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Abstract 
Immobilization of proteins in a functionally active form and proper orientation is fundamental 

for effective surface-based protein analysis. A new method is presented for the controlled and 

oriented immobilization of ordered monolayers of enzymes whose interaction site had been 

protected using the protein ligand. The utility of this method was demonstrated by analyzing the 

interactions between the enzyme Ferredoxin-NADP+ Reductase (FNR) and its redox partner 

Ferredoxin (Fd). The quality of the procedure was deeply evaluated through enzymatic assays 

and Atomic Force Microscopy. Single-Molecule Force Spectroscopy revealed that site-

specifically targeted FNR samples increased the ratio of recognition events 4-fold with regard to 

the standard randomly-modified FNR samples. The results were corroborated using the 

cytochrome c reductase activity that gave an increase on surface between 6-12 times for the site-

specifically targeted FNR samples. The activity in solution for the enzyme labelled from the 

complex was similar to that exhibited by wild-type FNR while FNR randomly tagged showed a 

3-fold decrease. This indicates that random targeting protocols affect not only the efficiency of 

immobilized proteins to recognize their ligands but also their general functionality. The present 

methodology is expected to find wide applications in surface-based protein-protein interactions 

biosensors, single molecule analysis, bioelectronics or drug screening. 
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Introduction  

Protein immobilization is a decisive step in the surface-based analysis consisting of protein-

protein (or ligand) interactions. In the last years many research lines have been devoted to 

establish stable and strong protein attachment onto different kinds of surfaces to develop 

microarray-based proteome analysis (MacBeath and Schreiber, 2000; Tao and Shu, 2006; Kwon 

et al., 2006; Rodriguez-Devora et al., 2011); single molecule studies (Deniz et al., 2008; Roy et 

al., 2008); biochips (Hong et al., 2005; Borisov and Wolfbeis, 2008); drug screening (Cooper et 

al., 2002; Sevecka and MacBeath, 2006; Wolf-Yadlin et al., 2009) and bioelectronics (Willner 

et al., 2000; Heller, 2004; Amstrong, 2005; Leger and Bertrand, 2008). Due to their versatility 

and functions, proteins are the most generally used biomolecules in technological devices. 

Among protein immobilization protocols, those designed for antibodies and enzymes stand out. 

It is crucial to develop methods for the adequate biofunctionalization which will confer the 

appropriate features for biotechnological and biomedical applications. Several strategies for 

linking antibodies onto surfaces have been described, a part of them anchoring the molecules in 

an oriented manner through the Fc regions, leading to a more efficient interaction with the 

antigens (Jung et al., 2008; Ikeda et al., 2009; Kausaite-Minkstimiene et al., 2010). 

Nevertheless, only a few strategies for linking proteins in an oriented manner have been 

proposed at the present time, based on electrostatic interactions (Wang et al., 2006), through the 

integration on lipidic layers (Gutierrez-Sanchez et al., 2011), or introducing specific residues 

through site-directed mutagenesis (Huang et al., 1997; Hernandez and Fernandez-Lafuente, 

2011). 

Enzymes are versatile biocatalysts that offer high stereo-specificity towards chemical and 

biochemical reactions providing essential products for living organisms. However, their lack of 

long-term stability together with the difficulty to recover and recycle them when used in 

solution, have limited their applications. These problems may be overcome by the 

immobilization of the enzymes onto surfaces (Bornscheuer et al., 2003). The main challenge in 

enzyme immobilization is maintaining the catalytic activity, that is, to avoid their denaturation 

and controlling the proper orientation of the immobilized enzyme to ensure the access of the 

enzyme substrate (or ligand) to the active or binding site (Garcia-Galan et al., 2011). Most 

immobilization procedures do not actively control the orientation of the enzymes, hence making 

inevitable the burying and inaccessibility of their active site. This could account for the dramatic 

decrease in activity often observed when an enzyme is immobilized on a surface. 

