
Carl von Ossietzky Universität

Bachelor Thesis

Machine Learning: Binary Non-negative
Matrix Factorization

Author:

Diego Yus López

Supervisor:

Prof. Jörg Lücke

A thesis submitted in fulfillment of the requirements

for the degree of Graduated of Physics

in the

Machine Learning Group

Department für Medizinische Physik und Akustik

September 2015

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositorio Universidad de Zaragoza

https://core.ac.uk/display/289993145?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.uni-oldenburg.de/
https://www.uni-oldenburg.de/machine-learning/
https://www.uni-oldenburg.de/mediphysik-akustik/

Declaration of Authorship

I, Diego Yus López, declare that this thesis titled, ’Machine Learning: Binary Non-

negative Matrix Factorization’ and the work presented in it are my own. I confirm

that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

Acknowledgements

In first place, I really want to thank my project advisor, Prof. Jörg Lücke, whose

descriptive and clarifying lectures got me so much interested in the totally unknown for

me field of Machine Learning that I decided to write my thesis on that topic. Of course,

I also want to thank him for suggesting me an appealing thesis topic and advising me

during the thesis by giving many useful ideas on how to solve the arising problems,

including the visualization functions, but also on how to focus the thesis itself.

On the academic side, I also want to thank PhD student Maryam Sadreddini, who was

my closest contact during the thesis helping me with the implementation and whose

explanations, given with infinite patience, helped me to get a deeper understanding of

some concepts.

I also want to thank my family for their support during this international exchange.

. . .

ii

Contents

Declaration of Authorship i

Acknowledgements ii

Contents iii

1 Introduction 1

2 Generative Model 3

3 Maximum Likelihood/ Expectation Maximization 6

3.1 EM Algorithm . 6

3.1.1 E-Step . 8

3.1.2 M-Step. Derivation of the update rules 8

3.1.3 Log-Likelihood Computation . 10

3.2 Specifics of the algorithm . 10

3.2.1 Exp and Log simplification . 10

3.2.2 Computation of Expectation Values 11

3.2.3 Approximation schemes: Expectation truncation 12

4 Numerical Experiments 14

4.1 Linear bars test . 14

4.2 Handwritten digits . 18

5 Conclusions 20

A Complete Derivation of the Update Rules 21

A.1 Derivation for π . 21

A.2 Derivation for W . 22

Bibliography 24

iii

For/Dedicated to/To my. . .

iv

Chapter 1

Introduction

Machine Learning can be defined as “a field of computer science based on the implemen-

tation of algorithms that can learn and make prediction from data. These algorithms op-

erate by building a model in order to make data-driven predictions or decisions. Machine

Learning is employed in a range of computing tasks, such as spam filtering, search en-

gines or computer vision for example”1. Machine Learning is mainly subdivided in three

categories: Supervised Learning, Unsupervised Learning and Reinforcement Learning.

In the Supervised Learning, the system is already given some inputs (data) and the

desired output (labels), being the task of the system to learn from these examples what

the relation between these inputs and outputs is, so it can be further applied to new

unlabeled data to obtain the correct outputs.

In contrast to the previous learning, in the Unsupervised Learning the system is only fed

with the unlabeled data and its goal is to find some patterns or hidden structure in that

data. Because the data is unlabeled, there is no error function to evaluate a potential

solution, contrary to the Supervised Learning.

Reinforcement Learning is “learning by interacting with an environment. An RL agent

learns from the consequences of its actions, rather than from being explicitly taught

and it selects its actions on basis of its past experiences (exploitation) and also by new

choices (exploration), which is essentially trial and error learning. The reinforcement

signal that the RL-agent receives is a numerical reward, which encodes the success of

an action’s outcome, and the agent seeks to learn to select actions that maximize the

accumulated reward over time”2.

1https://en.wikipedia.org/wiki/Machine_learning
2http://www.scholarpedia.org/article/Reinforcement_learning

1

https://en.wikipedia.org/wiki/Machine_learning
http://www.scholarpedia.org/article/Reinforcement_learning

Chapter 1. Introduction 2

In this thesis, the chosen approach will be the Unsupervised Learning, because it is

considered a more general approach, given the fact that the labels are not always avail-

able. Unsupervised Learning itself is used in different applications, such as denoising,

inpainting, or speech and handwriting recognition.

Also, when talking about such algorithms, another aspect has to be kept in mind: the

difference between probabilistic and deterministic approaches. A deterministic approach

is one in which the final result is determined since the beginning of the process, while in

a probabilistic approach, as its name indicates, there is no fixed outcome, but different

final results are possible, each one of them with a certain probability to occur. In our

case, the algorithm will be probabilistic, because this approach resembles reality better

than a deterministic one, having therefore a superior performance when analyzing real

data.

