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Abstract  

Hydropower is one of most important considered renewable technologies to provide 

electricity generation worldwide. Bearing in mind the lack of LCA studies and the development 

of several hydroelectric projects in Ecuador, the purpose of this paper is to present a complete 

environmental performance of two hydropower schemes (dam and run-of-river) located in this 

country, through the life cycle assessment combined with reservoir GHG emissions approach. 

The run-of-river scheme had better environmental performance than the dam scheme. Very 

high emissions were found, being 547 Kg CO2-eq/MWh for dam scheme, which most of those 

emissions were originated in the reservoir, while the run-of-river scheme only score 2.6 Kg 

CO2-eq/MWh. However, comparing with fossil fuel power plants, hydropower dam case still has 

lower emissions in its entire life cycle. The paper remark that the majority of LCA studies which 

focus on dam hydropower scheme only consider the emissions of the construction, putting 

aside the loss of the ecosystem and the emissions caused by the impoundment. Moreover, the 

analysis also included the impact associated to water uses since reservoirs are usually devoted 

to several purposes (flood lamination, irrigation, ecological flow, power generation).  
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1. Introduction 

There is a clear trend worldwide to replace energy technologies based on fossil fuels with 

technologies based on renewable resources. Hydropower, which is considered a clean power 

generation technology, highlights among renewable energy technologies which in 2013 

generated 16.3% of world electricity and 75.1% of total renewable electricity [1]. In 2014 and 

2015, 37.7 and 33.7 GW of hydropower capacity was put into operation respectively, resulting 

an estimated world installed capacity of 1212 GW, which confirms and maintains its tendency 

to grow [2] [3]. In 2015, 3.8 GW of hydropower were developed in South America [3]. Brazil 

and Colombia have the highest hydroelectric development, having a joint installed capacity 

over 100 GW which represents the 24% of the technical exploitable potential in the region. 

In this context, since 2008 Ecuador is developing several hydropower projects with the aim to 

have 100% renewable electricity generation in the near future. Until 2012, 44% of its electricity 

generation came from non-renewable resources like oil and natural gas. Furthermore, about 

1% of the energy consumption was imported from Colombia and Peru [4]. Currently, it has 

been estimated that the country has a total hydro energy potential of 74000 MW being only 

21500 MW the technically and economically feasible to exploit [5]. Ecuador exploited less 

than 12% of this potential before 2012. The current hydropower capacity has reached 3653 

MW [6].  
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Despite of its great advantages as zero direct emissions during its operation, the hydroelectric 

development may generate considerable environmental impacts which cannot be ignored [7]. 

Life Cycle Assessment (LCA) is an international accepted tool which allows identifying the 

potential environmental impacts associated with a product or service, throughout its entire 

lifespan, in other words, from the cradle to the grave [8] [9]. In these terms, electricity 

generation systems have been widely assessed, specially hydropower plants, from few kW to 

over 5000 MW and all its typologies, focusing on either their GHG emissions, energy intensity, 

carbon or water footprint, through their lifespan [10] [11]. According to the reviewed 

literature, the majority of the cases of LCA have been done in Asia [12], following by a few 

ones in Europe [13] [14], while there is not a reported LCA study from South America except 

for a life cycle inventory of a Brazilian hydropower plant [15]. Moreover, 42% of the LCA 

studies focus on run-of-river schemes while 45% focus on dam scheme. In terms of 

greenhouse gases (GHG) emissions, the LCA results may vary widely. For instance, a 9 MW run-

of-river located in Indonesia obtained 1.2 Kg CO2-eq/MWh [16] while the same hydropower 

scheme located in Thailand having only 3 kW obtained 52.7 Kg CO2-eq/MWh [17]. Some of the 

GHG emissions ranges reported for these hydropower schemes are 2-5 Kg CO2-eq/MWh [18], 

2.2-74.8 Kg CO2-eq/MWh [19] and 18-75 Kg CO2-eq/MWh [20]. Considering hydropower dam 

schemes, a carbon footprint assessment was carried out in China to compare the emissions 

from alternative dam construction. It was demonstrated that hydropower with concrete 

gravity dam have higher emissions than with earth-core rock-fill dam, due to the concrete 

which has high energy intensity. For the studied cases, their emissions were 11.11 Kg CO2-

eq/MWh and 8.36 Kg CO2-eq/MWh respectively [10], falling within the reported ranges of 2-48 

Kg CO2-eq/MWh and 11-20 Kg CO2-eq/MWh [21] [18] for those hydropower schemes. Both for 

dam and for run-of-river small hydropower schemes (< 50MW), their LCA greenhouse gases 

increase as they increase the drop height and decrease the installed capacity [22].  

Other authors have analyzed and compared hydropower plants with the main electricity 

generation technologies, including those ones based on fossil fuels, showing that hydropower 

has a good environmental performance, particularly with the emissions of GHG in its entire life 

cycle [23] [7]. However, it is known that the reservoir of hydropower plants emit a 

considerable quantity of greenhouse gases which could exceed the emissions of fossil fuel 

electric generation technologies [24] [25].  

This paper presents, on the one hand, a complete LCA of a reservoir and a run-of-river 

hydropower schemes developed in Ecuador, and on the other hand, the net GHG emissions of 

hydropower reservoir caused by impoundment in the first case. The aim is to integrate both 

approaches to explore the environmental performance of one of the most common electricity 

generation in Ecuador which it is planned to cover 90% of electricity demand in the near 

future. The two selected cases were assessed and compared, thus allowing to know how 

suitable and feasible is to keep promoting this hydropower projects as sustainable ones. 

Section 2 details case studies, methodology, life cycle inventory and reservoir emissions. The 

results are presented in Section 3, followed by a sensitive analysis in Section 4. Discussion and 

conclusions are found in Section 5 and 6 respectively.  

2. Materials and Methods  

2.1. Case studies and description 
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The two selected cases were dam and run-of-river scheme respectively. The selection of the 

hydropower plants was based on typology, geolocation as well as drop height, technology, the 

installed power and electric generation. It was also considered the availability of the 

information. Due to Ecuador is crossed by the Andes Mountain, there are two very well 

identified hydrographic slopes, the Pacific and the Amazon, and in order to have a better 

contrast and comparison, one hydropower of each area was selected.  

