
Introduction: Palaeomagnetism in fold and

thrust belts: new perspectives

E. L. PUEYO1*, F. CIFELLI2, A. J. SUSSMAN3 & B. OLIVA-URCIA4

1Instituto Geológico y Minero de España, Unidad de Zaragoza c/Manuel Lasala 44, 98,
50006 Zaragoza, Spain

2Dipartimento Scienze, Università degli Studi di Roma TRE,
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Palaeomagnetism, that is, the study of the ancient
magnetic field recorded in rocks, is the only vecto-
rial indicator in the Earth sciences that is capable
of associating geological bodies with their original
location (primary vectors) or with intermediate
locations (secondary vectors) during their geologi-
cal history. For this reason, palaeomagnetism has
played a key role in supporting continental drift
theory.

Beyond tectonic plate-scale applications, palaeo-
magnetism has become a fundamental tool for
assessing the evolution of mountain ranges owing
to its unique potential for quantifying vertical axis
rotations (VAR). Since the pioneering applica-
tions of authors such as Norris & Black (1961)
and Tarling (1969), palaeomagnetism has been
applied to problems at a variety of scales in many
orogenic systems (e.g. Elredge et al. 1985; Kissel
& Laj 1989; Weil & Sussman 2004; Elmore et al.
2012). In particular, palaeomagnetic data have been
increasingly used as key quantitative information
for determining the timing, distribution and magni-
tude of vertical axis rotations (Van der Voo & Chan-
nell 1980; McCaig & McClelland 1992; Allerton
1998).

Together with structural analyses, palaeomag-
netic investigations help to unravel the deformation
history of fold and thrust belts, For instance, palaeo-
magnetism in growth strata has shed much light
not only on the kinematics of folding and thrusting
but also on the deformation timing such that quan-
titative geological reconstructions can be accompli-
shed even in four dimensions (Pueyo et al. 2004;
Arriagada et al. 2008; Ramón et al. 2012). These

approaches reduce the levels of uncertainty of
other structural variables, such as shortening and
internal deformation.

Overall, this Geological Society Special Publi-
cation compiles contributions presenting recent
developments in palaeomagnetism, in terms of both
methodology and applications of palaeomagnetic
studies to fold and thrust belts. The scientific
breadth of this volume includes:

† compilations and overviews of fold and thrust
belts with abundant palaeomagnetic data;

† case studies showing how palaeomagnetic data
are used in understanding the kinematic evolu-
tion of geological structures at different scales;

† case studies showing how magnetostratigraphy
contributes to the assessment of the magnitude
and the timing of vertical axis rotations and
deformation rates;

† studies of complex tectonic structures, including
the integration of palaeomagnetism with aniso-
tropy of magnetic susceptibility (AMS) and/or
structural analyses; and

† analyses pertaining to data reliability, resolution
analysis and error sources.

The volume starts with two papers that present large
palaeomagnetic datasets (Fig. 1); the Western Car-
pathians (Márton et al. 2015) and the Western and
Central Mediterranean arcs (Cifelli et al. 2016). In
both cases, synthetic and robust palaeomagnetically
deduced VARs are used to constrain the kinematic
and geodynamic evolution in these regions.

The second part of the volume presents a suite of
papers focused on different structural and tectonic
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problems in the Andes, Pyrenees, the Iberian Range,
the Alps and Anatolia. Rapalini et al. (2015) show
new data focused on unravelling the primary or sec-
ondary nature of the Patagonian orocline, Japas
et al. (2015) discuss Neogene rotations measured
in the Andean Precordillera fold and thrust belt.
Oliva-Urcia et al. (2015) present a new magneto-
stratigraphic section from the southwestern portion
of the Pyrenean main thrust that allows for both
the refinement of the chronostratigraphy of the
region and dating of primary folding and thrusting
events. The Pico del Aguila anticline, in the central

part of the basal thrust, is the target of the paper
by Anastasio et al. (2015), which uses AMS and
published chronostratigraphy to decipher fold kine-
matics. The work by Cardello et al. (2015) in the
Helvetic Alps and that by Valcárcel et al. (2015)
in the Southern Iberian Range share some common
features in that they represent detailed studies of
individual structures and aim to obtain well-
constrained kinematic models. These papers both
integrate their palaeomagnetic data with structural,
tectonic and AMS data, and bracket the limitations
of their palaeomagnetic analyses. Cinku et al.

Fig. 1. Topographic map with the locations of the study area comprising this volume: 1a, Betics and Rif arc; 1b,
Apeninnes; 1c, Calabrian arc (Cifelli et al. 2016); 2, Alps (Cardello et al. 2015); 3, Western Carpathians (Márton
et al. 2015); 4, Central Anatolia (Cinku et al. 2015); 5, Pampean Ranges (Japas et al. 2015); 6, Patagonia (Rapalini
et al. 2015); 7, Polientes, Cabuerniga and Cameros basins (Villalaı́n et al. 2015); 8, Western Pyrenean External
Sierras (Oliva-Urcia et al. 2015); 9, Pico del Aguila Anticline (Anastasio et al. 2015); 10, Cotiella (Garcés et al.
2015); 11, Altomira Range (Valcárcel et al. 2015). Source map: http://www.maps-for-free.com (licensed under the
Creative Commons Attribution-Share Alike 2.0 Generic licence.).
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(2015) investigate the palaeomagnetic rotations that
occurred in the Kırşehir block during the closure of
the remnant of the northern branch of the Neotethys
Ocean, in the İzmir–Ankara–Erzincan suture zone,
from Late Cretaceous to Middle Eocene times.

