
ON GENERALIZED GAUDUCHON NILMANIFOLDS

A. LATORRE, L. UGARTE, AND R. VILLACAMPA

Abstract. We construct invariant generalized Gauduchon metrics on the product of two com-
plex nilmanifolds that do not necessarily admit this kind of metrics. In particular, we prove
that the product of a locally conformal Kähler nilmanifold and a balanced nilmanifold admits
a generalized Gauduchon metric. In complex dimension 4, generalized Gauduchon nilmanifolds
with (the highest possible) nilpotency step s = 5 are given, as well as 3-step and 4-step examples
for which the center of their underlying Lie algebras does not contain any non-trivial J-invariant
ideal. These examples show strong differences between the SKT and the generalized Gauduchon
geometries of nilmanifolds.

1. Introduction

Let X be a compact complex manifold of complex dimension n, and let F be a Hermitian metric
on X. When the Lee form is co-closed, or equivalently Fn−1 is ∂∂-closed, the metric F is called
standard or Gauduchon. By [13] there is a standard metric in the conformal class of every
Hermitian metric on X. Fu, Wang, and Wu investigate in [11] the following generalization of
Gauduchon metrics. For 1 ≤ k ≤ n− 1, a Hermitian metric F on X is called k-th Gauduchon if
∂∂F k ∧Fn−k−1 = 0. In [11] a unique constant γk(F ) is associated to any F on X. This constant
is invariant by biholomorphisms and depends smoothly on the metric F . Moreover, it is proved
that γk(F ) = 0 if and only if there exists a k-th Gauduchon metric in the conformal class of F .
For k = n− 1, (n− 1)-th Gauduchon metrics are by definition the usual Gauduchon metrics, and
it is showed in [11] that γn−1(F ) = 0, accordingly to [13].

In this paper we are mainly concerned with generalized Gauduchon metrics F for k = 1, i.e.
those satisfying ∂∂F ∧Fn−2 = 0. Some compact complex manifolds with 1-st Gauduchon metrics
are constructed in [9, 11, 15] by different methods. A particularly interesting subclass of 1-st
Gauduchon metrics is that constituted by the pluriclosed or strong Kähler with torsion (SKT
for short) metrics. They are defined by the condition ∂∂̄F = 0 and have been studied by many
authors on non-Kähler compact complex manifolds (see for instance [4, 6, 7, 8, 10, 20] and the
references therein).

The class of complex nilmanifolds has proved to be an important source of compact complex
manifolds admitting these types of special Hermitian metrics. Here by a complex nilmanifold we
mean a compact complex manifold of the form X = (Γ\G, J), where Γ\G is a compact quotient of
a simply-connected nilpotent Lie group G by a uniform discrete subgroup Γ, and J is an invariant
complex structure. For instance, Fino, Parton, and Salamon find in [7] the complex nilmanifolds
of complex dimension 3 with invariant SKT metrics, and they show that the existence of such
metrics only depends on the complex structure J . Moreover, it is proved in [9] that any invariant
1-st Gauduchon metric on a complex nilmanifold of complex dimension 3 is necessarily SKT.

Our first goal in this paper is to construct invariant 1-st Gauduchon metrics on the product of
two complex nilmanifolds that do not necessarily admit this type of metrics. For this purpose, in
Proposition 2.3 we study the constant c1(F +F ′) given by (1) that measures the 1-st Gauduchon
condition for the product of two Hermitian metrics F and F ′. As a consequence, we conclude
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that the product of two Hermitian nilmanifolds with constants c1(F ) and c1(F ′) of opposite signs
admits a 1-st Gauduchon metric (see Corollary 2.4).

As a first application, we show in Theorem 2.5 that the product of a locally conformal Kähler
nilmanifold and a balanced nilmanifold always admits a 1-st Gauduchon metric. Recall that a
locally conformal Kähler (LCK for short) metric is a Hermitian metric that is conformal to some
local Kähler metric in a neighborhood of each point of the manifold, and a Hermitian metric F is
balanced if the Lee form vanishes, or equivalently Fn−1 is a closed form. Balanced nilmanifolds
are studied in [1, 22], whereas the complex nilmanifolds admitting LCK metrics are classified
in [19].

A second application is given in Theorem 2.11, where we consider the product of two Hermitian
nilmanifolds X and X ′ of complex dimension 3. In this case, the sign of the constant c1(F )
of an invariant J-Hermitian metric F on X (respectively, X ′) only depends on the complex
structure J , as seen in [9] (see also Proposition 2.7 and Table 1). Thanks to it, we can provide
classifications of those complex structures for which c1(F ) is negative, zero (SKT case), or positive
(see Propositions 2.9 and 2.10). Using these classifications, one can easily choose X and X ′ with
constants c1’s of opposite signs in order to construct invariant 1-st Gauduchon metrics on the
product nilmanifold Y = X ×X ′.

Enrietti, Fino, and Vezzoni proved in [4, Proposition 3.1] that the existence of an SKT metric
on a complex nilmanifold implies that the center of its underlying Lie algebra is J-invariant.
Furthermore, [4, Theorem 1.2] asserts that an SKT nilmanifold (not a torus) is necessarily 2-step.
The aim of Section 3 is to show that the generalized Gauduchon geometry of nilmanifolds is much
more flexible that the SKT geometry. Since in complex dimension 3 the invariant 1-st Gauduchon
metrics coincide with the invariant SKT metrics [9], we are led to study complex nilmanifolds
of complex dimension 4. Although there are some examples of 1-st Gauduchon nilmanifolds of
complex dimension 4 in the literature [9, 16], we notice that all of them are 2-step.

In Proposition 3.1 we construct for s = 3, 4 an s-step nilmanifold of complex dimension 4 with
invariant 1-st Gauduchon metrics such that the center Z(g) of the underlying Lie algebra g is not
J-invariant; moreover, Z(g) does not contain any non-trivial J-invariant ideal. In Proposition 3.2
we give 5-step nilmanifolds of complex dimension 4 having invariant 1-st Gauduchon metrics. Note
that this result is optimal, since for s ≥ 6 there do not exist s-step 8-dimensional nilmanifolds
admitting invariant complex structures by [2, 12, 14] (see Remark 3.3).

