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Abstract

How fast can a laser pulse ionize an atom? We address this question by considering pulses that

carry a fixed time-integrated energy per-area, and finding those that achieve the double requirement

of maximizing the ionization that they induce, while having the shortest duration. We formulate

this double-objective quantum optimal control problem by making use of the Pareto approach to

multi-objective optimization, and the differential evolution genetic algorithm. The goal is to find

out how a precise time-profiling of ultra-fast, large-bandwidth pulses may speed up the ionization

process. We work on a simple one-dimensional model of hydrogen-like atoms (the Pöschl-Teller

potential), that allows to tune the number of bound states that play a role in the ionization

dynamics. We show how the detailed shape of the pulse accelerates the ionization process, and

how the presence or absence of bound states influences the velocity of the process.

PACS numbers: 32.80.Qk, 32.80.Fb, 42.65.Re
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I. INTRODUCTION

The time that it takes for an electron to abandon its parent ion when excited into the

continuum by light has been a long-debated issue almost since the discovery of the photo-

electric effect in the early days of quantum mechanics, when the “tunnelling” time problem

was first examined [1]. This question is even difficult to pose [2] – the deepest underlying

problem is probably that time is not a quantum mechanical operator. In consequence, dif-

ferent definitions of time have been proposed, and the theoretical discussion lingers even

today [3].

In fact, the topic has been enlivened in recent years by the advances in attosecond sci-

ence [4–6], and the appearance of attosecond metrology [7]. These developments have en-

abled to look in real time into the ionization process, thereby shedding light on the previously

theoretical-only considerations [8]. Attosecond streaking [9, 10] is the basic technique behind

the chronoscopy of ionization: a weak attosecond pulse ionizes the target, and an overlaying

longer and intense pulse accelerates the produced electron, that acquires a final momentum

that will depend on the driving field and on when it was excited into the continuum.

A particularly successful attosecond streaking setup is the attoclock [3, 11–15], in which

the time reference is given by a close-to-circularly polarized laser field. With this tool, it

was possible to measure the “tunneling delay time” (interval between the maximum of the

electric field and the maximum of the ionization rate, which was found to be zero within

experimental uncertainty [16, 17]), or the “electron release time” (or simply “ionization

time”), a concept based on a semiclassical picture, defined as the time when the classical

electron trajectory starts in the continuum. Those are but some of the various times that

can be defined around the ionization process. Theoretically, some of the most invoked

concepts are perhaps the Keldysh time [18], the Buttiker-Landauer “traversal” time [19], or

the Eisenbud-Wigner-Smith time-delay operator [20–22].

In this work, however, we adopt a pragmatic, operational definition of “ionization time”,

based on the time at which the occupation of the continuum states surpasses a certain

threshold (close to one). This can be seen as the time required to ionize completely an

ensemble of identical atoms. This definition is theoretically intuitive, and is quite useful for

our purpose, which is to analyze the possible variation of the ionization time as a function of

the length and shape of the light pulse. In particular, we employ an optimization algorithm to
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find the shape that induces the fastest possible ionization. Or, put differently, we investigate

what is the minimum time required to ionize one electron for a given laser fluence. We are

particularly interested in regimes where there are competing mechanisms for ionization, and

on the influence of the details of the electronic system on the process. The interest is not

specifically on the characteristics of the optimal laser pulse, but on the physical mechanisms

that lead to the fastest possible ionization.

The optimization of quantum processes can be studied theoretically by quantum optimal

control theory [23, 24]. Within this framework, it is also possible to formalize problems

where the target is the duration of the process [25–27]. In fact, these methods have already

been used to study the optimization of ionization processes in, e.g., Refs. [28, 29]. Here,

however, we are dealing with a multi-objective problem: we try to determine the shape

of the laser field that maximizes ionization and minimizes the total time required for the

ionization for a fixed laser fluence.