The third section of this volume is devoted to
new approaches for the application of palaeomag-
netism to fold and thrust belts. The paper by Garcés
et al. (2015) introduces a new concept for the resto-
ration of remagnetizations to the ancient reference
system in the Central Pyrenees that takes into
account the geometry of unconformities that formed
during the extensional-basin inversion instead of
the bedding plane. Villalaı́n et al. (2015) present
the reconstruction of highly subsident extensional
basins that, in turn, reset the palaeomagnetic sig-
nal; these basins were inverted during Tertiary
development of a fold and thrust belt. In this
case, the geometric analysis of the remagnetized
directions has allowed for reconstruction of the
geometry of those basins at the time interval of the
remagnetization.

While quantitative use of palaeomagnetically
deduced rotations is scarce, some researchers have
addressed this problem in recent years. Palinspastic
restorations of orogens can be much more precise
if palaeomagnetic vectors are combined with struc-
tural features in a numerical approach. This was first
applied in the Bolivian orocline by Arriagada et al.
(2008). In a similar way, the quantification of errors
in shortening estimates deduced from restored
and balanced sections in fold and thrust belts has
been recently introduced (e.g. Pueyo et al. 2004;
Sussman et al. 2012). Here, Ramón et al. (2015a)
propose a new 3-D restoration method that com-
bines the use of palaeomagnetic data and a paramet-
ric approach for the definition and processing of the
structural surfaces. These authors demonstrate that
using palaeomagnetism clearly improves the resto-
ration result of complex geological settings. Finally,
Pueyo et al. (2016) present an overview of the
potential sources of error in palaeomagnetic studies
applied to deformed regions, review field, labora-
tory and processing techniques and propose an
extension of the classic reliability criteria estab-
lished by Van der Voo (1990).

Future and challenges of palaeomagnetic

studies in fold and thrust belts

The application of palaeomagnetism to fold and
thrust belts still has many challenges that need to
be met in the future:

† Data resolution – resolution studies on palaeo-
magnetic data can be found in the literature spe-
cifically applied to tectonic problems (Demarest
1983; Bazhenov 1988). However, the definition

of palaeomagnetic means at the dip-domain scale
(sensu Suppe 1985; Groshong 1999) along
thrust fronts is still required, perhaps with an
approach similar to that of Deenen et al. (2011)
but more focused on the geometry of the fold
and thrust belts.

† Reliability – many potential sources of error can
affect palaeomagnetic datasets in fold and thrust
belts (see Pueyo et al. 2016). Apart from other
processing and laboratory problems, the effect
of internal deformation, non-resolved overlap-
ping of components or errors in the restoration
of complex settings may limit the value of the
palaeomagnetic vectors as a robust kinematic
indicator. In this sense, some advances on dem-
onstrating the quality and reliability of the palae-
omagnetic data have been made (MacDonald
1980; Chan 1988; Sellés-Martı́nez 1988; Wein-
berger et al. 1995; Rodrı́guez-Pintó et al. 2011).
However, numerical modelling of errors and the
establishment of specific procedures are still to
be set.

† Age constraining palaeomagnetic vectors – con-
straining the age of the magnetization in palaeo-
magnetic studies is a key variable and it is
usually done via the fold test (Graham 1949;
McElhinny 1964), a powerful tool that is rarely
used for other classic structural indicators. The
statistical significance of the fold test is mature
(e.g. Tauxe & Watson 1994; McFadden 1998;
Enkin 2003), but mathematical approaches to
the fold test do not consider phenomena such
as folding kinematics. While some authors
have already considered this problem (Cairanne
et al. 2002; Delaunay et al. 2002; Waldhör &
Appel 2006; Villalaı́n et al. 2015), further
advances in this regard need to be accomplished.

† Understanding the architecture of rotated
areas – understanding of the spatial and tempo-
ral variability of rotational patterns in fold and
thrust belts is still in its infancy. In this sense,
integration of classic determination of VARs
and magnetostratigraphic studies may shed much
more light in future on these systems in 4-D.

† Quantitative implications – palaeomagnetic
results should play a more active role in the
2-D/3-D shortening estimation (cross-section,
map view, 3-D restorations, etc.), since such data
account for the out-of-plane movements biasing
classic approaches (e.g. McCaig & McClelland
1992; Pueyo et al. 2004; Sussman et al. 2012).
In this sense, palaeomagnetic vectors, together
with the bedding plane, are the only reliable
3-D reference frame to be used in 3-D restoration
and validation techniques, since they are accu-
rately known in both the deformed and undefor-
med stages. Although some recent works have
demonstrated this (Ramón et al. 2012, 2015a, b),
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many challenges remain. We encourage future
investigators to meet such challenges.

We acknowledge the reviewers who have helped to com-
plete this Special Publication as well as the editorial
work done by the Geological Society staff. We are partic-
ularly thankful to Massimo Mattei for writing the foreword
to this volume.
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