The examples constructed in Propositions 3.1 and 3.2 are irreducible. By taking appropriate
products, in Theorem 3.5 we conclude that for 3 ≤ s ≤ 5 and for any n ≥ 4, there exists an s-step
nilmanifold of complex dimension n admitting invariant 1-st Gauduchon metrics. Furthermore,
by [16, Proposition 2.2] all the 1-st Gauduchon metrics given in this paper also satisfy the k-th
Gauduchon property for every 2 ≤ k ≤ n− 1 (see Remark 3.4).

2. Generalized Gauduchon metrics on product nilmanifolds

In this section we study the existence of generalized Gauduchon metrics on a product of complex
nilmanifolds endowed with invariant Hermitian metrics. As a consequence, we obtain many
examples of generalized Gauduchon nilmanifolds.

Let us start reviewing the definition and some of the main properties of the generalized Gaudu-
chon metrics obtained by Fu, Wang, and Wu in [11].

Definition 2.1. [11] Let X be a compact complex manifold of complex dimension n, and let
1 ≤ k ≤ n− 1 be an integer. A Hermitian metric F on X is called k-th Gauduchon if it satisfies
the condition

∂∂F k ∧ Fn−k−1 = 0.
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From the definition, one can see that the value k = n − 1 recovers the classical standard
(Gauduchon) metrics. Moreover, it is clear that any SKT metric is a 1-st Gauduchon metric.

Extending the result proved by Gauduchon in [13] for standard metrics, in [11] it is shown that,
for any 1 ≤ k ≤ n − 1, there exists a unique constant γk(F ) and a (unique up to a constant)
function v ∈ C∞(X) such that

i

2
∂∂(evF k) ∧ Fn−k−1 = γk(F ) evFn.

It is seen that for k = n − 1 one always has γn−1(F ) = 0. Moreover, if X admits a Kähler
metric F , then γk(F ) = 0 and v is a constant function for any 1 ≤ k ≤ n− 1.

Furthermore, the constant γk(F ) is invariant under biholomorphisms, and by [11, Proposi-
tion 11] the sign of γk(F ) is invariant in the conformal class of F .

To compute the sign of the constant γk(F ) one can use the following result:

Proposition 2.2. [11] For a Hermitian metric F on a compact complex manifold X of complex

dimension n, the number γk(F ) is > 0 (= 0, or < 0) if and only if there exists a metric F̃ in the
conformal class of F such that

i

2
∂∂F̃ k ∧ F̃n−k−1 > 0 (= 0, or < 0).

In this paper we focus our attention on these Hermitian metrics in the special class of nil-
manifolds. We recall that a complex nilmanifold is a compact complex manifold of the form
X = (Γ\G, J), where Γ\G is a compact quotient of a simply-connected nilpotent Lie group G by
a uniform discrete subgroup Γ, and J is an invariant complex structure. This means that J is an
endomorphism J : g −→ g of the Lie algebra g of G such that J2 = −Id and it is integrable, that
is, the i-eigenspace g1,0 of J in gC = g ⊗R C is a complex subalgebra of gC. We will be mainly
concerned with Hermitian metrics F on X which are also invariant.

For any invariant Hermitian metric F on a complex nilmanifold of complex dimension n ≥ 2,
the real (n, n)-form i

2 ∂∂̄F ∧ F
n−2 is proportional to the volume form Fn. Therefore,

(1)
i

2
∂∂̄F ∧ Fn−2 = c1(F )Fn,

for some constant c1(F ) ∈ R. Observe that F is 1-st Gauduchon if and only if c1(F ) = 0.
Let us notice that by Proposition 2.2 the sign of c1(F ) coincides with the sign of the con-

stant γ1(F ). In our study of generalized Gauduchon metrics we will consider c1(F ) instead
of γ1(F ), because its precise value on nilmanifolds can be determined easily, and thus its sign.

Proposition 2.3. Let X and X ′ be complex nilmanifolds endowed with invariant Hermitian
metrics F and F ′, respectively.

(i) For any real λ > 0, we have

(2) c1(λF ) =
c1(F )

λ
.

(ii) Let Y = X × X ′ be the product nilmanifold endowed with the product Hermitian metric
F + F ′. Then,

(3) c1(F + F ′) =
n (n− 1)

(n+ n′)(n+ n′ − 1)
c1(F ) +

n′(n′ − 1)

(n+ n′)(n+ n′ − 1)
c1(F ′),

where n = dimCX and n′ = dimCX
′.

Proof. Let us start with part (i). At the sight of (1), one has the following expression for the
Hermitian metric λF :

i

2
∂∂̄(λF ) ∧ (λF )n−2 = c1(λF ) (λF )n.
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If we expand the left-hand side of this equality, we obtain

i

2
∂∂̄(λF ) ∧ (λF )n−2 = λn−1 i

2
(∂∂̄F ∧ Fn−2) = λn−1 c1(F )Fn = λ−1 c1(F ) (λF )n,

and the result comes straightforward.
We next prove (ii). On the one hand, the equation (1) for the Hermitian metric F + F ′ on the

(n+ n′)-dimensional complex nilmanifold Y = X ×X ′ reads as

i

2
∂∂̄(F + F ′) ∧ (F + F ′)n+n′−2 = c1(F + F ′) (F + F ′)n+n′

.