Atomic Force Microscopy (AFM) is the only microscopic technique able to visualize 

biomolecules at the single-molecule level with sub-nanometer accuracy in liquid (Binning et al., 

1986). It allows studying the topology, adhesion, elasticity, association processes, dynamics and 

other properties of biological samples. In the Single-Molecule Force Spectroscopy (SMFS) 



mode of an AFM system, the cantilever deflection is recorded as a function of the vertical 

displacement of the piezo scanner. SMFS offers the possibility of performing quantitative 

analysis of ligand–receptor interactions allowing addressing questions about the nature and 

magnitude of forces and the related binding energy landscape (Florin et al., 1994; Merkel et al., 

1999). The AFM probe consists of a microfabricated cantilever that behaves as a spring and 

ends in a sharp nanotip that can be moved in three dimensions with subnanometer accuracy 

thanks to several piezoelectric scanners. The tip is brought near the sample surface so that forces 

acting on the tip cause the cantilever to bend. A laser beam is aimed at the top of the cantilever 

and reflected onto a photodiode. By attaching one of the interacting molecules to the AFM tip 

and the other molecule to the sample surface, the molecular binding forces can be quantified 

from the positive binding/rupture events. Jumping mode (JM) is a force-scan based AFM mode 

where simultaneous topographic and tip–sample adhesion maps are acquired (de Pablo et al., 

1998). This approach can be operated in such a way that the unbinding forces between receptor 

molecules on a sample and a ligand suitably attached to the AFM tip can be obtained from the 

adhesion images (Sotres et al., 2008). 

The protein ligand, Ferredoxin (Fd), that binds specifically to the surface of the enzyme 

Ferredoxin-NADP+ reductase (FNR), was used to prove the general applicability of the strategy 

here proposed and its utility for the development of more efficient bioactive surfaces. In the 

cyanobacterial physiological reaction two Fd molecules interact sequentially with FNR for the 

step-wise transfer of two electrons (Jelesarov and Bosshard, 1994). In iron-deficient cultures Fd 

cannot be synthesized and is replaced by the FMN-containing Flavodoxin (Fld) that is also a 

redox partner for FNR (Rogers, 1987; Fillat et al., 1988). Fld binds the same interaction surface 

in FNR and achieve the same role as Fd (Martínez-Júlvez et al., 1999). Finally, reduced FNR 

will be used to reduce NADP+ to NADPH (nicotinamide adenine dinucleotide phosphate). The 

formation of a transient complex between Fd and FNR is required for the electron transfer, and 

extensive studies have been reported to characterize such protein–protein interaction (Medina 

and Gómez-Moreno, 2004; Peregrina et al., 2010; Peregrina et al., 2012).  

Most of the immobilization strategies described in the literature consists of long procedures 

comprising many preparatory steps that are optimized for a specific functionalization of the 

protein surface. Nevertheless, efficient, easy and universal methodologies for the 

immobilization of functional and oriented proteins onto surfaces are still lacking. Herein, we 

propose the functionalization of the protein-protein (or ligand) complex, followed by a one-step 

separation and immobilization on a flat surface. The strategy takes advantage of the reversible 

interactions between the protein and the ligand. By using this strategy, the binding site of the 

enzyme is protected from crosslinking thus allowing a site-directed covalent attachment facing 

the binding site upward to the ligand, leading to a more efficient molecular recognition and 

interaction. In the present paper, the functionality and proper orientation of FNR to Fd is 



demonstrated through the cytochrome c reductase activity assay, SMFS and molecular 

recognition imaging. 

 
MATERIALS AND METHODS 

 
Protein labelling and separation of tagged species 

Recombinant FNR, Fld and Fd proteins from Anabaena were purified from E. coli cultures 

containing recombinant DNA as previously described (Fillat et al., 1991; Martínez-Júlvez et al., 

2001). FNR was modified on its surface in two different conditions: in the first case, the FNR 

enzyme was mixed with Fd in a molecular ratio of 1:2. In the other case the solution contained 

only FNR. In both cases the protein solutions were incubated for 30 min at room temperature 

with 15 μl of 20 mM sulfosuccinimidyl 6-(3'-[2-pyridyldithio]-propionamido) hexanoate (Sulfo-

LC-SPDP; Pierce) in order to form stable amide bonds through the lysine residues of proteins 

and the amine-reactive N-hydroxysuccinimide (NHS) ester of the heterobifunctional crosslinker. 