This probabilistic approach can be subdivided into two categories: generative and dis-

criminative. In the generative one, the one chosen in my thesis, the algorithm models

how the data was generated, e.g. in order to classify a signal; in other words, it tells

which category is most likely to generate this signal based on my generation assumptions.

The discriminative algorithm however, does not care about how the data was generated,

it simply categorizes a given signal. One of the reasons to choose a generative approach

lies in the fact that, when applying it to artificial data, it is possible to know the exact

result and therefore have an easier implementation.

From a general perspective, the aim of this bachelor thesis is to implement an algorithm

that, by means of unsupervised learning using a probabilistic generative model, learns

to identify some hidden structure in data. The model chosen is called Binary Non-

Negative Matrix Factorization (BNMF), and it is closely related to the type of data to

be analyzed, as it is explained in Chapter 2.

A mathematical method needs then to be applied to learn these parameters (hidden

structure). In our case, the method chosen is called EM Algorithm, which is an iterative

method that maximizes the likelihood function (in each iteration) with respect to the

parameters to be learned in a two-step process. It is used where the model depends on

unobserved latent variables, as it is the case. It is explained in detail and the equations

derived to this particular model in Chapter 3. Besides, in this chapter some important

procedures about the computer implementation of this EM algorithm are explained.

Finally, the learning algorithm will be tested in numerical experiments on artificial and

real data to check its performance; the tests and the corresponding results are shown in

Chapter 4 whereas the final conclusions are presented in Chapter 5.

Chapter 2

Generative Model

In a probabilistic generative approach there is no defined model of how the data to be

analyzed is generated. However, a particular generative model with parameters has to

be chosen so that we can define a model according to whom the data could have been

generated. Choosing that model is not an easy or trivial question, and it is usually

related to the way data looks like, existing many different generative models that have

already been proposed, such as Sparse Coding or Mixture of Gaussians.

In our case, we suppose the data to be non-negative, as there is a significant number of

real situations where this condition is accomplished, being the audio spectrograms (en-

ergy values of the different frequencies in which a sound is decomposed by the cochlea in

the inner ear) one of the most important examples in Machine Learning. Because of the

non-negativity of the data, it seems logical to choose a model in which the generated data

according to this model satisfies this condition. The chosen model is called Binary Non-

Negative Matrix Factorization (BNMF), a simplification of the standard Non-negative

Matrix Factorization (NMF) [1] that can however be explained in an easier way as a

modification of Binary Sparse Coding (BSC) [2].

Standard-NMF is an algorithm in which a matrix V is factorized into two matrices W

and H, having all the three matrices no negative elements. The elements of a column

of H (encoding) are the coefficients by which a column of V (data point) is represented

as a linear combination of the columns of W (basis functions). In other words, the

coefficients of H express the degree of activation, and therefore of contribution, of a

hidden unit (called latent variable) in the generation of a data point. That contribution

is made through its related basis function and there is a one-to-one correspondence

between a column of H and a column of V.

3

Chapter 2. Generative Model 4

For my model, I consider a set of N independents data points {~y (n)}1,...,N where ~y (n) ∈
RD, i.e. D is the number of observed variables. These data points are generated accord-

ing to the following generative model:

p
(
~s |Θ

)
=

H∏
h=1

(
πsh(1− π)1−sh

)
(2.1)

p
(
~y |~s,Θ

)
=

D∏
d=1

Pois
(
yd;
∑
h

Wdhsh
)

=
D∏

d=1

(ayd
yd!

e−a
)

(2.2)

with a =
∑
h

Wdhsh

where W ∈ RDxH , Wd,h ≥ 0 ∀d, h , H is the number of hidden units sh and π is the

sparsity parameter.

The hidden latent values are generated according a Bernoulli distribution, which creates

a bit vector ~s ∈ {0, 1}H , that shows which units are active (sh = 1) and inactive (sh = 0).

The activation of these hidden units is supposed to be sparse, meaning that only few

of them compared to the total number will be active at the same time. This sparsity

assumption is application dependent, since some real hidden units exhibit this typical

sparse behaviour, as it can be case of how neurons activate or the way speech is produced.

Many data bases where sparse assumption is taken could then fit well to the model, for

example.

Each observed variable yd is drawn from a Poisson distribution with mean given by a

linear combination of the basis functions (dictionary elements) ~Wh = (W1h, ...WDh)T

with the latent values, which means that only the basis functions of the active hidden

units contribute to generate the observed variable (data point). This data point is then

a linear combination of the basis functions plus some Poisson noise. Because of the

Poisson distribution properties, all the observed variables will be non-negative integers.

Compared to other algorithms, the difference with standard NMF arises in the values of

the encoding matrix, which in the case of BNMF are set to be unary values, either one

or zero, while in NMF they only have a more general non-negativity constraint. That

means, in BNMF the hidden units can only be active or inactive, as it happens in the

BSC, but it is not possible to have an intermediate activation value.