On the other hand, we consider

i

2
∂∂̄(F + F ′) ∧ (F + F ′)n+n′−2 =

i

2
(∂∂̄F + ∂∂̄F ′) ∧ (F + F ′)n+n′−2

=
i

2
(∂∂̄F + ∂∂̄F ′) ∧ (αFn−2 ∧ F ′n′

+ ζ Fn−1 ∧ F ′n′−1 + β Fn ∧ F ′n′−2)

=
i

2
∂∂̄F ∧ (αFn−2 ∧ F ′n′

) +
i

2
∂∂̄F ′ ∧ (β Fn ∧ F ′n′−2)

= α (
i

2
∂∂̄F ∧ Fn−2) ∧ F ′n′

+ β Fn ∧ (
i

2
∂∂̄F ′ ∧ F ′n′−2)

=
(
α c1(F ) + β c1(F ′)

)
Fn ∧ F ′n′

=

(
α

ν
c1(F ) +

β

ν
c1(F ′)

)
(F + F ′)n+n′

,

where α =

(
n+ n′ − 2

n′

)
, ζ =

(
n+ n′ − 2
n− 1

)
, β =

(
n+ n′ − 2

n

)
, and ν =

(
n+ n′

n

)
. Therefore,

α
ν = n (n−1)

(n+n′)(n+n′−1) and β
ν = n′(n′−1)

(n+n′)(n+n′−1) . This gives us (3). �

As a direct consequence of Proposition 2.3, the product of 1-st Gauduchon nilmanifolds is again
a 1-st Gauduchon nilmanifold. Nonetheless, we can also consider Hermitian nilmanifolds with
opposite signs for their constants c1 in order to produce examples of 1-st Gauduchon nilmanifolds.
Indeed:

Corollary 2.4. Let X and X ′ be complex nilmanifolds endowed with invariant Hermitian metrics
F and F ′, respectively, such that c1(F ) > 0 and c1(F ′) < 0. Then, the product nilmanifold X×X ′
has a 1-st Gauduchon metric.

Proof. Let n, n′ be the complex dimensions of X and X ′, respectively. Let us consider

λ = −n
′(n′ − 1) c1(F ′)

n (n− 1) c1(F )
> 0,

which is in fact a positive real number, since c1(F ) > 0 and c1(F ′) < 0 by hypothesis. Now, we

can take the Hermitian metric F̃ ′ = λF ′ on the complex nilmanifold X ′. A direct calculation
using (2) and (3) shows that the Hermitian metric F + F̃ ′ on the complex product nilmanifold
X ×X ′ satisfies

(n+ n′)(n+ n′ − 1) c1(F + F̃ ′) = n(n− 1) c1(F ) + n′(n′ − 1) c1(F ′)
λ

= n(n− 1) c1(F )− n(n− 1) c1(F )

= 0.

Hence, F + F̃ ′ is a 1-st Gauduchon metric. �
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Let us recall that a Hermitian manifold (X,F ) of complex dimension n is called locally conformal
Kähler (LCK for short) if F is conformal to some local Kähler metric in a neighborhood of
each point of X. Another important class of Hermitian manifolds is that of balanced manifolds,
characterized by the condition dFn−1 = 0. Nilmanifolds with balanced metrics are given in [1, 22]
and LCK nilmanifolds are studied in [19].

In the following result, the complex structures on the nilmanifolds are invariant, but the LCK
metric and the balanced metric are not necessarily of invariant type.

Theorem 2.5. The product of a locally conformal Kähler nilmanifold by a balanced nilmanifold
admits a 1-st Gauduchon metric.

Proof. Let X be a complex nilmanifold of complex dimension n admitting a balanced metric. By
[5, Theorem 4.1], the existence of a balanced metric on X implies the existence of an invariant
one. Let us denote F an invariant balanced metric on X. By [15, Lemma 3.7], the constant
c1(F ) > 0.

Let X ′ be a complex nilmanifold of complex dimension n′ admitting an LCK metric. As a
consequence of [21, Proposition 34], there must exist an invariant LCK metric F ′ on X ′. Using
[15, Proposition 3.8] we have that the constant c1(F ′) < 0.

Now, it suffices to apply Corollary 2.4 to the pair (X,F ) and (X ′, F ′) to ensure the existence
of a 1-st Gauduchon metric on the product nilmanifold X ×X ′. �

Next, we will apply the previous results to the product of low dimensional complex nilmanifolds.
In complex dimension 2, all the invariant Hermitian metrics F satisfy c1(F ) = 0; in fact, for the
complex torus every metric F is Kähler, and on the Kodaira-Thurston manifold any invariant
Hermitian metric F satisfies ∂∂̄F = 0, so c1(F ) = 0. Therefore, in order to construct generalized
Gauduchon metrics on nilmanifolds making use of Corollary 2.4 we need to consider two complex
nilmanifolds of complex dimension at least 3.

Recall that in complex dimension 3, the nilpotent Lie algebras underlying the nilmanifolds that
admit an invariant complex structure are classified by Salamon in [18], whereas the classification
of invariant complex structures is carried out in [3]. For the description of the complex structures
we use a complex basis of (invariant) forms {ωj}3j=1 of bidegree (1,0) with respect to the complex
structure. Remember that there exist two complex-parallelizable nilmanifolds, defined by the
equations

(4) dω1 = dω2 = 0, dω3 = ρω12,

where ρ ∈ {0, 1}. One is the torus (ρ = 0) and the other one is the Iwasawa manifold (ρ = 1).
We next use the description of the remaining invariant complex structures obtained in [3], where
they are divided into three families:

Family (I): dω1 = dω2 = 0, dω3 = ρω12 + ω11̄ + λω12̄ +Dω22̄,

where ρ ∈ {0, 1}, λ ∈ R≥0, and D ∈ C with ImD ≥ 0;

Family (II): dω1 = 0, dω2 = ω11̄, dω3 = ρω12 +B ω12̄ + c ω21̄,

where ρ ∈ {0, 1}, B ∈ C, c ∈ R≥0, with (ρ,B, c) 6= (0, 0, 0);

Family (III): dω1 = 0, dω2 = ω13 + ω13̄, dω3 = ε i ω11̄ + i δ(ω12̄ − ω21̄),

where ε ∈ {0, 1} and δ = ±1.

Any invariant Hermitian metric F on X is given in terms of a (1,0)-basis {ω1, ω2, ω3} by

F =
∑3

j,k=1 xjk̄ ω
jk̄, where xjk̄ ∈ C and xkj̄ = −xjk̄. That is, F can be written as

(5) F = x11̄ ω
11̄ + x22̄ ω

22̄ + x33̄ ω
33̄ + x12̄ ω

12̄ − x12̄ ω
21̄ + x13̄ ω

13̄ − x13̄ ω
31̄ + x23̄ ω

23̄ − x23̄ ω
32̄.
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Notice that the positive definiteness of the metric F implies that in particular

−i xjj̄ ∈ R+, idet(xjk̄) > 0.