This reaction produces tagged-species of the FNR:Fd complex, and the free enzyme FNR, 

respectively, carrying all species a C9-long arm containing a pyridyl-dithiopropionyl reactive 

group (PDP). Reaction on complex FNR:Fd will yield FNR molecules whose surfaces will be 

coated by the PDP tag, except in the interface area covered by the protein partner. The same will 

occur for the Fd molecule from the complex (these species will be called throughout the paper 

FNRc-PDP and Fdc-PDP, respectively). In the second case, when FNR was incubated alone with 

the crosslinker, the protein surface will be randomly-coated by the tag, including the Fd-

interaction area (this species will be called throughout the paper FNRr-PDP). The complex 

[FNRc:Fdc]-PDP was treated with 500 mM NaCl for 10 minutes at 4 ºC to favour complex 

dissociation. [FNRc:Fdc]-PDP was dissociated in FNRc-PDP and Fdc-PDP and isolated by size 

exclusion chromatography using a Superdex 75 column (GE Healthcare) in 50 mM Tris-HCl, 

250 mM NaCl, pH 8. FNRr-PDP was purified using Sephadex G-25 desalting chromatography 

(GE Healthcare) in 50 mM Tris-HCl. The purity of fractions was checked by SDS-PAGE with 

gradient 8-25 % in a PhastSystem (GE Healthcare) using a Low Molecular Weight Market kit as 

reference (GE Healthcare). 

 

Immobilization of FNR on mica 

Cleaved muscovite mica pieces (Electron Microscopy Sciences) were exposed to vapours of 3-

Aminopropyl)triethoxysilane (APTES; Sigma-Aldrich) and N,N-Diisopropylethylamine 

(Hünig’s base; Sigma-Aldrich) in a ratio of 3:1 in volume for 2 h under argon atmosphere. 20 

mM Sulfo-LC-SPDP in PBS-EDTA-azide (phosphate buffered saline; 

ethylenediaminetetraacetic acid; Pierce) was added to the aminated mica for 50 min at room 

temperature. The exposed PDP groups were reduced to sulfhydryl groups by adding freshly 



prepared 150 mM dithiothreitol (DTT; Sigma-Aldrich) in PBS-EDTA-azide stirring for 30 min 

at 4 ºC. FNRc-PDP or FNRr-PDP, carrying a disulfide group in the PDP tag, were incubated 

with the thiol–containing mica pieces and stirred for 18 hours at room temperature to allow the 

formation of disulfide bonds between them. Unbound protein was removed washing three times 

with PBS, 0.2 % Tween 20 (Panreac), 0.1 % sodium dodecyl sulphate (SDS; Panreac) for 30 

min under mild stirring. Different concentrations of the tagged proteins were used in order to 

get the adequate amount of FNR molecules on the mica surface to form a saturated monolayer.   

 

AFM tip functionalization 

Silicon nitride AFM cantilevers were functionalized with maleimide-terminated flexible 

polyethylene glycol (PEG) linkers (MW 3400) (Novascan Technologies Inc, Ames, USA). The 

modified cantilevers had nominal spring constants of 0.01 and 0.03 N/m (V-shaped) and 0.02 

N/m (rectangular shape) with integrated pyramidal tips. Cantilevers were calibrated using the 

thermal noise method (Hutter and Bechhoefer, 1993). Fdc-PDP was treated with 50 mM DTT 

for 30 minutes at room temperature in order to expose thiol groups on the Fd surface. The 

cantilevers were incubated with 42 μM thiolated-Fd in PBS-EDTA, pH 7.0, for 1 hour and 

washed three times to remove the excess of reactants. In this case only tagged-Fd isolated from 

the previously formed [FNRc-Fdc] complexes was used.   

 

Force Spectroscopy 

AFM measurements were performed with a Cervantes Fullmode SPM (Nanotec Electrónica 

S.L, Tres Cantos, Spain). The system was used in the SMFS mode to obtain force-distance 

cycles for Fd-cantilever/FNR-mica interactions. Force-distance curves were obtained applying a 

voltage to the z-piezo at a velocity of 1.9 µm s-1. Several hundred curves were taken for each 

type of sample. Negative control experiments were carried out blocking available FNR sites by 

incubating the sample with excess free Fld in a concentration of 706 μM for 15 minutes yielding 

a significant decrease in the binding interaction between the cantilever and the sample surface.  

 

Atomic Force Microscopy Imaging 

AFM images were taken in the Jumping Mode (JM) operation that allows mapping the 

topography and adhesion of the sample simultaneously (de Pablo et al., 1998). The forces 

applied to the sample are precisely controlled preventing soft samples to be damaged (Sotres et 

al., 2007). V-shaped silicon nitride cantilevers with integrated pyramidal tips and spring 

constants of 0.01-0.03 N/m were employed (Bruker Probes, MSCT-Micro lever Probes). Levers 

cleaning and image obtaining with the JM was carried out as described elsewhere (Sotres et al., 

2007). Image processing was performed with WSxM software (Horcas et al., 2007). 