There are two different ways to tackle these multi-objective problems. The simplest

one is to write down a single target function, as a weighted sum of both objectives. The

weights, fixed a priori, determine how relevant is one target versus the other one. Clearly,

that weighting decision introduces a bias into the objective functional and therefore into the

solution. In optimization theory, however, there is a fully un-biased procedure to tackle with

multi-objective targets: the Pareto optimization [30, 31]. This will be described in the next

Sec. II, along with the description of our model system, and the underlying optimization

scheme used to construct the Pareto front (a differential evolutionary algorithm). Section III

will describe the main findings. Atomic units, i.e. e = ~ = me = 1, will be used throughout,

unless stated otherwise.

II. METHOD

We have chosen to work on a model system, defined by the Pöschl-Teller potential [32]:

UPT(x) = −αm
(2m+ 1)2 − 1

8 cosh2 [
√
αmx]

, (1)

with αm = 2|EGS|/m2, where EGS is the ground state energy, for some integer m. This model

has previously been used to study strong-field photo-ionization [33–35], because it allows to

set a fixed number of bound states (BS) – given by the integer m, and it is regularly behaved
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at the origin. The energy of the n-th bound state is given by:

Em
n = −|EGS|(m− n)2/m2 , (2)

for n ∈ {0, 1, . . . ,m − 1} [36]. In this work we will consider both the case with two bound

states, and with only one. We will set, in analogy with the hydrogen atom, EGS = −0.5 Ha.

We will consider the evolution of these systems when irradiated with laser pulses of

duration T ; as main observable, we use the probability of ionization at time T , when the

laser is switched off, as:

I(T ) = 1−
m−1∑
n=0

∣∣∣∣〈ψn|ψ(T )〉
∣∣∣∣2, (3)

where ψn is the n-th bound state, and ψ(T ) the evolving state at time T . The physical

meaning of this equation is clear: we measure the occupation of the continuum states, by

substracting from one all occupations of the bound states.

The system is propagated according to the time-dependent Schrödinger’s equation:

i
∂

∂t
ψ(x, t) =

[
− 1

2

∂2

∂x2
+ UPT(x)− E(t)x

]
ψ(x, t) , (4)

starting from the ground state. The function E(t) is the amplitude of the electric field of

the laser pulse. Here, we used the length gauge, and assumed the dipole approximation,

neglecting magnetic effects and considering a space homogeneous electric field.

The electric field E(t) must be given some functional form, determined by a set of pa-

rameters that define the optimization search space. In our case, we first set the following

form for the vector potential:

A(t) = −cE0 exp

[
− (t− T/2)2

2σ2

]
× {

sin (ωt+ φ)/ω +
N∑

n=2

dn sin (nωt+ φ)/(nω)

}
. (5)

from which the electric field is obtained as:

E(t) = −1

c

∂

∂t
A(t) . (6)

In these equations: c is the speed of light in vacuum; E0 is a parameter that fixes the

overall pulse amplitude; ω is a base frequency; φ is a carrier-envelope-phase parameter that
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allows to rigidly shift the pulse phase within its envelope; dn (n = 2, . . . , N) form a set

of coefficients for the Fourier expansion in the multiples of ω; σ = T/8 is the width of a

Gaussian “envelope”, which is centered at t = T/2. This Gaussian envelope guarantees

that E(0) ≈ E(T ) ≈ 0, and a smooth increase of the amplitude. Likewise, the fact that

A(0) ≈ A(T ) ≈ 0 ensures that the electric field integrates to zero
∫ T

0
dt E(t) ≈ 0. Note

that we have only one pulse – in contrast to some of the experiments mentioned in the

introduction, that overlay a second as a means to measure ionization times. Here we are not

attempting to reproduce those experiments, as in simulations the ionization time of a given

pulse can be “measured” without the need of a second pulse that would necessarily perturb

the system.