Remark 2.6. When J is a complex structure given by (4), i.e. J is complex-parallelizable, the
sign of the constant c1(F ) is well known for any J-Hermitian metric F . Indeed, it is clear that
if ρ = 0 then F is closed, so c1(F ) = 0. If ρ = 1, i.e. the complex nilmanifold is the Iwasawa
manifold, then F is balanced and thus c1(F ) > 0.

The following result shows the sign of any invariant Hermitian metric for the families of complex
structures (I), (II), and (III).

Proposition 2.7. Let X be a complex nilmanifold of complex dimension 3, and let F be any
invariant Hermitian metric on X. Suppose that the complex structure J on X is not complex-
parallelizable. We have:

(i) If J is a complex structure in Family (I), then

i

2
∂∂̄F ∧ F =

i x2
33̄

12 det(xjk̄)

(
ρ+ λ2 − 2ReD

)
F 3,

and thus the sign of c1(F ) only depends on the complex structure. Indeed,
c1(F ) is > 0 (= 0, or < 0) if and only if 2ReD − ρ− λ2 < 0 (= 0, or > 0).

(ii) If J is a complex structure in Family (II), then

i

2
∂∂̄F ∧ F =

i x2
33̄

12 det(xjk̄)

(
ρ+ |B|2 + c2

)
F 3,

and c1(F ) > 0, for any F .
(iii) If J is a complex structure in Family (III), then

i

2
∂∂̄F ∧ F =

i (x2
22̄

+ x2
33̄

)

6 det(xjk̄)
F 3,

and thus c1(F ) > 0, for any F .

Proof. The result is a direct application of [9, Lemma 3.2] taking into account the reduced complex
structure equations obtained in [3] and given in the families (I), (II), and (III) above. �

As a consequence of the previous proposition, the sign of c1(F ) only depends on the complex
structure. Furthermore, as it was noticed in [9, Proposition 3.3], an invariant Hermitian metric F
on a complex nilmanifold X of complex dimension 3 satisfies c1(F ) = 0, i.e. it is 1-st Gauduchon,
if and only if F is SKT. Recall that the classification of nilmanifolds admitting an invariant SKT
metric was given in [7].

In Table 1 we analyze the sign of c1 for invariant Hermitian metrics on complex nilmanifolds of
complex dimension 3, i.e. on 6-dimensional nilmanifolds endowed with invariant complex struc-
tures J . The algebras in the first column correspond to those nilpotent Lie algebras underlying
such nilmanifolds. Here, we follow the notation given in the paper [18] to name and describe
the different Lie algebras. For instance, h2 = (0, 0, 0, 0, 12, 34) means that there is a basis of real
1-forms {ej}6j=1 satisfying de1 = de2 = de3 = de4 = 0, de5 = e1 ∧ e2, and de6 = e3 ∧ e4.

Note that the nilpotent Lie algebras admitting a complex-parallelizable structure (4) are h1 (for
ρ = 0) and h5 (for ρ = 1). Moreover, a Lie algebra admitting a complex structure in Family (I)
is isomorphic to h2, . . . , h6, or h8, and it is always 2-step nilpotent. The nilpotent Lie algebras
having complex structures in Family (II) are h7 and h9, . . . , h16. Finally, the nilpotent Lie algebras
corresponding to Family (III) are h−19 (for ε = 0) and h+

26 (for ε = 1).
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In the second column of Table 1, we indicate the nilpotency step of the nilmanifolds. For the
other columns, we use the following convention. The symbol “X” means that for any invariant
complex structure J on the corresponding nilmanifold and for any invariant J-Hermitian met-
ric F , the sign of c1(F ) is always as indicated in the table (remember that the sign of c1(F ) only
depends on the complex structure, and c1(F ) = 0 if and only if F is SKT). The symbol “X(J)”
means that there exist invariant complex structures J on the corresponding nilmanifold admitting
invariant J-Hermitian metrics F with the given sign of c1(F ), but there are also other complex
structures with invariant Hermitian metrics of different sign. In contrast, the symbol “−” means
that none of the invariant complex structures admits invariant Hermitian metrics of the given
sign.

step c1 < 0 SKT c1 > 0

h1 = (0, 0, 0, 0, 0, 0) 1 − X −
h2 = (0, 0, 0, 0, 12, 34) 2 X(J) X(J) X(J)

h3 = (0, 0, 0, 0, 0, 12+34) 2 X(J) − X(J)

h4 = (0, 0, 0, 0, 12, 14+23) 2 X(J) X(J) X(J)

h5 = (0, 0, 0, 0, 13+42, 14+23) 2 X(J) X(J) X(J)

h6 = (0, 0, 0, 0, 12, 13) 2 − − X

h7 = (0, 0, 0, 12, 13, 23) 2 − − X

h8 = (0, 0, 0, 0, 0, 12) 2 − X −
h9 = (0, 0, 0, 0, 12, 14+25) 3 − − X

h10 = (0, 0, 0, 12, 13, 14) 3 − − X

h11 = (0, 0, 0, 12, 13, 14+23) 3 − − X

h12 = (0, 0, 0, 12, 13, 24) 3 − − X

h13 = (0, 0, 0, 12, 13+14, 24) 3 − − X

h14 = (0, 0, 0, 12, 14, 13+42) 3 − − X

h15 = (0, 0, 0, 12, 13+42, 14+23) 3 − − X

h16 = (0, 0, 0, 12, 14, 24) 3 − − X

h−19 = (0, 0, 0, 12, 23, 14−35) 3 − − X

h+
26 = (0, 0, 12, 13, 23, 14+25) 4 − − X

Table 1. Sign of c1 for invariant Hermitian metrics on 6-nilmanifolds

The existence of locally conformal Kähler and balanced metrics on 6-dimensional nilmanifolds
is studied in [21]. On the one hand, it is seen that, apart from the torus, the nilmanifolds
admitting balanced metrics have underlying Lie algebras h2, . . . , h6, or h−19. On the other hand, if
a 6-dimensional nilmanifold has an LCK metric then its underlying Lie algebra is h3. Therefore,
the only 6-nilmanifold having invariant complex structures with LCK and balanced metrics is the
one with h3 as underlying Lie algebra. In the following example we apply Theorem 2.5 to this
nilmanifold.