Measurements were conducted in PBS at 20 °C. Recognition Images were taken using JM at 



low applied forces as previously described (Sotres et al., 2008) with the Fdc-functionalized tips. 

In order to appreciate molecular recognition at the single molecule level FNR samples with 

separated molecules were required. For this purpose, different concentrations of FNR were 

incubated on mica until the adequate results were obtained. Blocking of the FNR interaction 

sites in the sample was made in the same way as for SMFS measurement controls. Images of the 

blocked samples were also taken with JM. 

 

Steady-State Enzymatic Assays 

The functionality of the tagged-proteins both immobilized and in solution was verified using the 

cytochrome c reductase activity. In this assay an electron transfer process takes place between a 

molecule of NADPH and one of cytochrome c through the formation of a FNR:Fd or FNR:Fld 

complex (Medina et al., 1998).  This activity was assayed with the two types of PDP-labelled 

enzyme (FNRc-PDP and FNRr-PDP). The activity of FNR immobilized on mica was measured 

using a Synergy HT Sheet Reader system (Biotek). The standard reaction mixtures contained, in 

a final volume of 1.165 mL, 100 µM Fld, 0.71 mM horse cytochrome c and 190 µM NADPH in 

50 mM Tris-HCl, pH 8.0. Assays were performed in 6-well plates with immobilized-FNR 2.0 x 

2.0 cm mica pieces at the bottom. One of the 6 wells contained no mica while in other a treated 

but without FNR mica piece was placed, using both as references. All premixed reagents, except 

NADPH, were added to each well and, after 60 s, 110 µL of a 2 mM NADPH solution were 

added in each one. After 5 seconds of stirring, the absorbance at 550 mM was recorded every 10 

s on the different mica sheets until the redox reaction finished. An increase of absorbance was 

observed in all wells where the reaction took place. Tagged-enzymes were also assayed in 

solution using quartz cuvettes adding 4 nM FNR in the same final volume and reagent 

concentrations as above using a Cary 100Bio spectrophotometer (Varian). Control activity 

measurements were also made using a final concentration of 4 nM wild-type (wt) FNR. 

Reagents were purchased from Sigma-Aldrich. 

 

Estimated quantification of immobilized FNR 

An estimation of the amount of enzyme molecules (36 kDa globular protein) that can be 

immobilized on a flat mica surface, forming a monolayer, was worked out considering that the 

FNR molecule diameter (taken from PDB 1QUE) is 61 Å and that 70 Å is the intermolecular 

average distance between two FNR molecules in these samples (obtained from topography 

AFM images from saturated samples). With all these premises the estimated FNR amount 

immobilized on a 2.0 x 2.0 cm mica piece was calculated to be 0.139 μg. 

 
 
Results 



 

Protein tagging and functionalization  

For the covalent immobilization of FNR on the mica surface, both elements were functionalized 

with the same heterobifunctional crosslinker. Previously, the mica sheets were aminated with 

APTES in gaseous phase to obtain a monolayer of reactive amino groups (Lyubchenko et al., 

2009). These groups reacted with the SPDP crosslinker, generating a thiol layer after a 

reduction treatment. Incubation with the enzyme produced homogeneous layers of molecules 

via disulfide bonds. FNR was modified by the SPDP reagent either in the presence of the 

protein partner Fd, in which case the interaction area would be protected, and in the absence of 

the iron protein, that would lead to an unspecifically modified protein. Figure 1 shows the 

results for the separation in a single chromatography step of the tagged proteins obtained after 

modification while forming a complex. The identity and purity of both FNRc-PDP and Fdc-PDP 

was checked by SDS-PAGE (see inset in Figure 1). FNRr-PDP was collected pure after 

desalting through a Sephadex G-25 matrix (results not shown). 

 

Steady-State Enzymatic Assays of free and immobilized FNRs  

The different mica samples carrying bound FNR were assayed using the cytochrome c reductase 

activity assay upon addition of NADPH. The preparation of FNR-functionalized mica pieces 

required the previous calibration of the optimal amount of enzyme to be used during the 

immobilization procedure. Results in Figure 2 indicate that the highest enzymatic activity of the 

functionalized mica was obtained when approximately 1 μg of FNRc-PDP per cm2 was used. 

