Archaea and Eukaryotes. The main phyla 

in all diets were Bacteroidetes (between 46 and 60%) and Firmicutes (between 26 and 

33%), while less than 8% of the reads belong to Actinobacteria and Proteobacteria. The 

annotation analysis of the reads obtained from the KEGG categories identified 4265 

total genes encoding microbial functions, of which a core of 1764 functions (45.5%) 

OTU 1 Olsenella spp. OTU 2 

OTU 3 Lactobacillus crispatus 
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were shared between all metagenomes (Fig. 4). Microbial communities from the 

supplemented diets encoded more functions in comparison with the control, being 

prebiotic those with higher classified unique functions. Moreover, it was observed that 

the microbial consortia of hens fed with control and probiotic diets shared more 

functional information between them (76.2%), while hens fed with prebiotic shared less 

common functions with both control and synbiotic (approx. 57%).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4. Venn diagram depicting the percentage of genes assigned and shared between the 

four metagenomes (the color convention indicates, yellow for control, blue for the 

probiotic, red for the prebiotic and green for the synbiotic). 

 

The fold change analysis showed that control diet mainly increased the 

microbial pathways related to lysine degradation, whereas supplemented diets increased 

the microbial genes related to starch, sucrose, pyruvate, citrate cycle, and 

glycerophospholipids metabolism. Other microbial functions that were also affected by 

control diet are shown in Table 1. Prebiotic supplementation increased the pathways 

related to butanoate, propanoate, fructose, mannose, inositol phosphate metabolism, and 

galactose metabolism in comparison to the others (Table 2). It was also observed an 

PROBIOTIC PREBIOTIC 

CONTROL SYNBIOTIC 
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increase in the abundance of genes related to fatty acid biosynthesis as well as in the 

pathways for the thiamine metabolism in comparison to the other diets. Some specific 

genes related to fatty acids metabolism and retinol metabolism was also exclusively 

identified when prebiotic was offered. On the other hand, feeding with probiotic 

resulted in an increase on the abundance of ascorbate and aldarate metabolism-related 

genes when compared to the remaining diets. This diet also increased the microbial 

genes encoding nicotinate and nicotinamide metabolism in comparison to control and 

prebiotic. Additionally, probiotic was the only diet showing more genes related to 

glyoxylate and dicarboxylate metabolism (Table 3). Synbiotic supplementation 

augmented the pathways for starch and sucrose metabolism in comparison to the others 

(Table 4). This treatment also increased the abundance of genes related to retinol and 

glycolysis/gluconeogenesis metabolism, and with the steroid hormone biosynthesis in 

comparison to other diets. More pathways for amino sugar and nucleotide sugar 

metabolites were promoted by synbiotic compared to probiotic and prebiotic, as well as 

for nicotinate and nicotinamide in relation to control.  

Some functions related to amino acid metabolism and degradation were also 

affected by each dietary treatment, and are shown in Table 1, 2, 3, and 4. Information 

for the biosynthesis of other secondary metabolites did not show remarkably differences 

between the diets. Regarding antibiotic resistance, it was observed higher expression of 

genes for β-lactam resistance (methicillin resistance protein) in control treatment in 

comparison to prebiotic and probiotic diets, whereas it was absent in synbiotic (Table 

1).  
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Table 1. Microbial genes more present in the cecal of laying hens fed with control diet. The functions shown correspond to the third level of the 

KEGG categories assignation. Negative values indicate that the control has a value of 0% of abundance for the corresponding function. 

E.C 
1 

Functions affected 

Control  

vs. 

Probiotic 
 2
 

 

Control 

vs. 

Prebiotic 

 

Control 

vs. 

Synbiotic 

 
 

Control 
3 

Log2FC  Log2FC  Log2FC  Abundance (%) 

Starch and sucrose metabolism  - 

EC:5.4.2.6 Beta-phosphoglucomutase [K01838] -1.64  -1.72  -2.33  - 

Piruvate metabolism 

EC:1.1.2.4 D-lactate dehydrogenase (cytochrome) [K00102] -3.48  -4.13  -3.69  - 

Citrate cycle (TCA cycle)  - 

EC:4.2.1.3 4.2.1.99 2-methylisocitrate dehydratase [K01682] -1.40  -2.05  -1.84  - 

Glycerophospholipid metabolism  - 

EC:1.1.5.3 

Glycerol-3-phosphate dehydrogenase subunit B 

[K00112] -1.88  -1.12  -2.69 

 - 

Glycine, serine and threonine metabolism  - 

EC:2.1.4.1 Glycine amidinotransferase [K00613] -1.38  -1.88  -2.56  - 

EC:4.4.1.1 cystathionine gamma-lyase [K01758] -1.63  -1.63  -2.56  - 

EC:2.1.1.20 glycine N-methyltransferase [K00552] AB  1  AB  0 

EC:3.5.3.3 creatinase [K08688] 1  1  AB  0 

EC:2.3.1.178 Diaminobutyric acid acetyltransferase[K06718] 1  1  AB  0 

EC:2.1.1.5 betaine-homocysteine S-methyltransferase [K00544] AB  1  AB  0 

Arginine and proline metabolism  - 

EC:3.5.2.10 Creatinine amidohydrolase [K01470] -1.20  -1.44  -1.52  - 

EC:4.1.1.17 Ornithine decarboxilase [K01581] -1.80  -1.22  -1.89  - 

Cysteine metabolism  - 

EC:2.6.1.57 Aromatic-amino-acid transaminase [K00832] -1.21  -1.37  -2.18  - 

Tyrosine metabolism  - 
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EC:4.1.1.68 5.3.3- 

2-hydroxyhepta-2,4-diene-1,7-dioate isomerase 

[K05921] -1.99  -1.22  -2.10 

 - 

Pantothenate and CoA biosynthesis  - 

EC:2.7.1.33 Type I pantothenate kinase [K00867] -1.02  -1.20  -1.68  - 

EC:4.1.1.36 Phosphopantothenoylcysteine decarboxylase [K01598] -1.79  -1.80  -1.10  - 

Folate biosynthesis 

EC:2.6.1.85 

4.1.3.38 para-aminobenzoate synthetase [K01247] -3.57  -3.72  -2.10 

 

- 

Riboflavin metabolism  - 

EC:3.1.3.2 3.1.3.48 

Low molecular weight phosphotyrosine protein 

phosphatase [K14394] -1.31  -1.22  -3.10 

 - 

Lysine degradation 

EC:2.6.1.48 5-aminovalerate aminotransferase [K14268] AB  AB  AB  2.08 

EC:1.2.1.20 glutarate semialdehyde dehydrogenase [K14269] AB  AB  AB  2.08 

β-lactam resistance 

 methicillin resistance protein [K02547] 2.82  2.17  AB  - 
1 

E.C: Enzyme Commission numbers. 
2 

Control: no additive supplementation; Probiotic: 2 g/kg of P. acidilactici; Prebiotic: 60 g/kg of dry whey 

powder, Synbiotic: 2 g/kg of P. acidilactici and 60 g/kg of dry whey powder. 
3 

Microbial genes only present in control diet. AB: Genes that were 

absent in the diet against which the comparison was made. 
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Table 2. Microbial genes more present in the ceca of laying hens fed with prebiotic. The functions shown correspond to the third level of the 

KEGG categories assignation. 

E.C.
1 

Functions affected 

Prebiotic  

vs. 

Control
2
 

 

Prebiotic vs 

Probiotic  

Prebiotic vs 

Synbiotic  
 

Prebiotic
3 

 

Log2FC  Log2FC  Log2FC    Abundance (%)  

Butanoate metabolism 

EC:2.8.3.12 
Glutaconate CoA-transferase, subunit A 

[K01039] 1.40   AB   2.62 

 - 

EC:1.1.1.61 4-hydroxybutyrate dehydrogenase [K00043] /   1.09   2.44  - 

EC:1.1.1.30 3-hydroxybutyrate dehydrogenase [K00019] AB  AB  AB  13.7 

EC:1.1.1.4 1.1.1.303 
Butanediol dehydrogenase / diacetyl reductase 

[K00004] 

AB 

 

AB 

 

AB  

11.3 

Propanoate metabolism   

EC:3.5.99.7 

1-aminocyclopropane-1-carboxylate deaminase 

[K01505] 1.22   /   1.8 

 - 

EC:4.2.1.79 2-methylcitrate dehydratase [K05608] 1.57   1.61   AB  - 

EC:3.5.99.7 
1-aminocyclopropane-1-carboxylate deaminase 

[K00923] 1.22  /  1.70 

 - 

EC:2.3.3.5 2-methylcitrate synthase [K01659] /   /   1.73  - 

EC:4.1.3.30 methylisocitrate lyase [K03417] /   /   2.44  - 

Fructose and mannose metabolism 

EC:1.1.1.67 mannitol 2-dehydrogenase [K00045] /   /   1.19  - 

EC:2.7.1.105 PFK; 6-phosphofructo-2-kinase [K00900] AB   1.01   1.70  - 

EC:3.2.1.80 fructan beta-fructosidase [K03332] 1.63   1.32   AB  - 

Inositol phosphate metabolism 
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EC:2.7.1.92 5-dehydro-2-deoxygluconokinase [K03338] 1.06  1.20  AB  - 

EC:5.3.1.- iolB; 5-deoxy-glucuronate isomerase [K03337] AB  1.76  1.70  - 

Galactose metabolism 

EC:3.2.1.108 3.2.1.62 lactase-phlorizin hydrolase [K01229] 3.22   2.23   AB  - 

EC:1.1.1.251 

 galactitol-1-phosphate 5-dehydrogenase 

[K00094] 1.37   2.38   AB 

 - 

EC:2.7.1.144  tagatose 6-phosphate kinase [K00917] /   /   1.17  - 

EC:4.1.2.21 

2-dehydro-3-deoxyphosphogalactonate aldolase 

[K01631] /   2.97   1.12 

 - 

EC:4.2.1.6 galactonate dehydratase [K01684] /   /   1.35  - 

EC:3.2.1.20 3.2.1.3 maltase-glucoamylase [K12047] AB  AB  AB  1.65 

Phenylalanine, tyrosine and tryptophan biosynthesis 

EC:4.1.3.27 2.4.2.18 

anthranilate synthase/phosphoribosyltransferase 

[K13497] 4.96   1.80   / 

 - 

EC:4.1.1.48 5.3.1.24 

indole-3-glycerol phosphate synthase / 

phosphoribosylanthranilate isomerase [K13498] 1.42   1.26   1.26 

 - 

EC:2.7.1.71 4.2.3.4 

shikimate kinase / 3-dehydroquinate synthase 

[K13829] 1.09   1.78   2.99 

 - 

EC:5.4.99.5 4.2.1.51 

chorismate mutase / prephenate dehydratase 

[K14170] /  /   1.27 

 - 

Glycine, serine and threonine metabolism 

EC:1.1.99.1 choline dehydrogenase [K00108] 2.11  1.23  3.81  - 

EC:2.1.1.20 glycine N-methyltransferase [K00552] AB  AB  AB  1.61 

Fatty acid metabolism 

EC:2.3.1.40 6.2.1.20 

long-chain-fatty-acid--[acyl-carrier-protein] 

ligase [K05939] 2.17  1.55  / 

 - 
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EC:1.14.15.3 

cytochrome P450, family 4, subfamily A 

[K07425] AB  AB  AB 

 2.42 

EC:2.3.1.21 carnitine O-palmitoyltransferase 2 [K08766] AB  AB  AB  4.04 

Fatty acid biosynthesis 

   EC:2.3.1.- fatty acid synthase, bacteria type [K11533] /  1.22  4.56   

Thiamine metabolism 

EC:2.5.1.3 2.7.1.50 hydroxyethylthiazole kinase [K14154] /  2.23   1.11  - 

EC:2.7.1.49 2.7.4.7 

2.5.1.3 thiamine-phosphate diphosphorylase [K14153] 1.22  /  AB 

 - 

Retinol metabolism 

EC:1.1.1.- retinol dehydrogenase 16 [K11154] AB  AB  AB  2.42 

EC:2.3.1.75 2.3.1.76 

 diacylglycerol O-acyltransferase 2-like protein 4 

[K11156] 

AB 

 

AB 

 

AB  

3.23 
1 

E.C: Enzyme Commission numbers. 
2 

Control: no additive supplementation; Probiotic: 2 g/kg of P. acidilactici; Prebiotic: 60 g/kg of dry whey 

powder; Synbiotic: 2 g/kg of P. acidilactici and 60 g/kg of dry whey powder. 
3
Microbial genes only present in hens fed with prebiotic. Slash 

indicates that gene did not pass the filters stablished to be considered for comparisons. AB: Genes that were absent in the diet against which the 

comparison was made. 
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Table 3. Microbial genes more present in the ceca of laying hens fed with probiotic. The functions shown correspond to the third level of the 

KEGG categories assignation. 

E.C.
1 

Functions affected 

Probiotic 

vs 

Control
2 

 

Probiotic 

vs 

Prebiotic 

 

Probiotic 

vs 

Synbiotic 

 
 

Probiotic
3 

Log2FC  Log2FC  Log2FC 
   Abundance 

(%) 

Ascorbate and aldarate metabolism  

EC:1.1.1.122 

D-threo-aldose 1-dehydrogenase 

[K00064] 1.23   /   2.13  
- 

EC:5.1.3.22 

L-ribulose-5-phosphate 3-epimerase 

[K03079] 1.10   3.05   1.58  
- 

Glyoxylate and dicarboxylate metabolism 

EC:1.2.1.2 formate dehydrogenase [K00122] AB  2.94  /  - 

EC:4.1.1.8 oxalyl-CoA decarboxylase [K01577] /  2.40  1.07  - 

EC:3.5.1.56 N,N-dimethylformamidase [K03418] AB  AB  AB  1.03 

EC:1.2.1.2 

formate dehydrogenase-N, gamma subunit 

[K04509] 

AB 

 

AB 

 

AB 

 1.55 

K11472 glycolate oxidase FAD binding subunit AB  AB  AB  1.03 

EC:4.1.1.2 Oxalate decarboxylase [K01569] AB  AB  AB  0.6 

EC:1.1.1.37 Malate dehydrogenase [K00025] AB  0.15  AB  0.5 

Alanine, aspartate and glutamate metabolism 

EC:4.1.1.12 aspartate 4-decarboxylase [K09758] /  1.17  2.61  - 

EC:1.5.1.12 

1-pyrroline-5-carboxylate dehydrogenase 

[K00294] /  /  1.01  

- 
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EC:6.3.5.5 carbamoyl-phosphate synthase [K01954] /  1.27  1.97  - 

EC:1.5.99.8 1.5.1.12 

delta 1-pyrroline-5-carboxylate 

dehydrogenase [K13821] 1.59  /  2.30  

- 

Phenylalanine metabolism 

EC:1.2.1.39 

phenylacetaldehyde dehydrogenase 

[K00146] 2.47  2.94  /  

- 

EC:4.2.1.80 2-keto-4-pentenoate hydratase [K02554] 1.57  1.94  /  - 

EC:1.14.12.19 

cinnamic acid dioxygenase subunit alpha 

[K05708] 1.31  2.67  /  

- 

Nicotinate and nicotinamide metabolism 

EC:3.1.3.5 3.6.1.45 UDP-sugar diphosphatase [K11751] 1.49  /  /  - 

EC:3.1.3.5 5'-nucleotidase [K01081] /  1.05  /  - 

EC:1.6.1.1 NAD(P) transhydrogenase [K00322] /   1.81   /  - 

EC:2.7.7.1 

nicotinamide-nucleotide adenylyltransferase 

[K00952] /  3.16  /  - 
1 

E.C: Enzyme Commission numbers.
2 

Control: no additive supplementation; Probiotic: 2 g/kg of P. acidilactici; Prebiotic: 60 g/kg of dry whey 

powder; Synbiotic: 2 g/kg of P. acidilactici and 60 g/kg of dry whey powder. 
3 

Microbial genes only present in hens fed with probiotic. Slash 

indicates that gene did not pass the filters stablished to be considered for comparisons. AB: Genes that were absent in the diet against which the 

comparison was made. 
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Table 4. Microbial genes more present in the ceca of laying hens fed with synbiotic. The functions shown correspond to the third level of the 

KEGG assignation. 

E.C.
1 

Functions affected 

Synbiotic 

vs 

Control
2 

 

Synbiotic 

vs 

Probiotc 

 

Synbiotic 

vs 

Prebiotic 

 

Synbiotic 
3 

 

Log2FC   Log2FC   Log2FC 

 Abundance 

(%)   

Starch and sucrose metabolism 

EC:2.4.1.7 sucrose phosphorylase [K00690] 1.82  /   /  - 

EC:2.4.1.8 maltose phosphorylase [K00691] 1.11  /   /  - 

EC:3.2.1.122 maltose-6'-phosphate glucosidase [K01232] 1.03  /  /  - 

EC:5.4.2.6 beta-phosphoglucomutase [K01838] 2.34  /  /  - 

EC:3.2.1.54 cyclomaltodextrinase [K01208] 1.23  /  2.32  - 

EC:3.2.1.39 

glucan endo-1,3-beta-D-glucosidase 

[K01199] 1.69  2.11  3.05 

 - 

EC:2.4.1.12 

cellulose synthase (UDP-forming) 

[K00694] /   /  2.37 

 - 

Glycolysis / Gluconeogenesis 

EC:4.1.1.1 pyruvate decarboxylase [K01568] 1.10  2.12  /  - 

EC:6.2.1.13 

acetyl-CoA synthetase (ADP-forming) 

[K01905] 2.10  3.17  1.47 

 - 

Amino sugar and nucleotide sugar metabolism 

EC:3.5.1.41 chitin deacetylase [K01452] /  2.12  2.47  - 
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Cysteine and methionine metabolism 

EC:2.1.1.10 

homocysteine S-methyltransferase 

[K00547] 1.76  /  / 

 - 

EC:2.6.1.57 

aromatic-amino-acid transaminase 

[K00832] 2.18  /  / 

 - 

EC:1.1.1.272 

(R)-2-hydroxyacid dehydrogenase 

[K05884] 1.69  /  1.05 

 - 

Valine, leucine and isoleucine biosynthesis 

EC:2.6.1.66 

valine--pyruvate aminotransferase 

[K00835] 3.69   /   4.05 

 - 

Fatty acid biosynthesis 

EC:3.1.2.14 

oleoyl-[acyl-carrier-protein] hydrolase 

[K01071] 1.70   1.24   / 

 - 

Steroid hormone biosynthesis 

EC:5.3.3.1 steroid delta-isomerase [K01822] /  1.17  1.68  - 

EC:3.1.6.2 steryl-sulfatase [K01131] 1.10   2.12   2.45  - 

Nicotinate and nicotinamide metabolism 

EC:3.2.2.1 purine nucleosidase [K01239] 1.08  /   /  - 

EC:1.6.1.2 

NAD(P) transhydrogenase subunit alpha 

[K00324] 1.10   /   / 

 - 

Retinol metabolism 

EC:1.3.99.23 all-trans-retinol 13,14-reductase [K09516] 1.10   1.83   1.76  - 

Galactose metabolism         

EC:3.5.1.25 N-acetylgalactosamine-6-phosphate AB  AB  AB  6.71 
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deacetylase [K02079] 

Phenylalanine, tyrosine and tryptophan biosynthesis 

EC:4.2.1.51 4.2.1.91 cyclohexadienyl dehydratase [K01713] AB  AB  AB  4.47 
1 

E.C: Enzyme Commission numbers.
2 

Control: no additive supplementation; Probiotic: 2 g/kg of P. acidilactici; Prebiotic: 60 g/kg of dry whey 

powder; Synbiotic: 2 g/kg of P. acidilactici and 60 g/kg of dry whey powder. 
3 

Microbial genes only present in hens fed with synbiotic. Slash 

indicates that gene did not pass the filters stablished to be considered for comparisons. AB: Genes that were absent in the indicated diets. 
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4. DISCUSSION 

 

As previously described in laying hens older than 7 months by Videnska et al. 