Example 2.8. Let us start recalling that the nilpotent Lie algebra h3 = (0, 0, 0, 0, 0, 12+34)
admits, up to equivalence, only two complex structures J±, which correspond to ρ = λ = 0 and
D = ±1 in Family (I). The structure J+ admits LCK metrics, whereas J− admits balanced ones.
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Let us denote by X± the complex nilmanifolds respectively associated to (h3, J
±). Consider the

J±-Hermitian metrics F+ and F−t , with t > 0, given as follows:

(X+, F+) :

{
dω1 = dω2 = 0, dω3 = ω11̄ + ω22̄,

F+ = i
2 (ω11̄ + ω22̄ + ω33̄),

(X−, F−t ) :

{
dσ1 = dσ2 = 0, dσ3 = σ11̄ − σ22̄,

F−t = i
2 (σ11̄ + σ22̄ + t σ33̄), t > 0.

We observe that dF+ = θ ∧ F+ with θ = ω3 + ω3̄ (i.e. F+ is an LCK metric on X+) and
d(F−t )2 = 0 (i.e. F−t is a balanced metric on X−, for any t > 0). Now, we can apply Theorem 2.5
to ensure that the product manifold Y = X+ ×X− admits a 1-st Gauduchon metric.

More concretely, by Proposition 2.7 one has

c1(F+) = −1

3
, c1(F−t ) =

t

3
,

so the metrics

Ft =
1

t
F+ + F−t

defined on Y are 1-st Gauduchon for each t > 0.

Next we describe the complex nilmanifolds of complex dimension 3 for which the invariant
Hermitian metrics F satisfy c1(F ) ≤ 0. As the h3 case is explained in Example 2.8, it remains to
study the Lie algebras h2, h4, and h5:

Case h2: In [3] it is proved that any complex structure J on h2 is isomorphic to one and only
one in the following families:

(h2, J1): dω1 = dω2 = 0, dω3 = ω11̄ +Dω22̄, D ∈ C with ImD = 1;

(h2, J2): dω1 = dω2 = 0, dω3 = ω12 + ω11̄ + ω12̄ +Dω22̄, D ∈ C with ImD > 0.

By Proposition 2.7 (i), any J-Hermitian metric F on h2 satisfies

c1(F ) < 0 (= 0) if and only if J is given by


J1 with ReD > 0 (= 0),

or

J2 with ReD > 1 (= 1).

Case h4: As it is seen in [3], any complex structure J on h4 is isomorphic to one and only one of
the following ones:

(h4, J3): dω1 = dω2 = 0, dω3 = ω11̄ + ω12̄ + 1
4ω

22̄;

(h4, J4): dω1 = dω2 = 0, dω3 = ω12 + ω11̄ + ω12̄ +Dω22̄, D ∈ R \ {0}.
Notice that for J3 we have 2ReD = 1/2 < 1 = ρ + λ2. Therefore, by Proposition 2.7 (i) the
sign of c1 of any J3-Hermitian metric F is positive, i.e. c1(F ) > 0. Similarly, for any complex
structure J given by J4, Proposition 2.7 (i) implies that c1(F ) > 0 if and only if D < 1.
Therefore, for any J-Hermitian metric F on h4 we have:

c1(F ) < 0 (= 0) if and only if J is given by J4 with D > 1 (= 1).

Case h5: Using again [3], any complex structure J on h5 is isomorphic to one and only one in
the following list:

(h5, J5): dω1 = dω2 = 0, dω3 = ω12;
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(h5, J6): dω3 = ω11̄ + ω12̄ +Dω22̄, D ∈ [0, 1
4);

(h5, J7): dω1 = dω2 = 0, dω3 = ω12 + ω11̄ + λω12̄ +Dω22̄, with (λ,D) ∈ R≥0 × C such that:

• λ = 0 ≤ ImD, 4(ImD)2 < 1 + 4ReD;

• 0 < λ2 < 1
2 , 0 ≤ ImD < λ2

2 , ReD= 0;

• 1
2 ≤ λ

2 < 1, 0 ≤ ImD < 1−λ2

2 , ReD= 0; or

• λ2 > 1, 0 ≤ ImD < λ2−1
2 , ReD= 0.

We observe that J5 is the complex-parallelizable structure on the Iwasawa manifold and any J5-
Hermitian metric F satisfies c1(F ) > 0 (see Remark 2.6). For any complex structure J given
by J6 we have 0 ≤ 2ReD < 1

2 < 1 = ρ + λ2, hence by Proposition 2.7 (i) we also get c1(F ) > 0
for any J6-Hermitian metric F .
Using again Proposition 2.7 (i) one concludes that for any J-Hermitian metric F on h5:

c1(F ) < 0 if and only if J is given by J7 with

{
λ = 0 ≤ ImD,

4(ImD)2 < 1 + 4ReD, and ReD > 1
2 ,

and

c1(F ) = 0 if and only if J is given by J7 with

{
λ = 0 ≤ ImD and

4(ImD)2 < 1 + 4ReD = 3.

As a direct consequence of the previous discussion, we get the following classification of the
complex structures J for which c1(F ) < 0 for any J-Hermitian metric F .

Proposition 2.9. Let X be a complex nilmanifold of complex dimension 3 admitting an invariant
Hermitian metric F with c1(F ) < 0. Denote (g, J) the Lie algebra and the complex structure
underlying X. Then, the pair (g, J) is isomorphic to one (and only one) in the following families:

(h2, J1) with ReD > 0 (1-parameter family of non-equivalent complex structures),

(h2, J2) with ReD > 1 (2-parameter family),

(h3, J
+) given in Example 2.8 (this is a unique complex structure),

(h4, J4) with D > 1 (1-parameter family),

(h5, J7) with λ = 0, ImD ≥ 0 and ReD > min
{

1
2 , (ImD)2 − 1

4

}
(2-parameter family).