Experimental quantification of total amount of immobilized enzyme on mica was analyzed by a 

microBCA assay (results not shown) by taking into consideration the amount of FNR used in 

immobilization and subtracting the quantity not fixed on mica and released during the washing.  

This methodology did not result adequate because the free sulfhydryl groups on the surface of 

mica interfere with the cupper ions present in the test producing an overestimation of the 

sample. Therefore, the estimated quantification of immobilized enzyme was performed as 

described in Materials and Methods. Table I shows the parameters obtained for the cytochrome 

c reductase activity with different amounts of incubated enzyme. Fld was used as electron 

acceptor in the cytochrome c reductase activity assays. The use of Fld, instead of Fd, is due to 

the easier availability to this protein and to the fact that both proteins interact at the same site in 

FNR (Martínez-Júlvez et al., 1999). It is observed that the enzymatic activity increases as higher 

amounts of FNR are incubated on the functionalized mica sheets reaching a maximum value of 

around 1-3 µg FNR. This is an interesting result since it probes the functionality of the enzyme 

bound by this procedure. Further increase in the amount of enzyme produces lower activities, 

suggesting that immobilization of higher amounts of enzyme on the mica sheets produces steric 

hindrance on the enzyme. This could be due to the higher accessibility of the immobilized 



enzyme to interact with protein components of the assay when the immobilized enzyme is far 

away from other molecules on the surface. In Table I the activity of the FNRr-PDP immobilized 

on the mica surface is also presented. These values are clearly lower than those obtained for 

FNRc indicating the inefficiency of the random strategy.  

To check the integrity of the tagged species of FNR, the cytochrome c reductase activity in 

solution of these FNR species was compared with that obtained for the wt enzyme as a 

reference. The activity was measured both using a spectrophotometer and also a sheet reader. 

The results were similar in both cases. Wt-FNR and FNRc-PDP enzymes exhibited turnover 

numbers (TN) values of 17.3 and 18.3 s-1, respectively, while FNRr-PDP showed a rate of 5.5 s-

1. All measurements were performed with 4 nM enzyme that is the concentration normally used 

for measuring FNR activity in solution (Medina et al., 1998). These results not only ensure the 

functionality of FNRc-PDP, but also assert that preserving the interaction surface of FNR free of 

the covalent tag is a requirement for full activity of the enzyme. On the contrary, this result 

shows that the random labelling strategies decrease the capabilities of the enzymes to recognize 

and bind efficiently its protein partners in a major proportion. In this particular enzymatic 

system, the turnover number using the random labelled FNR with respect to the FNR tagged 

from the complex decreases by more than 3 times. 

 

AFM imaging 

AFM was used as a tool to detect the results of the immobilization procedure of FNR on the 

surface of a mica sheet at the molecular level. The topography images showed that the enzyme 

forms a homogeneous monolayer bound to the thiolated surface (Figure 3c). Moreover, the 

images taken on the APTES-mica samples gave heights of around 0.6 nm (Figure 3a, b). It 

agrees with previous published data suggesting lengths for APTES attached to mica in aqueous 

media of 0.6-0.9 nm (Volcke et al., 2010) and 0.6 nm for non-hydrolyzed APTES (Zhu et al., 

2012). It can be appreciated that the mica sheets are densely covered by hydroxyl groups 

although certain areas of the surface show empty spaces which indicates that the reaction has 

not modified the surface. The thiolated mica showed also homogeneous layers, and the height 

increases to approx. 1 nm in the topography image (Figure 3c, d). Topology images of the 

surface functionalized with FNRc-PDP show a height between 8-14 nm (Figure 3e, f). Very 

similar results were obtained for FNRr-PDP samples (not shown). The height coincides with the 

expected length for the product of the covalent reaction between FNR-PDP and the thiolated 

APTES formed on the mica surface. It is worth to mention that the layer, as imaged by AFM, is 

not regular but it rather displays mounts and valleys randomly distributed over the surface. 