The free parameters of the laser, to be explored in the optimization process, are: its

duration T , its base frequency ω, the carrier-envelope phase φ that determines the position

of the field maximum with respect to the maximum of the envelope, and the coefficients dn

of a Fourier expansion in the harmonics of ω up to the Nth order (in the results presented

below, we used 9 coefficients). These parameters have to be chosen such that the system

is maximally ionized within minimum laser duration T , using a fixed amount of energy,

obtained by integrating its intensity per area:

Ĩ =
c

8π

T∫
0

|E(t)|2dt. (7)

This condition is enforced by adjusting the E0 parameter, which is not free, but fixed once

all the others are set. Therefore, the optimizations are carried out within a space of pulses

that carry equal energy per atomic unit of area a0, EL = a0Ĩ [50].

The time-dependent Schrödinger equation was solved with the Crank-Nicolson propaga-

tor, as implemented in the freely available real-space software suite octopus [37–39]. The

time steps were chosen between 0.002 a.u. and 0.05 a.u., depending in each case on the

maximal electric field amplitude. The wave function is discretized in a real-space grid of

0.6 a.u. spacing, enclosed in large simulation box (x ∈ [−110, 110] a.u.), enough to exclude

spurious boundary effects.

We now describe the optimization technique, based on the combination of the Pareto

multi-objective process, and the differential evolution algorithm of Storn and Price [40].

The optimization search space is formed, as discussed above, by the D = N + 2 parameters
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T, ω, φ, {dn}Nn=2, that we group into a D-dimensional vector p ≡ (p1, . . . , pD). Each vector

or parameter set determines a laser pulse; the algorithm does not proceed by iterating or

improving one single vector, but many of them. The success of each pulse is determined

by propagating the Schrödinger equation with it, and evaluating the objectives T and I(T )

(evidently, T does not need to be computed, as it is directly given by the choice of laser

parameters).

Given a set of pulses and their associated objective values, one may then construct the

so-called “Pareto front”. It is based on the concept of dominance: A pulse is said to

be dominated by another laser if it does not perform better in any of the objectives and

performs strictly worse in at least one. The non-dominated pulses form the Pareto front in

the objective space, spanned by the ionization probability I(T ) and the laser duration T .

The task of finding the Pareto front, by iterating sets of pulse parameters, is undertaken by

the differential evolution algorithm, which belongs to the genetic family: it starts from a pool

of trial pulses, and evolves it, improving their performance with respect to the objectives,

according to rules inspired on biological evolution [41, 42]. The process starts with a set

of random parent pulses (represented by their corresponding parameter vectors p). Their

objective function value is computed, and then a new generation of pulses is created, by

using mutation (i.e. random variation of the parameters) and crossover (i.e. exchange of

parameters between desirable pulses). The evolution algorithm decides how to perform those

operations and generate a new offspring of pulses [51]

Once a generation and its offspring has been generated, the selection must be performed

to choose the survivors, in order to proceed with the algorihm. We have adopted a two-fold

selection strategy [43, 44]: First, on the individual level, a trial pulse with more desirable

values of ionization and laser duration than its direct predecessor substitutes it. Second, on

a global level, the principle of dominance is applied: Dominated lasers are excluded from the

pool of successful lasers and consequently re-initialized before being allowed to spawn again.

The nondominated lasers form the Pareto front in the objective space spanned by ionization

and laser duration. Together with the set of re-initialized random lasers the Pareto front

lasers represent the next generation.

A convergence criterion must be set to finish the process: in the calculations shown below,

the process is stopped when the Pareto front stabilizes for 200 consecutive iterations. The

procedure is repeated for each laser energy EL several times to rule out a bias due to the
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FIG. 1: (Color online) (a) Ionization of the system with one bound electron as a function of laser

duration for the optimal lasers with EL = 2 Ha. The inset shows the lasers amplitudes E(t) for the

marked points. (b) Ionization at EL = 60 Ha., for the system with only one bound state (blue),

and with two bound states (red). The inset shows I as a function T for the same lasers using a

classical model.

initial random configuration.