A second direct consequence of the discussion above is the classification of complex structures J
admitting SKT metrics.

Proposition 2.10. Let X be a complex nilmanifold of complex dimension 3 admitting an in-
variant SKT metric F (i.e. c1(F ) = 0). Let (g, J) be the Lie algebra and the complex structure
underlying X. Then, the pair (g, J) is isomorphic to one (and only one) in the following families:

(h1, J) given by (4) with ρ = 0 (unique),

(h2, J1) with ReD = 0 (unique),

(h2, J2) with ReD = 1 (1-parameter family),

(h4, J4) with D = 1 (unique),

(h5, J7) with λ = 0, ReD = 1
2 , and 0 ≤ ImD <

√
3

2 (1-parameter family),

(h8, J) given by Family (I) with ρ = λ = D = 0 (unique).
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In the following result we give many examples of complex nilmanifolds with invariant 1-st
Gauduchon metrics, constructed as products of nilmanifolds that do not admit any such metric.

Theorem 2.11. Let X and X ′ be complex nilmanifolds of complex dimension 3. Suppose that
the pair (g, J) underlying X is isomorphic to one in the list given in Proposition 2.9 and that the
pair (g′, J ′) underlying X ′ is not isomorphic to any of the pairs given in Propositions 2.9 or 2.10.
Then, the product nilmanifold Y = X ×X ′ has an invariant 1-st Gauduchon metric.

Proof. On the one hand, by Proposition 2.9 we know that any invariant Hermitian metric F on X
satisfies c1(F ) < 0. On the other hand, we have c1(F ′) > 0 for any invariant Hermitian metric F ′

on X ′ whose pair (g′, J ′) is not isomorphic to any of those given in the lists in Propositions 2.9
and 2.10. Now, the existence of an invariant 1-st Gauduchon metric on the product nilmanifold
Y = X ×X ′ follows directly from Corollary 2.4. �

Notice that in the conditions of Theorem 2.11, the Lie algebra g is isomorphic to h2, h3, h4,
or h5, whereas the Lie algebra g′ is isomorphic to h2, . . . , h7, h9, . . . , h16, h−19, or h+

26 (see also
Table 1).

3. Generalized Gauduchon metrics in complex dimension 4

Our goal in this section is to construct 1-st Gauduchon nilmanifolds of complex dimension 4
satisfying some special properties that allow to illustrate the strong differences between SKT and
generalized Gauduchon geometries on nilmanifolds.

As we recalled in Section 2, the invariant 1-st Gauduchon metrics on complex nilmanifolds
of complex dimension 3 coincide with the invariant SKT metrics. In [4, Proposition 3.1] it is
proved that the existence of an SKT metric implies that the center of the underlying algebra is J-
invariant, and in [4, Theorem 1.2] it is shown that an SKT nilmanifold (not a torus) is necessarily
2-step.

Let Y = X ×X ′ be a 1-st Gauduchon nilmanifold given by Theorem 2.11. We observe that it
suffices to choose X ′ with Lie algebra g′ isomorphic to h9, . . . , h16, h−19, or h+

26 in order to find 1-st
Gauduchon nilmanifolds Y of complex dimension 6 whose underlying Lie algebras have nilpotency
steps 3 or 4 (see Table 1). Nonetheless, the pair (g, J) underlying X must be isomorphic to one in
the list given in Proposition 2.9, and all these pairs have a non-trivial J-invariant ideal contained
in the center Z(g). Therefore, the Lie algebra g⊕ g′ underlying Y still has a non-trivial (J ⊕ J ′)-
invariant ideal contained in its center.

In this section, we are able to construct two examples in complex dimension 4 with nilpotency
steps s = 3 and s = 4 for which the center Z(g) does not contain any non-trivial J-invariant ideal.
Moreover, we also provide a 1-st Gauduchon nilmanifold of complex dimension 4 with the highest
possible nilpotency step, namely s = 5. All these new examples are irreducible and have the
minimal dimension in which the differences between invariant SKT and invariant 1-st Gauduchon
metrics on nilmanifolds can arise.

In order to construct our first kind of examples, we consider the nilpotent Lie algebras gν of
(real) dimension 8 defined by the following structure equations:

(6)



de1 = de2 = de3 = de4 = 0,

de5 = 2 e17,

de6 = 2 e27,

de7 = 2 ν e12,

de8 = 2 e15 + 2 e26 − 4 e34,

where ν is a real number. Observe that ν can be reduced to the values 0 or 1 (if ν 6= 0, just take
the new basis given by e′i = ei, for i = 1, 2, 3 and e′i = 1

ν e
i, for i = 4, . . . , 8). For this reason,



11

in what follows we will consider (6) with ν = 0, 1. Since all the structure constants are rational
numbers, it follows from [17] that the simply-connected nilpotent Lie group Gν associated to gν
has a uniform discrete subgroup. Hence, the structure equations (6) define a nilmanifold.

Let {Ei}8i=1 be the dual basis of {ei}8i=1. From (6) we get that the non-zero basic Lie brackets
[Ei, Ej ], 1 ≤ i < j ≤ 8, are

[E1, E2] = −2 ν E7, [E1, E7] = −2E5, [E2, E7] = −2E6,

[E1, E5] = −2E8, [E2, E6] = −2E8, [E3, E4] = 4E8.

The ascending central series {(gν)k}k≥1 of the Lie algebra gν is

(gν)1 = Z(gν) = 〈E8〉, (gν)2 = 〈E3, E4, E5, E6, E8〉,

and {
for ν = 0: (g0)3 = g0,

for ν = 1: (g1)3 = 〈E3, E4, E5, E6, E7, E8〉, (g1)4 = g1.

Thus, for ν = 0 the ascending central series has dimensions (1, 5, 8) and the Lie algebra g0 is
nilpotent in step 3, whereas for ν = 1 the ascending central series has dimensions (1, 5, 6, 8) and
the Lie algebra g1 is 4-step.