(2014), we found with both 16S rRNA gene sequencing and metagenomics datasets, 

that Bacteroidetes and Firmicutes dominated the cecal microbiota composition, 

followed in a lesser extent by Proteobacteria and Actinobacteria. Feeding with synbiotic 

showed a decrease in the diversity indexes in comparison to control diet, which may be 

due to an increase of some specific microbial groups. These findings could imply less 

richness of the cecal microbiome, which is undesirable due to the negative impact it has 

on poultry performance (Stanley et al., 2014). Indeed, a reduction on egg production 

was observed when this synbiotic diet was offered to laying hens (Pineda-Quiroga et al., 

2017). On the other hand, feeding hens with probiotic diet resulted in similar microbiota 

composition to the control, which was unexpected because of the well-known effects of 

probiotics to modulate the poultry cecal microbial composition (Lee et al., 2007; 

Djezzar et al., 2012). A possible explanation for this finding could be attributed to the 

late supplementation of probiotic, which did not give enough time of exposition to P. 

acidilactici to the hens. Thus, it is necessary to start with the dietary treatment at early 

stages of age, because the cecal microbiota community of hens older than 7 months is 

quite stable (Videnska et al., 2016). However, the current results revealed that prebiotic 

and synbiotic diets promoted favorable changes in the ceca microbiota composition 

towards an increase in both lactic-acid producing bacteria and bacteria able to improve 

the efficiency of short chain fatty acids synthesis (SCFAs). Both diets increased the 

abundance of Olsenella spp. (OTU 1), which is an anaerobic bacterium that ferments 

carbohydrates to lactic acid. This has been identified in the GIT of laying pullets 

(Chalvatzi et al., 2016), and some reports indicate that is involved in lipid and 

cholesterol metabolism (Goodfellow et al., 2012). An increase in Lactobacillus 

crispatus (OTU 3) was also promoted, which has been classified as potentially probiotic 

in poultry (Rezvani et al., 2016). Moreover, an aside finding is that its supplementation 

in broiler diets reduces the colonization of Campylobacter jejuni (Neal-McKinney et al., 

2012), and exerts an inhibitory effect against Salmonella enterica serovar Enteriditis 

(van der Wielen et al., 2002). With a lower relative abundance overall, a propionic acid-

producer bacteria identified as Megamonas spp. (OTU 28; De Vos et al., 2009) 

increased in abundance when feeding the above-mentioned diets. This bacterium acts as 
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hydrogen sink in the ceca, increasing the SCFAs production, which bring benefits to the 

energy metabolism of the host (Sergeant et al., 2014).  

The metagenomics results suggest that diverse taxon’s in the gut microbiota 

maintain a conserved core of genes, sharing almost half of them in the four diets. 

Among those functions differentially encoded, the cecal microbiota of the prebiotic 

group had more unique functions assigned than the remaining diets. Prebiotic exhibited 

more abundance of genes related to enzymes for galactose metabolism, causing the 

hydrolysis of lactose to SCFAs. It is probable due to the presence of lactose from dry 

whey powder as the only feed additive in the prebiotic diet. This finding might imply 

that hens fed with prebiotic had more energy availability, because of the extensive 

lactose fermentation to SCFA's (Józefiak et al., 2004). Moreover, prebiotic was the diet 

exhibiting higher abundance of specific genes related to metabolism of butanoate, as 

well as more pathways for butanoate and propanoate metabolism. These SCFA's 

represent several beneficial effects in the host related to mineral metabolism, the 

maintenance of the sanitary status, and the energy metabolism. In this sense, their 

absorption by ceca mucosa provides up to 11% of metabolizable energy for mature 

birds (Annison et al., 1968), which could be used for productive purposes. Indeed, when 

the same prebiotic than those used in the current study was offered to laying hens, it 

promoted higher egg production (Pineda-Quiroga et al., 2017). 

More pathways related to mineral, vitamin, and fatty acids metabolism were also 

promoted by prebiotic diet. Regarding mineral metabolism, this diet increases the 

abundance of inositol phosphate (InsP) metabolism-related genes, which is in agreement 

with previous reports, indicating that degrading activities of InsP are mainly carried out 

in the ceca of laying hens (Marounek et al., 2010). Our results support the role of the 

cecal microorganisms in InsP degradation and phosphorous release, which was 

previously reported by Rodehutscord and Rosenfelder (2016). It is a positive finding for 

laying hens, because InsP contains a considerable amount of available phosphorus, 

which could be used for egg shell formation, hen skeletal integrity, and bone 

mineralization (Rodehutscord and Rosenfelder, 2016). In regards to vitamins and fatty 

acid metabolism, prebiotic diet increased the microbial pathways for thiamine 

metabolism and fatty acids biosynthesis, which could positively affect the hen. Thiamin 

(vitamin B1) improves the efficiency of metabolizable energy in broilers. As an active 

coenzyme (thiamine diphosphate), it is part of pyruvate dehydrogenase and α-
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ketoglutarate dehydrogenase, both enzymes are indispensable for carbohydrate 

metabolism and energy production (Bäckermann et al., 2008). 

Interestingly, supplemented diets exhibited less presence of β-lactams resistance 

related genes. Specifically, our results showed less abundance of methicillin resistance 

protein-related genes in prebiotic and probiotic supplementation, and absence of it in 

synbiotic supplementation, indicating that the tested additives interfere with the 

presence or tranference of this resistance. However, the reasons why DWP, PA or the 

combination of both might have inhibited the transfer of antibiotic resistance genes are 

unclear. 

 

5. CONCLUSION 

 

On this study we analyzed taxonomical and functional changes in the ceca 

microbiota of laying hens fed with prebiotics (dry whey powder), probiotics (P. 

acidilactici), and synbiotic (a mixture of both). The results exposed that 

supplementation of prebiotics and synbiotics modified the microbiota composition, 

whereas feeding with probiotic and without additives (control diet), did not affect it. 

Nevertheless, all dietary supplementations induced modulations in the abundance or 

specific presence of microbial functional genes, although these did not imply a 

disturbance in their main biological roles.  
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ABSTRACT 

 

Prebiotics and organic acids have been proposed as safe additives in poultry 

feeding to promote performance and health. The purpose of this study was to assess the 

influence of supplementing corn-soybean diets of broiler chickens with dry whey 

powder (DWP), fat-coated calcium butyrate (CaB), and a mixture of both on apparent 

ileal digestibility (AID), pH of gastrointestinal content at various segments, productive 

performance, duodenal histomorphometry, and ceca microbial counts. The experiment 

consisted of a 2 × 2 factorial arrangement, with 2 DWP inclusion rates (0 and 60 g/kg of 

diet) and 2 CaB rates (0 and 1 g/kg of diet). One-day-old male broiler chickens were 

randomly allocated to floor pens and assigned to 1 of 4 treatments. In Trial 1, 120 

broiler chickens were allocated to 4 treatments with 3 pens per treatment and 10 broiler 

chickens per pen during 21 d. With the addition of DWP, the AID of dry matter, crude 

protein, Ca, and P increased, and cecum pH decreased only when CaB was also added 

(CaB × DWP, P < 0.046). In Trial 2, 1,200 broiler chickens were allocated to the 4 

treatments with 10 pens per treatment and 30 broiler chickens per pen during 42 d. With 

the dietary supplementation of DWP, average daily gain and feed intake of broiler 

chickens increased during starter, grower-finisher periods, and the entire feeding period 

only when CaB was also added (P < 0.047). However, with addition of DWP, feed 

conversion ratio (FCR) decreased in broiler chickens fed the diet without CaB, but it 

increased in those fed with CaB during the grower-finisher and entire feeding periods (P 

< 0.001). Duodenal histomorphometry measurements were evaluated using hematoxylin 

and eosin stains, and cecal microbial counts were determined by selective culture media. 

With the addition of DWP, villus height, villus height to crypt depth ratio, and villus 

surface area were increased only when CaB was also added (CaB × DWP, P < 0.017), 

while the supplementation of DWP increased Bifidobacterium spp. counts only when 

CaB was not added (CaB × DWP, P = 0.049). Results obtained in the present study 

indicate that the supplementation of DWP without CaB addition improved the FCR of 

broiler chickens. However, the supplementation of DWP together with CaB improve 

duodenal development, increases nutrient AID, and the weight and ingestion of broiler 

chickens. 
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1. INTRODUCTION 

 

The use of prebiotics and organic acids in poultry feeding are in force as a result 

of the banning on the use of in-feed antibiotics as growth promoters in the EU 

(European Commission, 2003), and their restricted use in other countries (Huyghebaert 

et al., 2011). Prebiotics are defined as a non-digestible dietary compounds that modulate 

the composition, activity or both of gut microbiota, conferring a beneficial physiological 

effect on the host (Bindels et al., 2015). They promote the growth of specific species 

such as bifidobacteria and lactobacilli at the expenses of potentially pathogenic bacteria 

(Macfarlane et al., 2006; Vicente et al., 2007), and generate positive changes in gut 

morphology and digestive enzymes secretion in broiler chickens (Xu et al., 2003). Dry 

whey is a co-product of cheese industry, with lactose being its major component (about 

70% of dry matter). Because of negligible lactase activity in the gastrointestinal tract of 

broiler chickens (Denbow, 2000), lactose can be used as a prebiotic. Most of non-

digested lactose reaches the ceca, becoming an available substrate for beneficial bacteria 

such as Bifidobacterium spp. (Goodfellow et al., 2007). Moreover, lactose fermentation 

can lead to a decrease of cecum pH, and to a reduction of potentially pathogenic 

bacteria such as Salmonella enteriditis (Stringfellow et al., 2009; Tellez et al., 1993). 

However, to our knowledge, the effect of dry whey powder on the duodenal 

histomorphometry, pH of digestive organs, and nutrient ileal digestibility of broiler 

chickens has not been studied so far. 

Organic acids and their salts are considered as safe feed additives, being their 

use in animal diets approved by most EU member states (Adil et al., 2010). Their 

general mode of action relates to their antimicrobial activity, their ability to reduce 

gastrointestinal tract pH, and to improve nutrient digestion (Dibner and Buttin, 2002). 

Butyric acid, a short chain organic acid, has been used in poultry diets in its free form 

(Adil et al., 2010), as glyceride, or as lipid coated sodium butyrate (Lesson et al., 2005). 

Although benefits of butyric acid on broiler chickens’ performance (Adil et al., 2010), 

pH of digestive organs (Mahdavi and Torki, 2009), and intestinal morphometry (Lesson 

et al., 2005) have been reported, little is known about their effect on ceca microbial 

counts and nutrient ileal digestibility. Similarly, results concerning the use of fat-coated 

calcium butyrate in broiler chickens’ diets are still lacking.  
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Studies about the joint utilization of prebiotics and organic acids in poultry 

feeding are scarce (Bozkurt et al., 2009; Taherpour et al., 2012). Furthermore, we are 

not aware of any study assessing the combined effect of dry whey powder and fat-

coated calcium butyrate. We hypothesized that butyric acid could reduce the 

gastrointestinal load of potentially pathogenic bacteria. Under these conditions, lactose 

could be selectively used as a substrate for the growth of beneficial ceca bacteria in 

detriment of pathogenic bacteria, thus improving the sanitary status of broiler chickens. 

In addition, given the reported benefits of both additives, we expected a synergistic 

activity that would improve gut development and nutrient digestibility. Thus, this study 

was conducted to assess the effect of supplementing broiler chickens’ diets with dry 

whey powder, fat-coated butyric acid, and the combination of both on apparent ileal 

digestibility, duodenal histomorphometry, productive performance, pH of 

gastrointestinal content at various segments, and ceca bacterial populations.  

 

2. MATERIALS AND METHODS 

 

2.1 Animals, housing, and experimental diets 

 

The experiment followed the European Union (2010/63/EU) and Spanish 

regulations (RD 53/2013) for the care and use of animals for experimental, and was 

conducted at the experimental facilities of Neiker-Tecnalia (Vitoria-Gasteiz, Spain). 

One-day old male broiler chickens (Ross 308 strain) were obtained from a local 

commercial hatchery (AN Avícola Melida, S.A., Zumaia, Spain), and were randomly 

allocated to floor pens, at a stock density of 30 kg/m2. Pens were equipped with a 

manual feeder, nipple drinkers, and wood shavings as litter material. Room temperature 

and lighting program were implemented according to the strain guidelines (Aviagen, 

2014). 

Diets were corn-soybean based, and were formulated to meet broiler chickens’ 

requirements during the starter and grower-finisher stages (FEDNA, 2008). Starter diets 

(from d 0 to 21) were offered in a crumbles form, and grower-finisher diets (from d 21 

to 42) in a pelleted form. Chromium oxide (5 g Cr2O3/kg) was added to starter diets as 

external indigestible marker. The ingredient composition and the analyzed nutritional 

value of experimental diets are shown in Table 1. Animals had ad libitum access to one 
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of the following experimental diets: no supplementation of dry whey powder (DWP) or 

fat-coated calcium butyrate (CaB), inclusion of 60 g/kg of DWP, inclusion of 1 g/kg of 

CaB, or inclusion of a mixture of 60 g/kg of DWP and 1 g/kg of CaB. The DWP was a 

commercial sweet powder (703 g/kg lactose; Sueromancha S.L, Toledo, Spain). The 

CaB was a commercial product composed by 860 g/kg of salt (160 g Ca and 700 g 

butyric acid) and 140 g/kg of lipids (Globamax Performant, Global Nutrition 

International, Fougères, France). 

 

2.2 Experimental design, measurements, and sampling 

 

2.2.1 Trial 1: Apparent ileal digestibility (AID) and pH of gastrointestinal 

content at various segments 

 

In this trial, 120 one-day-old broiler chickens were randomly allocated to 1.0 x 

0.83 m floor pens, and assigned to receive 1 of the 4 experimental diets formulated for 

the starter period (Table 1). Each treatment comprised 3 pens with 10 broiler chickens 

each. At 21 d of feeding, 6 broiler chickens per pen were slaughtered by CO2 inhalation. 

For nutrient AID determination, ileal digesta was collected. Ileum was considered to be 

the portion of the small intestine from the Meckel’s diverticulum to the ileocecal 

junction, and the digesta of the last two-thirds of this section were gently collected as 

described by Kluth (2005). Ileal samples from broiler chickens within the same pen 

were pooled, stored in plastic containers, frozen at -20ºC, and lyophilized. Dry ileal 

digesta samples were ground to pass through a 0.5-mm screen, and stored in airtight 

containers at room temperature until chemical analyses. The AID of dry matter (DM), 

crude protein (CP), starch, Ca, and P were estimated using Cr2O3 as indigestible external 

marker.  

For pH measurements, crop, proventriculus, gizzard, ileum, and cecum were 

carefully ligated and removed. Approximately 0.4 g of digesta from each section were 

collected, diluted in 1.6 ml of distilled water and gently agitated. Measurements were 

made using a calibrated electronic pH meter (Basic 20, Crison, Barcelona, Spain). 
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Table 1. Dietary ingredient and composition of the experimental diets of Trial 1 and 2 

“as fed-basis”. 

Item 

 Starter (d 0 to 21)  Grower-finisher  

(d 21 to 42)   

CaB 
1
 (g/kg) 0 0 1 1  0 0 1 1 

DWP
 2
 (g/kg) 0 60 0 60  0 60 0 60 

Ingredients, g/kg           

Yellow corn   499 501 535 520  500 540 500 538 

Soybean meal,  44% CP
 4
 300 298 303 278  316 317 316 318 

Wheat  153 101 115 110  107 0 105 0 

CaB  0 0 1 1  0 0 1 1 

DWP  0 60 0 60  0 60 0 60 

Soybean oil  14 19 10 10  42 51 42 51 

Dicalcium phosphate  5 3 5 3  20 19 20 19 

Vitamin and mineral premix 
5 4 4 4 4  4 4 4 4 

Calcium carbonate  14 3.8 16 3.8  4 3.8 4 3.8 

Sodium chloride  3.8 2.7 3.8 2.7  3.8 2.7 3.8 2.7 

DL-Met  0.4 0.4 0.4 0.4  1.8 1.7 1.8 1.7 

L-Lys  1.7 1.7 1.7 1.7  0.6 0.1 0.6 0.1 

Chromium oxide  5 5 5 5  0 0 0 0 

           

Chemical composition           

AMEn 
6
, MJ/kg  12.3 12.2 12.3 12.3  13.2 13.1 13.1 13.1 

CP, g/kg  199 193 192 196  189 184 185 182 

Starch, g/kg  413 362 438 420  399 382 399 392 

Ether extract, g/kg  3.8 4.6 4.6 3.8  7.7 7.5 6.7 7.6 

Ca, g/kg  7.0 6.8 7.6 7.1  8.2 7.9 8.5 8.2 

Available P, g/kg  6.2 6.7 6.3 6.1  4.2 4.0 4.2 4.2 
1 

CaB: fat-coated calcium butyrate. Globamax Performant (Global Nutrition 

International, Fougères, France). 
2 

DWP: dry whey powder. Dry sweet powder (703 g of 

lactose/kilogram of product; Sueromancha S.L, Toledo, Spain). 
4 

CP: crude protein. 
3
Providing per kg of diet: vitamin A, 8,000 IU; vitamin D3, 1,600 IU; vitamin E, 16 mg; 

thiamine, 1 mg; riboflavin, 3 mg; pyridoxine, 1 mg; vitamin B12, 0.01 mg; vitamin K, 1 

mg; nicotinic acid, 16 mg; pantotenic acid, 7 mg; Mn, 70 mg; ZnO, 50 mg; Fe 

(FeSO4·H2O), 30 mg; Cu (CuSO4 5H2O), 4 mg; I (KI), 1 mg; Co, 0.2 mg; Se (Na2SeO3), 

0.1 mg; choline, 240 mg; phytase, 300 units, and ethoxyquin, 110 mg. 
4 

AMEn: 

Apparent metabolizable energy corrected by N, calculated according to FEDNA (2010). 
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2.2.2 Trial 2: Growth performance, duodenal histomorphometry, and 

ceca bacteria counts  

 

For this trial, 1,200 one-day-old broiler chickens were used during 42 d. They 

were randomly allocated to 2.5 x 1.0 m floor pens, and assigned to 1 of the 4 

experimental diets (Table 1). Starter diets were offered from d 0 to 21, and grower-

finisher diets from 21 d to 42. Each treatment consisted of 10 replicate pens, and 30 

broiler chickens each. To determine productive performance, all broiler chickens and 

feeders in each pen were weighted weekly. Body weight (BW), average daily gain 

(ADG), feed intake (FI), and feed conversion ratio (FCR) were recorded on a pen basis. 

Mortality was recorded daily. 

To determine ceca microbial counts, 3 broiler chickens from each treatment 

were randomly selected on d 21 and slaughtered by CO2 inhalation, as previously was 

done in Pineda-Quiroga et al (2017). The gastrointestinal tract was dissected, cecum 

was collected under sterile conditions, and 1 g of digesta content, resulting from the 

mixture of both ceca pouches, was diluted in 9 mL of buffered peptone water 

(BioMérieux, France) and immediately 10-fold serially diluted in sterile saline solution. 

Dilutions were tested in duplicate for enumeration of E. coli, Clostridium perfringens, 

Bifidobacterium spp., and Lactobacillus spp. For E. coli, dilutions to 10
-9

 were plated on 

a selective chromogenic agar medium (ChromID Coli, BioMérieux, Marcy-L’etoile, 

France) and incubated at 37 ± SD 1ºC for 24 h; only glucuronidase-positive red-pink 

colonies were counted. For C. perfringens, dilutions to 10
-7

 were plated on tryptone 

sulphite neomycine agar (Scharlab, Barcelona, Spain) and incubated at 45 ± SD 1ºC for 

24 h. For Lactobacillus spp., the selective medium Lactobacilli man rogosa and sharpe 

(MRS) agar (BD, Franklin Lakes, New Jersey, US) with 50 U/mL of nystatin (Sigma-

Aldrich, St. Louis, Missouri, US) was used. The same MRS Agar (BD, US) 

supplemented with L-Cysteine hydrochloride (0.5 g/kg) (Oxoid, Basingstoke, UK), 100 

µg/mL mupirocin (Oxoid, UK), and 50 U/mL nystatin (Sigma-Aldrich, US) was used 

for Bifidobacterium spp. In both cases, dilutions to 10
-11

 were tested and plates were 

incubated at 37 ± SD 1ºC for 48 h; 5 colonies from the last dilutions with 30 to 150 

colony-forming units (cfu) were then selected for Gram staining and catalase test to 

identify catalase-negative, Gram-positive bacilli. Plates for E. coli were incubated 

aerobically, whereas all other incubations were carried out under anaerobic conditions 
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(Genbox Anaer, BioMérieux, France). To confirm the species, selected colonies from 

each culture were subjected to an automated system to bacterial identification, using 

appropriated identification cards (ANC for anaerobic species and GN for fermenting 

and no-fermenting Gram-negative bacilli). Counts were expressed as the mean cfu/g of 

dilution duplicates that gave 30 to150 cfu per plate. 

For duodenal histomorphometry measurements, duodenum from the same 

broiler chickens that were sampled for ceca counts was extracted. Samples were 

preserved in 10% buffered formalin saline before preparing the histological sections. 

Tissue samples were dehydrated by immersion in alcohols of increasing grade, 

infiltrated in xylene, and embedded in paraffin. Transversal sections were cut and 

stained with hematoxylin and eosin, and embedded in paraffin. Slides were then 

examined with an optical microscope (Nikon Eclipse-80i; Nikon Corporation, Tokyo, 

Japan) coupled with a camera (DS-Ri1; Nikon Corporation, Japan), and images were 

analyzed using the image software NIS elements 3.1 (Nikon Corporation, Japan). Villus 

height and crypt depth were measured on 10 well-oriented villus and crypt, according to 

the protocol described by Liu et al. (2011). The apparent villus surface area was 

estimated according to Iji et al. (2001). Five measurements of each structure were 

performed per sample. 