First case is Mazar-Dudas, which is a run-of-river hydropower plant scheme, the only one of its 

kind so far in Ecuador [26]. It is a set of 3 consecutive hydropower exploitations (Dudas, 

Alazán, San Antonio), which are extended over an area of 300 square kilometers and it is 

located on the Amazon slope, 2200 meter above sea level. The total installed power capacity is 

21 MW and includes horizontal Pelton turbines with height between 195 and 294 meters, a 

water flow at design conditions between 3 and 4.5 m3/s, being the average estimated 

generation a total amount of 125 GWh/year [27]. It is expected to be completely operational 

at the end of 2016. The 3 hydropower exploitations (Fig. 1) are basically composed by intake 

weir, desander, aqueduct and tunnels (conduction system), forebay tank and its discharge 

system; penstock and power house.  

 
Fig. 1. Mazar-Dudas Hydropower scheme 

 

Baba hydropower plant is the second study case whose installed capacity is 42 MW. It has a 

drop height of 26 meter, two Kaplan turbines (90 m³/s each one), and an average annual 

generation of 161 GWh. It was put into operation in 2013. Moreover, Baba is a multipurpose 

project: it will guarantee water in dry season for agricultural use, prevent flooding in rainy 

season and transfer water to Marcel Laniado Wind (M.L.W) hydropower dam (213 MW) in 

order to increase its annual electricity generation. Due to that water transfer (250 m³/s of 

design flow), the other hydropower plant will generate an extra 439 GWh/year on average. 

Therefore, Baba Hydropower has a total generation of 600 GWh/year, directly and indirectly, 

coming from its basin and its transfer to M.L.W dam. Its design (Fig. 2) consist on a dam with a 
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maximum water flooded layer of 1100 hectares, 3 channels and 4 dikes, a discharge and 

transfer channel and two spillways, one located at the dam (flow rate 3700 m³/s) and the 

another one located on one side of the power house (flow rate 70 m³/s) [28]. To sum up, it is 

clear that the design of Baba differs from the common dam hydropower schemes. 

 
Fig. 2. Baba Hydropower scheme 

2.2. Life cycle inventory 

2.2.1. Data collection and assumptions  

Primary data was mainly collected from the final hydropower plants designs and payrolls, 

issued by Hidronación [28] and Hidroazogues [27] [29]. Complementary data was obtained 

from interviews with the staff in charge of the hydropower operation and from government 

reports. Average fuel consumption and working yield were applied according to the 

bibliography as well as the type of the machinery (Table 1).   

2.2.2. Scope and Functional unit  

Due to the types of materials used in the construction, the lifespan of hydropower system is 

usually high. Commonly, when LCA is carried out, the lifespan for dam hydropower is 100 years   

while for run-of-river hydropower is usually less than that time [14] [22]. Therefore, it was 

determined a lifespan of 100 and 80 years for Baba and Mazar-Dudas hydropower 

respectively. The functional unit defined in this work is firstly based on the electricity 

generation. Hence, the functional unit to assess the environmental impact is 1 MWh generated 

and injected into the grid. Nonetheless, in order to have wider analysis, alternative functional 

unit were considered as well and presented in section 4.   

2.2.3. System boundaries and exclusions  

The two hydropower cases selected in this study enclosed in their LCA limits the resource 

extraction, processing and manufacturing of construction and electro-mechanical equipment 

materials (away and in situ); the transport of all materials (local and from abroad) and internal 

transportation of the machinery; earth works, and other internal processes; operation, 

maintenance and replacement of the main electro-mechanical equipment, as well as the 

transmission system to the electrical substation (Fig. 3). The LCA analyses were divided in two 

stages or phases: construction and operation and maintenance (O&M). Usually, at the end of 

the hydropower lifespan, the facilities remains on site since decommissioning may provoke 
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major environmental impacts than the construction itself [30] [10]. Therefore, in the system 

boundaries of this LCA study, it was excluded decommissioning as well as workers and 

equipment transportation, general machinery manufacture, encampment construction and 

access roads. Particularly, once the operation of hydropower dam scheme has ceased, the 

reservoir will dry up and water will flow naturally.  

a 

b 
Fig. 3. Baba (a) and Mazar-Dudas (b) Hydropower system boundaries for LCA studies 

2.2.4. LCI, Construction phase 

The LCI in this stage considers the most representative materials employed in the construction 

of the hydropower plants: concrete, cement, sand, gravel, water, steel (reinforcing, galvanized, 

stainless), copper, polyvinyl chloride (PVC), earth works, lubricant oil and energy from the sum 

of the processes involved (Table 2). Working capacities and yields, fuel consumptions and the 
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emissions (CO, CO2, NOx, SO2) of the transport and the earth work machinery were estimated 

from technical literature (see Table 1 for more details). 

 

 

 

Item Bibliography Reference Value 

Working 
capacity 

[31] [32] [33] [34] [35] [36] [37] 
[27] 

8-10m
3
 for dumpers; 2m

3
 for excavators; 10 m

3
 

concrete mixer truck 

Working yield [38] [39] [40] [41] [42] 186 m
3
/s for excavators; 43 MJ/m

3
 for concrete 

Fuel 
consumption 

[43] [44] [45] [46] [47] [48] [49] 
[50] [51] 

182 g diesel/km for dumpers and concrete truck 
mixer;  

Fuel emissions [52] [53] [54] [55] [56]  [57] 

5.34 gr CO/kg diesel; 
3.14 kg 𝐶𝑂2/kg diésel; 

23.63 gr 𝑁𝑂𝑥/kg diésel; 
0.24 gr 𝑆𝑂2/kg diésel 

Table 1. Reviewed bibliography for LCI machinery 

Hydropower plant Baba (100 years) Mazar-Dudas (80 years) 

Input 

Item Unit Construction O&M Construction O&M 

Concrete m³ 2.23x10
5
 - 2.55x10

4
 - 

Cement Kg 6.15x10
7
 - 1.01x10

7
 - 

Sand Kg 1.95x10
8
 - 3.14x10

7
 - 

Gravel Kg 2.40x10
8
 - 2.41x10

7
 - 

Water for concrete Kg 3.16x10
7
 - 4.02x10

6
 

- 

Water for electricity Kg - 2.48x10
14

 - 1.90x10
10

 