Let us define the almost complex structure J given by

Je1 = −e2, Je3 = −e4, Je5 = −e6, Je7 = −e8.

Since the center Z(gν) is 1-dimensional, it is clear that it cannot contain any non-trivial J-invariant
ideal.

Let us consider the following basis of complex 1-forms of bidegree (1,0) with respect to J :

ω1 = e1 + i e2, ω2 = e3 + i e4, ω3 = e5 + i e6, ω4 = e7 + i e8.

It follows from (6) that the differentials of these (1, 0)-forms are

(7)


dω1 = dω2 = 0,

dω3 = ω14 + ω14̄,

dω4 = i ν ω11̄ + i ω13̄ + 2ω22̄ − i ω31̄.

Observe that the differential of each ωj has no component of bidegree (0,2), thus the almost
complex structure J is integrable both on g0 and on g1.

Let F be the J-Hermitian metric on gν given by

F = i (ω11̄ + ω22̄ + ω33̄ + ω44̄) +
1

2
(ω13̄ − ω31̄).

A direct calculation using the complex structure equations (7) shows that the metric F satisfies
∂∂̄F ∧ F 2 = 0, namely, it is a 1-st Gauduchon metric. Therefore, we have proved:

Proposition 3.1. For each s ∈ {3, 4}, there exists an s-step nilmanifold of complex dimension 4
with an invariant 1-st Gauduchon metric such that the center Z(g) of its underlying Lie algebra g
does not contain any non-trivial J-invariant ideal.

Our next purpose is to construct 1-st Gauduchon nilmanifolds with nilpotency step s = 5. For
this aim, we consider the family of 8-dimensional nilpotent Lie algebras g defined as the following
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extensions of h+
26 (see Table 1):

(8)



de1 = de2 = 0,

de3 = e12,

de4 = e13,

de5 = e23,

de6 = e14 + e25,

de7 = b2 e
12 + δ e13 + a1 (e14 − e25)− a2 (e15 + e24) + 2 e26 − 2 e34,

de8 = −b1 e12 + a2 (e14 − e25) + a1 (e15 + e24)− 2 e16 + δ e23 − 2 e35,

where a1, a2, b1, b2 ∈ Q, and δ is equal to 1 or −1. The coefficients a1, a2, b1, b2 are rational
numbers to ensure the existence of a uniform discrete subgroup for the associated simply-connected
nilpotent Lie group G (see [17]). In this way, the equations (8) define a nilmanifold.

Let {Ei}8i=1 be the dual basis of {ei}8i=1. From (8) one has that the non-zero basic Lie brackets
[Ei, Ej ], 1 ≤ i < j ≤ 8, are

[E1, E2] = −E3 − b2E7 + b1E8, [E1, E6] = 2E8, [E2, E6] = −2E7,

[E1, E3] = −E4 − δ E7, [E2, E3] = −E5 − δ E8, [E3, E4] = 2E7,

[E1, E4] = −E6 − a1E7 − a2E8, [E2, E4] = a2E7 − a1E8, [E3, E5] = 2E8.

[E1, E5] = a2E7 − a1E8, [E2, E5] = −E6 + a1E7 + a2E8,

The ascending central series {gk}k≥1 of g is given by

g1 = Z(g) = 〈E7, E8〉, g2 = 〈E6, E7, E8〉, g3 = 〈E4, E5, E6, E7, E8〉,
g4 = 〈E3, E4, E5, E6, E7, E8〉, g5 = g.

Hence, any Lie algebra g defined by (8) is nilpotent in step s = 5.
For δ = ±1, let Jδ be the almost complex structure on g defined by:

Jδ(e
1) = −e2, Jδ(e

3) = −2 δ e6, Jδ(e
4) = −e5, Jδ(e

7) = −e8.

Notice that the center Z(g) is Jδ-invariant.
It is clear that the forms

ω1 =

√
2

2
(e1 + i e2), ω2 =

√
2 (e4 + i e5), ω3 = e3 + 2 δ i e6, ω4 =

√
2 (e7 + i e8),

constitute a basis of type (1, 0) with respect to Jδ.
Now, it follows from (8) that their differentials are

(9)


dω1 = 0,

dω2 = ω13 + ω13̄,

dω3 = i ω11̄ + i δ(ω12̄ − ω21̄),

dω4 =
√

2Aω12 + ω23 +
√

2B ω11̄ + 2 δ ω13̄ + ω23̄,

where A = a1 + i a2 and B = b1 + i b2 belong to Q[i]. Since the differentials of each ωj have no
component of bidegree (0,2), we conclude that Jδ is integrable and defines a complex structure
on g.

In the result below we show that it is possible to choose appropriate numbers A and B in Q[i]
that allow to construct complex nilmanifolds having 1-st Gauduchon metrics.

Proposition 3.2. There exist 5-step nilmanifolds of complex dimension 4 with invariant 1-st
Gauduchon metrics.
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Proof. Let (g, J) be a nilpotent Lie algebra given by (8) endowed with the complex structure
J = Jδ. We consider a J-Hermitian metric F on g of the form

F = Ω +
i

2
ω44̄,

where Ω is given by

Ω = i r ω11̄ + i s ω22̄ + i t ω33̄ + x12̄ ω
12̄ − x12̄ ω

21̄ + x13̄ ω
13̄ − x13̄ ω

31̄ + x23̄ ω
23̄ − x23̄ ω

32̄,

where r, s, t ∈ R+ and xjk̄ ∈ C satisfy the conditions ensuring that Ω (and thus F ) is positive

definite. Notice that Ω is equivalently given by (5), simply writing x11̄ = i r, x22̄ = i s, and
x33̄ = i t, for r, s, t ∈ R+.