III. RESULTS

Figure 1 shows the Pareto fronts for two sample laser energies: EL = 2 Ha (a) and EL =

60 Ha (b). As expected, these latter more energetic lasers are faster ionizing the electron. In

the left panel (a) the front is not smooth, exhibiting a series of steps. They are observable up

to EL = 10 Ha. The inset shows how the shapes labeled 2 and 3 differ. Abrupt changes in the
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ionization behaviour, due to subcycle dynamics, have been observed experimentally [45] in

the regime of nonadiabatic tunneling [52]. The steps can be understood in terms of changes

of the carrier envelope phase φ, and this fact underlines the importance of this phase in this

ionization regime, as lasers 2 and 3 have essentially the same duration T ≈ 23 a.u. and the

same frequency ω ≈ 0.67 Ha, differing only by φ.

For higher laser energies, as in the case shown in the right panel (b), a complete ionization

is obtained in one cycle, and the Pareto front becomes smoother. For EL = 60 Ha a simple

classical model even suggests over-the-barrier ionization instead of nonadiabatic tunneling

ionization: the laser deforms the atomic field UPT, such that the electron density is spilled

out. Using a simple classical model, we initialized a distribution of point-like, noninteracting

classical particles according to the ground-state density of the potential given by Eq. (1). By

following their trajectories in the combined potential UPT(x) − E(t)x, we could determine

if, and when, they cross this barrier. Despite its simplicity (most notably, the quantized

bound states are missing), this model reproduces well the differences in ionization times for

the two different UPT (with 1 BS and 2 BS): ∼2 a.u. This can be see in the inset in Fig. 1b;

note that the results shown there are not the points of a Pareto front, but the outcome of

the classical model applied to the laser fields obtained previously.

The analysis of the Pareto fronts permits to define a total “ionization time” for each

laser energy EL by intersecting the front at a given ionization probability. In the following

we will take this threshold to be I(T ) = 0.98 ± 0.005, i.e., the almost complete ionization

of the electron. In Fig. 2 we report the dependence of these total ionization times on the

inverse laser energy for the 1 BS system and the 2 BS system (the presence of the error bars

is due to the use of an uncertainty of ±0.005 in the above definition). The range of 1/EL

covers all ionization regimes: the above mentioned over-the-barrier ionization, nonadiabatic

tunneling and multiphoton ionization. Note that the range of intensities of the lasers under

consideration in SI units is between 3 × 1013 and 1017 W/cm2. We prefer not to make use

of cycle-averaged quantities, as the Keldysh parameter [46], to distinguish the regimes, due

to the very short duration of the pulses.

At high laser energies (left part of the graph in Fig. 2), one full cycle is sufficient to

ionize both the 1 BS and the 2 BS systems; the 1 BS system ionizes first. The situation

is changed at around 1/EL = 0.25 Ha−1: at those energies, the second bound state of the

2 BS system serves as an intermediate state for the electron, before leaving the atom. As
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FIG. 2: (Color online) Ionization time as a function of inverse laser energy. The insets show the

dipole acceleration of the electron system, and the Fourier transform (FFT) of the laser at the

marked points of the main panel (top inset for point 1, bottom inset for point 2).

a consequence, for the 2 BS system a single full cycle suffices to ionize the atom, while for

the 1 BS system the shortest ionizing laser consists of three half-cycles. The situation is

reversed between 1/EL = 0.4 and 0.6 Ha−1, but the intermediate state excitation mechanism

produces an even faster ionization at the lowest energies (highest inverse EL). In fact, at

those energies, the process for the 2 BS system is better understood by considering it in the

nonadiabatic tunneling regime, while for the 1 BS system the process is best understood in

the multiphoton absorption regime.