 

Force spectroscopy  



The total adhesion peaks generated during each Force-distance curve either originates from a 

specific interaction (formation of a FNR–Fd bond) or from a non-specific one of any other 

origin. An important advance in SMFS came with the use of spacers that increased the length 

and flexibility of the sensor, allowing the ligand to freely move around the tip favoring receptor 

recognition and identification of the specific forces (Hinterdorfer et al., 1996). Among them, 

PEG tethers present an especially attractive system because of their feature-rich stretching 

profile in water, so that these specific peaks show a nonlinear parabolic-like shape which is 

characteristic of the stretching of a PEG linker. The flexible tether sustains the increasing force 

until the complex dissociates, as indicated by a sudden jump to zero normal force. This occurs 

at a certain force value (unbinding or rupture force) and tip–sample distance (rupture length). In 

contrast, in non-specific adhesions the contact curve extends towards negative values keeping 

the same slope, which indicates that whatever the origin of this interaction is, the bare tip 

remains in contact with the surface. Moreover, this excludes participation of the sensor. In our 

system, once the FNR molecules are immobilized onto the AFM liquid chamber and the 

cantilever probe is functionalized with Fdc, force spectroscopy experiments can be performed 

since this is an appropriate technique for studying the interaction forces. Figure 4a shows a 

typical mica-FNRc:Fdc-tip force scan obtained when the functionalized tip of an AFM 

microscope is approached to an interacting surface. Departing from the 0-force point, the tip can 

be moved closer to the sample with an increase in force (dashed line). Once the tip reaches the 

surface, pushing it further towards the sample requires higher (positive) forces since a collapse 

between the two molecules is taking place. Retraction of the tip produces an increase in the 

(negative) force that goes to an unbinding force of 26 pN (fu) (solid line). Then a sharp jump is 

observed indicating that a sudden release has occurred between the tip and the sample. That is 

due to the rupture of the bond between the two interacting molecules. This force can be 

attributed to a specific event that occurs at a specific rupture length (lu) coincident with the 

maleimide-PEG linker stretched size used to attach Fd to the tip. Furthermore, the extension 

trace of the curve preceding the jump-off-contact coincides with the stretching curve of a 

flexible PEG spacer that follows a worm-like chain model (Marko et al., 1995).   

In Force spectroscopy experiments the efficiency of the binding between the tip and the sample 

can be determined from the number of specific rupture events that occur after typically several 

hundred approaches. In the analysis, only those force curves that showed at least a specific 

rupture event were taken as positive, being those peaks that meet the specific conditions 

described in the preceding paragraph, meanwhile approaches are the total curves registered. The 

fact that the force curves taken on samples blocked with Fld gave peaks –though in a 

lower proportion- at the same rupture length and rupture force that the taken on non-

blocked samples also ensures the specificity of the measurements. Figure 4b shows the 



summary of the force spectroscopy results obtained approaching Fdc-functionalized tips to FNRc 

and FNRr samples on mica at a certain loading rate, 19.5 nN s-1. The conclusion is that 61 % of 

the approaches between the tip and the oriented samples produced specific rupture events. The 

results clearly show that this number decreases drastically when the randomly immobilized 

FNR samples are used. In this case only a 17 % of the approaching events are observed to 

produce binding. This data is similar to those obtained for the typical SMFS measurements 

where standard functionalization protocols are used. This is an interesting result since it 

provides direct evidence that the AFM measured force comes from the interaction between the 

two partner proteins and also that this is an specific binding produced through the recognition of 

the specific area in FNR that is protected by Fd during the preparation of the FNRc-PDP species. 

Moreover, Figure 4b also indicates that the efficiency of the binding events obtained for the 

FNRc-mica samples drops to a level similar to that of the randomly modified sample when the 

site for that interaction is blocked (approx. 14 %) when the FNRc sample is incubated with a 

high excess of the partner protein, Fld.  
 

Molecular Recognition Imaging  

Images of the recognition events between the two interacting proteins can be obtained directly 

by AFM scanning. Using a Fd- modified tip and operating in the Jumping Mode, it is possible to 

obtain simultaneously both a topography image, that corresponds to the scanning of the 

deposited sample profile, and an adhesion image, taken from the points where maximum 

adhesion force between tip and sample are obtained. This is based on the fact that non-specific 

tip-sample interactions are minimized when operating in a repulsive regime at low applied 

forces (Sotres et al., 2008). This produces images showing mainly the specific forces between 

the molecules in every pixel. Topographical images of Figure 5 show several features that can 

be attributed to single FNR molecules. The measured protein diameter is around 25 nm, much 