 

2.3 Chemical analysis and calculations 

 

Feeds and ileum samples were analyzed in triplicate for DM (Method 930.15), 

ash (Method 942.05), CP (Method 990.03), ether extract (Method 920.39), and starch 

by spectrophotometry according to Association of Official Analytical Chemists (2007). 

Measurements of Ca, P, and Cr were made by spectroscopy plasma atomic emission. 

 Calculation of the AID of nutrients was made using the following formula: 

where (Diet component/Cr2O3)d is the ratio of the diet component to the Cr2O3 

content of the diet, and (Diet component/Cr2O3)i is the ratio of the component to Cr2O3 

in the ileal digesta.  

CAID of diet component=
 Diet component/Cr

2
O3 d-  Diet component/Cr

2
O3 i

 Diet component/Cr
2
O3 d
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2.4 Statistical analysis 

 

Pen was considered the experimental unit in both trials. After normality and 

homoscedasticity of data were confirmed, data from Trial 1, as well as performance 

results, and duodenal histomorphometry from Trial 2 were analyzed considering a 

Gaussian distribution. Initial BW was included as a covariate in statistical models of 

performance data. Cecal bacteria counts and mortality data from Trial 2 were analyzed 

assuming a lognormal distribution and a binomial distribution respectively. All models 

included the pen as a random effect. All data were subjected to a two-way ANOVA, in a 

2 × 2 factorial arrangement using the GLIMMIX procedure of SAS (V 9.3, SAS Inst. 

Inc., Cary, NC). The results were considered significant if P < 0.05. 

 

3. RESULTS 

 

3.1 Apparent ileal digestibility (AID) and pH of gastrointestinal content at 

various segments 

 

Results relative to nutrient AID and pH of gastrointestinal content are shown 

in Table 2. With the dietary supplementation of DWP, the AID of DM, CP, Ca, and 

P increased, and cecum pH decreased only when CaB was also added (CaB × DWP, 

P < 0.046). 

 

3.2 Productive performance 

 

Results relative to productive performance are shown in Table 3. With the 

dietary supplementation of DWP, a higher ADG, and FI of broiler chickens were 

observed during the starter period only when CaB was also added. When DWP was not 

added to diets, FI increased in those broiler chickens fed the diet without CaB (CaB × 

DWP, P < 0.001). Mean mortality values were 1.33%, which remained unaffected by 

treatments and their interaction. During grower-finisher period, higher FI were observed 

by addition of DWP only when CaB was also added. Similarly, when DWP was not 

added to diets, FI increased in those broiler chickens fed the diet without CaB (CaB × 

DWP, P < 0.001). The addition of DWP reduced FCR by feeding without CaB. Also, 
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the addition of CaB reduced FCR in those broiler chickens fed the diet without DWP 

(CaB × DWP, P < 0.001). During this period the mean mortality percentage was 1%, 

not differing according to treatments and their interaction. For the entire feeding period, 

the addition of DWP increased ADG and FI of broiler chickens only when CaB was 

also added. When DWP was not added to diets, FI increased in those broiler chickens 

fed the diet without CaB (CaB × DWP, P < 0.047). The addition of DWP reduced FCR 

by feeding without CaB. Similarly, the addition of CaB reduced FCR when DWP was 

not added to diets (CaB × DWP, P < 0.001). Mean mortality values were 2.25%, 

remaining unaffected by treatments and their interaction. 

 

Table 2. Influence of diet supplementation with dry whey powder (DWP) and fat-

coated calcium butyrate (CaB) on apparent ileal digestibility (AID) and pH of 

gastrointestinal content at various segments of broiler chickens at 21 d (Trial 1) 
1
 

Item 
CaB 

2 
(g/kg) 0 0 1 1 SEM 

4 
P-value 

DWP 
3 
(g/kg) 0 60 0 60 CaB WP CaB × DWP 

Nutrient AID       

Dry matter  0.932 0.931 0.950 0.954 0.003 0.003 0.704 0.035 

Crude protein   0.707 0.707 0.757 0.815 0.023 0.004 0.704 0.041 

Starch   0.954 0.960 0.944 0.962 0.012 0.113 0.133 0.128 

Ca   0.628 0.630 0.723 0.764 0.009 < 0.001 0.046 0.042 

P  0.505 0.525 0.614 0.702 0.023 < 0.001 0.045 0.004 

pH of gastrointestinal content       

Crop   4.91 5.15 4.92 4.74 0.40 0.968 0.654 0.588 

Proventriculus 3.23 3.47 3.22 2.78 0.39 0.811 0.412 0.424 

Gizzard  2.98 2.90 2.81 2.71 0.12 0.510 0.143 0.968 

Ileum   5.68 6.07 5.58 6.27 0.27 0.590 0.869 0.591 

Cecum    6.01 5.90 6.35 5.40 0.19 0.014 0.706 0.046 
1
 Data presented the means based on 3 replicate pens per treatment and 5 broiler 

chickens per replicate. 
2 

CaB: fat-coated calcium butyrate. 
3
 DWP: dry whey powder. 

Dry sweet powder. 
4
 SEM: Standard error of the mean.  

 

3.3 Duodenal histomorphometry and cecal bacteria counts 

 

As shown in Table 4, with addition DWP, higher villus height, villus height to 

crypt depth ratio, and villus surface area were observed only when CaB was also added 

(CaB × DWP, P < 0.017). With the dietary supplementation of CaB, crypt depth 

increased and villus height to crypt depth ratio decreased only when DWP was not 

added (CaB × DWP, P = 0.017). In relation to cecal bacteria counts, the 
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supplementation of DWP increased Bifidobacterium spp. counts only when CaB was 

not added (CaB × DWP, P = 0.049).  
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Table 3. Influence of diet supplementation with dry whey powder (DWP) and fat-coated calcium butyrate (CaB) on productive performance of 

broiler chickens (Trial 2) 
1 

Item 

  
CaB 

2 
(g/kg) 0 0 1 1 SEM 

4 
P-value 

DWP 
3 
(g/kg) 

0 60 0 60 CaB DWP CaB × 

DWP 

Starter period (d 0 to21) 

Body weight (g)   677 625 633 782     

Average daily gain (g/d) 30 28 28 35 0.6 < 0.001 < 0.001 < 0.001 

Feed intake (g /d)  48
 

43
 

43 54 1.2 0.003 0.011 < 0.001 

Feed conversion ratio    1.57 1.55 1.54 1.52 0.03 0.252 0.370 0.988 

Grower-finisher period (d 21 to 42) 

Body weight (g)   2.616 2.540 2.673 2.785     

Average daily gain (g/d) 92 91 97 95 1.2 < 0.001 0.234 0.798 

Feed intake (g /d)  148 133 137 148 1.8 0.155 0.180 < 0.001 

Feed conversion ratio   1.61 1.46 1.42 1.56 0.03 0.069 0.828 < 0.001 

Entire feeding period (d 0 to 42) 

Average daily gain (g/d) 62 63 61 66 0.9 < 0.001 0.477 0.047 

Feed intake (g /d) 103 92 97 107 1.2 < 0.001 0.898 < 0.001 

Feed conversion ratio     1.67 1.53 1.54
 

1.65 0.03 0.723 0.533 < 0.001 

1
 Data presented means based on 10 replicate pens per treatment and 30 broiler chickens per replicate. 

2 
CaB: fat-coated calcium butyrate.

 3
 DWP: 

dry whey powder. 
4 

SEM: Standard error of the mean. 
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Table 4. Influence of diet supplementation with dry whey powder (DWP) and fat-coated calcium butyrate (CaB) on duodenal histomorphometry 

and cecal bacteria counts of broiler chickens (Trial 2)
 1

 

 Item 
 

CaB 
2 

(g/kg) 0 0 1 1 SEM 
4
 P-value 

DWP 
3 
(g/kg) 

0 60 0 60 CaB WP CaB 

×DDWP 

Duodenal histomorphometry 

Villus height (μm)   1.151 1.278 738 1.409 58 0.023 < 0.001 < 0.001 

Crypt depth (μm)   154 169 221 161 13.2 0.033 0.102 0.008 

   Villus height to crypt depth ratio 7.7 8.6 3.4 8.7 0.9 0.024 0.001 0.017 

Villus surface area (μm
2
)   54 53 49 83 6.3 0.054 0.012 0.012 

Cecal bacterial count (Log10 cfu/g cecal content) 

Bifidobacterium spp.   7.01 10.20 8.28 9.77 0.38 0.202 0.002 0.049 

Lactobacillus spp.   11.75 9.01 11.68 11.52 0.96 0.523 0.458 0.591 

Clostridium perfringens  2.33 1.39 1.78 4.24 1.00 0.625 0.333 0.138 

E. coli     11.84 13.1 12.09 11.97 1.04 0.609 0.691 0.535 
1
 Data presented means based on 10 replicate pens per treatment and 3 broiler chickens per treatment. 

2 
CaB: fat-coated calcium butyrate.

3
 DWP: 

dry whey powder. 
4 

SEM: Standard error of the mean.  
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4. DISCUSSION 

 

The current study shows that supplementing broiler chickens diets with DWP or 

CaB separately has resulted in a reduction on their weight, FI, and FCR at every stage 

of the productive period. Results indicate that supplementation with either DWP or CaB 

limited the growth of broiler chickens as a consequence of reduced feed intake. 

Opposed to our results with DWP supplementation, Gülsen et al. (2002) and 

Kermanshahi and Rostami (2006) found that supplementing broiler chicken diets with 

40 or 38.5 g/kg of whey powder improved weight without affecting FI during the starter 

and grower-finisher periods. With respect to CaB supplementation, Levy et al. (2015) 

found an improvement of broiler chicken’s weight without affecting FI, during the 

grower stage and for the entire feeding period, by supplementing diets with 0.4 and 0.5 

g/kg of fat-encapsulated microbeads of Ca butyrate. As it can be noted, the amounts of 

DWP and CaB used in the mentioned studies were smaller than those of our experiment. 

This could indicate that the quantity required to enhance weight without affecting FI 

should be smaller. As for CaB, this assumption should be taken with caution, because 

the amount to be reduced depends on the type of organic acid, supply form (free, salt or 

coated; van den Borne et al., 2015), salt to organic acid ratio, amount and type of 

coating fat, and the technical coating process among others (Guilloteau et al. 2010; van 

den Borne et al., 2015). The reasons for the FI reduction are not clear. However, it could 

be attributed to the reported increase in digesta osmolarity promoted by lactose in 

broiler chickens (Morishita et al., 1982), because an augmented osmotic pressure in the 

duodenum reduces their voluntary feed intake (Ferket and Gernat, 2006). For CaB 

supplementation, the reduction of FI could be linked to a negative modification in the 

feed odour, as subjectively observed in our case. It is known that olfactory system also 

regulates the FI in poultry (El Boushy and Poel, 1994), and that short-chain organic 

acids could negatively affect feed odour, reducing palatability (Andreopoulou et al., 

2014).  

In addition to reducing broiler chickens’ weight, supplementing DWP in absence 

of CaB increased Bifidobacterium spp. counts. This finding should be viewed with 

caution because of the reduced number of replicates used in this experiment. However, 

it would confirm that some members of this genus are able to use lactose as an energy 

substrate for growth (Goodfellow et al., 2012). Although it is expected that greater 
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populations of health-promoting bacteria in cecum, such as Bifidobacterium, contribute 

to enhance the weight of broiler chickens (Gaggìa et al., 2010), our results did not 

evidence this. In this way, Geier et al., (2009) confirmed that diet-induced changes in 

ceca microbiota do not always translate into altered broiler chickens performance, 

probably because to differences at strain level, and hence to the functional level of 

bacteria (Torok et al., 2013).  

Our results also revealed that feeding with CaB in absence of DWP decreased 

broiler chickens’ weight together with a reduction of villus height, villus surface area, 

and villus height to crypt depth ratio, and an increment in crypt depth. Again, these 

results should be taken with caution because of the reduced number of replicates. 

Deeper crypts and shorter villus could indicate a higher rate of enterocyte-cell migration 

and more constant cell renewal rate within the gut (Miles et al., 2006), likely caused by 

increased sloughing (Yamauchi et al., 2010). These constant renewal processes demand 

more energy and protein, that would be less available for growth of other body tissues. 

Present findings relative to duodenal morphometry disagree with Dibner and Buttin 

(2002) and Lesson et al. (2005), who pointed out the promoting effect of butyric acid on 

gastrointestinal mucosa development and villus length. However, it is known that high 

inclusion rates of dietary organic acids could reduce cellular proliferation and 

differentiation, and promote intestinal mucosa damage (Mariadason et al., 1999). 

Contrary to that observed when DWP and CaB were supplied separately, their 

simultaneous inclusion increased weight and FI of broiler chickens during every stage 

of the productive cycle, without affecting FCR. According to our results, we consider 

the increase in FI one of the reasons that explain the weight improvement. The addition 

of DWP could mitigate the odour of CaB, as indeed subjectively detected, which might 

have made feed more palatable. However, we do not know whether CaB reciprocally 

reduced the DWP effects associated with digesta osmolarity. Our results also showed 

that DWP addition protected the duodenal mucosa and increased nutrient AID when 

CaB was also added. These favourable effects might also explain the improved weight 

of broiler chickens. Accurate explanations for the protective effect of DWP, and for the 

positive result when combined with CaB, remain unclear. However, it could be 

hypothesized that the organic Ca also contained in DWP could form a complex with the 

acidic anion of butyric acid released in the duodenum. As a result, the amount of free 

butyric acid could be smaller, avoiding an excess reaching the enterocytes and 
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preventing their damage. A better mucosa integrity and gut development is usually 

accompanied by higher expression of brush border enzymes and by an increase of total 

intestinal transporters (Ruhnke et al., 2015), which might explain the higher nutrient 

AID. A greater nutrient AID, together with the observed increase in FI, could promote a 

higher digestible nutrient intake, and consequently enhanced animal weight. 

The simultaneous addition of DWP and CaB also reduced cecum pH. It has been 

reported that lactose fermentation decreases cecum pH in poultry because of lactic acid 

and volatile fatty acids production during fermentation (Stringfellow et al., 2009; van 

der Wielen et al., 2002). Organic acids also have an effect on pH of ceca digesta, 

lowering it (Dibner and Buttin, 2002). It would be expected that reduced cecal pH 

induced changes in their microbial composition. Contrary, this reduction did not lead to 

bacterial modulations. However, this does not mean that other non-studied ceca bacteria 

populations might have been affected, what could have contributed to enhance the 

health status and weight of broiler chickens.  

 

5. CONCLUSION 

 

Results obtained in the present study indicate that the supplementation of DWP 

without CaB addition improved the FCR of broiler chickens. However, the 

supplementation of DWP together with CaB improve duodenal development, increases 

nutrient AID, and the weight and ingestion of broiler chickens. 
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ABSTRACT 

 

 Dietary interventions are a common practice in the poultry industry to promote 

optimal performance and health of animals. Here, we aim at assessing the influence of 

supplementing corn-soybean diets of broilers with dry whey powder (DWP) and whey 

protein concentrate (WPC) on nutrient apparent ileal digestibility (AID) and productive 

performance. Cecal microbiota composition was also determined using Illumina 

amplicon sequencing. Dietary treatments were control diet (no supplementation of DWP 

or WPC), 60-DWP (60 g/kg of DWP), and 80-WPC (80 g/kg of WPC). One-day-old 

male broilers were randomly assigned to one of three treatments and housed in floor 

pens. In Trial 1, 90 1-day-old chicks were allocated to three pens/treatment, with 10 

birds/pen, during 21 days for AID evaluation. Diet 60-DWP increased Ca AID (P = 

0.041), while diet 80-WPC improved Ca and P AID (P < 0.001 and 0.002, respectively) 

when compared with control diet. In Trial 2, 810 one-day-old chicks were allocated to 

nine pens/treatment, with 30 birds/pen, during 42 days. Feeding chickens with 60-DWP 

and 80-WPC increased their body weight (BW), average daily gain (ADG), and feed 

intake (FI) during the starter (P < 0.001 for all variables) and grower-finisher periods (P 

< 0.001 for BW and FI, and P=0.048 for ADG), and during the entire feeding period (P 

< 0.05), when compared with control diet. Diets 60-DWP and 80-WPC reduced the feed 

conversion ratio (FCR) of chickens during the starter period (P < 0.001 and 0.003, 

respectively), while 60-DWP reduced this parameter during the entire feeding period (P 

= 0.048), when compared to control diet. At day 42, cecal microbial communities of 

chickens that were fed with 60-DWP and 80-WPC differed from those fed with control 

diet (R = 0.776, P = 0.008; and R = 0.740, P = 0.008, respectively). The abundance of 

Bacteroides fragilis, Bacteroides spp., Escherichia coli/Shigella flexneri and 

Megamonas furniformis increased when 60-DWP and 80-WPC diets were offered, 

while the presence of Helicobacter pullorum decreased. Lactobacillus salivarius 

consistently increased in chickens with better FCR, which were those fed with 60-DWP. 

The results obtained in the present study indicate that growth of chickens is improved 

by DWP and WPC supplementation because of a higher mineral digestibility, increased 

feed intake, and modulation of cecal microbiota communities. 
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1. INTRODUCTION 

 

The main purpose of modern intensive broiler production is to promote a high 

growth rate, feed efficiency, and optimal health status of animals. Such desirable 

conditions can be achieved through different dietary interventions that, during the last 

decades, have focused on the addition of low levels of antibiotics, as growth promoters, 

for an extended period of time (Huyghebaert et al., 2011). One of the advantages of the 

use of antibiotics as growth promoters is the improvement of weight gain and feed 

efficiency through their impact on gut microbiota (Danzeisen et al., 2011). However, the 

ban on their use in the European Union (European Commision, 2003) and the potential 

restriction in other countries (Huyghebaert et al., 2011), have resulted in a concomitant 

reduction of animal performance and in an increase of the incidence of enteric 

pathologies. This situation has led to an increasing interest in non-resistant, non- 

residual feeding alternatives that benefit productivity and health status through a 

favorable modulation of the gut microbiota (Gaggìa et al., 2010). 

Animal performance might be associated with changes in gut microbiota. 

Promotion of a balanced gut microbiota population is basic to protect the host against 

pathogenic bacteria, enhancing the intestinal integrity and morphology, as well as the 

absorption of nutrients (Rinttilä and Apajalahti, 2013). One way to benefit gut balance 

is the use of specific dietary components that serve as substrate to a selective group of 

bacteria, such as the case of prebiotics (Gaggìa et al., 2010). Prebiotics are defined as a 

non-digestible, dietary compounds that modulate the composition and/or activity of the 

gut microbiota, conferring a beneficial physiological effect on the host (Bindels et al., 

2015). Dry whey powder (DWP) is a co- product of cheese industry with high lactose 

content (~70% of dry matter). Given that birds have a negligible lactase activity in the 

gut (Denbow, 2000), lactose can be used as a prebiotic. Lactose is not digested, being 

thus fermented by the cecal microflora,which can lead to a decrease on cecum pH and to 

a reduction of potential pathogenic bacteria such as Salmonella enteritidis (Tellez et al., 

1993). The benefits of feeding broilers and laying hens with DWP, as lactose source, on 

their performance and cecal bacteria counts has been reported (Radfar and Farhoomand, 

2008; Pineda-Quiroga et al., 2017). However, to our knowledge, results on the effects of 

DWP on broilers concerning nutrient ileal digestibility and cecal microbiota community 

are lacking so far. 
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The protein source used in feed formulation influences the productive 

performance and the gut microbiota composition of broilers. The benefits of the selected 

protein on animal growth are related to their inclusion level, digestibility and amino 

acid profile (Beski et al., 2015). Gut microbiota could also be affected, as diet non-

digested proteins might reach the hind gut, promote a proteolytic fermentation and 

stimulate an increase in the microbiota that use amino acids as energy source (Qaisrani 

et al., 2015). Whey protein concentrate (WPC) is a co-product of cheese or rennet 

casein industries with relevant protein (30% CP of dry matter) and lactose (52.5% of 

dry matter) contents. The WPC is considered as an excellent amino acid source in bird 

nutrition and is composed of biologically active proteins such as β-lactoglobulin, α-

lactalbumin and immunoglobulins (Szczurek et al., 2013). These proteins have a higher 

biological value compared with soybean meal (Smithers, 2015), the main protein source 

in poultry feed. The lactose of WPC might promote broiler performance by stimulating 

the growth of beneficial cecal bacteria. The benefits of the inclusion of WPC on the 

performance and protein ileal digestibility of broiler diets have been reported (Szczurek 

et al., 2013), but little is known about its effects on digestibility of other nutrients and 

on cecal microbiota community. 