(Reinforcing) Steel Kg 1.11x10
7
 - 3.32x10

6
 - 

Earth work m³ 1.57x10
7
 - 8.70x10

5
 - 

Copper kg 1.48x10
5
 2.96x10

5
 4.58x10

4
 4.58x10

4
 

Stainless Steel Kg 2.37x10
4
 4.74x10

4
 2.10x10

4
 2.10x10

4
 

Lubricant oil Kg - 7.90x10
3
 - 1.06x10

4 

Energy from processes MJ 6.97x10
8
 5.6x10

-5
 2.80x10

8
 5.62x10

-5
 

PVC Kg - - 1.09x10
6
 - 

galvanized steel Kg - - 7.84x10
3
 - 

Output 

Electricity  MWh - 1.61x10
7
 - 1.00x10

7
 

Water for electricity Kg - 2.48x10
14

 - 1.90x10
10

 
Table 2. Baba and Mazar-Dudas hydropower plants Life Cycle Inventory 

2.2.5. LCI, Operation and Maintenance phase 

In this phase, the electricity generation is performed in the absence of direct GHG emissions to 

air as it is done by fossil fuel power plants. Despite of this, other emissions were included in 

the operation of both hydropower plants. On one hand, the spill of oil to water and ground 

and on the other hand, the emissions to air of SF6, applied as insulations in high voltage 

electric systems. For oil and SF6, it was applied an emission factor reported within previous LCA 

studies [14]. Moreover, it was considered as maintenance the complete replacement of the 

turbines with their electric parts in each hydropower case and hence stainless steel and copper 

were assigned in the phase as well as lubricant oil (Table 2). For Baba case, the replacement 

will be carried out twice in its lifespan (each 35 years) while for Mazar-Dudas once in its 
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lifespan (each 40 years), for stainless steel and copper, considering the worst operating 

conditions [14]. For both cases, lubricant oil will be replaced only once since it has a high 

durability [37]. Commonly, the hydropower LCA studies only considered the impacts 

associated to already mentioned LCI, but does not take into account GHG emissions from the 

hydropower reservoir water layer and the loss of their ecosystems. These emissions were 

therefore analysed accounted for in the following section apart from the life cycle assessment.  

2.3. Life Cycle Impact Assessment 

2.3.1. Life Cycle with ReCiPe 

As impact assessment method which includes several impact categories must be selected in 

order to perform conventional LCIA stage. After in-depth analysing all the existing methods 

and considering the significance of their impact categories, geographical approach, evaluation 

process, scientific soundness and easy interpretation, ReCiPe method (RIVM and Radboud 

University, CML, and PRé Consultants)1 was applied. It is based on CML (Centre of 

Environmental Science of Leiden University) and Eco-Indicator 99 methodologies, both widely 

accepted by the scientific community. With a time horizon of 100 years, 10 of its 18 available 

impact categories were selected (Table 3) for further analysis. The performance of the LCIA 

stage was supported by SimaPro (7.3 version) software.  

Midpoint Impact Category Unit Short form 

Ozone depletion kg CFC-11eq OD 

Climate change kg CO2-eq CC 

Terrestrial acidification kg SO2-eq TA 

Freshwater eutrophication kg Peq FE 

Freshwater Ecotoxicity Kg 1.4-DBeq FET 

Terrestrial Ecotoxicity Kg 1.4-DBeq TET 

Natural land transformation m
2
 NLT 

Fossil depletion kg Oileq FD 

Metal depletion Kg Feeq MD 

Water depletion
a
 m³ WD 

aA midpoint life cycle impact category that expresses the total amount 
of water used, measured in m3  [58]. In the studied case, the water 
use result in water scarcity due to water transferring.  

Table 3. LCIA Impact categories addressed 

2.3.2. Accounting for the net GHG emissions of Baba hydropower reservoir 

Findings in the last two decades indicate that hydropower reservoirs produce greenhouse 

gasses as methane and carbon dioxide, putting into question this generation system as a clean 

and green electricity source [59]. From measurements, several authors have quantified 

methane and carbon dioxide emissions from hydropower reservoirs located at different parts 

of the world regions, proving the existence of mentioned gases. For instance, the emissions of 

GHG from Petit-Saut (French Guiana) [24] and Balbina (Brazil) [60] tropical hydropower 

reservoirs were quantified 10 and 18 years after its impoundment. Likewise, others reservoirs 

located in boreal and non-tropical zones were assessed in those terms [61] [62]. Particularly, 

the total GHG emissions of Tucuruí hydropower reservoir (Brazil) [63] were estimate from 

                                                           
1
 Institutes that were the main contributors to create the method that provides a “recipe” to calculate life cycle impact category 

indicators.  
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others authors data who made measurements 6 and 12 years after the impoundment [64] 

[65]. It was also found that some authors have compared these reservoir emissions with fossil 

fuel thermal power plants, revealing that hydropower reservoir has higher emissions than its 

fossil equivalent at some point through the life time of the installation [66] [25].  

 

2.3.2.1. GHG sources and production  

As part of dynamic carbon cycle, terrestrial and aquatic ecosystems absorb CO2, returning 

some of it back to the atmosphere. In some cases, certain natural aquatic ecosystems may be 

great producers of CO2 and CH4, absorbing low amounts of carbon [67] [68]. After flooding, a 

considerable quantity of organic matter stays under water which in the presence of oxygen is 

decomposed and produces carbon dioxide. Conversely, in the absence of oxygen, the organic 

matter is decomposed and produces methane gas (through methanogenesis) with a global 

warming potential 21 times higher than carbon dioxide [67] [69] [70]. Moreover, rivers 

commonly transport organic matter which contributes with its concentration at the reservoir, 

giving place to a continuous decomposition and production of the mentioned GHG [69]. Thus, 

as the amount of flooded organic matter increases, GHG emissions also raises up.  

The production of CO2 and CH4 gases in the reservoirs depends on several factors such as 

temperature, residence time of the water, reservoir volume, depth and age; quantity of the 

flooded vegetation, geographic location, etc. In particular, the age of the reservoir, the 

quantity and type of flooded vegetation play an important role in decomposition ranges [71]. 

Once the organic matter has decomposed, the produced CO2 and CH4 reach the water surface 

layer giving place to the diffusion of them into the atmosphere. The methane is also released 

through bubbles that are produced in the methanogenesis process (bubbling). Carbon dioxide 

has a higher solubility than methane, thus less CO2 bubbles are produced. Additionally, more 

gases are released when the water passes through the turbines and by the spillways, due to 

the change of temperature, pressure and turbulence (degasification). Finally, downstream of 

the river there are emissions by diffusion [72]. The previous generated turbulence facilitates 

the gases to be easily diffused to the air (Fig 4) [69]. From the evidence and conclusions made 

by several authors, the followings observations were considered in order to estimate what 

would be the emissions from Baba hydropower plant:  

 The quantity of GHG would vary from one reservoir to another, even if they are 

located in similar environmental areas [69];  

 From the total emissions, 45% would come from the reservoir [24], and 

 The 55% would come from turbines, spillways and downstream of the river [63] [72]. 