larger than the known 6 nm diameter of FNR. This discrepancy is due to the tip dilation effect, 

always present in AFM imaging. Our results show that the adhesion images correlate quite well 

with the topography images in the case of the oriented samples (Figure 5a, b). There is a close 

correspondence between the observation of a molecule in the topology map and the 

simultaneous increase of the adhesion force at the same position. As it is clear from the 

topographic image of Figure 5a, tip functionalization does not prevent the observation of the 

protein molecule and molecular resolution hardly suffer from this functionalization when 

compared with a bare tip. When these samples are blocked with Fld the adhesion images show 

an important decrease in the number of specific events (Figure 5c, d) in a similar extension to 

the images corresponding to the randomly tagged enzymatic samples (Figure 5e, f). It is clear 

that the high adhesion peaks on top of the molecules seen in the topography map of Figure 5c 

disappear after blocking, as it is shown in its respective simultaneous adhesion map in Figure 



5d. This is indicative of the specificity of the measurements. The larger size exhibited by the 

molecular features in Figure 5c is due to the addition of Fld on the immobilized sample which 

forms complexes FNR:Fld, bigger than single FNR molecules imaged in a and e. The features 

of both maps are a little displaced because they are produced by two different sensors. Adhesion 

is probed by the flexible PEG crosslinker that ends in a protein and presents several degrees of 

motion, while the topography sensor is the rigid tip apex. It is also noticeable that the adhesion 

peak width is narrower than the corresponding one in topography. This can be also attributed to 

the smaller size of the sensor probe with regard to that of the tip radius. This effect can cause a 

better resolution of molecules in the adhesion image than the obtained in the corresponding 

topology map. 

 

Discussion 

A strategy for the oriented immobilization of the enzyme FNR towards its protein partner onto 

silicon surfaces in a fully active form has been designed. The procedure takes advantage of the 

reversible character of protein-protein complexes that allows the functionalization of any part of 

the surface of a protein, except the interface area that is protected from crosslinker binding. 

Standard functionalization procedures introduce reactive groups over the whole protein structure 

covering essential interaction surfaces or binding pockets through the modification of important 

residues that could be involved in the recognition process. In the case of enzymes, these massive 

modification procedures not only diminish the probability of proper recognition between partner 

proteins, but also a decrease in the catalytic activity. In this work an enzyme has been 

immobilized in an oriented manner using a covalent procedure that preserves its functionality 

and leads to the assemblage of a homogeneous layer. It has been demonstrated that 

indiscriminate functionalization processes can modify the catalytic site of an enzyme. This 

alternative bio-conjugation process even improves the catalytic properties of enzymes and also 

the number of specific events in SMFS measurements. The same conclusions have been 

evidenced in the adhesion-recognition AFM images using functionalized Fd-tagged tips, 

obtaining an optimum correlation between the features in topography and adhesion images in 

oriented FNR samples. This correlation is pauperized in the cases of coverage with random and 

blocked FNRc samples.  

The conjugation strategy described in this work can be applied as a general methodology for 

those proteins that need to be oriented towards their protein partners with which they form a 

reversible complex. These results illustrate that the procedure described in this paper offers a 

double benefit, on one side it allows the immobilization of enzymes in a functional and oriented 

way, as has been demonstrated by the enzymatic assays and AFM images; on the other side, 

oriented immobilization of molecules becomes a procedure that substantially enhances the 

quality of SMFS experiments to analyze the mechanostability of protein complexes. The quality 



in force spectroscopy measurements is proportional to the ratio of successful events with respect 

to the total number of approaches; so that a higher proportion reduces the error associated to the 

standard measurements when random immobilization procedures are used, producing low 

efficiency ratios of about 5-20 %. In the other hand, by using a force-scan based imaging mode 

as JM and choosing carefully the experimental conditions we have obtained spatially resolved 

ligand unbinding events maps on single enzyme molecules. This method opens the door to the 

development of very sensitive surface biosensors. 

The strategy described here for measuring the interaction forces between proteins forming 

functional transient complexes could allow the correlation between mechanical forces 

stabilizing the complexes and their chemical stability as determined by the equilibrium 

constants. The present work also illustrates that it is possible to detect the binding force between 

two proteins that bind together for exchanging electrons. A reasonable strategy would be to 

compare the affinity of a protein for its partner depending on the state of its interaction surface. 