We hypothesize that lactose from supplemented DWP and WPC could modulate 

the cecal microbiota composition towards beneficial bacteria, in detriment of pathogens, 

therefore enhancing the sanitary status and the productive performance of broilers. In 

the case of WPC supplementation, we additionally hypothesize that the benefits of 

lactose on performance could be further potentiated by simultaneously providing a high 

nutritional value protein in the diet. Thus, the aim of this study was to evaluate the 

effect of supplementing broiler diets with DWP as lactose source, and WPC as protein 

and lactose source, on the productive performance, nutrient ileal digestibility, and cecal 

microbial community of broiler chickens. 

 

2. MATHERIALS AND METHODS 

 

2.1 Animals, housing and experimental diets 

 

This experiment followed the European Union (2010/63/EU) and Spanish regulations 
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(RD 53/2013) for the care and use of animals for experimental and other scientific 

purposes. The study was carried out at the experimental farm 126 of Neiker-Tecnalia in 

Arkaute (Vitoria-Gasteiz, Spain). One-day-old male broiler chicks (Ross 308 strain), 

with an average body weight of 42 ± 0.99 g, were obtained from a local commercial 

hatchery (AN Avícola Melida, S.A, Zumaia, Spain). At arrival, birds were randomly 

allocated to their floor pens, with stocking density being 30 kg/m2. Pens were equipped 

with a manual feeder, nipple drinkers, and wood shavings as litter material. Room 

temperature and lighting program were adjusted following the guidelines for Ross 308. 

Diets were corn-soybean based, and were formulated to meet broilers’ 

requirements during the starter and grower-finisher stages (FEDNA, 2008). Starter diets 

were offered from day one to 21, and grower-finisher diets were offered from day 22 to 

42. Chromium oxide (Cr2O3, 5 g/kg of diet) was added to starter diets as an external 

indigestible marker. Birds had ad libitum access to one of the following experimental 

diets: control (no supplementation of DWP or WPC), 60-DWP (60 g/kg of inclusion of 

DWP) and 80-WPC (80 g/kg of inclusion of WPC). Diets with DWP and WPC were 

formulated to provide 42 g/kg of lactose. The ingredient composition and the analyzed 

nutritional value of experimental diets are shown in Table 1. The used DWP was a 

commercial sweet powder (Sueromancha S.L, Toledo, Spain; 703 g/kg of lactose, 126 

g/kg of crude protein). Renylat 3300 (Industrias Lácteas Asturianas, Spain; 520 g/kg 

lactose content, 350 g/kg of crude protein) was used as WPC. 

 

2.2 Experimental design, measurements, and sampling 

 

2.2.1 Trial 1: Apparent ileal digestibility of nutrients (AID) 

 

In this trial, 91 one-day-old chicks were randomly allocated to 1.0 m x 0.83 m 

floor pens, which were assigned to one of the three experimental diets formulated for 

the starter period (Table 1). Each treatment comprised three pens with 10 chickens each. 

At 21 days of feeding, five chickens per pen were euthanized by CO2 inhalation, and 

their ileal digesta was collected. Ileum was considered as the portion of the small 

intestine from the Meckel’s diverticulum to the ileocecal junction, and digesta of the 

last two-thirds of this section was gently collected. Ileal samples from birds within the 

same pen were pooled, frozen at -20ºC, and lyophilized. Dried ileal digesta samples  
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Table 1. Ingredients and chemical composition of the experimental diets (Trials 1 and  

2) 

Item
1
 

Starter period 

(1 to 21 days) 
  

Grower-Finisher period 

(22 to 42 days) 

Control  
60-

DWP 

80-

WPC 
  Control  

60-

DWP 

80-

WPC 

Ingredients (g/kg, as fed basis)       

Yellow corn 510 502 513  500 547 520 

Wheat 115 96 104  93 0 24 

Soybean meal (470 g 

CP/kg) 
312 283 247 

 
314 300 280 

Palm oil     37 36 40 

Soybean oil 25 26 27  29 28 24 

Dry whey powder 0 60 0  0 60 0 

Whey protein concentrate 0 0 80  0 0 80 

Vitamin and mineral 

premix
2
 

4 4 4 
 

4 4 4 

Dicalcium phosphate 9.5 4 4  5 3.5 3 

Calcium carbonate 18 18 14  13 16 11 

Sodium chloride 2.7 2.7 2.7  2.7 2.7 2.7 

DL-Methionine 1.3 1.3 1.3  1 1 1 

L-Lysine 1.8 1.8 1.8  1 1 1 

Salmocid 0.5 0.5 0.5  0.5 0.5 0.5 

Chromium oxide 0.5 0.5 0.5  0 0 0 

Analyzed chemical composition unless otherwise indicated 

AMEn (MJ/kg)
3
 11.81 11.87 11.89  12.92 12.91 12.95 

CP (g/kg) 203 198 199  195 193 185 

Lys (g/kg)
3
 11.9 11.5 11.1  11.2 11.2 11.3 

Met (g/kg)
3
 4.4 4.3 4.2  4.1 4 4 

Ca (g/kg) 10.5 9.6 9.7  8.5 8.2 8.3 

Available P (g/kg)
3 

5.7 5.0 5.4   4.7 4.5 4.9 

Lactose (g/kg) 0 0 42  0 42 42 
1 

Control: no supplementation of dry whey powder or whey protein concentrate; 60- 

WP: 60 g/kg of dry whey powder; 80-WPC: 80 g/kg of whey protein concentrate. 
2 

Providing the following per kg of diet: of diet: 8 000 IU vitamin A (trans-retinyl 

acetate), 1 600 IU vitamin D3 (cholecalciferol), 16 mg vitamin E (DL-α-tocopherol), 1 

mg thiamine (thiamine-mononitrate), 3 mg riboflavin, 1 mg pyridoxine (pyridoxine. 

HCL), 0.01 mg vitamin B12 (cyanocobalamin), 1 mg vitamin K3 (menadione 

nicotinamide bisulphite), 16 mg niacin (nicotinic acid), 7 mg pantotenic acid (D-Ca 

pantothenate), 70 mg Mn (manganese oxide), 50 mg Zn (zinc sulfate), 30 mg Fe (iron 

sulfate monohydrate), 4 mg Cu (copper sulphate), 1 mg I (calcium iodate), 0.2 mg Co 

(cobalt sulfate), 0.1 mg Se (sodium selenite), 240 mg choline (choline choride), 300 

units phytase, 110 mg ethoxyquin. 
3 

Calculated value.  
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were ground to pass through a 0.5 mm screen, and stored in airtight containers at room 

temperature until chemical analyses. The AID of dry matter (DM), crude protein (CP), 

calcium (Ca) and phosphorous (P) was estimated using Cr2O3 as external indigestible 

marker. 

 

2.2.2 Trial 2: Determination of productive performance and cecal 

microbial community 

 

In this trial 810 one-day old chicks were randomly allocated to 1.0 x 2.5 m floor 

pens, which were assigned to one of the three experimental diets (Table 1) for a period 

of 42 days. Each treatment comprised nine replicates of 30 chickens each. To determine 

productive performance, all chickens and feeders from each pen were weighted weekly. 

Body weight (BW), average daily gain (ADG), feed intake (FI), and feed conversion 

ratio (FCR) were recorded on a pen basis. Mortality was recorded daily. 

 

2.2.2.1  Cecal sample collection and DNA extraction 

 

At 42 days, five chickens from each experimental treatment were randomly 

selected from different pens and euthanized by CO2 inhalation. The gastrointestinal tract 

was dissected, the two ceca were opened longitudinally, and digesta samples were 

collected with a sterile spoon. Samples were immediately stored at -80°C until further 

analysis. Total nucleic acid was extracted from samples using the PowerSoil DNA 

extraction Kit (MOBIO Laboratories Inc., Carlsbad, CA, USA) according to the 

manufacturer recommendations. DNA was quantified in Nanodrop (ND-1000 

Spectrophotometer, Nanodrop Technologies, DE, USA) and DNA integrity was 

checked through agarose gel electrophoresis. 

 

2.2.2.2  16S rRNA gene amplification, Illumina sequencing, and 

bioinformatics sequence analysis 

 

The V4 hypervariable region of the 16S rRNA gene was used to prepare 

Illumina amplicon libraries (Caporaso et al., 2011). Two PCR were performed to 
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incorporate Illumina adapters and barcodes for sample identification. The PCR products 

were purified using Agencourt AMPure®XP kit (Agencourt Bioscience Corporation, 

USA) according to the manufacturer instructions, and eluted in 20μl of water. 

Amplicons were quantified using Qubit fluorometric quantitation (Qubit® 3.0, Thermo 

Fisher Scientific Inc., USA), and the Agilent 2100 Bioanalyzer (Agilent Technologies; 

Santa Clara, CA, USA) in order to pool the samples and sequence them on an Illumina 

MiSeq platform. 

Illumina reads were analyzed using Mothur Miseq SOP (Kozich et al., 2013). 

Primers and barcodes were trimmed prior to analysis. All samples comprised 3.912.932 

sequence reads, with a mean number of reads per sample of 261.202 ± 62.590. 

Sequences were aligned using SILVA-based bacterial reference alignment obtained 

from Mothur. Chimera sequences were checked and removed using UCHIME. A final 

dataset was then clustered into operational taxonomic units (OTU) at ≥ 97% similarity. 

OTUs with less than 10 reads in one sample were removed from the analysis (< 

0.0013% of the total). A total of 855 OTUs were taxonomically assigned using the 

Seqmatch function in Ribosomal Database Project. Sequences are available at the 

European Nucleotide Archive under the accession number PRJEB17510 in 

http://www.ebi.ac.uk/ena. 

 

2.3 Chemical analysis and calculations 

 

Experimental diets and ileal samples were analyzed in triplicate for DM (method 

934.01), total ash (method 942.05), CP (method 990.03), ether extract (method 920.39), 

according to the Association of Official Analytical Chemists (2007). Measurements of 

Ca, P and Cr2O3 oxide were determined by spectroscopy plasma atomic emission. 

Calculation of nutrients CAID was made using the following formula: 

 

W 

h

were (Diet component/Cr2O3)d is the ratio of the diet component to the Cr2O3 content in 

the diet, and (Diet component/Cr2O3)i is the ratio of the component to Cr2O3 in the ileal 

digesta. 

CAID of diet component=
 Diet component/Cr

2
O3 d-  Diet component/Cr

2
O3 i

 Diet component/Cr
2
O3 d

 

http://www.ebi.ac.uk/ena
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2.4 Statistical analysis 

 

For analysis of productive performance and nutrient AID, pen was considered 

the experimental unit. Performance data were evaluated during the starter (day 1 to 21) 

and grower-finisher periods (day 22 to 42), as well as for the entire feeding period (day 

1 to 42). One-way ANOVA was performed considering the experimental diet as the 

fixed effect, and the pen as the random effect. Performance and AID were analyzed 

using a Gaussian distribution, whereas survival data were analyzed considering a 

binomial distribution. Initial BW was used as a covariate in performance analysis. Data 

were analyzed using the GLIMMIX procedure of SAS V 9.3 (SAS Inst. Inc., Cary, NC). 

In case of a significant effect (P < 0.05) multiple comparisons were carried out to detect 

differences between treatments using the Tukey’s range test. 

For sequencing analysis, relative abundances of the OTUs were analyzed by 

means of multivariate statistical routines using PRIMER (version 7.0.9, PRIMER-E, 

Plymouth Marine Laboratory, Plymouth, UK). Data were standardized in relation to 

their total amount, and a sample similarity matrix was created using Bray-Curtis 

coefficient. Community structures ordination was explored by hierarchical clustering, 

and similarity profile permutation test (SIMPROF) was used to seek for statistically 

significant clusters. Statistical comparisons of microbial communities between 

treatments were determined using one-way analysis of similarity (ANOSIM, 999 

permutations), and significant differences were considered if P < 0.05. Subsets of OTUs 

summarizing the overall differences in microbial community composition were 

identified using BEST routine. Individual OTUs contributing to dissimilarity between 

treatments were identified by similarity percentage analysis (SIMPER), as well as the 

average of similarity in cecal microbial community composition among birds fed with 

the same diet.  

 

3. RESULTS 

 

3.1 Nutrient coefficient of AID  
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Results relative to nutrient AID are shown in Table 2. An increase on the AID of 

Ca was promoted by 60-DWP diet compared to control diet (P = 0.041) while no 

differences were found between 60-DWP and 80-WPC (P = 0.695) or 80-WPC and 

control diet (P = 0.119). Chickens fed with 60-DWP and 80-WPC showed an increase in 

the AID of P when compared to control diet (P < 0.001 and P = 0.002, respectively), 

while no differences were found between 60-DWP and 80-WPC (P = 0.406). Feeding 

birds with experimental diets did not influence the AID of DM and CP (P = 0.402 and P 

= 0.201, respectively). 

 

Table 2. Influence of diet supplementation with dry whey powder and whey protein 

concentrate on nutrient apparent ileal digestibility in broilers at 21 d (Trial 1). 

Item 
Treatment 

1
   

Control
 

60-DWP 80-WPC SEM 
2 

P-value 

Dry matter 0.928 0.932 0.927 0.003 0.402 

Crude Protein 0.841 0.861 0.862 0.008 0.201 

Calcium 0.699
b
 0.743

a
 0.731

ab
 0.009 0.043 

Phosphorus 0.656
b
 0.786

a
 0.762

a
 0.012 <0.001 

1 
Control: no supplementation of dry whey powder or whey protein concentrate; 60-

DWP: 60 g/kg of dry whey powder; 80-WPC: 80 g/kg of whey protein concentrate. 
2 

Standard error of the mean. 
a-b 

Means followed by different superscript in a column 

indicate differences between treatments (P < 0.05). 

 

3.2 Performance parameters 

 

Broilers fed with 60-DWP and 80-WPC diets showed the highest values for 

growth parameters in the analyzed periods (Table 3). At the end of the starter period, 

birds fed with 80-WPC showed higher BW, ADG and FI values when compared to the 

control diet (P < 0.001) and 60-DWP (P < 0.001). The FCR of 80-WPC diet was lower 

than that of control diet (P = 0.003), and did not differ from that of 60-DWP (P = 

0.078). Feeding with 60-DWP promoted an increase in BW and ADG, as well as a 

reduction in FCR (P < 0.001) when compared to control diet. However no differences 

were observed for FI (P = 0.494). Mean mortality values were 1.75 %, remaining 

unaffected by treatments. 

At the end of the grower-finisher period, animals fed with 80-WPC and 60-DWP 

increased their BW (P < 0.001), ADG (P = 0.048) and FI (P < 0.001) as compared to 

those fed the control diet, whereas no significant differences were found on FCR (P = 
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0.793). There were no statistical differences in BW, ADG, FI, and FCR between birds 

fed with 60-DWP and 80-WPC (P > 0.05). Mean mortality values were 1.22 %, and 

remained unaffected by treatments. 

For the entire feeding period, birds fed with 60-DWP and 80-WPC showed 

higher ADG (P = 0.006 and P < 0.001, respectively) and FI (P < 0.001 and P = 0.001, 

respectively) than those fed control diets. A decrease in FCR was observed by feeding 

with 60-DWP compared to control diet (P = 0.048), while no difference were found 

between 80-WPC and control diet (P = 0.096). When comparing 60-DWP and 80-WPC, 

no differences were detected for ADG (P = 0.061) and FCR (P = 0.974), although FI 

was lower in 60-DWP (P = 0.005). Mean mortality values were 2.25%, remaining 

unaffected by treatments. 

 

Tabla 3. Influence of diet supplementation with dry whey powder and whey protein 

concentrate on productive performance (Trial 2). 

Item 

 

Treatment 
1
     

Control 60-DWP 80-WPC SEM 
2
 P-value 

Starter period (d 0 to 21) 
     

Body weight (g) 464
c
 582

b
 677

a
 5.45 < 0.001 

Average daily gain (g/d) 21
c
 26

b
 31

a
 0.27 < 0.001 

Feed intake (g /d) 41
b
 43

b
 54

a
 1.37 < 0.001 

Feed conversion ratio  1.94
b
 1.61

a
 1.65

a
 0.045 < 0.001 

Grower-finisher period (d 21 to 42) 

     Body weight (g) 1822
b
 2078

a
 2231

a
 44.24 < 0.001 

Average daily gain (g/d) 62
b
 69

ab
 72

a
 2.23 < 0.001 

Feed intake (g /d) 117
b
 129

a
 128

a
 1.94 < 0.001 

Feed conversion ratio  1.88 1.86 1.82 0.117 0.793 

Entire feeding period (d 0 to 42) 

     Average daily gain (g/d) 41
b
 47

a
 52

a
 1.22 < 0.001 

Feed intake (g /d) 78
c
 85

b
 91

a
 84.83 < 0.001 

Feed conversion ratio  1.90
b
 1.80

a
 1.85

ab
 0.059 0.039 

1 
Control: no supplementation of dry whey powder or whey protein concentrate; 60- 

WP: 60 g/kg of dry whey powder; 80-WPC: 80 g/kg of whey protein concentrate. 
2 

Standard error of the mean. 
a-b 

Means followed by different superscript in a column 

indicate differences between treatments (P < 0.05). 
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3.3 Microbial community analysis 

 

Bacteroidetes, Firmicutes, and Proteobacteria were the most representative phyla 

in all diets (Fig 1). Control samples showed 45% of the sequences associated to 

Bacteroidetes, 40% to Firmicutes, and 14% to Proteobacteria. Bacteroidetes and 

Proteobacteria decreased their abundance in birds fed 60-DWP diets (31% and 6%, 

respectively) and 80-WPC diets (39% and 5%, respectively), while Firmicutes increased 

their abundance (63% in 60-DWP and 55% in 80-WPC). A change in the 

Firmicutes/Bacteroidetes (F/B) ratio was also observed between treatments, being the 

ratio 0.89 in samples from control diet, 2.03 in 60-DWP, and 1.43 in 80-WPC. 

 

Fig 1. Composition of bacteria in cecal samples at phylum level. Relative abundance (> 

1% on average) at different phylum in response to experimental diets. Control: no 

supplementation of dry whey powder or whey protein concentrate; 60 g/kg of dry whey 

powder, 80-WPC: 80 g/kg of whey protein concentrate. 

 

The most abundant families harbouring the ceca are shown in Fig 2. Cecal 

samples from control diet were mainly colonized by Ruminococcaceae, Bacteroidaceae, 

Porphyromonadaceae, and Helicobacteraceae (24%, 22%, 17% and 10% respectively), 

while samples from 60-DWP and 80-WPC diets were represented by Ruminococcaceae 

(38% and 34%, respectively), Bacteroidaceae (17% and 27%, respectively), 
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Lachnospiraceae (15% and 11%, respectively), and Porphyromonadaceae (10% and 8%, 

respectively). Bacteroides was the most representative genus in all samples, accounting 

for 22% of total community in samples from control diet, 17% in 60-DWP, and 27% in 

80-WPC (Fig 3), followed by Barnesiella and Helicobacter (15% and 10%) in control 

diet. In 60-DWP and 80-WPC diets Faecalibacterium accounts for 12% of total 

bacteria, Barnesiella for 9% and 6%, respectively, and Ruminococcus for 6% and 4%, 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. Composition of bacteria in cecal samples at family level. Relative abundance (> 

1% on average) at different families in response to experimental diets. Control: no 

supplementation of dry whey powder or whey protein concentrate, 60-DWP: 60 g/kg of 

dry whey powder, 80-WPC: 80 g/kg of whey protein concentrate. 

 



__________________________________________________________________________________________________________CHAPTER 4 

123 

 

 

 

 

 

 

 

Fig 3. Composition of bacteria in cecal samples of broilers at genus level. Relative abundance (>1% on average) of genus in response to 

experimental diets. Control: no supplementation of dry whey powder or whey protein concentrate, 60-DWP: 60 g/kg of dry whey powder, 80-

WPC: 80 g/kg of whey protein concentrate
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Exploratory analysis of the microbial community revealed two main clusters that 

separate the cecal samples of chickens fed with control diet from those fed with 60-

DWP and 80-WPC (Fig 5). Within each cluster microbial community similarities 

between 55-60% were observed. The average similarity within replicates of cecal 

samples was 62% in control diet, 61% in 60-DWP, and 56% in 80-WPC. 

 

 

Fig 4. Hierarchical cluster representing relationships among microbial communities of 

cecal samples from chickens fed with the experimental diets. On y-axis: similarity 

percentage based on Bray Curtis matrix, on x-axis: individual samples of cecal digesta. 

Experimental diets:       Control: no supplementation of dry powder whey or whey 

protein concentrate        60-DWP: 60 g/kg of dry whey powder        80-WPC: 80 g/kg of 

whey protein concentrate. 