This observation is mainly based on 3 reviewed cases. However, others cases were also 

considered [73] [74] 

 The major emissions would be given in the first 4 years after the impoundment, with a 

decreasing trend over the time [75] [24];  

 Tropical reservoirs may emit more GHG than boreal ones, especially CH4 [76];  

 Several factors may influence on the quantity production of GHG [69] [67] 
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Fig. 4. GHG emissions sources from hydropower dams 

2.3.2.2. Assessment and estimate of GHG emissions 

In order to estimate the emissions, the differences between gross and net emissions should be 

clarified first. Gross emissions are the sum of all emissions without balancing while net 

emissions are “the difference between pre- and post-reservoir emissions from the portion of 

the river basin which consider GHG exchanges before, during and after the construction of the 

reservoir” [74]. In this context, when hydropower plants are assessed either through LCA, 

carbon footprint, or any other environmental approach, emissions sources as reservoir, 

turbines or river downstream are not included as well as life cycle emissions, depending on the 

study approach [77] [75]. Therefore, only gross emissions are showed. In the absence of long-

term field measurements, a complete rough and holistic estimate of net GHG emissions per 

year (En) was made considering, among others, the loss of ecosystem (Ee, pre-flooding); the 

reservoir (Er) and turbine, spillway and downstream river (Etsd, post-flooding):  

𝐸𝑛 = 𝐸𝑒 + 𝐸𝑟 + 𝐸𝑡𝑠𝑑 + 𝐸𝑐𝑜𝑚 

The emissions from the construction, operation and maintenance (Ecom) were determined in 

the previous LCA section and completed the analysis of emissions. The emissions originated by 

the loss of the ecosystem (Ee) were based on carbon fixation of the terrestrial ecosystem. As 

part of carbon cycle, aquatic ecosystems emit CO2 and CH4. Any possible emissions from the 

present aquatic ecosystem (river) were excluded since they are likely to be near zero, due to 

several factors as water speed, low organic matter concentration, depth, etc. [77] [68] 

Accordingly, the photosynthesis and respiration formula was applied to determine the 

terrestrial ecosystem carbon fixation capacity, through its net primary production [78]. Net 

primary production (NPP) is the difference between gross primary production (GPP) and 

autotrophic respiration [79] [80]. For tropical forest, NPP value is 1500 g dry matter/m2/year 

[68].  

𝐶𝑂2(264 𝑔) + 𝐻2𝑂 (108 𝑔) 

→ 𝐶6𝐻12𝑂6(180 𝑔) + 𝑂 (193 𝑔) 

→ 𝐴𝑚𝑦𝑙𝑎𝑠𝑒 (162 𝑔) 
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According to the photosynthesis and respiration formula, plants absorb CO2 and H2O, giving as 

a result glucose (C6H12O6), oxygen (O2) and amylase. This last particular element is related to 

the growth of dry matter. Therefore, to form 1 g of dry matter, it is required 1.63 g CO2 and 

released 1.2 g of oxygen [78]. The GHG emissions from Baba reservoir (Er, g CO2-eq/year) were 

calculated from 3 selected hydropower reservoir cases (Table 4) which have similarities with 

the presented case as flooded vegetation, weather conditions or geographic location. The 

emissions were calculated as follows:  

𝐸𝑟 = 𝐸𝑓 × 𝐴𝑒 × 365 

Where Ef is the mean reservoir emission factor, expressed in g CO2-eq/m2/day and Ae, is the 

reservoir area (1100 ha). Following the field measurements and projections exposed in several 

studies [74] [66], each reservoir case was projected using interpolation and exponential 

function, thus obtaining what would have been the emissions from the year 1 to the latest 

known emissions (Fig 5). Then, a mean emission factor (Ef) for each year was calculated for 

Baba reservoir until year 18. From year 19 to 100, it was assumed that the emissions remain 

equal to those found at year 18. In this context, Zhang et al [77] applied directly a constant 

mean emission factor (2271.6 g CO2-eq/m2/year) based on the literature. 

Reservoir Country Zone Land cover Year of field measurements 

Petit-Saut French Guiana Tropical Forest 1, 10 

Balbina Brazil Amazon Forest 18 

Tucuruí Brazil Tropical Agriculture 6, 12 
Table 4. Hydropower reservoir reference cases 

 
Fig. 5. Trend emissions projections of Petit Saut, Balbina and Tucuruí hydropower reservoir made in this study 

Finally, the last emissions come from turbines, spillways and downstream river. These 

emissions were calculated as follows:  

𝐸𝑡𝑠𝑑 = (
𝐸𝑟 × 55

45
) 

3. Results Combined LCA  

3.1. Life Cycle Assessment, (Ecom) 
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Life cycle impact assessment was performed with SimaPro Software, applying Recipe midpoint 

method, world-hierarchist perspective, focusing on the previous selected impact categories. 

Table 6 summarized the results of Baba and Mazar-Dudas hydropower respectively. The 

abbreviation of the impact categories was already presented in Table 3.  

Baba construction phase accounts for literally 100% of the environmental impacts in 9 of the 

10 selected impacts categories (Table 6). The spillway, dike 1 and power house have the major 

environmental loads due to the intensive use of concrete and cement. This last particular 

material, which has high energy and material intensity in its manufacture process, is 

responsible for most of the impacts in OD, NLT, FET and TET impacts. The steel is the second 

material with major impacts, accounting for 99% of MD impact category. Another material to 

highlight in this phase is fossil fuel consumption (diesel) used for earth works machinery and 

transportation. Baba O&M phase accounts for 99% in WD impact category which mainly 

represents the use of water for generation. Moreover, this phase has also slight impacts on CC, 

TA and MD (<5%).  

Regarding Mazar-Dudas, its construction phase has similarities with Baba hydropower plant in 

terms of percentages (Table 6). This phase also accounts for 99% of the environmental impacts 

in 7 impacts categories (FE, MD, FET, TET, NLT, FD, OD) and over 90% in CC and TA categories. 

