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Abstract 

We use lock-in vibrothermography to characterize vertical cracks. In the presence of ultrasounds, the rubbing of 
the crack faces produces heat which induces a temperature rise at the surface that is measured with an infrared camera. 
We fit data obtained by modulating the amplitude of the ultrasounds at several modulation frequencies. The inverse 
problem consisting of finding the geometry and location of the heat source from vibrothermography data is ill-posed, 
which makes it necessary to stabilize the inversion algorithm. We analyze the effect of the stabilizing term on the 
accuracy of the reconstructions. 

1. Introduction  

Ultrasound excited thermography is a very suitable technique for the detection of kissing cracks. The friction 
between crack lips in the presence of ultrasounds turns the crack into a heat source producing a temperature rise at the 
surface, on top of the crack. The goal of this work is to retrieve the dimensions and location of the heat source from lock-
in vibrothermography data. This inverse problem is ill-posed and as a consequence the minimization process is unstable. 
The algorithm can be stabilized by introducing a regularization term that is added to the residual to be minimized. In this 
work we analyze the effect of the regularization term and of the quality of the data on the quality of the reconstruction. To 
this purpose, we first calculate the surface temperature corresponding to a modulated vertical heat source. Then we 
invert synthetic data with added white noise by implementing two different regularization terms based on isotropic and 
anisotropic Total Variation functionals and we also check the effect of normalizing input data. Finally, we invert 
experimental data obtained on samples containing calibrated heat sources. The results show that it is possible to 
characterize 1 mm side square vertical cracks down to depths of about 3 mm. 

2. Inverse problem and inversions of synthetic data 

The surface temperature (z = 0) is calculated by adding the contribution of point like modulated heat sources (at 
frequency f, ω=2πf) contained in a plane perpendicular to the sample surface at positions 0r



, covering the desired area Ω. 
The sample is assumed to be semi-infinite and no heat losses are considered at the sample surface. Under these 
conditions, the temperature at the surface can be obtained as [1]:  
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where 2 /q if Dπ=  is the thermal wave vector, being D the thermal diffusivity, K is the thermal conductivity of the 
sample and Q is the maximum heat flux delivered by the heat source. We generate surface temperature amplitude and 
phase data at nine at 9 modulation frequencies that we use in the experiments, namely, 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 
6.4, and 12.8 Hz. 

For the inversion, we integrate over the whole plane Π containing the heat sources and we introduce a position 
and frequency dependent function ( ) ( )f fQ r I Q r=

 

describing the heat source distribution as the product of a factor 

depending only on the modulation frequency If and a normalized heat source distribution ( )Q r


. We want to calculate the 
heat source distribution that minimizes the square differences between the data and the calculated temperatures 
summed over all modulation frequencies. However, since the inverse problem is ill-posed, the minimization algorithm is 
unstable. We stabilize it by introducing a regularization term based on total variation (TV) functional multiplied by a 
regularization parameter α. We make this choice because TV favors the search among blocky functions which helps 
determining the area occupied by the defect: 
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Total variation has been implemented as the isotropic and anisotropic models:    
                

             (3a) 
 
 
                        (3b) 
 
We have looked at the effect of these two models of the regularization term by inverting data corresponding to 1 

mm side squares located at increasing depths with 5% added white noise and we have also compared the results when 
introducing either normalized or raw data into the algorithm. Figure 1 is a black and white representation of the 
normalized heat source distribution in the search plane. The real contours of the heat sources are depicted in red. 
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Fig. 1. Black and white representation of the normalized heat source distribution corresponding to synthetic 
data of square heat sources with 5% added white noise retrieved by using normalized amplitudes and stabilizing the 

algorithm with the anisotropic TV model (top), with the isotropic model (center) and by using raw data and the isotropic 
model (bottom). Real contours are depicted in red. 

 
As can be observed in figure 1, the effect of separating the derivatives in the two directions of the search plane 

is to favour jumps along the directions of the axes whereas in the isotropic model, the jumps occur in any direction, giving 
rise to round shapes. Moreover, entering raw instead of normalized data into the algorithm, further improves the quality 
of the reconstructions. 

 
3. Experiments 
 

We have prepared samples containing calibrated heat sources by attaching two steel parts with a flat common 
surface and putting 38 µm thick cooper slabs of known dimensions in-between. When we launch the ultrasounds there is 
friction between the cooper slabs and the steel surfaces. We take data at a set of nine modulation frequencies mentioned 
above. In Fig. 2 we show reconstructions of experimental data obtained with 1 mm side square Cu slabs located at 
different depths introducing raw data in the algorithm and using the isotropic TV model. The reconstructions are very 
good for squares located down to 2.5 mm below the sample surface. 

 
 
 
 
 
 

Fig. 2. Black and white representation of the normalized heat source distribution retrieved from experimental 
data obtained for different depths of a 1 x 1 mm square Cu slab. Real contours in red. 
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