In comparison with BSC, the main difference lies in the non-negativity of the W matrix

(values can be negative in BSC) and the Poisson noise instead of the Gaussian one.

Chapter 2. Generative Model 5

However, both of can be understood in a similar way, as a linear combination of active

or inactive basis functions plus noise. The binary approach causes a loss of generality,

but still represents a good approximation with a much simpler, easier to derive and

implement method.

Chapter 3

Maximum Likelihood/

Expectation Maximization

3.1 EM Algorithm

The aim of a learning algorithm is to optimize the parameters Θ = (π,W) that maximize

the data likelihood L(Θ) =
∏
n

(
p(~yn|Θ)

)
. The likelihood gives us an estimation on how

good the generative model, taking in account the parameters, fits our data. Thus,

maximizing the likelihood will enable us to recover the parameters that better fit the

generated data. There are several mathematical methods to maximize the likelihood,

the one used in this thesis is called Expectation-Maximization (EM) Algorithm and a

detailed explanation about it is now given.

First, for easiness, the log-likelihood will be used instead of the likelihood. We are

enabled to use this simplification because the logarithm is a monotone function (i.e.

the maximum of the logarithm of a function corresponds the maximum of the function

itself).

L(Θ) = log
[∏

n

(
p(~yn|Θ)

)]
=
∑
n

log
(
p(~yn|Θ)

)
=
∑
n

log
[∑

~s

p(~yn, ~s |Θ)
)]

(3.1)

where the sum over n is the sum over all the data points and the sum over ~s is the sum

over all the 2H possible vectors ~s for the hidden units.

It can be shown, using the Jensen’s Inequality in the sum over the ~s states, that

L(Θ)−F (q,Θ) ≥ 0 where F (q,Θ) is a function called Free Energy equal to:

6

Chapter 3. Maximum Likelihood/ Expectation Maximization 7

F
(
Θ, q(Θold)

)
=
∑
n

∑
~s

qn
(
~s,Θold

)[
log
(
p(~yn|~s,Θ)

)
+log

(
p(~s |Θ)

)]
+
∑
n

H
[
qn
(
~s,Θold

)]
(3.2)

where H
[
qn
(
~s,Θold

)]
is the Shannon entropy (only dependent on the old parameters)

and qn
(
~s,Θ

)
is an approximation to the exact posterior probability. Following some

derivations, it can also be shown that this quantity is exactly equal to:

L(Θ)−F(Θ) =
∑
n

DKL

(
qn
(
~s,Θold

)
, p(~s |~yn,Θ)

)
≥ 0 (3.3)

where p
(
~s |~yn,Θ)

)
is the exact posterior probability and

DKL

(
qn
(
~s,Θold

)
, p(~s |~yn,Θ)

)
= −

∑
~s

qn
(
~s,Θold

)
log

(
p(~s |~yn,Θ)

qn
(
~s,Θold

))

is the Kullback-Leibler Divergence with properties:

DKL(q, p) ≥ 0 DKL(q, p) = 0 ⇐⇒ q = p (3.4)

The algorithm goal is to maximize the log-likelihood. This would be done by setting the

derivatives of the log-likelihood w.r.t the parameters equal to 0, and deriving then the

update rule for the parameters from these equations. However, as these derivatives are

usually difficult to compute, L(Θ) = E(Θ) is set and the derivatives of the free energy

w.r.t the parameters are computed instead, since they are analytically easier to derive.

The previous equality implies, by means of 3.3 and 3.4, that qn
(
~s,Θold

)
:= p(~s |~yn,Θ).

Once the free energy has the same value as the log-likelihood, we can proceed to compute

its derivatives and maximize it with respect to the parameters. There will be an increase

(or kept constant) in the free energy value, and because of 3.3, an increase (or kept

constant) in the log-likelihood as well, provided that we compute its new value with the

new parameters. The whole process can be described as follows:

L(Θold) = F
(
Θold, q

(
~s,Θold

)
= p(~s |~y,Θ)

)
≤ F

(
Θnew, q

(
~s,Θold)

)
≤ L(Θnew)

The free energy is maximized in a two-step process: in the first step, called the E-Step,

there is a maximization with respect to the qn (while Θ remains fixed), and in the

second step, called the M-Step, there is a maximization with respect to the parameters

Chapter 3. Maximum Likelihood/ Expectation Maximization 8

Θ = (π,W) (while qn remains fixed now). The iterative repetition of this optimization

process leads to an always increasing log-likelihood value until we end in a (local or

global) maximum. It can be summarized in the following pseudocode:

init Θold

qn
(
~s,Θold

)
= p(~s |~yn,Θold) E − Step

Θnew = argmax
x
{F
(
Θ, q(Θold)

)
} M − Step

Θold = Θnew

until convergence

3.1.1 E-Step

In the EM algorithm, the posterior probabilities are computed, and next the parameters

are updated according to the new posterior probabilities following the update rules. The

value of the posterior probability can be derived as follows, after making use of Bayes’

Theorem.

p
(
~s |~yn,Θ)

)
=

(
p(~yn|~s,Θ)

)(
p(~s |Θ)

)∑
~s ′

(
p(~yn|~s ′,Θ)

)(
p(~s ′|Θ)

) (3.5)

However, as it will be shown in 3.2.2 the explicit computation of the posterior probability

is not necessary.