Again steel, concrete and hence cement, are the materials with the highest environmental 

loads. The use of these materials is concentrated on conduction system, penstock and power 

house in the 3 hydroelectric projects (Alazán, Dudas and San Antonio). The O&M phase only 

has impact in WD category as Baba, and slightly in CC and TA (7% for both).  

Impact 
Category 

Unit 
Baba Mazar-Dudas 

Total Construction O&M /MWh Total Construction O&M /MWh 

CC kg CO2-eq 9.29E+07 8.42E+07 8.69E+06 5.77 2.58E+07 2.41E+07 1.71E+06 2.6 

OD kg CFC-11eq 3.75 3.71 0.03 2.3E-7 0.862 0.85 0.0114 8.6E-8 

TA kg SO2-eq 1.97E+05 1.83E+05 1.36E+04 0.01 8.12E+04 7.56E+04 5.64E+03 8.1E-3 

FE kg Peq 1.3E+04 1.30E+04 3.44 8.1E-4 6.77E+03 6.76E+03 4.16 6.8E-4 

TET Kg 1.4-DBeq 4.06E+03 4.04E+03 1.32E+01 2.5E-4 1.24E+03 1.23E+03 7.97 1.2E-4 

FET Kg 1.4-DBeq 3.19E+05 3.19E+05 94.36 0.02 2.13E+05 2.13E+05 97.4 2.1E-2 

NLT m2  1.14E+07 1.14E+07 24.75 0.71 1.36E+05 1.36E+05 27.8 3.6E-3 

WD m3 2.4E+11 9.84E+07 2.4E+11 14887 1.89E+10 1.92E+05 1.89E+10 1885.5 

MD Kg Feeq 1.18E+07 1.13E+07 4.65E+05 0.73 1.27E+07 1.27E+07 8.32E+04 1.3 

FD kg Oileq 1.42E+07 1.41E+07 1.14E+05 0.88 5.60E+06 5.56E+06 4.37E+04 0.6 

Table 6. LCIA Baba and Mazar-Dudas hydropower results 

All the specific environmental impacts from Baba are higher than Mazar-Dudas, with the 

exception of MD where Baba has 0.73 kg Feeq/MWh while Mazar-Dudas has 1.3 kg Feeq/MWh. 

This is mainly due to high requirement of steel for the conduction system of Mazar-Dudas. In 

terms of CO2 and CFC emissions, Baba is two and four times higher than Mazar-Dudas 

respectively. On the other hand, and among the 3 hydropower plants which shape Mazar-

Dudas, Alazán has the lowest emissions, followed by San Antonio and Dudas. The latter has the 

highest power capacity and drop height but the lowest water flow (Table 7) (Fig 6).  

MAZAR-DUDAS Hydropower 

Item Unit Dudas Alazán San Antonio 

Water flow m³/s 3 3.4 4.4 

Installed capacity MW 7.4 6.3 7.2 

Mean annual energy GWh/year 41.4 39.1 44.9 
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Height m 294 205 195 

Table 7. Mazar-Dudas and its 3 hydropower projects 

 
Fig. 6 San Antonio, Dudas and Alazán life cycle emissions comparison 

3.1.1. Uncertainty Analysis  

Through SimaPro software an uncertainly analysis was carried out, applying Monte Carlo 

method. SimaPro data base has default uncertainty ranges which allow this analysis. For the 

5000 conducted iterations, it was found that Baba has lower ranges of uncertainty than Mazar-

Dudas. The results were normalized according to climate change impact category (CO2 

emitted). In both cases, the confidence interval was 95% while the coefficient of variation was 

less than 5% but up to 50% for Baba and Mazar-Dudas hydropower respectively. Particularly, 

main standard deviation was found on OD (0.08), TET (184.4) and NLT (235.1) for Baba, and FE 

(2050), TET (297), FET (1.2x105) and NLT (2.33x104) are highlighted in the case of Mazar-Dudas 

(Fig 7).  

       Baba      Mazar-Dudas 

 
Fig. 7. Standard Deviation results of Baba and Mazar-Dudas hydropower plants 

3.2. Net hydropower GHG emissions  
 
Having set the calculation methodology, the net GHG Baba hydropower emissions were 

estimated. First, the loss of ecosystem (Ee) resulted in 0.02689 Mt CO2/year2. Hence, in the 

absence of the terrestrial ecosystem, 7335 tons of carbon (C) would not be fixed per year on 

average. Second, the mean emissions factor (Ef) applied to Baba reservoir per year went from 

                                                           
2
 1 tC = 3.67 t CO₂. 
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92.28 g CO2-eq/m2/day to 3.40 g CO2-eq/m2/day (Table 7). Total emissions are summarized in 

Table 8, which also includes the emissions from turbines, spillways and river (Etsr) from year 1 

to 100. Combining these latest results with LCA emissions (Ecom), the net lifespan emissions (En) 

were 8.8 Mt CO2-eq, that is, 547 Kg CO2/MWh on average along its life cycle.  

Year 
Hydropower Reservoirs 

Petit-Saut Balbina Tucuruí Baba 

1 100.51
a
 85,73 90,61 92,28 

2 62.77 72,33 68,22 67,77 

3 39.20 61,01 51,36 50,52 

4 24.48 51,47 38,67 38,21 

5 15,29 43,42 29,11 29,27 

6 9,55 36,63 21,92
c
 22,70 

7 5,96 30,90 16,50 17,79 

8 3,72 26,07 12,43 14,07 

9 2,33 21,99 9,36 11,22 

10 1,45 18,55 7,04 9,02 

11 1,45 15,65 5,30 7,47 

12 1,45 13,20 3,99
c
 6,21 

13 1,45 11,14 3,99 5,53 

14 1,45 9,40 3,99 4,95 

15 1,45 7,93 3,99 4,46 

16 1,45 6,69 3,99 4,04 

17 1,45 5,64 3,99 3,69 

18 1,45 4,76
b
 3,99 3,40 

19-100 1,45
a
 4,76 3,9927 3,40 

All data calculated from 
a
 [24] 

b
 [60]

c
 [63] 

Table 7. Baba reservoir estimate GHG emissions, g CO2-eq/m
2
/d   

Year 

Loss 
ecosystem 

(Ee) 

Construction, 
O&M (Ecom) 

Reservoir  
(Er) 

Turbine, spillway 
and river (Etsr) 