 

Significant differences in the composition of the bacterial community were 

observed between experimental diets (R = 0.476, P = 0.001; Table 4). A subset of 6 

OTUs summarizes the overall differences (Table 5), which are associated to 

Faecalibacterium spp. (OTU 1), Bacteroides spp. (OTU 2), unclassified 

Porphyromonadaceae (OTU 3), Bacteroides fragilis (OTU 5), Helicobacter pullorum 

(OTU 7), and Escherichia coli/Shigella flexneri (OTU 9). 
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Table 4. One-way ANOSIM of cecal microbial communities of broilers associated with 

experimental diets. 

Treatment
1 

Control 60-DWP 80-WPC 

Control - 0.776 0.740 

60-DWP 0.008 - -0.024 

80-WPC 0.008 0.508 - 
1 

Control: no supplementation of dry whey powder or whey protein concentrate; 60-

DWP: 60 g/kg of dry whey powder; 80-WPC: 80 g/kg of whey protein concentrate. The 

R statistic (indicated in boldface) and significance level (indicated in italics) are shown 

for each comparison between experimental diets.  

 

Microbial communities from cecal samples of chickens fed with control diet 

were different from those of 60-DWP (R = 0.776, P = 0.008). The percentage of 

dissimilarity was 51%, mainly due to the decrease in the abundance of OTUs associated 

to Bacteroides spp. (OTU 2), unclassified Porphyromonadaceae (OTU 3), Helicobacter 

pullorum (OTU 7), Barnesiella intestinihominis (OTU 17), and unclassified 

Rikenellaceae (OTU 13) in 60-DWP treatment. An increase in the abundance of 

phylotypes associated to Faecalibacterium spp. (OTU 1), Bacteroides fragilis (OTU 5), 

Bacteroides spp. (OTU 6), Escherichia coli/Shigella flexneri (OTU 9), Megamonas 

funiformis (OTU 12), Lactobacillus salivarius (OTU 33), Ruminococcus spp. (OTU 4), 

unclassified Lachnospiraceae (OTU 10), and Phascolarctobacterium spp. (OTU 11) in 

60-DWP treatment also contributed to the dissimilarity between both groups. 

Microbial communities of samples from control diet were significantly different 

from those from 80-WPC (R = 0.740, P = 0.008). The percentage of dissimilarity was 

52%, being this attributed to the decrease in the abundance of OTUs associated to 

Bacteroides spp. (OTU 2), unclassified Porphyromonadaceae (OTU 3) Helicobacter 

pullorum (OTU 7), unclassified Rikenellaceae (OTU 13), and Barnesiella 

intestinihominis (OTU 17) in 80-WPC samples. In contrast, Faecalibacterium spp. 

(OTU 1), Bacteroides fragilis (OTU 5), Bacteroides spp. (OTU 6), Escherichia 

coli/Shigella flexneri (OTU 9), unclassified Lachnospiraceae (OTU 10), 

Phascolarctobacterium spp. (OTU 11), Megamonas funiformis (OTU 12), and 

Subdoligranulum variabile (OTU 22) were more abundant in 80-WPC samples 

compared to control samples.60-DWP and 80-WPC microbial communities did not 

differ (R = -0.024, P = 0.508). The most common OTUs in both diets were associated to 

Bacteroides spp. (OTU 6), Escherichia coli/Shigella flexneri (OTU 9), Megamonas 
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funiformis (OTU 12), Faecalibacterium spp. (OTU 1), unclassified Rikenellaceae (OTU 

13), and Phascolarctobacterium spp. (OTU 11). 
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Table 5. Abundance of OTUs that contribute to dissimilarity in cecal microbial communities of broilers associated with experimental diets  

  Relative abundance (%) Taxonomy RDP Score Reference
 

 Control
1 

60-DWP 80-WPC    

OTU1
* 

7.56 12.46 12.00 Faecalibacterium spp. 98.4 Scupham (2007) 

OTU2
*
 18.28 8.58 14.84 Bacteroides spp.  98.1 Eckburg et al. (2005) 

OTU3
*
 12.29 8.67 5.27 unclassified Porphyromonadaceae 82.8 Sakamoto et al. (2007) 

OTU4 2.13 5.66 3.89 Ruminococcus spp. 98.4 Turnbaugh et al. (2009) 

OTU5
*
 1.90 2.38 6.54 Bacteroides fragilis  97.7 Cerdeño-Tárraga et al. (2005) 

OTU6 1.47 6.24 5.22 Bacteroides spp. 95.3 Bakir et al. (2006) 

OTU7
*
 10.5 2.20 0.63 Helicobacter pullorum 98.0 Dewhirst et al. (2005) 

OTU9
*
 0.06 2.39 3.75 Escherichia coli/Shigella flexneri 97.7 Wang et al. (1997) 

OTU10 0.37 1.96 1.37 unclassified Lachnospiraceae 94.2 Bjerrum et al. (2006) 

OTU11 0.42 2.39 2.05 Phascolarctobacterium spp. 98.8 Scupham (2007) 

OTU12 0.01 2.27 1.77 Megamonas funiformis  97.6 Sakon et al. (2008) 

OTU13 3.68 1.36 1.60 Unclassified Rikenellaceae 87.1 Song et al. (2006) 

OTU17 3.19 0.20 0.91 Barnesiella intestinihominis  97.6 Morotomi et al. (2008) 

OTU22 0.04 - 1.71 Subdoligranulum variabile  98.0 Holmstrøm et al. (2004) 

OTU23 0.29 0.96 1.36 Unclassified Ruminococcaceae 88.0 Krogius-Kurikka et al. (2009) 

OTU31 0.38 - 1.17 Odoribacter spp.  98.0 Li et al. (2012) 

OTU33 0.59 1.10 - Lactobacillus salivarius  98.0 Groisillier and Lonvaud-Funel (1999) 
1 

Control: no supplementation of dry whey powder or whey protein concentrate; 60-DWP: 60 g/kg of dry whey powder; 80-WPC: 80 g/kg of 

whey protein concentrate.  *
 
These OTUS were

 
identified by BEST routine as summarizing the overall differences in microbial community.  
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4. DISCUSSION 

 

The current study shows that including 60 g/kg of DWP or 80 g/kg of WPC in 

diets improves broiler growth and feed efficiency, from early growth stages to later 

ages. These dietary supplementations improve ileal digestibility of calcium and 

phosphorus, and promote a higher ratio of Firmicutes/Bacteroidetes in ceca. Similarly, 

Gulsen et al. (2002) showed that adding 38.5 g/kg of DWP as lactose source at starter 

and grower-finisher diets improved BW, whereas Kermanshahi and Rostami (2006) 

reported that supplying 40 g/kg of DWP did not affect BW during the starter period, but 

BW and FCR were improved both during the grower-finisher and the entire feeding 

periods. Authors attributed the weight increase to a higher absorption of protein and 

some minerals such as calcium and phosphorous, although they did not present such 

results. Regarding the use of proteins from whey in broiler diets, Szczurek et a.. (2013) 

reported an increase in BW, and a reduction of FCR when adding 8 or 32 g/kg of WPC 

during both the starter and grower-finisher periods. These authors attributed the 

improved performance to the observed increase in ileal digestibility of protein measured 

on broilers at 26 days of age. Digestibility results differ from ours, possibly due to age 

differences, number of animals sampled, and ingredient and nutrient composition of 

diets. According to our findings, we consider the improvement of AID of Ca and P, and 

the increase in FI as one of the reasons explaining the improved performance of broilers 

fed with DWP or WPC. Both feed ingredients contain a considerable amount of Ca and 

P, which led to a reduction in dicalcium phosphate during diet formulation, and to lesser 

extent in calcium carbonate, with respect to control diet. It is known that mineral 

organic sources have higher intestinal absorption than inorganic sources (Nollet et al., 

2007), and that lactose greatly stimulates the absorption of Ca and P (Matin et al., 

2013), which would explain the observed results. The higher Ca and P digestion 

influences the growth of animals because these minerals promote bone development and 

mineralization (Proszkowiec-Weglarz and Angel, 2013). Similarly, we consider that 

higher Ca and P digestion, together with the observed increase in FI, promotes a higher 

digestible mineral intake, and in consequence an improvement in growth.  

We also consider that the observed changes in ceca microbiota would enhance 

broiler performance. Therefore, birds with a higher weight showed a greater F/B ratio. 

These results are in agreement with Singh et al. (2013), who found that broilers with 

greater weight exhibited higher F/B ratio in ceca. Representatives of the Firmicutes 
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phylum are known for harvesting energy from diets and transfering calories to the host, 

with the subsequent weight gain (Turnbaugh et al., 2006; Turnbaugh et al., 2009). Some 

of the microorganisms belong to the Ruminococcaceae and Lachnospiraceae families, 

which were more abundant in broilers with higher weight. Both families break down 

complex, plant-derived carbohydrates and resistant starch, which are found in diet 

grains, into saccharides and make them available for microbial fermentation to high 

energy metabolites (Biddle et al., 2013). It was therefore expected that the 

microorganisms that play an important role in this process were more abundant in birds 

with higher weight, indicating improved efficiency in extracting energy from the diet. 

Our results also revealed that ceca from those chickens with a higher weight was 

colonized to a larger extent with bacteria able to ferment lactose, among other 

carbohydrates, and produce short chain fatty acids (SCFAs) as fermentation products. 

The abundance of Faecalibacterium, Clostridium XIVa and IV, which are linked to 

butyric acid production, and Ruminococcus associated to acetic acid production (De Vos 

et al., 2009) increased in supplemented diets. Stanley et al. (2016) showed greater 

abundance of Faecalibacterium and Ruminococcus in broilers with higher growth, 

together with a major abundance of Bacteroides fragilis in those birds with a better 

energy metabolism. In our study, B. fragilis (OTU 5), Bacteroides spp. (OTU 6), and 

Megamonas funiformis (OTU 12), known to produce acetic acid and propionic acid as 

fermentation product (Krieg et al., 2010), were also detected in the ceca of chickens fed 

with supplemented diets. An increase on Escherichia coli/Shigella flexneri (OTU 9) was 

noted as well. Torok et al. (2011) showed an increase of E. coli in broilers with 

improved feed effciency. However, to the best of our knowledge no studies have so far 

reported an association between OTU 6 and OTU 12 and any performance parameter in 

poultry. OTU 6 is a common inhabitant of layer hens’ ceca (Prasai et al., 2016), and a 

previous study has reported that Megamonas acts as hydrogen sink in the ceca of 

broilers, thereby increasing the SCFAs production (Sergeant et al., 2014). Ceca 

colonization by efficient SCFA’s-producing microbiota provides extra energy for host 

metabolism (Józefiak et al., 2004; Rinttilä and Apajalahti, 2013), promoting their 

growth. 

In the present study higher abundance of Lactobacillus salivarius (OTU 33) was 

identified in broilers with better FCR results, which were those fed with 60-DWP. The 

same findings were also reported by Stanley et al. (2013). L. salivarius is a lactic-acid-
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producing bacteria able to ferment lactose (De Vos et al., 2009), and it has been used as 

probiotic in poultry nutrition (Saint-Cyr et al., 2016). We hypothesize that these bacteria 

improved feed efficiency, possibly through the improvement of the sanitary status and 

gut microbiota balance of broilers. L. salivarius produces effective bacteriocins against 

some potentially pathogenic bacteria, and has the ability to stimulate butyrate producing 

bacteria, together with the establishment of good microflora balance (Messaoudi et al., 

2013). 

Broilers with higher weight showed lower cecal abundance of Helicobacter 

pullorum (OTU 7), being this a positive finding because H. pullorum is considered a 

potential zoonotic pathogen, constituting an important health problem both for poultry 

and humans. Low abundance of this bacteria reduces the chickens’ risk of enteric 

disease and vibrionic hepatitis (Borges et al., 2015). Therefore, productivity is not 

threatened by disease and birds are able to gain weight more efficiently. This bacterial 

reduction also minimizes the risk of contamination of chicken products for human 

consumption, thereby reducing the risk of several human digestive pathologies (Borges 

et al., 2015). We hypothesize that the reduction in the abundance of H. pullorum could 

be related to the observed parallel increase of SCFAs-producing bacteria, and to the 

effectiveness of SCFAs as an inhibitor of some harmful bacteria due to their ability to 

damage pathogen cell walls. 

The current study also showed that inclusion of WPC in diets did not result in 

improved performance compared with diets supplemented with DWP, despite being 

both formulated with a similar amino acid profile. The reason could lay on the fact that 

lactose, provided in equal quantities by both diets, promoted a similar mineral 

digestibility. The microbial community composition is therefore modulated similarly, 

leading to chickens reaching comparable productive performance results. 

Future work should also include the characterization of different sections of the 

upper gastrointestinal tract to determine the microbial community modulations that 

might occur due to the dietary interventions. Also, it would be relevant to investigate 

the gut bacterial function through metagenomics studies to elucidate the biochemical 

properties of microbiota, and potential metagenomics modulation by feeding chickens 

with different dietary treatments. 
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5. CONCLUSION 

 

Data presented here indicate that both DWP and WPC are viable ingredients in 

poultry feeding because they improve chicken growth, ileal digestibility of Ca and P, 

and modulate the cecal microbiota. Of special interest is the association of a greater 

abundance of Bacteroides fragilis, Bacteroides spp., Escherichia coli/Shigella flexneri 

and Megamonas furniformis with improved weight, as well as a greater abundance of 

Lactobacillus salivarius with better FCR. The reduction of the pathogenic phylotype 

Helicobacter pullorum, linked to higher chicken weight, is especially important since 

DWP and WPC could improve broiler sanitary status and reduce foodborne pathogen 

contamination risk. 
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ABSTRACT  

 

The present study was conducted to investigate the effect of supplementing 

wheat-barley based diets with dry whey powder (DWP), chitosan (CHIT), a mixture of 

DWP-CHIT, and inulin (INU) on productive performance, duodenal histomorphometry 

and ceca microbial composition of chickens. A total of 1500 one-day-old male birds 

were allocated to floor pens and assigned to one of the following treatments: control 

diet (no additive supplementation), 60-DWP (60 g/kg of DWP), 5-CHIT (5 g/kg of 

CHIT), DWP-CHIT (60-DWP plus 5-CHIT), and 20-INU (20 g/kg of INU). Each 

treatment had 10 replicate pens, with 30 birds per pen. Measurements of productive 

performance were made during the starter period (d 1- 21) and for the entire feeding 

period (d 1- 42), while duodenal measurements were registered at d 21. Ceca microbiota 

composition was determined using Illumina amplicon sequencing at d 21 and 42. 

During the starter period, feeding chickens with any of the tested additives diminished 

their body weight (BW), average daily gain (ADG) and feed intake (FI) as compared to 

control diet (P < 0.05). This was also observed during the entire feeding period (P < 

0.05), except for INU supplementation that showed similar values to control birds. None 

of treatments affected duodenal histomorphometry. Ceca microbiota composition was 

influenced by diet at every stage of the productive period (P = 0.001), although no clear 

association between microbiota and performance was detected. At d 21, no differences 

in microbiota composition of control, 60-DWP, 5-CHIT, and 20-INU birds were found, 

which ceca were highly harboured by Lactobacillus gallinarum, although only control 

promoted greater BW, ADG, and FI. Control and 60-DWP treatments did not differ in 

their ceca communities at d 42, although only control increased BW, ADG, and FI. In 

both cases, ceca showed higher abundance of Lactobacillus gallinarum and Bacteroides 

vulgatus, and lower abundance of Escherichia coli/Shigella flexneri and Bacteroides 

fragilis. DWP-CHIT diet promoted an increase of Klebsiella pneumoniae at d 21, and of 

Streptococcus gallolyticus at d 42, together with a performance reduction as compared 

to control diet. The present findings indicate that chicken growth is reduced by 

supplementing wheat-barley based diets with DWP, CHIT, DWP plus CHIT, and INU, 

at the tested doses, as a consequence of a reduction in FI. Ceca microbiota composition 

and diversity varied in a diet-dependent manner during both sampled ages, although a 

linkage between microbiota and performance was not clear. 
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1. INTRODUCTION 

 

Dietary interventions during the last decades, implemented to improve broiler 

growth, included the addition of low levels of antibiotics as growth promoters in feed 

for an extended period of time (Dibner and Richards, 2005). The impact on their use has 

received considerable attention due to the strong changes on the gut microbiota, 

intestinal wall and the enhancement of bird weight and feed efficiency (Niewold, 2007; 

Danzeisen et al., 2011). However, their ban in the European Union (EC Regulation, No. 

1831/2003), and their potential restriction in other countries, have resulted in a 

reduction of animal performance and in an increase of enteric pathologies (Dibner and 

Richards, 2005). In consequence, non-antibiotic feed additives are a subject of 

increasing interest (Roberts et al., 2015). In this sense, it is advisable to identify which 

additives are best suitable for poultry, in part due to conflicting evidences about the fact 

that their use does not always improve broiler productivity and health (Geier et al., 

2009b). These inconsistencies might be related to the main cereal used in diet 

formulation (Rodríguez et al., 2012), being therefore essential to evaluate additive 

effectiveness in wheat and barley based diets, which are two of the most common 

energy sources in poultry nutrition (Amerah, 2015). 

Prebiotics are defined as non-digestible dietary compounds that modulate the 

composition and/or activity of gut microbiota, conferring a beneficial effect on the host 

(Bindels et al., 2015). Successful productive results have been reported in poultry by 

using dry whey powder (DWP; Pineda-Quiroga et al., 2017) and inulin (Velasco et al., 

2010) as prebiotics in corn based diets, although results about the response of chickens 

to diets based on cereal high in soluble non-starch polysaccharides (NSP) are scare. 

Ceca fermentation of lactose from DWP, and fructo-oligosaccharides from inulin, 

promote the growth of selective beneficial bacteria populations in detriment of 

potentially pathogens (Flickinger et al., 2003; Gulsen et al., 2002). Similarly, natural 

antimicrobials such as chitosan, which has a wide spectrum of activity against Gram-

positive and Gram-negative bacteria (Kong et al., 2010), have been used in corn based 

broilers diets with positive performance results (Khambualai et al., 2009), though it is 

possible that their inclusion increase gut digesta viscosity. 

Knowledge about the effect of supplementing chicken wheat-barley diets with 

non-antibiotic feed additives can give an insight into how these influence bird 
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performance through duodenal development and ceca microbial modulations when 

these diets are used. A more comprehensive research of the specific effects of dry whey 

powder, chitosan, and inulin is therefore essential to identify their adequacy in broiler 

feeding. Similarly, potential synergies between prebiotics and natural antimicrobials 

should be explored, and the combined use of dry whey powder and chitosan is proposed 

as a first approach. In this sense, it could be expected that antimicrobials reduce the 

gastrointestinal load of potentially pathogenic bacteria and, under these conditions, 

prebiotics could be selectively used as substrate for the growth of beneficial bacteria. 

Therefore, the aim of this study was to investigate the influence of the above cited 

additives, and of the mixture of dry whey powder plus chitosan, on broiler performance, 

duodenal histomorphometry, and cecal microbial composition during the lifespan of the 

broilers. 

 

2. MATHERIALS AND METHODS 

 

The experiment was performed in accordance with the European Union 

(2010/63/EU) and Spanish regulations (RD 53/2013) for the care and use of animals for 

experimental and other scientific purposes. 

 

2.1 Test substances 

 

The additives tested in the present study were dry whey powder (DWP), chitosan 

(CHIT), and inulin (INU). The DWP was a commercial sweet powder composed by a 

mixture of ovine and bovine whey (Sueromancha S.L, Toledo, Spain) composed by 703 

g of lactose/kg of product. The CHIT was the commercial product ChitoClear® fg 95 

(Trades, S.A., Tarragona, Spain), prepared from chitin of shrimp shells with a degree of 

deacetylation ≥ 95%. The INU was a commercial product Orafti®GR (Trades S.A, 

Spain) obtained from chicory roots, containing 900 g of inulin/kg of product. 

 

2.2 Animals, housing, and experimental diets 

 

The study was conducted at the experimental facilities of Neiker-Tecnalia in 

Arkaute (Vitoria-Gasteiz, Spain). A total of 1500 one-day-old male broiler chickens 
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(Ross 308 strain) were obtained from a local commercial hatchery (AN Avícola Melida, 

S.A, Zumaia, Spain). At arrival, birds were randomly allocated to floor pens at a 

stocking density of 30 kg/m
2
. Pens were equipped with one manual feeder, nipple 

drinkers, and wood shavings as litter material. Room temperature and lighting program 

were implemented following the guidelines for Ross 308. 