3.1.2 M-Step. Derivation of the update rules

The parameter update rules are derived by setting the derivatives of 3.2 with respect to

the different parameters to zero. As the Shannon entropy (second term of the sum 3.2)

does not depend on the new parameters, these derivatives are equal to the derivatives

of the first term of the sum in 3.2, called Q(Θ).

Q(qn,Θ) =
∑
n

∑
~s

qn
(
~s,Θold

)[
log
(
p(~yn|~s,Θ)

)
+ log

(
p(~s |Θ)

)]

Using 2.1 and 2.2, the previous equation can be simplified to:

Chapter 3. Maximum Likelihood/ Expectation Maximization 9

Q(qn,Θ) =
∑
n

∑
~s

qn
(
~s,Θold

)[∑
d

[
y

(n)
d log(a)− a− log

(
y

(n)
d !
)]

+

H∑
h=1

(
sh log(π) + (1− sh) log(1− π)

)]
(3.6)

We first derive the update rule for π :

∂

∂π
Q(qn,Θ)

!
= 0

⇒ πnew =
1

N

∑
n

∑
~s

qn
(
~s,Θ

) |~s |
H

=
1

HN

∑
n

〈
|~s |
〉
qn(~s,Θ) (3.7)

where

〈
g(~s)

〉
qn(~s,Θ) =

∑
~s

(
p(~s | ~yn,Θ)

)
g(~s)

The whole derivation is shown in the Appendix A.

We derive next the update rule for W in the same way.:

∂

∂Wd′h′
Q(qn,Θ)

!
= 0

⇒Wnew =
(∑

n

~y (n)
〈
~sT
〉
qn(~s,Θ)

)(∑
n

〈
~s~sT

〉
qn(~s,Θ)

)−1
(3.8)

The whole derivation is shown in the Appendix A.

Note: it is important to remark, that, since there is a matrix inversion involved in

the computation of the update rule for W (See 3.8), negative values are possible to

appear which would contradict the non-negativity constraint of the data. To avoid such

problems, a simple solution is implemented: after each iteration, all negative values of

W are set to 0.

Chapter 3. Maximum Likelihood/ Expectation Maximization 10

3.1.3 Log-Likelihood Computation

After the E-Step and the M-Step, a computation of the likelihood will be done in the

algorithm. Setting the generative model equations 2.1 and 2.2 in the equation 3.1 and

following some derivations we obtain the log-likelihood formula for this particular gen-

erative model:

L(Θ) =
∑
n

log

[∑
~s

D∏
d=1

(ayd
yd!

e−a
)
·

H∏
h=1

(
πsh(1− π)1−sh

)]
(3.9)

3.2 Specifics of the algorithm

In this section, some of the procedures used in the implementation for a better perfor-

mance of the algorithm are explained.

3.2.1 Exp and Log simplification

One simple implementation is set to avoid numerical problems in the running of the

algorithm. Taking a look in the already simplified (elimination of factorials) expression

of the posterior probability given by:

p
(
~s |~yn,Θ)

)
=

(
p(~yn|~s,Θ)

)(
p(~s |Θ)

)∑
~s ′

(
p(~yn|~s ′,Θ)

)(
p(~s ′|Θ)

) = ... =

D∏
d=1

(ayde−a)
H∏

h=1

(
πsh(1− π)1−sh

)
∑
~s ′

[
D∏

d=1

(ayde−a)
H∏

h=1

(
πs

′
h(1− π)1−s′h

)]

it can be noticed that a product over many terms appear in both numerator and denom-

inator. These different terms may have values differing in many orders of magnitude, so

the multiplication between them could lead to round-off errors because of the different

precisions and cause numerical problems. The solution to avoid that big differences in

values is to simplify the previous expression by computing its logarithm, which will re-

duce the gap in the magnitude order, and subsequently, by computing the exponential of

the result, so both functions cancel mutually, with no effect in the final result. Written

in equations:

Chapter 3. Maximum Likelihood/ Expectation Maximization 11

p
(
~s |~yn,Θ)

)
=

exp

[
D∑

d=1

log (ayde−a) +
H∑

h=1

log
(
πsh(1− π)1−sh

)]
∑
~s ′
exp

[
D∑

d=1

log (ayde−a) +
H∑

h=1

log
(
πs

′
h(1− π)1−s′h

)]

=

exp

[
D∑

d=1

yd log(a)− a+
H∑

h=1

sh log π + (1− sh) log(1− π) +B

]
∑
~s ′
exp

[
D∑

d=1

yd log(a)− a+
H∑

h=1

s
′
h log π + (1− s′h) log(1− π) +B

]

The appearance of the B as a numerical stabilization constant is due to the fact that this

simplification paradoxically could lead to another type of numerical problems, because

now the terms inside the exponential could have a large negative value (≈ −103) and

when computing the exponential of them, the result would be directly zero as they are

out of machine precision. To avoid that, this factor B is added in both numerator and

denominator, so it cancels itself with no effect in the final result, but allowing us to

compute these quantities.