Total 
Emissions 

Emission factor 

Mt CO2eq/year Mt CO2eq/year Mt CO2eq/year Mt CO2eq/year Mt CO2eq/year Kg CO2eq/MWh 

1 

2.689E-02
 

9.29E-04 

3.7052E-01 4.5286E-01 8.5120E-01 5287 

2 2.7210E-01 3.3257E-01 6.3249E-01 3929 

3 2.0286E-01 2.4793E-01 4.7861E-01 2973 

4 1.5340E-01 1.8749E-01 3.6871E-01 2290 

5 1.1754E-01 1.4365E-01 2.8901E-01 1795 

6 9.1137E-02 1.1139E-01 2.3035E-01 1431 

7 7.1422E-02 8.7288E-02 1.8653E-01 1159 

8 5.6500E-02 6.9063E-02 1.5339E-01 953 

9 4.5064E-02 5.5078E-02 1.2798E-01 795 

10 3.6198E-02 4.4237E-02 1.0825E-01 672 

11 2.9983E-02 3.6641E-02 9.4439E-02 587 

12 2.4953E-02 3.0502E-02 8.3278E-02 517 

13 2.2190E-02 2.7125E-02 7.7137E-02 479 
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14 1.9858E-02 2.4275E-02 7.1956E-02 447 

15 1.7892E-02 2.1872E-02 6.7586E-02 420 

16 1.6233E-02 1.9844E-02 6.3899E-02 397 

17 1.4833E-02 1.8133E-02 6.0789E-02 378 

18 1.3652E-02 1.6690E-02 5.8165E-02 361 

19-100 1.3652E-02 1.6690E-02 4.7964E+00 361 

Total 2.689 0.0929 2.6961 3.2952 8.8 547* 

*Mean life cycle emission factor 

Table 8. Net emissions of Baba hydropower  

4. Sensitive Analysis  

4.1. Variable Power Generation  

Due to the hydrological seasonality of hydropower generation, the CO2-eq emissions per electric 

energy unit (EFe) could vary. Commonly, hydropower plants have a plant factor over 50% 

which it is not the case of Baba. If the plant factor of Baba was 65%3 instead of 44% [28], the 

direct average annual electric generation would be 239.2 GWh/year and hence the emissions 

would be 368 kg CO2-eq/MWh, a reduction of 33%. The water use for electric generation would 

be 3,6906x109 m3/year, an increase of 50%, regarding the plant factor of 65%.  

The fact that the design of Baba allows transferring water to another hydropower dam (M.L.W, 

built in 90´s decade) and additional electricity is generated, should also be analysed. If this 

second generation was considered as indirect one, which is 439 GWh/year on average, the 

sum of direct and indirect generation give a total annual average generation of 600 GWh/year 

giving place to 147 kg CO2-eq/MWh. However, in this value are not included the emissions 

originated from the life cycle of the second hydropower plant upon classical LCA approach. 

Since it is assumed to be an existing facility, independently of Baba, an average EFe was 

considered (31 kg CO2-eq/MWh) according to life cycle studies reviewed (see Table 10). 

Therefore, the new EFe would be 169 kg CO2-eq/MWh. Anyway, if the generation of M.L.W is 

included, a reduction of 68% is found in net GHG emissions.  

Regarding hydrological variability, the water flow and precipitation of course will vary through 

Baba lifespan, having either very dry or wet seasons. Assuming a dry year scenario, the 

average maximum water flow could be 50m3/s and the precipitation would decrease to the 

half [28] producing a reduction of 50% of electric generation. According to Baba water flow 

report at historical natural regimes, every 20 years there could be at least one dry year. 

Therefore, in this scenario, the emissions would be 560 kg CO2-eq/MWh. Following this 

hydrological analysis, Mazar-Dudas could also be analysed. The effects of climate change here 

may reduce the glacier water store capacities from the Andes Mountains hence affecting rivers 

flow. Considering water flow reduction of 10% each 40 years [81], Mazar-Dudas would have an 

EF of 3.2 kg CO2-eq/MWh, a slight increase of 0.24%.  

4.2. Baba GHG reservoir emissions compared with tropical hydropower and fossil fueled plants 

Several authors have compared the GHG emissions between hydropower reservoir and fossil 

fuel thermal power plants. Despite of gross emissions consideration, their results show that 

the cumulated hydropower reservoir emissions may exceed the ones from its thermal 

                                                           
3
 According to the hydropower generation in Equator [26] 
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equivalent based on carbon, oil or natural gas over the time and after 25 years of operation, 

the emissions would start to equalize [25] [66]. To compare Baba hydropower with its thermal 

power plant equivalent (Fuel oil and Natural gas), the emissions were calculated with the plant 

efficiency and the emissions per thermal energy unit of the used fuel [74]: 

𝑇𝑃𝑃𝐸𝑒 =
𝑀𝐴𝐸 × 𝐹𝐹𝑒𝑓

𝐸𝐸𝐹
 

Where TTPEe are the emissions of the Thermal Power Plant Equivalent (Mt CO2/year), MAE is 

Mean Annual Energy (MWh/year), FFef is the fossil fuel emission factor (Kg CO2-eq/TJ) and EEF is 

the thermal power plant efficiency (%). As a result, Baba hydropower has lower emissions than 

its equivalent fuel oil and natural gas power plants (Table 11). The indirect generation gives 

Baba greater environmental performance. However, as it was shown in Table 8, note that in 

the first 10 years Baba would exceed its equivalent fossil fueled plants emissions.  

Power plant 
Mean Annual Energy TPPE emissions TPPE emission factor 

MWh/year Mt CO2/year Kg CO2-eq/MWhe 

Baba 161000 0,088 547 

Baba
a
 600000 0,101 169 

Fuel Oil
b
 161000 0,141

 
873 

Fuel Oil 600000 0.524
 

873 

Gas natural
c
 161000 0.104 647 

Gas natural 600000 0.388 647 
aMean annual generation considering water transfer and indirect generation of 439 GWh/year; LCA emissions of the second 
hydropower are included. bFuel oil efficiency (EEF): 30%; FFef =73,300 Kg CO2-eq/TJ. cNatural gas efficiency (EEF): 33%; FFef 
=54,300 Kg CO2-eq/TJ [25] [74] [82] [83] 

Table 11. Baba emissions comparison with its fossil fuel equivalent power plants. 