The insets in Fig. 2 may help to understand this. They show the Fourier transform (in

fact, the power spectrum) of the field and of the acceleration of the dipole moment, for the

1 BS system (top) and for the 2 BS system (bottom), for the circled points, tagged 1 and

2 respectively. According to the dipole acceleration d̈, i.e. the optical absorption/emission
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of the electron system, the 1 BS system mainly absorbs at the ionization potential 0.5 Ha,

while the 2 BS system absorbs at lower energies, i.e. at the frequency of the bound-bound

transition (0.38 Ha), and at the ionization energy from the excited-state (0.12 Ha). Conse-

quently, at low laser energy, the electron is excited to the excited-state, and subsequently

tunnels out. This route is faster than single- or multiphoton absorption of the 1 BS system.

The upper inset also shows the power spectrum of the laser, for the 1 BS system. Indeed,

the first two peaks (0.5 and 1.1 Ha) of the power spectrum of the dipole acceleration are also

present in the power spectrum of the laser. The third peak at 1.6 Ha in the power spectrum

of the dipole acceleration can then be interpreted as the absorption of two distinct photons

of the former energies. In the lower inset, corresponding to the 2 BS system, one observes,

apart from the excitation energies (0.12 Ha and 0.38 Ha) in the Fourier transform of the

laser and in the absorption/emission, two further peaks for d̈ at ∼0.84 Ha, the 7th harmonic

of 0.12 Ha, and at ∼1.14 Ha, the 3rd harmonic of 0.38. The generation of high harmonics

is best understood in terms of tunneling, by making use of the three-step model [47].

Figure 3 further analyzes the ionization dynamics at 1/EL = 1.1, the lowest laser energy,

illustrating again how the two different ionization mechanisms of the two systems (with and

without one bound excited state) produce different spectroscopic signatures. Panels (a) and

(b) show the “angle-resolved” (in 1D: left-right) photoelectron spectrum of both systems.

The spectrum of the 1 BS system exhibits equally distanced peaks with decreasing intensity.

This spectrum shape is typical of above threshold ionization, where the electron absorbs

more photons than necessary to overcome the ionization barrier. The symmetry is due to

the fact that the ionization is considered to be “vertical”, i.e. independent of any preferred

direction of the field. The spectrum of the system with 2 BS, instead, differs in two points:

first, it is not symmetric with respect to left and right from the atomic position, second, it

does not have distinct, equally distant peaks. Both properties are characteristics typical of

nonadiabtaic tunneling [48].

Finally, Fig. 3 displays in panels (c) and (d) the projection of the propagated electron

wavefunction onto bound field-free states. It once again helps to understand how the two

ionizations proceed differently. The electron of the 2 BS system is first promoted to the

excited state, leading to a peak in the projection of the wavefunction on it [Fig. 3(d)], and

then tunnels out of the atomic potential.
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FIG. 3: (Color online) Angle-resolved photoelectron spectra for the 1 BS system (a) and the 2 BS

system (b), and projections of the evolving wavefunction for 1 BS (c) and 2 BS (d) at 1/EL = 1.1 Ha.

IV. CONCLUSIONS

We have analyzed the time it takes to photo-ionize a hydrogen-like model system, and

how the variation of the shape of the laser pulse may be used to accelerate the process. For

this purpose, we set-up a Pareto optimization scheme with the double objective of increasing

ionization and reducing ionization time, and used a genetic-type algorithm (the differential

evolution) to perform the optimizations. The search was performed on spaces of pulses

carrying fixed energies per unit area, and we looked at different regimes by considering

differents energies. The presence or absence of intermediate bound states was found to be

relevant, since it may determine what is the fastest ionization channel. A process through the

intermediate bound state may in fact lead to the fastest channel, depending on the energy

carried by the laser pulse. The process may also have signatures of tunneling, or of multi-

photon ionization. The possibility of designing pulse shapes that significantly accelerate

12



ionization may be relevant to shed light into the problem of defining and measuring the

times of these processes, and may be of use for the experimental design of atto-second

resolution chronometers.
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