Note: this procedure is also used in the computation of the likelihood (Eq. 3.9 will be

updated)

3.2.2 Computation of Expectation Values

It can be seen in the update rules 3.7 and 3.8 that only the expectations values with

respect to ~sT and with respect to ~s~sT are needed, not the posterior probabilities them-

selves. These two expectation values are called sufficient statistics, since their compu-

tation is sufficient to compute the update rules and therefore the explicit computation

of the posterior probabilities can be avoided saving computing time. The expectation

value of a function g(~s) is defined as follows:

〈
g(~s)

〉
qn(~s,Θ) =

∑
~s

(
p(~s|~yn,Θ)

)
g(~s) (3.10)

Making use of 3.5, equation 3.10 can be rewritten as:

Chapter 3. Maximum Likelihood/ Expectation Maximization 12

〈
g(~s)

〉
qn(~s,Θ) =

∑
~s

(
p(~yn|~s,Θ)

)(
p(~s |Θ)

)
g(~s)∑

~s ′

(
p(~yn|~s ′,Θ)

)(
p(~s ′|Θ)

) (3.11)

where g(~s) = ~sT or g(~s) = ~s~sT .

3.2.3 Approximation schemes: Expectation truncation

It can be noticed that the computation of the exact posterior probability requires a sum

over 2H terms (See eq. 3.5 and 3.11). That means, this computation becomes rapidly

intractable for an increasing number of latent variables H, as the numbers of terms in

the sum increases exponentially with the number of hidden units. To look for tractable

approximations, several approaches can be tried, including MAP, sampling, factored

variational EM or expectation truncation among others.

Although it would not be needed given the scale of my project to use these approxima-

tions, to implement one is a good way to get a small insight on how advanced researchers

address these kind of problems and it will also optimize my algorithm by making it faster

with little loss of precision. In our case, expectation truncation [3] is the approxima-

tion that will be applied to get a computational tractable algorithm. It is explained as

follows. The expectation value (eq. 3.11) can be written without loss of generality like:

〈
g(~s)

〉
qn(~s,Θ) =

∑
~s=0

(
p(~yn, ~s|Θ)

)
g(~s) +

∑
~s
|~s|=1

(
p(~yn, ~s|Θ)

)
g(~s) +

∑
~s
|~s|=2

(
p(~yn, ~s|Θ)

)
g(~s) + ...

∑
~s=0

(
p(~yn, ~s|Θ)

)
+
∑
~s
|~s|=1

(
p(~yn, ~s|Θ)

)
+
∑
~s
|~s|=2

(
p(~yn, ~s|Θ)

)
+
∑
~s
|~s|=3

(
p(~yn, ~s|Θ)

)
+ ...

The sum over all the possible bit vectors is rewritten in terms dependent on its ”module”,

i.e., the number of active hidden units. If we now assume sparsity on the model (small

π), we can see that the average number of active hidden units is πH, which means that

the data is less likely to come from the bit vectors with most of the hidden units active,

as long as π remains low. Therefore, the values of
(
p(~yn, ~s|Θ)

)
in those terms are really

small in comparison to the other terms, meaning that we can remove them from the

sum over all the possible states without a big change in the result.

Only vectors with |~s| ≤ γ are computed in the sum, where γ (truncation parameter)

is set to be equal to πH. The sum in the denominator is extended to vectors with

|~s| ≤ γ + 1 due to numerical reasons.

This makes the computation more tractable, as much of the terms of the sum are removed

Chapter 3. Maximum Likelihood/ Expectation Maximization 13

and don’t need to be computed, but it still remains polynomial, which means that there

will still be computational problems if H is really large, where a sampling approach

could be used instead.

However, this approximation is valid for the W update because it is a parameter of the

noise model, but not for the π update, since it is a special case due to the generative

model where π is a parameter of the prior distribution.

To solve this problem, a correction to the update rule of π can be derived [2], but it

is beyond the scope of this thesis. To avoid this problem, one possible solution could

be to set the π parameter to the ground truth value, and learn only the W parameter.

However, this implies a previous knowledge of the ground truth parameters to be able

to run the algorithm, which is not what an unsupervised learning algorithm is supposed

to do. The easiest way to solve the problem is to raise the truncation limit to a higher

number of active units for the last iterations, once the algorithm has already converged

to the maximum, allowing us to learn the π parameter then with little effect in the

learning of W .