Wheat and barley based diets were formulated to meet broilers’ requirements 

during the starter and grower-finisher stages (FEDNA, 2008). Starter diets were offered 

from day one to 21 as crumbles, and grower-finisher diets were offered from d 22 to – 

42 as pellets. Each treatment comprised 10 pens, with 30 chickens each. Birds had ad 

libitum access to one of the following experimental diets: control (no additive 

supplementation), 60-DWP (60 g/kg of inclusion of dry whey powder), 5-CHIT (5 g/kg 

of inclusion of chitosan), DWP-CHIT (60 g/kg of inclusion of dry whey powder plus 5 

g/kg of inclusion of chitosan), and 20-INU (20 g/kg of inclusion of inulin). β-glucanases 

and β-xylanases were included in the same amount in all diets (Nutralzyme, Nutral S.A., 

Madrid, Spain). A commercial biocide product (Salmocid-F®, Adiveter S.L., 

Tarragona, Spain) was also added to diets during the industrial making process to 

control their microbiological charge. The ingredient composition and nutritional value 

of experimental diets are shown in Table 1. 

 

2.3 Measurements and sampling 

 

2.3.1 Productive performance  

 

To determine productive performance, all chickens and feeders from each 

pen were periodically weighted. Body weight (BW), average daily gain (ADG), feed 

intake (FI), and feed conversion ratio (FCR) were recorded on a pen basis. Mortality 

was recorded daily. 
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Table 1. Ingredients and chemical composition of experimental diets 

 Starter period (1 to 21 d)  Grower-Finisher period (22 to 42 d) 

Item 
1 
Control 60-DWP 5-CHIT DWP-CHIT 20-INU  Control 60-DWP 5-CHIT DWP-CHIT 20-INU 

Ingredients (g/kg, as fed basis)           

Barley 325 311 330 317 320  409 400 445 443 411 

Wheat 262 235 270 227 259  303 262 281 220 300 

Yellow corn 110 110 110 110 110  0 0 0 0 0 

Soybean meal 264 245 245 245 250  235 223 218 214 211 

Soybean oil 3.0 5.0 4.1 3.0 5.0  17 23 15 26 23 

Dry whey powder 0 60 0 60 0  0 60 0 60 0 

Chitosan 0 0 5.0 5.0 0  0 0 5.0 5.0 0 

Inulin 0 0 0 0 20  0 0 0 0 20 

Dicalcium phosphate 7.2 4.3 7.2 4.3 7.2  7.2 4.3 7.2 4.3 7.2 

Calcium carbonate 18 18 18 18 18  18 18 18 18.0 18 

Vitamin and mineral mix
 2 

4.0 4.0 4.0 4.0 4.0  4.0 4.0 4.0 4.0 4 

Sodium cloride 2.7 2.7 2.7 2.7 2.7  2.7 2.7 2.7 2.7 2.7 

DL-Methionine 0.7 0.7 0.7 0.9 0.5  0.9 0.8 0.9 0.9 0.8 

L-Lysine 2.6 2.3 2.6 2.3 2.2  1.4 0.9 1.2 0.80 1.10 

Enzyme
 3 

0.5 0.5 0.5 0.5 0.5  0.5 0.5 0.5 0.5 0.5 

Salmocid 0.5 0.5 0.5 0.5 0.5  0.5 0.5 0.5 0.5 0.5 

Analyzed chemical composition         

CP (g/kg) 21.80 22.00 21.75 21.86 21.60  20.00 20.70 20.00 20.00 20.00 

EE (g/kg) 23 24 25 23 24  40 42 41 41 40 

Ca (g/kg) 11.3 11.1 11.2 11.1 11.4  9.0 8.5 9.0 10.0 11.0 

Calculated chemical composition       

AMEn (MJ/kg)
 

12.10 12.79 13.01 12.73 12.81  13.39 13.36 13.36 13.39 13.36 

Available P (g/kg) 6.1 5.9 6.0 5.7 6.2  5.5 5.6 5.1 5.0 5.5 

Met+Cys (g/kg)
 

0.41 0.40 0.40 0.42 0.40  0.41 0.40 0.40 0.40 0.41 

Lys (g/kg)
 

1.35 1.31 1.29 1.30 1.28  1.16 1.12 1.10 1.11 1.08 
1 

Control: no additive supplementation; 60-DWP: 60 g/kg of dry whey powder; 5-CHIT: 5 g/kg of chitosan, DWP-CHIT: 60 g/kg of dry whey 

powder plus 5 g/kg of chitosan; 20-INU: 20 g/kg of inulin. 
2 

Providing the following per kg of diet: of diet: 8 000 IU vitamin A, 600 IU vitamin 

D3, 16 mg vitamin E, 1 mg thiamine, 3 mg riboflavin, 1 mg pyridoxine, 0.01 mg vitamin B12, 1 mg vitamin K3, 16 mg niacin, 7 mg pantotenic 
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acid, 70 mg Mn, 50 mg Zn, 30 mg Fe, 4 mg Cu, 1 mg I, 0.2 mg Co, 0.1 mg Se, 240 mg choline, 300 units phytase, 110 mg ethoxyquin. 
3 

Nutralzyme (Endo1-4 β-glucanase 500 TGU/g, endo 1-4 β-xylanase 1120 TXU/g, Nutral S.A, Madrid, Spain).  
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2.3.2 Duodenal histomorphometry 

 

At d 21, 6 chickens from each treatment were randomly selected from different 

pens and euthanized by CO2 inhalation. The gastrointestinal tract was dissected, the 

duodenum was removed, and the tissue samples were collected and preserved in 10% 

buffered formalin saline before preparing the histological sections. The cecum from 

these birds was sampled for microbial community analysis. Duodenal tissue samples (3 

per bird) were dehydrated by immersion in alcohols of increasing grade, infiltrated in 

xylene, and embedded in paraffin. Transversal sections were cut (4–6 μm), placed on 

glass slides and stained using the haematoxiline and eosine technique. Slides were 

examined using a Nikon Eclipse-80i optical microscope (Nikon Corporation, Japan) 

coupled with a DS-Ri1 Nikon camera (Nikon Corporation, Japan), and images were 

analyzed using the image software NIS elements 3.1 (Nikon Corporation, Japan). Villus 

height and crypt depth were measured on 5 well-oriented villus and crypt per slide, 

according to the protocol described by Liu et al. (2011). The apparent villus surface was 

calculated according to Iji et al. (2001). 

 

2.3.3 Cecal microbial composition: DNA extraction, 16S rRNA 

amplification, Illumina sequencing, and bioinformatics sequence 

analysis 

 

At d 21 and 42, 6 chickens from each experimental treatment were randomly 

selected from different pens and euthanized by CO2 inhalation. The gastrointestinal tract 

was dissected, the two ceca were opened longitudinally, and digesta samples were 

collected with a sterile spoon. Samples were immediately stored at −80 °C until further 

analysis. Total nucleic acid was extracted from samples using the PowerSoil DNA 

extraction Kit (MOBIO Laboratories Inc., Carlsbad, CA, USA) according to the 

manufacturer recommendations. DNA was quantified in Nanodrop (ND-1000 

Spectrophotometer, Nanodrop Technologies, DE, USA) and DNA integrity was 

checked by agarose gel electrophoresis. 

The V4 hypervariable region of the 16S rRNA gene was used to prepare 

Illumina amplicon libraries (Caporaso et al., 2011). Two PCR were performed to 



____________________________________________________________CHAPTER 5 

148 

 

incorporate Illumina adapter sequences and barcodes for sample identification. The 

PCR products were purified using Agencourt AMPure®XP kit (Agencourt Bioscience 

Corporation, USA) according to the manufacturer instructions, and eluted in 20 μl of 

water. Amplicons were quantified using Qubit fluorometric quantitation (Qubit® 3.0, 

Thermo Fisher Scientific Inc., USA) and the Agilent 2100 Bioanalyzer (Agilent 

Technologies; Santa Clara, CA, USA) to pool the samples and sequence them on an 

Illumina MiSeq platform.  

Illumina reads were analyzed using Mothur Miseq SOP (Kozich et al., 2013). 

Primers and barcodes were removed prior to analysis. One replicate from 5-CHIT group 

was removed from the analysis because no reads were registered. All samples 

comprised 4.460.848 sequence reads, with a mean number of reads per sample of 

78.260 ± 13.525. Sequences were aligned using SILVA-based bacterial reference 

alignment obtained from Mothur. Chimera sequences were checked and removed using 

UCHIME (Edgar et al., 2011). A final dataset was then clustered into operational 

taxonomic units (OTU) at ≥ 97% similarity. OTUs with only 1 read appearing in one 

sample were removed from the analysis (< 0.0004% of the total). A total of 652 OTUs 

were taxonomically assigned using the naïve Bayesian RDP classifier (Wang et al., 

2007). OTUs were then manually evaluated against the Ribosomal Database Project 

using the Seqmatch function. Sequences are available at the European Nucleotide 

Archive, under the accession number PRJEB20379 in 

http://www.ebi.ac.uk/ena/data/view/PRJEB20379 

 

2.4 Chemical analysis 

 

Samples of experimental diets were analyzed in triplicate for dry matter (method 

934.01), nitrogen (method 990.03), and ether extract (method 920.39) according to the 

Association of Official Analytical Chemists (2007). Ca was measured by spectroscopy 

plasma atomic emission. 

 

2.5 Statistical analysis 

 

For the analysis of productive performance, duodenal histomorphometry, and 

ceca microbiota, pen was considered as the experimental unit. Performance data were 

http://www.ebi.ac.uk/ena/data/view/PRJEB20379
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evaluated separately for the starter (d 1 to 21) and for the entire feeding period (d 1 to 

42). One-way ANOVA was performed, with the experimental diet being the fixed effect 

and with the pen included as a random effect. Performance and duodenal measurements 

were analyzed considering a Gaussian distribution, whereas mortality data were 

analyzed using a binomial distribution. Initial BW was included as a covariate on 

performance analysis. Data were analyzed using the PROC GLIMMIX in SAS V 9.3 

(SAS Inst. Inc., Cary, NC). Statistical significance of the experimental diet effect was 

declared at P < 0.05. In case of a statistically significant effect, the Dunnett range test 

was used to compare each treatment to the control. 

For sequencing analysis, relative abundances of the OTUs obtained from ceca 

content were analyzed by multivariate statistical routines using PRIMER (version 7.0.9, 

PRIMER-E; Plymouth Marine Laboratory, Plymouth, UK; Clarke and Warwick, 2001). 

Data were standardized, and a sample resemblance matrix was generated using Bray-

Curtis similarity coefficient. Microbial community structures were explored by 

Principal Coordinate Analysis (PCoA) showing the centroids for each diet-age point 

(control, 60-DWP, 5-CHIT, DWP-CHIT and 20-INU at d 21 and 42 of age, 

respectively). The effect of diet was tested within each time point (d 21 and 42) by 

means of a Permutational analysis of variance (PERMANOVA, 999 permutations). 

Differences were studied based on pair-wise tests using a permutation method, being 

considered significant if P < 0.05. Individual OTUs contributing to dissimilarity for 

each comparison were identified by similarity percentage analysis (SIMPER). Pielou’s 

evenness index and Shannon-weaver index of diversity (H’) were used to calculate OTU 

evenness and diversity. 

 

3. RESULTS 

 

3.1 Productive performance and duodenal histomorphometry 

 

Results of productive performance are described in Table 2. In general, control 

diet promoted the highest BW, ADG, and FI values during the starter period and for the 

entire feeding period in comparison to 60-DWP, 5-CHIT, and DWP-CHIT. On the other 

hand, control showed higher values for these variables during the starter period than 20-

INU, while no differences were observed for the entire feeding period. For FCR, no 
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differences were found between control and 60-DWP during the starter period, while 

control presented significantly lower values than 5-CHIT, DWP-CHIT, and 20-INU. 

For the entire feeding period, FCR did not differ between diets. Mortality mean values 

during the experiment were 5%, remaining unaffected by treatments. 

None of the treatments affected duodenal histomorphometry variables, with 

overall (mean ± SEM) being 1523 ± 97.6 µm for villus height, 191 ± 18.4 µm for crypt 

depth, 8.8 ± 1.0 for villus:crypt ratio and 52.4 ± 4.3 µm2 for villus surface area. 

 

Table 2. Effect of experimental diets on broiler performance at different periods of 

feeding. 

 Item     Treatments 
1 

      
Control 60-DWP 5-CHIT 

DWP-

CHIT 
20-INU SEM

2 
P-value

3 

Starter period (d 0 to 21)  

Body weight (g) 617 504*** 521*** 588* 559*** 8.1 <0.001 

Average daily gain 

(g/d) 
28 22*** 23*** 26** 25*** 0.4 <0.001 

Feed intake (g/d) 45 36*** 38*** 40* 41** 0.6 <0.001 

Feed conversion ratio 1.56 1.61 1.63* 1.65* 1.64* 0.019 0.024 

Entire feeding period (d 1 to 42)  

Body weight (g) 2010 1692*** 1828** 1848** 1934 35.0 <0.001 

Average daily gain 

(g/d) 
46 40*** 43** 44* 45 0.9 <0.001 

Feed intake (g/d) 89 78*** 74*** 76*** 89 1.5 <0.001 

Feed conversion ratio 1.92 1.95 1.89 1.92 1.99 0.043 0.235 
1 

Control: no additive supplementation; 60-DWP: 60 g/kg of dry whey powder; 5-CHIT: 

5 g/kg of chitosan, DWP-CHIT; 60 g/kg of dry whey powder plus 5 g/kg of chitosan; 

20-INU: 20 g/kg of inulin. 
2 

SEM: standard error of the mean. 
3 

P-value refers to the 

overall treatment effect. Statistical significance of each “experimental diet vs control” 

individual comparison, obtained using the Dunnett test, is coded as follows: * P < 0.05; 

** P < 0.01; *** P < 0.001. 

 

3.2 Microbial community analysis 

 

At the phylum and family levels, changes were observed in their composition 

irrespective of the experimental diets (Fig 1A, 1B). Firmicutes was the most abundant 

phylum at d 21 and 42 of life (90% and 60% on average, respectively), while 

Proteobacteria was the second most abundant at d 21 (9.7% on average), and 

Bacteroidetes and Actinobacteria were so at d 42 (30% and 3.6%, on average, 
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respectively). At a family level, Lachnospiraceae, Lactobacillaceae, and 

Enterobacteriacaecae were the most representative at d 21 (41%, 20%, and 10%, on 

average, respectively), while Bacteroidaceae was the most abundant at day 42 (31% on 

average).  Bifidobacteriaceae increased in all diets at d 42 in relation to d 21 of age 

(3.5% vs. 0.78%, on average, respectively), while Ruminococcaceae remained 

unaffected at both sampled ages (23%, on average, at d 21, and 22%, on average, at d 

42).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Composition of bacteria in cecal samples at phylum A) and family level B). 

Relative abundance >1% on average, in response to experimental diets. 

A) 

B) 
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At genus level, ceca samples were dominated by Lactobacillus at d 21 in all 

diets (22% on average), except for DWP-CHIT, which showed higher abundance of 

Escherichia/Shigella (18% on average). Ruminococcus2 was the second most 

representative genus in all diets (15% on average), with the exception of 5-CHIT, which 

showed higher abundance of Clostridium XlVa (9.5% on average). At d 42, Bacteroides 

was the major genera (31% of average relative abundance), followed by Lactobacillus 

(11% on average; Fig 2). 

 

 

Fig 2. Composition of cecal bacteria samples at genus level. Relative abundance (>1% 

on average) of genus in response to experimental diets, at d 21 and 42 of age. 

Experimental diets: Control: no additive supplementation; 60-DWP: 60 g/kg of dry 

whey powder; 5-CHIT: 5 g/kg of chitosan; DWP-CHIT: 60 g/kg of DWP plus 5 g/kg of 

CHIT; 20-INU: 20 g/kg of inulin.  

 

The exploratory analysis of bacteria community structure using a PCoA revealed 

a clear separation of communities at d 21 from those at d 42. The principal coordinate 

axis explained 79.2% of the total variation, indicating that it properly reflects the 

bacterial structure differences (Fig 3).  
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Fig 3. Principal coordinate analysis (PCoA) depicting the centroids of the ceca 

microbial communities from chickens fed with the experimental diets, at d 21 (blue 

color) and 42 (brown color). Experimental diets:    Control:  no additive 

supplementation;    60-DWP: 60 g/kg of dry whey powder; X 5-CHIT: 5 g/kg of 

chitosan;       DWP-CHIT: 60 g/kg of DWP plus 5 g/kg of CHIT;      20-INU: 20 g/kg of 

inulin.  

 

3.2.1 Ceca microbiota on d 21 of age 

 

Statistical differences due to diets were detected on ceca microbial composition 

at d 21. Microbiota from chickens fed with DWP-CHIT was different from those fed 

with control, 5-CHIT, and 20-INU, whereas no differences were found between DWP-

CHIT and 60-DWP (Table 3). Microbial composition did not differ for the remaining 

diet comparisons. Diversity indices showed, on average, lower Pielou’s evenness and 

Shannon diversity for DWP-CHIT (0.55 and 2.97, respectively) in comparison to 

control (0.63 and 3.68, respectively), 5-CHIT (0.65 and 3.46, respectively), and 20-INU 

(0.58 and 3.15, respectively). These results were mainly attributed to the higher 

abundance of Escherichia coli/Shigella flexneri (OTU 3), and the lower abundance of 

Lactobacillus gallinarum (OTU 1) in DWP-CHIT diet in comparison with the 

remaining experimental diets (Fig 4). Similarly, higher abundance of Lactobacillus spp. 
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(OTU 13) was observed in DWP-CHIT in relation to control and 5-CHIT diets, while 

Klebsiella pneumoniae (OTU 66) was particularly detected in DWP-CHIT diet (Table 

4). 

 

 

Fig 4. Relative abundance of the most relevant OTUs contributing to differences 

between ceca microbial communities of chickens fed with experimental diets at day 21 

of age. Experimental diets: Control: no additive supplementation; 60-DWP: 60 g/kg of 

dry whey powder, 5-CHIT: 5 g/kg of chitosan; DWP-CHIT:60 g/kg of DWP plus 5 g/kg 

of CHIT; 20-INU: 20 g/kg of inulin. 

 

3.2.2. Ceca microbiota on day 42 of age 

 

Statistical differences in ceca microbial composition at d 42 were found between 

diets. Microbial composition of broilers fed with control differed from those fed with 5-

CHIT, DWP-CHIT, and 20-INU, whereas no differences were found between control 

and 60-DWP (Table 3). Diversity indices showed, on average, similar Pielou’s evenness 

and Shannon diversity values for control (0.60 and 3.67 respectively) in relation to 5-

CHIT (0.61 and 3.68 respectively), DWP-CHIT (0.61 and 3.59 respectively), and 20-

INU (0.62 and 3.71 respectively). These results were because of the increase in the 

abundance of Lactobacillus gallinarum (OTU 1) and Bacteroides vulgatus (OTU 4) in 

control diet, and the reduction in the abundance of Escherichia coli/Shigella flexneri 

(OTU 3) and Bacteroides fragilis (OTU 7) in comparison to 5-CHIT, DWP-CHIT, and 

20-INU (Fig 5). Streptococcus gallolyticus (OTU 39) were absent in samples from 

control but it appears, in low abundance, in DWP-CHIT (Table 4).  
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Differences were also observed between microbial communities from samples of 

broilers fed with 60-DWP from those fed with 5-CHIT, and DWP-CHIT, whereas no 

differences were found between 60-DWP and 20-INU (Table 3). Diversity indices 

showed, on average, lower Pielou’s evenness and Shannon diversity for 60-DWP (0.58 

and 3.62 respectively) in comparison to 5-CHIT (0.61 and 3.68, respectively) and to 

DWP-CHIT (0.61 and 3.59, respectively). These results were mainly a consequence of 

an increase in the abundance of Lactobacillus gallinarum (OTU 1), Bacteroides 

vulgatus (OTU 4), and Bifidobacterium saeculare (OTU 11) in 60-DWP, as well as of 

the reduction of Escherichia coli/Shigella flexneri (OTU 3), and Bacteroides fragilis 

(OTU 7) when compared to 5-CHIT, DWP-CHIT, and 20-INU (Fig 4). OTUs 

associated to Lactobacillus spp. (OTU 13), Anaerostipes butyraticus (OTU 27), and 

Streptococcus gallolyticus (OTU 39) were less abundant in 60-DWP in comparison to 

DWP-CHIT (Table 4).  

 

 

 

 

Fig 5. Relative abundance of the most relevant OTUs contributing to differences 

between ceca microbial communities of chickens fed with experimental diets at day 42 

of age. Experimental diets: Control: no additive supplementation; 60-DWP: 60 g/kg of 

dry whey powder, 5-CHIT: 5 g/kg of chitosan; DWP-CHIT:60 g/kg of DWP plus 5 

g/kg of CHIT; 20-INU: 20 g/kg of inulin.
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Table 3. Statistical differences between diets at d 21 and 42 based on PERMANOVA and SIMPER results.  