For the computation of the form ∂∂̄F ∧ F 2, we observe that

(10)

∂∂̄F ∧ F 2 =
(
∂∂̄ Ω + i

2 ∂∂̄(ω44̄)
)
∧ (Ω2 + iΩ ∧ ω44̄)

= ∂∂̄ Ω ∧ Ω2 + i ∂∂̄ Ω ∧ Ω ∧ ω44̄ + i
2 Ω2 ∧ ∂∂̄(ω44̄)− 1

2 Ω ∧ ∂∂̄(ω44̄) ∧ ω44̄

= i ∂∂̄ Ω ∧ Ω ∧ ω44̄ − 1
2 Ω ∧ ∂∂̄(ω44̄) ∧ ω44̄

= −1
2

(
Ω ∧ ∂∂̄(ω44̄)− 4 c1(Ω) Ω3

)
∧ ω44̄.

Simply note that in the third equality of (10) we have used that ∂∂̄ Ω∧Ω2 = 0, as this is a form of

degree 8 on the 6-dimensional algebra h+
26. Moreover, we have also applied that Ω2∧∂∂̄(ω44̄) = 0,

because

(11) ∂∂̄(ω44̄) = ∂∂̄ω4 ∧ ω4̄ + ∂̄ω4 ∧ ∂ω4̄ − ∂ω4 ∧ ∂̄ω4̄ + ω4 ∧ ∂∂̄ω4̄

and from the complex equations (9) it follows that ∂∂̄ω4 and ∂∂̄ω4̄ are forms of degree 3 on the

Lie algebra h+
26, and ∂̄ω4 ∧ ∂ω4̄ and ∂ω4 ∧ ∂̄ω4̄ are forms of degree 4 on h+

26. Finally, notice that
the last equality of (10) makes use of the definition of c1(Ω) given in (1).

From (10) and taking into account (11), it follows that F is 1-st Gauduchon if and only if

(12) Ω ∧
(
∂̄ω4 ∧ ∂ω4̄ − ∂ω4 ∧ ∂̄ω4̄

)
− 4 c1(Ω) Ω3 = 0.

The value of the constant c1(Ω) is given by Proposition 2.7 (iii), i.e. c1(Ω) = s2+t2

6 i det(xkl̄)
. A long

but direct calculation shows that condition (12) is equivalent to

0 = r + 2 s+ t |A|2 − 2 δ Im(x12̄) +
√

2 Im(x13̄ Ā) +
√

2 Im(x23̄B) + 2 s2 + 2 t2.

We can now produce many explicit examples of 1-st Gauduchon nilmanifolds. For instance, if
we choose x12̄ = x13̄ = 0 and x23̄ = 1/

√
2, then it is enough to make b2 = Im(B) = −r − 2 s −

t |A|2 − 2 s2 − 2 t2 to solve the previous equation. Taking the metric coefficients r, s, t in Q+, we
ensure that b2 is a rational number. Thus, this 1-st Gauduchon metric F has the form

F = i r ω11̄ + i s ω22̄ + i t ω33̄ +
i

2
ω44̄ +

1√
2
ω23̄ − 1√

2
ω32̄,

where r, s, t belong to Q+, and st > 1/2 in order to ensure that F is positive definite. The associ-
ated complex nilmanifold corresponds to the complex structure equations (9) where a1, a2, b1 ∈ Q
and b2 = −r − 2 s− t (a2

1 + a2
2)− 2 s2 − 2 t2. �

Remark 3.3. Notice that the result in Proposition 3.2 is optimal, in the sense that we have
obtained 1-st Gauduchon metrics on complex nilmanifolds with the highest possible nilpotency
step. In fact, by [14] (see also [2]) filiform Lie algebras, i.e. nilpotent Lie algebras with maximal
nilpotency step, never admit a complex structure; and by [12] an 8-dimensional quasi-filiform
nilpotent Lie algebra, i.e. with nilpotency step s = 6, cannot admit any complex structure. Hence,
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the Lie algebra underlying a complex nilmanifold of complex dimension 4 must be nilpotent in
step s ≤ 5.

Remark 3.4. In [16, Proposition 2.2] it is proved that if an invariant Hermitian metric F on a
complex nilmanifold X of complex dimension n ≥ 4 is k-th Gauduchon for some 1 ≤ k ≤ n − 2,
then F is k-th Gauduchon for any other k. Notice also that any invariant Hermitian metric is
(n− 1)-Gauduchon. Therefore, all the 1-st Gauduchon metrics constructed in this paper are also
k-th Gauduchon for every 2 ≤ k ≤ n− 1.

In the following result we summarize the main differences that we have obtained between the
SKT and the generalized Gauduchon geometries of nilmanifolds in complex dimension ≥ 4.

Theorem 3.5. For 3 ≤ s ≤ 5 and for any n ≥ 4, there exists an s-step nilmanifold of complex
dimension n admitting invariant k-th Gauduchon metrics for every 1 ≤ k ≤ n− 1. Furthermore,
for s = 3 or s = 4 there exist such nilmanifolds with the additional property that the center of
their underlying Lie algebras is not J-invariant.

Proof. Let (X,F ) be a 1-st Gauduchon nilmanifold constructed in Propositions 3.1 or 3.2. Let
X ′ be any other nilmanifold with an invariant 1-st Gauduchon metric F ′ (for instance, a torus
of complex dimension ≥ 1). By Proposition 2.3, the nilmanifold Y = X ×X ′ has invariant 1-st
Gauduchon metrics. Since X has nilpotency step 3 ≤ s ≤ 5, the nilmanifold Y is at least s-step,
too. When (X,F ) is given by Proposition 3.1, one can always ensure that the center of the Lie
algebra underlying Y is not J-invariant (although it might contain a non-trivial J-invariant ideal,
depending on the complex geometry of the factor X ′).

Finally, by Remark 3.4, the invariant 1-st Gauduchon metrics on Y are also k-th Gauduchon
for every 1 ≤ k ≤ n− 1, where n is the complex dimension of Y . �

Observe that the nilmanifolds in Theorem 3.5 do not admit any (invariant or not) SKT metric,
as a consequence of [4].
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(L. Ugarte) Departamento de Matemáticas - I.U.M.A., Universidad de Zaragoza, Campus Plaza San
Francisco, 50009 Zaragoza, Spain

E-mail address: ugarte@unizar.es