Chapter 4

Numerical Experiments

The previous equations constitute a learning algorithm that optimizes the parameters of

the generative model. In order to test the performance of the algorithm, we run several

tests on artificial and realistic data.

4.1 Linear bars test

The algorithm is applied to artificial bars data as shown in the Figure 4.1. A relative

grey scale is used to represent the data where black represents the minimum value and

white the maximum one. To generate this data, H = 8 linear horizontal and vertical

bars are taken as the basis functions ~Wh of the matrix W . Each bar occupies 4 pixels on

a grid made by D = 4x4 pixels. The values of the pixels are set to be Wd,h = {0.0, 10.0}.
The number of data points N is equal to 1000. These bars can be seen in the Figure

4.2. The π value is set to be 0.3, so that on average Hπ = 2.4 hidden units are active.

Figure 4.1: Random sample of 12 data points.

I run the algorithm for 60 iterations, and for both cases, with and without the expec-

tation truncation approximation to check the differences. The initialization of the W

14

Chapter 4. Numerical Experiments 15

Figure 4.2: The 8 linear bars used for data generation. D = 4 x 4

values is uniform random between 0 and 1, and the π value is also set to be uniform

random between 0 and 1. After each iteration some small random positive Poisson noise

is added to the W parameter to avoid local optima where the algorithm can get stuck.

To test if the EM-algorithm is working properly, the log-likelihood is computed to check

if the log-likelihood is increasing (or remaining the same) on each iteration, as it is

supposed to do. Several typical evolutions of the log-likelihood function are plotted in

Figure 4.3. In all of them a continuous increase of the log-likelihood can be observed,

which gives us a positive feedback on the operation of the algorithm.

In the Figure 4.3a what we can observe is a fast convergence to somewhere close to

the global maximum having learned all the bars, being the log-likelihood of the learned

parameters after convergence only slightly lower as the one of the generative (ground

truth) parameters. In the figure 4.3b , convergence after learning all the bars can also be

observed, but in this case, it can be noticed how the system gets stuck in a local optima

(flatness of the function) during some iterations before getting out of it to reach the

final point. In figure 4.3c however, it can be noticed that all the bars are not properly

learned, remaining the system in the local optima after the 60 iterations.

The small increment of the function that can be noticed at the end of the process is due

to the change in the expectation truncation condition in the last iterations in order to

learn the π parameter, which leads the algorithm to a new maximum.

It needs to be remarked that there is a situation where a decrease in the log-likelihood

occurs, although I believe it is due to numerical problems and not to errors in the al-

gorithm, because finally the parameters are learned correctly in most of the cases and

besides, there is an explanation for it. This situation takes place when the parameters

are initialized as the ground truth parameters. Because there is a matrix inversion and

the values are the same, that could lead sometimes to numerical errors, but the decrease

Chapter 4. Numerical Experiments 16

(a) Global maximum
(b) Global maximum after local

optima
(c) Local optima

Figure 4.3: Likelihood plots for proper functioning

in the likelihood is so small (see Fig. 4.4) that I believe the algorithm is running prop-

erly. Another possible reason for this decrease can be the approximation done in the

W update rule (See Appendix A.2). Since it is an approximated update rule, we have

no more an exact EM-Algorithm, and therefore, the non-decreasing likelihood outcome

could not happen. It is important to notice that this concrete initialization is almost

impossible to happen randomly, but it has to be set artificially.

Figure 4.4: Likelihood decrease due to exceptional initialization

In general, the algorithm is able to learn all the bars, which is the desired output, in

91 ± 5% of the runs when no ET is applied and in 84 ± 5% when ET is applied for 50

runs, seeming not to be a big difference in the success rate when the approximation is

applied.

To show the final result of the learning process, two W learned by the algorithm in two

different runs are shown in Figure 4.5: the Figure 4.5a shows the learned W when the

algorithm converges after learning all the bars, which is almost indistinguishable to the

ground truth W value shown in Fig. 4.2, although the relative grey scale has to be

Chapter 4. Numerical Experiments 17

reminded. On the other hand, Figure 4.5b shows the final W learned in a run where the

algorithm does not converge to the desired result but to a local optima. The usual case

happens by a superposition of some bars while the others are learned correctly.

(a) W of global maximum (b) W of local optima

Figure 4.5: Final results of the learned W

Finally, the evolution of the parameters W and π with the number of iterations is shown

in the figures 4.6 and 4.7, respectively. The evolution chosen to be shown is the one in

which the algorithm converges after a small number of iterations, as it is, by far, the

most common case and also the most representative one.