Treatment 
1
 Groups 

Day 21 of age 

 

Day 42 of age 

t value P (perm) 
Unique 

permutations 
% Dissimilarity 

 

t value P (perm) 
Unique 

permutations 
% Dissimilarity 

Control 60-DWP 1.159 0.156 410 58 

 

1.003 0.414 410 44 

 

5-CHIT 0.931 0.624 206 57 

 

1.595 0.008 412 51 

 

DWP-CHIT 1.921 0.004 404 66 

 

1.935 0.001 404 55 

 

20-INU 1.232 0.116 392 56 

 

1.494 0.025 419 49 

           

60-DWP 5-CHIT 0.898 0.672 206 61 

 

1.538 0.006 408 56 

 

DWP-CHIT 1.034 0.346 309 59 

 

1.559 0.013 413 55 

 

20-INU 0.935 0.566 411 58 

 

1.185 0.152 410 51 

           

5-CHIT DWP-CHIT 1.510 0.034 210 69 

 

0.942 0.540 410 49 

 

20-INU 1.173 0.177 209 62 

 

1.174 0.198 414 51 

           

DWP-CHIT 20-INU 1.416 0.034 404 61 

 

0.912 0.634 412 48 
1 

Control: no additive supplementation; 60-DWP: 60 g/kg of dry whey powder; 5-CHIT: 5 g/kg of chitosan, DWP-CHIT: 60 g/kg of dry whey 

powder plus 5 g/kg of chitosan; 20-INU: 20 g/kg of inulin. Each line shows the results of the comparison between each treatment (treatment 

column) and each of the rest of treatments (groups columns). P (perm) values ≤ 0.05 between comparisons were considered significantly 

different. 
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Table 4. Relative abundance of OTUs that contribute to dissimilarity in the caeca microbial communities at d 21 and 42. 

 

                                       Treatments
 1

  

Control 60-DWP 5-CHIT DWP-CHIT 20-INU Taxonomy RDP
 2

 score Reference 

Day 21 of age   

OTU 13 0.25 3.95 0.39 2.46 3.12 Lactobacillus spp. 95.8 Roos et al. (2005) 

OTU 21 1.44 1.44 - 1.51 0.01 Clostridium lactifermentans 97.7 van der Wielen et al.  (2002) 

OTU 66 0.01 0.03 - 1.74 0.08 Klebsiella pneumoniae 99.6 Boye and Hansen (2003) 

         

Day 42 of age   

OTU 13 0.77 0.78 - 1.40 1.49 Lactobacillus spp. 95.8 Roos et al. (2005) 

OTU 27 0.08 0.89 - 1.98 - Anaerostipes butyarticus 97.0 Eeckhaut et al., 2010 

OTU 39 - 0.62 - 1.00 - Streptococcus gallolyticus 97.7 Snaidr et al., 1997 
1 

Control: no additive supplementation; 60-DWP: 60 g/kg of dry whey powder; 5-CHIT: 5 g/kg of chitosan, DWP-CHIT: 60 g/kg of dry whey 

powder plus 5 g/kg of chitosan; 20-INU: 20 g/kg of inulin. 2 
Ribosomal data base project. 
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4. DISCUSSION 

 

The current study shows that supplementing broiler diets with 60 g/kg of DWP, 

5 g/kg of CHIT, a mixture of DWP and CHIT, or 20 g/kg of INU resulted in decreased 

weight at early growth stages, as a consequence of a reduction in feed intake. Lower 

weight and feed intake were also observed at later growth stages, except for INU 

supplementation that resulted in similar values to those of birds fed with control diet (no 

supplementation). Poor performance results obtained in the present study were 

unexpected, since an improvement in growth and intake has been reported in broilers 

fed with similar amounts of DWP (Kermanshahi and Rostami, 2006), CHIT 

(Khambualai et al., 2009), and INU (Velasco et al., 2010; Mirza Aghazadeh and 

Nabiyar, 2015). Conflicting findings could be related to differences in the basal diet 

composition. Contrary to corn-soybean based diets used in the above-cited reports, we 

used wheat and barley based diets with exogenous enzymes. Both cereals contain a 

substantial amount of soluble non-starch polysaccharides that increase the digesta 

viscosity due their water holding capacity (Munyaka et al., 2016). It is assumed that a 

high digesta viscosity depresses broiler feed intake and nutrient digestibility (Rodríguez 

et al., 2012). We consider that supplementing wheat and barley diets with DWP and 

CHIT could have resulted in worse digesta characteristics, heightening their deleterious 

effects on broiler metabolism. However, reasons explaining the poor results observed by 

INU supplementation are unclear, since inulin effectiveness has been reported in wheat 

and barley diets, at every growth stage, when supplied at the same amount than in the 

current study (Rebolé et al., 2010). Regarding DWP, lactose supplied in inadequate 

doses increases digesta osmolarity in broilers (Morishita et al., 1982). In relation to 

CHIT, high amounts increase the viscosity of the intestinal content (Razdan and 

Pettersson, 1994). It is known that increased osmotic pressure in bird gut and high 

digesta viscosity stimulate the satiety center of the brain, diminishing bird voluntary 

feed intake (Ferket and Gernat, 2006; Khambualai et al., 2009). It is also known that 

undesirable alterations of digesta physicochemical properties markedly decrease 

nutrient digestion and absorption, resulting in a reduction of broiler performance 

(Józefiak et al., 2004; Amerah, 2015). 
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The present study reflected changes in ceca microbial communities throughout 

broiler lifespan. Firmicutes was the most predominant phylum at d 21 and 42 of age, 

irrespective of the dietary treatment, which is in accordance with previous reports 

(Danzeisen et al., 2011; Mohd Shaufi et al., 2015; Ranjitkar et al., 2016). Proteobacteria 

was the following most abundant phyla in all dietary treatments in young birds, but it 

was replaced by Bacteroidetes and Actinobacteria at older ages. Bacteria belonging to 

the genus Lactobacillus were the early colonizers of the cecum in the young birds, 

followed by Ruminococcus2, which is consistent with the findings of Tannock (2004) 

and Ranjitkar et al. (2016), while Bacteroides became the most representative genus in 

older birds. According to Apajalahti et al (2004), microbiota changes at different 

chicken productive stages are mainly attributed to the rapid growth of the 

gastrointestinal tract, which concomitantly leads to strong modulations of its 

microecosystem. Microbial colonization of the digestive tract begins immediately after 

hatching, being rapidly populated by microorganisms from the surrounding 

environment and from food and water (Pedroso and Lee, 2015). Their establishment is 

quick, and a slow transition takes place until a stable and more diverse adult community 

is achieved (Kohl, 2012). During this process changes in the microbiota structure occur, 

that are largely influenced by diet composition, with certain bacteria disappearing or 

emerging in the gut while others remain stable throughout the chicken life (Pourabedin 

and Zhao, 2015), which is in agreement with our observations. 

Our results also revealed that, as expected, the ceca microbiota composition was 

influenced by diet at every stage of the productive period, although an association 

between microbiota and performance was not clear. At d 21 of age, ceca from birds fed 

with control, DWP, CHIT, and INU did not differ in their microbiota communities, 

although only control promoted a greater weight and feed intake. All of these ceca 

samples were highly harboured by Lactobacillus gallinarum (OTU 1). At d 42 of age, 

control and DWP did not differ in their ceca microbiota, although only control birds 

increased their weight and feed intake. Both ceca showed higher abundance of OTU 1 

and Bacteroides vulgatus (OTU 4), and lower of Escherichia/Shigella (OTU 3) and 

Bacteroides fragilis (OTU 7). It should be noted that birds with similar microbial 

composition differed in their performance results. These findings are in agreement with 

those reported by Geier et al. (2009b), who found that diet-induced changes in broiler 

gut microbiota do not always translate into changes in performance, as well as with 
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Owens et al. (2008) and Mountzouris et al. (2010), who found that performance 

differences in response to feed additives are not always associated to differences in the 

gut microbiota.  

Studies about the association of OTU 1, OTU 4, and OTU 7 with broiler 

performance are ambiguous and scarce. Borda-Molina et al. (2016) found higher 

abundance of OTU 1 in the ceca of broilers with better weight, which were fed with 

inorganic sources of Ca and P without phytase, whereas Stanley et al. (2016) linked 

Lactobacillus spp. to poor performance in broilers fed with commercial diets. OTU 7 

has not been consistently linked with changes in chicken performance either (Stanley et 

al., 2013; Torok et al., 2013; Stanley et al., 2016). Inconsistencies in the association 

between gut microbial composition and animal performance might be partly due to 

differences at the strain level, and hence to the functional level of bacteria (Torok et al., 

2013). However, based on our results, additional factors, independent of the presence or 

absence of certain bacteria, would have been crucial for animal performance. Some of 

these factors are related to a reduction in feed intake and nutrient digestibility, due to 

worse physicochemical properties of the digesta caused by the NPS content of the diets.  

This study also showed that an increase of Klebsiella pneumoniae (OTU 66) at d 

21 of age, and of Streptococcus gallolyticus (OTU 39) at d 42, were particularly 

promoted by feeding with a mixture of DWP and CHIT, together with a reduction in 

performance. These bacteria can be part of the gut microbiota of clinically healthy 

broilers (Sekizaki et al., 2008), but they also represent a high sanitary risk because they 

are opportunistic pathogens in both animals and humans (Schulz et al., 2015; Wu et al., 

2016). OTU 66 is one of the respiratory pathogens causing high mortality in poultry 

farms (Aly et al., 2014), while OTU 39 causes septicemia in birds (Sekizaki et al., 

2008). Unfavourable shifts in the intestinal microbiota are likely to result in relevant 

losses for poultry industry, either by a reduction in animal performance or by an 

increased risk of illness and death (Geier et al., 2009a). These findings suggest that the 

joint supplementation of DWP and CHIT at the tested doses did not act synergistically, 

as initially hypothesized. For a better understanding of the effects of the joint use of 

DWP and CHIT in wheat and barley based diets, further investigations evaluating them 

at lower doses are advisable to determine their feasibility in this type of diets. 

Further work should not only focus on the ceca bacterial profile in response to 

additive supplementation at some time points of the broiler lifespan, but should also 
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include the characterization of different sections of the upper gastrointestinal, as well as 

a more continuous temporal sampling regimen, to accurately determine the microbial 

community succession. It would also be relevant to investigate gut bacterial functions, 

through metagenomics, to elucidate the functional properties of the microbiota, as well 

as the potential metagenomics modulation when broilers are fed with different non-

antibiotic additives. 

 

5. CONCLUSION 

 

Results indicate that wheat and barley based diets supplemented with DWP, 

CHIT, and DWP plus CHIT reduced broiler performance during the entire productive 

period as a consequence of lower feed intake, whereas INU supplementation was not 

disadvantageous. Ceca microbiota composition and diversity varied at d 21 and 42 of 

age in a diet-dependent manner. However, a clear association between productive 

results and microbiota profile was not evident.  

 

6. REFERENCES  

 

Aly, M.M., Khalil, S., Metwaly, A., 2014. Isolation and molecular identification of 

Klebsiella microbe isolated from chicks. Alexandria J. of Vet. Sci. 43, 97-103. 

Amerah, A.M., 2015. Interactions between wheat characteristics and feed enzyme 

supplementation in broiler diets. Anim. Feed Sci. Technol. 199, 1-9. 

Association of Official Analytical Chemists 2007. Official methods of analysis, 18th 

edition. AOAC, Gaitherburg, MD, USA. 

Apajalahti, J., Kettunen, A., Graham, H., 2004. Characteristics of the gastrointestinal 

microbial communities, with special reference to the chicken. Worlds. Poult. Sci. J. 

60, 223-232. 

Bindels, L.B., Delzenne, N.M., Cani, P.D., Walter, J., 2015. Towards a more 

comprehensive concept for prebiotics. Nat. Rev. Gastroenterol. Hepatol. 12, 303-

310. 

Borda-Molina, D., Vital, M., Sommerfeld, V., Rodehutscord, M., Camarinha-Silva, A., 

2016. Insights intro broilers' gut microbiota fed with phosphorus, calcium, and 

phytase supplemented diets. Front. Microbiol. 7, 2033. 



____________________________________________________________CHAPTER 5 

162 

 

Boye, K., Hansen, D.S., 2003. Sequencing of 16S rDNA of Klebsiella: taxonomic 

relations within the genus and to other Enterobacteriaceae. Int. J. Med. Microbiol. 

292, 495-503. 

Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, C.A., 

Turnbaugh, P.J., Fierer, N., Knight, R., 2011. Global patterns of 16S rRNA diversity 

at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516-

4522. 

Clarke, K.R., Warwick, R.M., 2001. Change in marine communities: An approach to 

statistical analysis and interpretation, second ed. PRIMER-E Ltd, Plymouth, United 

Kindom. 

Danzeisen, J.L., Kim, H.B., Isaacson, R.E., Tu, Z.J., Johnson, T.J., 2011. Modulations 

of the chicken cecal microbiome and metagenome in response to anticoccidial and 

growth promoter treatment. PLoS One 6, e27949. 

Dibner, J.J., Richards, J.D., 2005. Antibiotic growth promoters in agriculture: history 

and mode of action. Poult. Sci. 84, 634-643. 

Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., Knight, R., 2011. UCHIME 

improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194-2200. 

Eeckhaut, V., Van Immerseel, F., Pasmans, F., De Brandt, E., Haesebrouck, F., 

Ducatelle, R., Vandamme, P., 2010. Anaerostipes butyraticus sp. nov., an anaerobic, 

butyrate-producing bacterium from Clostridium cluster XIVa isolated from broiler 

chicken caecal content, and emended description of the genus Anaerostipes. Int. J. 

Syst. Evol. Microbiol. 60, 1108-1112. 

FEDNA, 2008. Necesidades nutricionales de pollos de carne. In Necesidades 

nutricionales para avicultura: Pollos de carne y aves de puesta (ed. R Lázaro and GG 

Mateos), pp.15-25. Fundación Española para el Desarrollo de la Nutrición Animal, 

Madrid, España.  

Ferket, P.R., Gernat, A.G., 2006. Factors that affect feed intake of meat birds: A review. 

Int. J. Poult. Sci. 5, 905-911. 

Flickinger, E.A., Van Loo, J., Fahey, G.C., 2003. Nutritional responses to the presence 

of inulin and oligofructose in the diets of domesticated animals: a review. Crit. Rev. 

Food. Sci. Nutr. 43, 19-60. 



____________________________________________________________CHAPTER 5 

163 

 

Geier, M.S., Torok, V.A., Allison, G.E., Ophel-Keller, K., Gibson, R.A., Munday, C., 

Hughes, R.J., 2009a. Dietary omega-3 polyunsaturated fatty acid does not influence 

the intestinal microbial communities of broiler chickens. Poult. Sci. 88, 2399-2405. 

Geier, M.S., Torok, V.A., Allison, G.E., Ophel-Keller, K., Hughes, R.J., 2009b. 

Indigestible carbohydrates alter the intestinal microbiota but do not influence the 

performance of broiler chickens. J. Appl. Microbiol. 106, 1540-1548. 

Gulsen, N., Coskun, B., Umucalilar, H.D., Inal, F., Boydak, M., 2002. Effect of lactose 

and dried whey supplementation on growth performance and histology of the 

immune system in broilers. Arch. Tierernahr. 56, 131-139. 

Iji, P.A., Saki, A., Tivey, D.R., 2001. Body and intestinal growth of broiler chicks on a 

commercial starter diet. 1. Intestinal weight and mucosal development. Br. Poult. Sci. 

42, 505-513. 

Józefiak, D., Rutkowski, A., Martin, S.A., 2004. Carbohydrate fermentation in the avian 

ceca: a review. Anim. Feed Sci. Technol. 113, 1-15. 

Kermanshahi, H., Rostami, H., 2006. Influence of supplemental dried whey on broiler 

performance and cecal flora. Int. J. Poult. Sci. 5, 538-543. 

Khambualai, O., Yamauchi, K., Tangtaweewipat, S., Cheva-Isarakul, B., 2009. Growth 

performance and intestinal histology in broiler chickens fed with dietary chitosan. Br. 

Poult. Sci. 50, 592-597. 

Kohl, K.D., 2012. Diversity and function of the avian gut microbiota. J. Comp. Physiol. 

B. 182, 591-602. 

Kong, M., Chen, X.G., Xing, K., Park, H.J., 2010. Antimicrobial properties of chitosan 

and mode of action: a state of the art review. Int. J. Food. Microbiol. 144, 51-63. 

Kozich, J.J., Westcott, S.L., Baxter, N.T., Highlander, S.K., Schloss, P.D., 2013. 

Development of a dual-index sequencing strategy and curation pipeline for analyzing 

amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. 

Microbiol. 79, 5112-5120. 

Liu, H.Y., Ivarsson, E., Jonsson, L., Holm, L., Lundh, T., Lindberg., J.E., 2011. Growth 

performance, digestibility, and gut development of broiler chickens on diets with 

inclusion of chicory (Cichorium intybus L.). Poult. Sci. 90, 815-823. 

Mirza Aghazadeh, A., Nayibar, E., 2015. The effect of chicory root powder on growth 

performance and some blood parameters of broilers fed wheat-based diets. J. Appl. 

Anim. Res. 43, 384-389. 



____________________________________________________________CHAPTER 5 

164 

 

Mohd Shaufi, M.A., Sieo, C.C., Chong, C.W., Gan, H.M., Ho, Y.W., 2015. Deciphering 

chicken gut microbial dynamics based on high-throughput 16S rRNA metagenomics 

analyses. Gut. Pathog. 7, 4. 

Morishita, Y., Fuller, R., Coates, M.E., 1982. Influence of dietary lactose on the gut 

flora of chicks. Br. Poult. Sci. 23, 349-359. 

Mountzouris, K.C., Tsitrsikos, P., Palamidi, I., Arvaniti, A., Mohnl, M., Schatzmayr, 

G., Fegeros, K., 2010. Effects of probiotic inclusion levels in broiler nutrition on 

growth performance, nutrient digestibility, plasma immunoglobulins, and cecal 

microflora composition. Poult. Sci. 89, 58-67. 

Munyaka, P.M., Nandha, N.K., Kiarie, E., Nyachoti, C.M., Khafipour, E., 2016. Impact 

of combined β-glucanase and xylanase enzymes on growth performance, nutrients 

utilization and gut microbiota in broiler chickens fed corn or wheat-based diets. 

Poult. Sci. 95, 528-540. 

Niewold, T.A., 2007. The non-antibiotic anti-inflammatory effect of antimicrobial 

growth promoters, the real mode of action? A hypothesis. Poult. Sci. 86, 605-609. 

Owens, B., Tucker, L., Collins, M.A., McCracken, K.J., 2008. Effects of different feed 

additives alone or in combination on broiler performance, gut microflora and ileal 

histology. Br. Poult. Sci. 49, 202-212. 

Pan, D., Yu, Z., 2014. Intestinal microbiome of poultry and its interaction with host and 

diet. Gut Microbes. 5, 108-119. 

Pedroso, A.A., Lee, M.D., 2015. The composition and role of the microbiota in 

chickens, in: Niewold, T. (Ed.), Intestinal health. Key to maximise growth 

performance in livestock. Wageningen Academic Publishers, Wageningen, pp. 21-

50. 

Pineda-Quiroga, C., Atxaerandio, R., Zubiria, I., Gonzalez-Pozuelo, I., Hurtado, A., 

Ruiz, R., -Garcia-Rodriguez, A., 2017. Productive performance and cecal microbial 

counts of floor housed laying hens supplemented with dry whey powder alone or 

combined with Pediococcus acidilactici in the late phase of production. Livest. Sci. 

195, 9-12. 

Pourabedin, M., Zhao, X., 2015. Prebiotics and gut microbiota in chickens. FEMS 

Microbiol. Lett. 362, fnv122. 

Ranjitkar, S., Lawley, B., Tannock, G., Engberg, R.M., 2016. Bacterial Succession in 

the Broiler Gastrointestinal Tract. Appl. Environ. Microbiol. 82, 2399-2410. 



____________________________________________________________CHAPTER 5 

165 

 

Razdan, A., Pettersson, D., 1994. Effect of chitin and chitosan on nutrient digestibility 

and plasma lipid concentrations in broiler chickens. Br. J. Nutr. 72, 277-288. 

Rebolé, A., Ortiz, L.T., Rodríguez, M.L., Alzueta, C., Treviño, J., Velasco, S., 2010. 

Effects of inulin and enzyme complex, individually or in combination, on growth 

performance, intestinal microflora, cecal fermentation characteristics, and jejunal 

histomorphology in broiler chickens fed a wheat- and barley-based diet. Poult. Sci. 

89, 276-286. 