4.3. Baba Supplementary Services 

Besides the electricity generation, Baba reservoir was built for transferring water, 

guaranteeing agricultural demands and ecological flows in dry season and to prevent flooding 

in rainy season. Therefore, this hydropower could be also analysed from the water use 

perspective by applying one cubic meter of water served as new functional unit (FU). Water 

transfer for electric generation, water supply for ecosystems and agricultural use, are the 3 

main Baba services. The mean annual water transfer is 2.77x109 m3 and water supply for 

ecosystems is 4.97x108 m3/year (10 m3/s annual constant flow) of which 9.46x107 m3/year are 

for agricultural use [28]. The total mean annual water input is 3.38x109 m3. In order to obtain a 

new LCI, an allocation coefficient (Ƞ) based on water use percentage, was applied for each 

service (Table 9).  

Input Unit 

Ecosystems  
(Ƞ=0.15) 

Agricultural use 
(Ƞ=0.03) 

Water transfer 
(Ƞ=0.82) 

Output* /m
3
x Ƞ Output* /m

3
x Ƞ Output* /m

3
x Ƞ 

Concrete m
3
 

4.97x10
10

 

6.73E-07
 

9.46x10
9
 

7.07E-07
 

2.77x10
11

 

6.59E-07 

Electricity MWh 4.86E-05 5.11E-05 4.76E-05 

Earth work m
3
 4.74E-05

 
4.98E-05 4.64E-05 

Energy
a
 MJ 2.12E-03 2.23E-03 2.08E-03 

Emissions
b
 Kg 2.65E-02 2.79E-02 2.60E-02 
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*output in m3 (100 years lifespan). aEnergy used in processes included in life cycle system boundaries of Baba hydropower. 
bTotal life cycle emissions in CO2-eq 

Table 9. Baba LCI water perspective 

All the LCI results (Table 9) seem to be negligible due to their low values, with a slight different 

among them. Focus on GHG emissions, agricultural use obtained lightly the highest emissions, 

with 0.0279 kg CO2-eq/m3, followed by water for ecosystems with 0.0265 kg CO2-eq/m3 and 

water transfer with 0.0260 kg CO2-eq/m3. Focusing only the comparison in water devoted to be 

transferred into other basis, these values were contrasted with water transfer reported 

emissions. For instance, several LCA of water production technologies and water use have 

been carried out in Spain [84] [85]. On one case, Ebro River Water Transfer (ERWT) was 

assessed, obtaining 1.44 kg CO2-eq/m3, with a water flow of 1x109m3/year, less than the half of 

Baba water transfer [85]. On another case, it was assessed the environmental impacts of 

different water supply sources which contribute to meet the demand in Mediterranean water 

stressed region (Southeast of Spain). To meet the water demand of 1.48x109m3/year (2015), it 

was required the participation of Tajo-Segura water transfer (TSWT). Accounting for 27.4% of 

the total water demand, TSWT obtained 0.70 kg CO2-eq/m3 [86], 25 times higher than Baba 

water transfer. Despite of this, it should be highlighted that the presented case in this work is 

less than 9 km and a natural river bed was used to the transfer while TSWT is around 300 km, 

built with channels and pipelines and more than 900 km in the case of ERWT. Therefore, there 

is a remarkable difference in terms of construction and distance, besides the water flow. 

Another example of water transfer was found in California State (USA) that obtained 1.09 kg 

CO2-eq/m3 [87] higher than the latter case in Spain, with a distance over 400 km. Note that 

some others water supply alternatives and water treatments like water abstraction were 

reported with 0.051 kg CO2-eq/m3, water treatment for drinking 0.219 kg CO2/m3 and 0.15 kg 

CO2-eq/m3 for transferred water by pressurized pipelines [88] [89]. Overall results from Baba 

indicate that the impact due to water use is not significant, since major use of Baba is 

hydropower generation. 

5. Discussion  

In terms of emissions, the two presented cases in this work obtained abysmally different 

results: 547 kg CO2-eq/MWh for dam scheme (Baba) and 2.6 kg CO2-eq/MWh for run-of-river 

scheme (Mazar-Dudas). With exceptions, hydropower with dam usually has higher emissions 

than run-of-river schemes, as well as the installed capacity [18]. This latter one, plus the height 

and electricity generation influence on the quantity of CO2/MWh, especially in small 

hydropower plants (<50 MW) [22]. Even though in some LCA studies decommissioning stage or 

final disposal was taken into account, Baba hydropower plant differs notably from what has 

been reported. This is mainly due to the exclusion of the loss of ecosystems and all reservoir 

emissions in the life cycle assessments, even in studies with different environmental approach 

as carbon footprint [90]. However, those studies whose aims has been to measure and 

quantify GHG emissions from reservoir, have excluded either the loss of ecosystem, 

construction or operation and maintenance (O&M) emissions (Table 10). Hence, all LCA and 

non-LCA studies have only showed gross life cycle emissions.   

Regarding the reviewed LCA studies, they were differentiated by what they have included and 

their approach. Basically, there were two LCA types: with and without decommissioning or 

final disposal stage (Table 10). Thus, without decommissioning or final disposal stage, 
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emissions ranged from 6 to 44 kg CO2-eq/MWh, with power capacities up to 3600 MW [91]. 

Here it is included carbon footprint analysis which reported 8-15 kg CO2-eq/MWh [10] [90]4. For 

all these cases, a range of 11-20 kg CO2-eq/MWh was estimated [18]. Focus on LCA that 

included decommissioning stage, the emissions started from 4.2 kg CO2-eq/MWh and go up to 

62 kg CO2-eq/MWh [13] [20], 30% higher than the first LCA cases.   

Considering non-LCA studies, the emissions of hydropower plants with dam reached even 

higher values, exceeding those of fossil fuel power plants. However, the reported values only 

represented the emissions at some point in the lifespan. According to this, the emissions 

ranged between 97 and over 5000 Kg CO2-eq/MWh depending on their location (boreal or 

tropical zone) and the time after impoundment (Table 10) [71] [76] [74]. In hydropower boreal 

reservoir, up to 671 kg CO2-eq/MWh have been reported, which includes the loss of the 

ecosystem [75]. Tropical hydropower reservoirs emissions went further, up to over 5000 kg 

CO2-eq/MWh [24] [60] [74]. Despite of this, it is must be said that the emission ranges are 

slanted, due to the variations of the emissions through the time and the power generation. 