Figure 4.6: Evolution of W with the number of iterations

It needs to be reminded that, while the evolution of the W is practically independent of

the application of expectation truncation, π’s evolution is not. Therefore, two figures are

shown, one for a process in which expectation truncation is not applied (Figure 4.7a),

Chapter 4. Numerical Experiments 18

(a) Evolution of π vs. N. of It. (No ET) (b) Evolution of π vs. N. of It. (ET)

Figure 4.7: Final results of the learned W

where the convergence takes place at the early iterations, and the other one for a process

in which expectation truncation is applied (Figure 4.7b), having a convergence at the

last iterations due to the condition implemented for the learning of π (See Subsection

3.2.3).

4.2 Handwritten digits

Although it was not requested in the thesis goal, I decided to run the algorithm with

some realistic data as input to check its performance. However, The real data is taken

from the MNIST database of handwritten digits, composed of 60000 preprocessed images

of 28x28 pixels. In my thesis, for simplicity only two digits are used; 1 and 7, chosen

because of their similarity. Because of computation capacity , the number of data points

is reduced to a total amount of 6500 data points with a normalized maximum pixel

value of 10, as in the previous eight test bar. In figure 4.8 some random data points are

shown.

The number of hidden units is chosen to be H = 16, the initialization of W is again

uniform random between 0 and 1 and the algorithm is run over 60 iterations with the

expectation truncation approximation. The W learned is shown in the figure 4.9:

In the figure it can be noticed that the algorithm learns holistic representations (whole

digits), instead of the expected parts-learning of NMF, which is of course not the desired

output but still a good result. This typical NMF parts learning may be be seen in a

couple of basis functions which are made of only one stroke of the digits, but they are still

too dim to be considered a good learning. Nevertheless, the objective of this numerical

experiment is not to fully learn the basis functions but to check whether the algorithm

could perform some correct learning with real data, which it indeed does.

Chapter 4. Numerical Experiments 19

Figure 4.8: Random sample of data points (digits)

Figure 4.9: Learned W for handwritten digits

Chapter 5

Conclusions

In this bachelor thesis I have investigated a probabilistic generative model for unsuper-

vised learning for non-negative data, that can be considered as a simplification of the

Standard NMF. We use a Bernoulli probability distribution for the hidden units, yield-

ing a simplified probabilistic model.

An EM Algorithm is used to learn the parameters of the model by maximizing the like-

lihood of the data. I have derived the update rules for these parameters according to

this EM Algorithm and implemented them in a computer algorithm.

To implement them, first an exact approach and later a simple approximation one (to

make possible tractable algorithms) have been taken, emphasising the advantages and

disadvantages of both methods.

The learning algorithm has later been tested on artificial data (eight bars test) with

good results, resulting in an operating algorithm that learns correctly the parameters

in a high percentage of the cases, although not optimal, since no more advanced imple-

mentations have been tried taking account the scope of a bachelor thesis.

Finally, I run the algorithm on handwritten digits just to check how it works with real

data with no special implementation for it. The expected behaviour in NMF (parts

learning) is not observed but rather holistic representation learning occurs, being any-

way a good sign because it shows the algorithm is applicable to real data.

20

Appendix A

Complete Derivation of the

Update Rules

In this Appendix the update rules for the parameters in the M-Step will be derived

completely.

The derivation of the update rule for W was given to me by my supervisor, since this

derivation was considered to be out of the scope of this bachelor thesis.

A.1 Derivation for π

Derivation of the update rule for π is made by setting the derivative of Q(Θ) w.r.t. π

equal 0.

∂

∂π
Q(Θ)

!
= 0

Substituting the value of Q(Θ), we obtain:

∂

∂π

[∑
n

∑
~s

qn
(
~s,Θold

)[∑
d

[
y

(n)
d log(a)− a− log

(
y

(n)
d !
)]

+
H∑

h=1

(
sh log(π)+(1−sh) log(1−π)

)]] !
= 0

21

Appendix A. Complete Derivation of the Update Rules 22

∑
n

∑
~s

qn
(
~s,Θ

) H∑
h=1

[
∂

∂π
sh log(π) + (1− sh) log(1− π))

]
!

= 0

∑
n

∑
~s

qn
(
~s,Θ

) H∑
h=1

[
sh

1

π
+ (1− sh)

1

1− π
(−1)

]
!

= 0

∑
n

∑
~s

qn
(
~s,Θ

) H∑
h=1

[sh(1− sh)− π(1− sh)]
!

= 0

∑
n

∑
~s

qn
(
~s,Θ

) H∑
h=1

(sh − π)
!

= 0

⇒
∑
n

∑
~s

qn
(
~s,Θ

)
|~s | =

∑
n

∑
~s

qn
(
~s,Θ

)
πH

where

|~s | :=
H∑

h=1

sh

Therefore, the update rule for π as follows :

πnew =
1

N

∑
n

∑
~s

qn
(
~s,Θ

) |~s |
H

A.2 Derivation for W

Derivation of the update rule for W is made by setting the derivative of Q(Θ) w.r.t. W

equal 0.