Roberts, T., Wilson, J., Guthrie, A., Cookson, K., Vancraeynest, D., Schaeffer, J., 

Moody, R., Clark, S., 2015. New issues and science in broiler chicken intestinal 

health: Emerging technology and alternative interventions. J. Appl. Poult. Res. 24, 

257-266. 

Rodríguez, M.L., Rebolé, A., Velasco, S., Ortiz, L., Treviño, J., Alzueta, C., 2012. 

Wheat- and barley-based diets with or without additives influence broiler chicken 

performance, nutrient digestibility and intestinal microflora. J. Sci. Food. Agric. 92, 

184-190. 

Roos, S., Engstrand, L., Jonsson, H., 2005. Lactobacillus gastricus sp. nov., 

Lactobacillus antri sp. nov., Lactobacillus kalixensis sp. nov. and Lactobacillus 

ultunensis sp. nov., isolated from human stomach mucosa. Int. J. Syst. Evol. 

Microbiol. 55, 77-82. 

Schulz, J., Dumke, J., Hinse, D., Dreier, J., Habig, C., Kemper, N., 2015. Organic 

turkey flocks: A reservoir of Streptococcus gallolyticus subspecies gallolyticus. 

PLoS One 10, e0144412. 

Sekizaki, T., Nishiya, H., Nakajima, S., Nishizono, M., Kawano, M., Okura, M., 

Takamatsu, D., Nishino, H., Ishiji, T., Osawa, R., 2008. Endocarditis in chickens 

caused by subclinical infection of Streptococcus gallolyticus subsp. gallolyticus. 

Avian. Dis. 52, 183-186. 

Snaidr, J., Amann, R., Huber, I., Ludwig, W., Schleifer, K.H., 1997. Phylogenetic 

analysis and in situ identification of bacteria in activated sludge. Appl. Environ. 

Microbiol. 63, 2884-2896. 

Stanley, D., Geier, M.S., Denman, S.E., Haring, V.R., Crowley, T.M., Hughes, R.J., 

Moore, R.J., 2013. Identification of chicken intestinal microbiota correlated with the 

efficiency of energy extraction from feed. Vet. Microbiol. 164, 85-92. 



____________________________________________________________CHAPTER 5 

166 

 

Stanley, D., Hughes, R.J., Geier, M.S., Moore, R.J., 2016. Bacteria within the 

gastrointestinal tract microbiota correlated with improved growth and feed 

conversion: Challenges presented for the identification of performance enhancing 

probiotic bacteria. Front Microbiol 7, 187. 

Tannock, G.W., 2004. A special fondness for lactobacilli. Appl. Environ. Microbiol. 70, 

3189-3194. 

Torok, V.A., Dyson, C., McKay, A., Ophel-Keller, K., 2013. Quantitative molecular 

assays for evaluating changes in broiler gut microbiota linked with diet and 

performance. Anim. Prod. Sci. 53, 1260-1268. 

van der Wielen, P.W., Rovers, G.M., Scheepens, J.M., Biesterveld, S., 2002. 

Clostridium lactatifermen tans sp. nov., a lactate-fermenting anaerobe isolated from 

the caeca of a chicken. Int. J. Syst. Evol. Microbiol. 52, 921-925. 

Velasco, S., Ortiz, L.T., Alzueta, C., Rebolé, A., Treviño, J., Rodríguez, M.L., 2010. 

Effect of inulin supplementation and dietary fat source on performance, blood serum 

metabolites, liver lipids, abdominal fat deposition, and tissue fatty acid composition 

in broiler chickens. Poult. Sci. 89, 1651-1662. 

Wang, Q., Garrity, G.M., Tiedje, J.M., Cole, J.R., 2007. Naive Bayesian classifier for 

rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. 

Environ. Microbiol. 73. 

Wu, H., Wang, M., Liu, Y., Wang, X., Wang, Y., Lu, J., Xu, H., 2016. Characterization 

of antimicrobial resistance in Klebsiella species isolated from chicken broilers. Int. J. 

Food. Microbiol. 232, 95-102. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GENERAL DISCUSSION 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



_________________________________________________GENERAL DISCUSSION 

 169  

 

As it has been described in the introductory section, the global production of 

laying eggs and broiler meat is growing in parallel to consumers’ demand. This 

situation demands that accurate management practices are implemented by poultry 

farmers to improve animal health and performance in order to enhance the 

competitiveness and efficiency of the activity. During past years, the poultry industry 

massively adopted the dietary use of AGPs at sub-therapeutic doses as an effective 

measure to increase production (Patterson and Burkholder, 2003; Castanon, 2007). 

However, implications about the development of antimicrobial resistance in the 

animals’ GIT microbiota and the transference to human microbiota were not considered 

in depth. Indeed, the antimicrobial resistance is a huge concern nowadays. From the 

nutritional perspective, one of the challenges is to search for safe feed additives that 

improve animal performance through GIT microbial modulations without causing 

antimicrobial resistance (Brown et al., 2017). In this scenario, prebiotics have been 

proposed as part of the solution.  

The main objective of this Thesis was to evaluate the prebiotic potential of dry 

whey powder, as a lactose source, in laying hens and broilers’ feeding. With this aim, 

four experiments were carried out to determine the feasibility of this dairy co-product to 

enhance productive yields when supplemented in corn-soybean and whey-barley based 

diets. It was hypothesized that lactose is selectively fermented by cecal microbiota 

because of the negligible lactase activity in poultry (Denbow, 2000), leading to 

compositional and metabolic microbial changes that might positively affect laying hens 

and broiler chickens. In addition, the present Thesis also explored ways to increase dry 

whey powder effectiveness through its simultaneous supplementation with other non-

antibiotic feed additives. The results of each study making up this dissertation were 

analyzed and discusse in the corresponding Chapter, and so this section summarize and 

integrate the most relevant findings, and discusses the main differences detected. 

Results concerning dry whey powder supplementation as the sole additive will be 

discussed in separate of those referring to its joint combination with other feed 

additives.  

 

1. The effect of DWP supplemented as the sole additive 
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Performance effects caused by the addition of 60 g/kg of DWP to corn-based 

diets, in the absence of other additives, were consistent between laying hens and 

broilers. Supplementation resulted in an increase on egg production of hens only when 

PA was not added (Chapter 1), while DWP addition improved broilers’ FCR during the 

entire productive cycle only when CaB was not included (Chapter 3). Moreover, DWP 

enhanced broiler growth and FCR when it was supplemented alone (Chapter 4). In 

contrast, the addition of DWP to wheat-barley based diets negatively influenced broilers 

performance (Chapter 5), what could be attributed to differences in the basal diet 

composition. Contrary to the satisfactory results observed when corn was used (Chapter 

1, 3, and 4), the last experiment used wheat and barley as the cereal base. Both grains 

contain a substantial amount of soluble non-starch polysaccharides which increase 

digesta viscosity due to their water holding capacity (Munyaka et al., 2016). In addition, 

it is known that lactose could increase broiler digesta osmolarity when is 

inappropriately supplied (Morishita et al., 1982). Therefore, the present results indicate 

that supplementing wheat and barley diets with DWP, at the tested dose, could have 

resulted in high osmolarity and viscosity. Undesirable alterations of digesta 

physicochemical properties markedly decrease nutrient digestion and absorption 

(Józefiak et al., 2004; Amerah, 2015), resulting in a reduction of broiler performance. In 

order to stablish more solid conclusions regarding the suitability and interest of adding 

DWP to diets rich in NSP, future studies should test the formulation of diets with lower 

doses of DWP than those used in the experiments that compose the present dissertation. 

Cecal microbial effects caused by DWP supplementation differed depending on 

the type of cereal matrix used. When DWP was added to corn-based diets for broilers, a 

higher abundance of Faecalibacterium spp. Alistipes spp., Barnesiella spp., Clostridium 

IV, and Subdogranulum spp. genera was observed (Chapter 3). On the other hand, when 

DWP was added to wheat-barley diets, an increase in the abundance of Lactobacillus 

spp., Bacteroides spp., and Oscillibacter spp was noted. These divergent findings were 

not surprising because it has been reported that the consistency in the microbial changes 

induced by in-feed prebiotics widely varies between trials when the cereal basis change, 

even when the same prebiotic is used (Torok et al., 2013; Stanley et al., 2014; Crisol-

Martínez et al., 2017). This is mainly because bacteria differ from each other according 

to their substrate preferences and growth requirements (Apajalahti et al., 2004), and the 

cereal used substantially affects the GIT environment and the digesta characteristics 
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(Apajalahti, 2005; Pan and Yu, 2014). Since the present thesis only determined the 

DWP-induced changes in the cecal microbiota when corn, wheat or barley was used, it 

would be desirable to conduct further studies taking into account other cereals 

commonly used in poultry feeding, such as sorghum, oats, rice, or millet (Batonon-

Alavo et al., 2015). 

A clear association between performance and microbial composition was 

evidenced by feeding with DWP and corn-based diets, so that birds with higher 

performance had different microbiota composition than those with lower yields. It was 

possible to identify that Bifidobacterium spp., Olsenella spp., and Lactobacillus 

crispatus were more abundant in the ceca of hens with higher egg production (Chapter 1 

and 2), while Bifidobacterium spp. Bacteroides fragilis, Escherichia coli/Shigella 

flexneri, Megamonas funiformis, and Lactobacillus salivarus were the main phylotypes 

harboring the ceca of broilers with improved performance (Chapter 4). Moreover, the 

microbial functional profile of hens with high egg production showed more unique 

functions and pathways involved in SCFAs production and phosphorous degradation 

than those with lower productivity (Chapter 2), and ceca from broilers with higher 

weight showed lower abundance of Helicobacter pullorum. On the contrary, a relation 

between performance and microbiota when DWP was added to wheat-barley based diets 

could not be clearly established because the microbial composition of broilers with 

poorer performance did not differ from those of broilers exhibiting better productive 

results (Chapter 5). In fact, the cecal microbiota of both group of birds showed higher 

abundance of Lactobacillus gallinarum and Bacteroides vulgatus, and lower of 

Escherichia coli/Shigella flexneri and Bacteroides fragilis. It is worth remarking that 

microbial results of the current Thesis were obtained using 16S amplicon sequencing 

and an adapted pipeline for bioinformatics analysis, so other bacterial groups could 

possibly have been identified if different procedures had been applied. The inconsistent 

association between microbiota and performance between trials agrees with the findings 

of Geier et al. (2009) and Mountzouris et al (2010), who reported that GIT microbial 

composition is not always linked to changes in poultry performance. This might be 

partly due to differences at the strain level, and hence, to the functional level of bacteria 

(Torok et al., 2013). However, in some cases additional factors would have been crucial 

for animal performance, such as animal genetics, environmental conditions, flock 

sanitary status, or intrinsic diet features (Stanley et al., 2013a). In the specific case of 
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this dissertation, the lack of association between performance and microbiota 

composition evidenced in the Chapter 5 could be due to the fact that the 

physicochemical properties of the digesta had a larger effect on the productive results 

than the cecal microbial communities. 

The results of the present thesis also revealed differences in the cecal microbial 

composition between hens (Chapter 2) and broilers (Chapter 4) fed with corn-based 

diets supplemented with DWP, indicating that the genetic line the of animals and their 

productive stage largely determine this composition. Elusimicrobium spp., and 

Parabacteroides spp., genera were particularly identified in hens, while Oscillibacter 

spp., Pseudoflavonifractor spp., Megamonas spp., and Barnesiella spp. were specially 

detected in broilers. These results were already expected, because animals that have had 

a longer production period, such as the hens used for the trial of Chapter 1, have a 

mature and well stablished microbiota community (Videnska et al., 2014). In contrast, 

broilers of 42 days of age, such as those from Chapter 4, do not have an stable microbial 

community yet (Donaldson et al., 2017). In any case, microbial results from hens and 

broilers would hardly be similar even if both lines of animals were at the same stage of 

the productive life, due to the intrinsic variation in intestinal development rates, feed 

intake, and SCFAs production between them (Walugembe et al., 2015). 

 

2. The effect of DWP supplemented simultaneously with other feed additives 

 

In an attempt to enhance the DWP efficacy as prebiotic, its simultaneous 

supplementation with probiotics and organic acids to corn-soybean based diets were 

evaluated. The use of WPC as source of lactose and whey proteins was also tested as a 

manner to potentiate the lactose-performance effects by providing a high nutritional 

value protein in diet.  

Performance effects produced by the simultaneous addition of DWP with other 

dietary components to corn-based diets showed inconsistencies by comparing broilers 

and laying hens results. The results achieved indicated that there was a synergic effect 

between DWP and CaB in broilers (Chapter 3), and that WPC could be successfully 

added to the diet (Chapter 4) because of the improvement on BW, ADG, and FI. In 

contrast, the joint supplementation of DWP and PA as synbiotic to laying hens did not 

improve egg production (Chapter 1). Conversely, the addition of PA suppressed the 
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observed enhancer effect of DWP, indicating that the synergism between both additives 

did not occur. In broilers, the favorable performance results could be related to the 

improvement on duodenal histomorphometry and the increase on AID of DM, CP, Ca, 

and P (Chapter 3 and 4). Moreover, a concomitant modulation on the cecal microbial 

composition were caused by WPC supplementation, which promoted major abundance 

of Bacteroides fragilis, Escherichia coli/Shigella flexneri, Megamonas funiformis, and 

Subdoligranulum variabile (Chapter 4). In opposite, laying hens with lower 

performance fed with DWP-PA did not present changes in their cecal microbial 

composition with respect to the more productive hens fed with DWP, although a 

reduction on the total number and type of cecal microbial functions were observed 

(Chapter 2). In this sense, reductions on microbial genes coding SCFAs production and 

phosphorous metabolism, which are essential for egg production, were observed, which 

could explain the productive differences. However, it would have also been appropriate 

to measure the digestibility of nutrients and mineral retention in order to stablish 

whether factors other than the microbial functionality profile affected hens’ production. 

Anyway, based on the existing results, it could be inferred that the type of probiotic 

evaluated in the present thesis, at the tested doses, was not the proper one to be mixed 

with DWP. Therefore, different doses of PA or other probiotics strains should be 

evaluated in a synbiotic mixture containing DWP as prebiotic in laying hens feeding. 

Furthermore, it should be advisable to test this type of DWP-containing synbiotics on 

broilers feeding in order to expand its feasibility to poultry meat lines.  

Potential synergies between DWP and other additives in broilers were also 

explored using wheat and barley as main cereals (Chapter 5). Contrary to the positive 

effects observed when DWP was used simultaneously with other compounds using 

corn-based diets (Chapter 3 and 4), unsatisfactory performance results were evidenced 

when DWP was mixed to CHIT using diets rich in NSP (Chapter 5). Moreover, these 

poor results were accompanied by the reduction on microbial community diversity and 

by the increase of Klebsiella pneumoniae (OTU 66) and Streptococcus gallolyticus 

(OTU 39). These disagreeing findings between studies are mainly attributed to 

differences in the base cereal used as stated earlier in the current general discussion. 

Moreover, the use of DWP-CHIT mixture on wheat and barley diets promoted the 

presence of potentially pathogenic bacteria, which could also negatively influence 

broilers performance results. 
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CONCLUSIONS 

 

First: The inclusion of DWP to corn-based diets for broilers and laying hens improved 

their productive performance, whereas adding DWP into wheat-barley based diets for 

broilers resulted in poor performance results.  

 

Second: A clear association between performance and cecal microbial composition was 

evidenced in laying hens and broilers fed with DWP added to corn-based diets, since 

higher abundance of Bifidobacterium spp., Olsenella spp. and Lactobacillus crisptaus 

were observed in hens with better egg production, and more Bifidobacterium spp., 

Bacteroides fragilis, Megamonas funiformis, and Lactobacillus salivarus were detected 

in broilers with improved performance. 

 

Third: The inclusion of DWP to corn-based diets reduced the cecal presence of 

potentially pathogenic bacteria, lowering Clostridium perfringens colony counts in 

more productive hens and decreasing Helicobacter pullorum abundance in more 

productive broilers. 

 

Fourth: Supplementing DWP to corn-based diets promoted higher cecal abundance of 

Faecalibacterium spp. Alistipes spp., Barnesiella spp., Clostridium IV, and 

Subdogranulum spp. genera in both laying hens and broilers, while its supplementation 

to wheat-barley diets increased the abundance of Lactobacillus spp., Bacteroides spp., 

and Oscillibacter spp. 

 

Fifth: The inclusion of DWP to corn-based diets for laying hens resulted in an increase 

in the total cecal microbial encoded functions, with the community showing greater 

number of encoded functions and more metabolic pathways related to the metabolism of 

SCFA, fructose, mannose, and inositol phosphate. 

 

Sixth: A linkage between the performance and the microbiota composition when DWP 

was added to wheat-barley based diets was not evidenced, given that the cecal microbial 

composition of broilers with lower productive results was not different from those 

achieving higher yields. 
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Seventh: The supplementation of WPC to corn-based diets for broilers improved their 

performance, the mineral AID, and concomitantly modulated the cecal microbial 

composition, increasing the cecal abundance of Bacteroides fragilis, Megamonas 

funiformis, and Subdoligranulum variabile. 

 

Eighth: Supplementing DWP simultaneously with CaB in corn-based diets for broilers 

improved bird weight, duodenal development, and AID of nutrients, whereas its joint 

supplementation with PA as synbiotic to laying hens neither result in better performance 

results nor cecal microbial composition or functionality changes. 

 

Nineth: The simultaneous supplementation of DWP and CHIT to wheat-barley based 

diets reduced broilers’ performance concomitantly with a reduction on the microbial 

community diversity, and with the increment on undesirable, potentially pathogenic 

Klebsiella pneumoniae and Streptococcus gallolyticus bacteria. 
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CONCLUSIONES 

 

Primera: La inclusión de LP en dietas para pollos de engorde y gallinas ponedoras con 

base cereal de maíz mejoró el rendimiento productivo, mientras que su inclusión en 

dietas con base cereal de trigo y cebada para pollos de engorde redujo el rendimiento 

productivo animal. 

 

Segunda: Se observó una asociación entre el rendimiento productivo y la composición 

de la microbiota cecal en gallinas ponedoras y pollos de engorde alimentados con LP y 

dietas con base cereal de maíz, pues hubo una mayor abundancia de Bifidobacterium 

spp., Olsenella spp. y Lactobacillus crisptaus en gallinas con más producción de 

huevos, mientras que Bifidobacterium spp., Bacteroides fragilis, Megamonas 

funiformis, y Lactobacillus salivarus se detectaron en mayor abundancia en pollos con 

mejor rendimiento productivo. 

 

Tercera: La inclusión de LP en dietas con base cereal de maíz redujo la presencia cecal 

de bacterias potencialmente patógneas, disminuyendo los recuentos de Clostridium 

perfringens en gallinas más productivas, así como la abundancia de Helicobacter 

pullorum en pollos con mejor rendimiento. 

 

Cuarta: La suplementación de LP en dietas con base cereal de maíz incrementó la 

abundancia cecal de Faecalibacterium spp. Alistipes spp., Barnesiella spp., Clostridium 

IV, and Subdogranulum spp. en gallinas y pollos, mientras su suplementación en dietas 

con base cereal de trigo y cebada incrementó la abundancia de Lactobacillus spp., 

Bacteroides spp., y Oscillibacter spp. 

 

Quinta: La inclusión de LP en dietas con base cereal de maíz aumentó la funcionalidad 

de la microbiota cecal, mostrando un número mayor de funciones relacionadas con el 

metabolismo de la fructosa, manosa, del inositol fosfato y de los AGV.  

 

Sexta: No se evidenció una relación entre el rendimiento productivo y la microbiota 

cecal al suplementar LP en dietas con base cereal de trigo y cebada, pues la 
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composición microbiana de los pollos menos productivos no fue diferente de aquellos 

con mejor rendimiento. 

 

Séptima: La suplementación de CPL en dietas para pollos de engorde con base cereal 

de maíz mejoró el rendimiento productivo, la digestibilidad ileal de los minerales, y 

moduló la composición de la microbiota cecal, incrementando la abundancia de 

Bacteroides fragilis, Megamonas funiformis, y Subdoligranulum variabile. 

 

Octava: La suplementación conjunta de LP y BCa in dietas con base cereal de maíz 

para pollos de engorde mejoró el peso de los animales, el desarrollo duodenal y la 

digestibilidad ileal de los nutrientes, mientras que la suplementación de LP junto con 

PA como simbiótico en gallinas ponedoras no resultó en un mejor rendimiento 

productivo ni en cambios de la composición y funcionalidad de la microbiota cecal. 

 

Novena: La suplementación conjunta de LP y QUIT en dietas con base cereal de trigo y 

cebada redujo el rendimiento productivo de los pollos de engorde de manera conjunta 

con una reducción en la divesidad de las comunidades microbianas cecales, y con el 

incremento en Klebsiella pneumoniae and Streptococcus gallolyticus, consideradas 

bacterias potencialmente patógenas. 

 