Therefore, any comparison would be relative. Moreover, in these cases, only gross emissions 

are exposed, since certain sources of emissions are excluded.  

Thus, Baba hydropower plant should only be compared with studies where at least reservoir 

emissions where considered. For instance, Petit-Saut hydropower tropical reservoir emitted 

2027 kg CO2-eq/MWh on average, in its 10 first years after its impoundment [24], 3.7 higher 

than Baba. However, the mean life cycle emissions of the hydropower boreal reservoir (158 kg 

CO2-eq/MWh) were 3.5 times lower than Baba [75]. If the indirect generation (with its life cycle 

emissions) of Baba is included, its mean life cycle emissions would be 169 kg CO2-eq/MWh, 

much closer to boreal reservoir emissions, but still far from the common LCA emissions.  

Reference 
Study 

approach 
Construction and 

O&M stages 
Decommissioning Reservoir 

emissions 
Scheme 

Installed capacity 
(MW) 

Kg CO2-eq/MWh 

[16] LCA x   Run-of-river 9 1,2 

This study LCA x   Run-of-river 21 2.6 

[11] LCA x   Run-of-river Several 4.9 

[13] LCA x x  
Run-of-river 8.6 4.1 

Dam 95 4.2 

[18] LCA x x  Run-of-river Several 2-5  

[92] LCA x x  Dam 30.3 5.47 

[91] LCI x   Dam 3600 6 

[13] LCA x x  Dam 175.6 8.3 

[93] LCA x   Run-of-river 0.05-0.1-0.65 5.5-8.9 

[23] LCA x   Run-of-river 3.1 10 

[10] CFA x   Dam 5850 8-11 

[11] LCA x   Dam Several  0.2-11.2 

[94] LCA x x  Run-of-river 10 11.3 

[22] LCA x x  Dam 16 13 

[90] LCA x  xB Dam Several 15  

[22] LCA x x  Run-of-river 22 18 

[76] Unknown -   Unspecified Unspecified 4-18 

[18] LCA x   Dam Several 11-20 

[12] LCA x x  Run-of-river 1-5 11-23 

[2] Unknown    Unspecified Unspecified 28 

[95] LCA x   Dam 3,2 28.4 

[96] LCA x x  
Dam 

Unspecified 1-34 
Run-of-river 

[20] LCA x x  Deviation channel Several 33-43 

[91] LCI x   Dam 44 44 

[21] LCA x   Unspecified Unspecified 2-48  

[17] LCA x x  Run-of-river 0.003 52.7 

                                                           
4
 It includes reservoir emissions.  
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[20] LCA x x  Dam Several 31-62 

[19] LCA x   Unspecified Unspecified 2.2-74.8 

[20] LCA x x  Run-of-river Several 18-75 

[71] Unknown -   
Run of river 

Unspecified 0.5-152 
non-tropical dam 

boreal reservoir Unspecified 160-250 

[97] Unknown   x Dam Unspecified 397-539 

[98] CBE   x Dam 33 494.9 

This studyC LCA x  x Dam 42 547 

[75] CFD    x Dam 485 147-671 

[24] CB
E
   x Dam 115 2027 

[71] Unknown -   Tropical reservoir Unspecified 1300-3000 
ACarbon Footprint. BTurbine, spillway and river emissions not included as well as the loss of ecosystem. CNet life cycle emissions. DCarbon Footprint 
boreal reservoir. The study only includes pre-flooding emissions (loss of ecosystem) and reservoir emissions. 

E
Carbon budget. Reservoir, turbine, 

spillway and downstream river emissions considered. Loss of ecosystem and construction emissions excluded. The emission factor consider only 10 
years of measurements.  
 

Table 10. Hydropower Life cycle emission factor from literature 

On the other hand, it was found that Mazar-Dudas hydropower plant is within the reported 

range of 2-5 Kg CO2-eq/MWh [18] (Table 10). This result is more adjusted to the LCA reported 

emissions. Despite of this, the emissions vary widely from one case to another. The LCA studies 

based on construction and O&M stages, reported emissions from 1.2 to 10 Kg CO2-eq/MWh, 

with capacities below 10 MW [16] [23]. However, with the inclusion of the decommissioning or 

final disposal stage in the LCA, the emissions start from 4.1 Kg CO2-eq/MWh and go up to 75 Kg 

CO2-eq/MWh, whose installed capacities reached 22 MW [13] [17] [20]. Thus, it seems that 

decommissioning stage increase considerably the emissions up to 86%, according to what have 

been reported. Taking into account that last fact, and although it has 21 MW, Mazar-Dudas 

obtained a very low life cycle emission value, being one of the best scores (Table 10).  

6. Conclusions 

Through a complemented LCA approach, two hydropower schemes located in Ecuador were 

assessed in order to know their environmental performance, especially their life cycle 

emissions by means of the different pollution mechanisms. As first conclusion, it was found 

that there is a lack of LCA studies which fully determine the net life cycle emissions of 

hydropower, especially those ones associated to an existing reservoir. Regarding this work, its 

main findings support that hydropower environmental impacts should be taken into account in 

the decision-making, especially with the development of new dam hydroelectric projects. The 

run of river scheme (Mazar-Dudas) by far has better environmental performance than dam 

scheme (Baba). Bearing in mind the rough estimate of reservoir emissions, the major relevance 

is found in this ambit, since dam scheme obtained 547 Kg CO2-eq/MWh while run-of-river 2.6 Kg 

CO2-eq/MWh. Despite of these significant emissions by dam scheme case, it is still better option 

than fossil fueled power plants. Moreover, with the reviewed literature, it was verified that life 

cycle emissions vary from one place to another which makes each case unique. Taking into 

account that the reservoir emissions and loss of ecosystem accounts for 99% of the total 

emissions, future life cycle assessment must consider them, otherwise, their results may be 

misleading for hydropower dam schemes. In the near future, long-term measurements must 

be made to clarify and accurate the emissions from reservoir, turbines, spillway and river of 

Baba hydropower, in order to verify or not its green credential. Finally, it is worthy to note that 

some other local environmental aspects related to hydropower as water continuity in the river 

bed, water quality, the transport and supply of nutrients, local eutrophication and aquatic life 

assessment were not assessed in this study mainly due to the absence of local data and the 
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difficulty of translating their main indicators into equivalent emissions. Moreover, social 

aspects have not been included so that future works should be done in order to balance the 

hydropower projects in terms of sustainability.  
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