∂

∂Wd′h′
Q(Θ)

!
= 0

Substituting the value of Q(Θ), we obtain:

∂

∂Wd′h′

[∑
n

∑
~s

qn
(
~s,Θold

)[∑
d

[
y

(n)
d log(a)− a− log

(
y

(n)
d !
)]

+
H∑

h=1

(
sh log(π)+(1−sh) log(1−π)

)]] !
= 0

Appendix A. Complete Derivation of the Update Rules 23

∑
n

∑
~s

qn
(
~s,Θ

) ∂

∂Wd′h′

∑
d

[
y

(n)
d log(a)− a− log

(
y

(n)
d !
)] !

= 0

∑
n

∑
~s

qn
(
~s,Θ

) ∂

∂Wd′h′

(∑
d

y
(n)
d log

(∑
h

Wdhsh

)
−
∑
d

∑
h

Wdhsh

)
!

= 0

∑
n

∑
~s

qn
(
~s,Θ

)∑
d

(
y

(n)
d · 1∑

h

Wdhsh
· ∂

∂Wd′h′

(∑
h

Wdhsh

))
− ∂

∂Wd′h′

(∑
d

∑
h

Wdhsh

) !
= 0

∑
n

∑
~s

qn
(
~s,Θ

)∑
d

y
(n)
d · 1∑

h

Wdhsh

∑
h

shδh,h′δd,d′ −
∑
d

sh′δh,h′δd,d′

 !
= 0

∑
n

∑
~s

qn
(
~s,Θ

)y(n)
d′ ·

sh′∑
h

Wd′hsh
− sh′

 !
= 0

∑
n

∑
~s

qn
(
~s,Θ

)
· sh′ ·

y
(n)
d′ −

∑
h

Wd′hsh∑
h

Wd′hsh

 !
= 0

An approximation of W update rule can be derived by neglecting the denominator in

the previous equation:

∑
n

∑
~s

qn
(
~s,Θ

)
· y(n)

d′ · sh′
!

=
∑
h

Wd′h

∑
n

∑
~s

qn
(
~s,Θ

)
· sh′ · sh

∑
n

y
(n)
d′ 〈sh′〉qn(~s,Θ)

!
=
∑
h

Wd′h

∑
n

〈sh′ sh〉qn(~s,Θ)

Changing to matrix notation:

∑
n

~y (n)〈~sT 〉qn(~s,Θ)
!

= W
∑
n

〈~s~sT 〉qn(~s,Θ)

The update rule for W is derived as follows:

Wnew =
(∑

n

~y (n) 〈~sT 〉qn(~s,Θ)

)(∑
n

〈~s~sT 〉qn(~s,Θ)

)−1

Bibliography

[1] Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-

negative matrix factorization. Nature, 401(6755):788–791, 1999. URL http:

//www.columbia.edu/~jwp2128/Teaching/W4721/papers/nmf_nature.pdf.

[2] Marc Henniges, Gervasio Puertas, Jörg Bornschein, Julian Eggert, and Jörg Lücke.

Binary sparse coding. In Latent Variable Analysis and Signal Separation, pages 450–

457. Springer, 2010. URL http://fias.uni-frankfurt.de/~bornschein/papers/

HennigesEtAl_lva2010.pdf.

[3] Jörg Lücke and Julian Eggert. Expectation truncation and the benefits of preselection

in training generative models. The Journal of Machine Learning Research, 11:2855–

2900, 2010. URL http://www.jmlr.org/papers/volume11/lucke10a/lucke10a.

pdf.

24

http://www.columbia.edu/~jwp2128/Teaching/W4721/papers/nmf_nature.pdf
http://www.columbia.edu/~jwp2128/Teaching/W4721/papers/nmf_nature.pdf
http://fias.uni-frankfurt.de/~bornschein/papers/HennigesEtAl_lva2010.pdf
http://fias.uni-frankfurt.de/~bornschein/papers/HennigesEtAl_lva2010.pdf
http://www.jmlr.org/papers/volume11/lucke10a/lucke10a.pdf
http://www.jmlr.org/papers/volume11/lucke10a/lucke10a.pdf

	Declaration of Authorship
	Acknowledgements
	Contents
	1 Introduction
	2 Generative Model
	3 Maximum Likelihood/ Expectation Maximization
	3.1 EM Algorithm
	3.1.1 E-Step
	3.1.2 M-Step. Derivation of the update rules
	3.1.3 Log-Likelihood Computation

	3.2 Specifics of the algorithm
	3.2.1 Exp and Log simplification
	3.2.2 Computation of Expectation Values
	3.2.3 Approximation schemes: Expectation truncation

	4 Numerical Experiments
	4.1 Linear bars test
	4.2 Handwritten digits

	5 Conclusions
	A Complete Derivation of the Update Rules
	A.1 Derivation for
	A.2 Derivation for W

	Bibliography