A non-modified surface would lead to efficient interaction while chemical modification of this 

surface would impede binding.  This is not a straight forward issue but it could be approached 

by comparing the data obtained using alternative partner proteins (Fd and Fld), as well as those 

obtained with large number of protein mutants that our group has generated for biochemical and 

structural studies of protein-protein electron transfer reactions. Further work will be performed 

in this area. 

As a summary, in this work the enzyme FNR was immobilized on a silicon substrate facing up 

the protein ligand recognition surface through decorating the protein complex with a 

crosslinker. Such tagged-proteins were separated from the complex in one-step purification. The 

enzyme was covalently attached to thiolated-mica and showed its capability to form 

homogeneous layers as checked by AFM imaging. The functionality was clearly demonstrated 

by specific activity assays. In such an immobilization, the recognition interface of the enzyme is 

faced toward the solution rather than toward the surface as was evidenced by enzymatic assays, 

SMFS and molecular recognition imaging; all these methods requiring the same specific 

orientation. Analysis of ligand binding using the specific cytochrome c reductase assays 

revealed that oriented enzyme samples resulted in about a 3-fold higher activity in solution and 

in a greater extent on surface, between 6-12 times in some cases and not quantifiable in the most 

of them, than random bound samples. Nanomechanical analysis of Fd binding using SMFS 

revealed that oriented FNR increased also the ratio of recognition events in about a 4-fold 

extension with respect to randomly bound FNR. The strategies for protein immobilization 

usually display a random character, which can produce an important inefficiency in the 

recognition purposes for which they were designed. Efficiency has an increased importance for 

the next future where miniaturization will grow progressively. The proposed methodology can 



be very suitable for more sensitive and selective protein-protein surface-based studies, single 

molecule analysis, biosensors, drug screening and enzyme-based bioelectronics processes. 
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Table I.  Kinetic parameters of FNR-PDP for cytochrome c 
reductase activity 

  Immobilized on mica 
Amount of FNR in 

incubation mixture (μg) 
Activity x104 
(µmols/min) 

TNb  
(s-1) 

FNRc-PDP FNRr-PDP   

0.16a - 1.86 3.2 

 0.15a 0.16  0.3 

0.27a, - 3.14 5.4 

 0.30a 0.51  0.9 

0.74a  4.13 7.1 

1.53  4.36 7.5 

3.05  5.81 10.0 

6.42  4.59 7.9 

10.14  4.82 8.3 

11.67  3.89   6.7 

In solution 
TNc (s-1) 

 No tagged FNRc-PDP FNRr-PDP 

17.3 18.3 5.5 
a  No saturation of FNR onto mica was theoretically achieved  
b Turnover number (TN) values were calculated using an estimation of 3,5 x 10-2 

immobilized μg of FNR per cm2. The measurements are referred to 1 cm2 of a 
mica sheet.  
c TN values obtained with 4 nM of final concentration of FNR 

 
 

 



 
 
Fig. 1. Chromatogram of the separation of the tagged FNRc:Fdc complex through a Superdex 75 column 
eluting with 50 mM Tris-HCl, pH 8, 250 mM NaCl. Absorbance at 278 nm appears as a dash-dot line, at 
458 nm as a continuous line and at 422 nm as a dashed line. SDS-PAGE showing the purity of the 
collected products appears in the inset. Line 1 shows protein markers; lines 2 and 3 show FNRc-PDP at 
different concentrations; lines 4 and 5 show Fdc-PDP at different concentrations. 
 
 
 



 
 
Fig. 2. Cytochrome c reductase activity on FNRc mica samples. Variation of absorbance at 550 
nm per volume for several amounts of incubated enzyme per surface unit. 
 



 
 
Fig. 3. JM AFM topographic images of a) APTES-modified mica and b) profile of the line of 
image in a) showing a height of around 0.6 nm; c) thiolated-modified mica and d) profile of the 
line of image in c) showing a height of around 1.2 nm; e) distribution of FNRc covalently bound 
on mica and f) profile of the line of image in e) showing an average height of around 10 nm. 
The images showing bound FNR randomly tagged are very similar (not shown). 
 
 



 
 
Fig. 4. a) Force curve showing a single specific rupture event for a FNR:Fd complex. Molecules 
are brought into binding contact when the sample is moved upward approaching the tip (dashed 
line). During the down movement retraction is produced and the solid line shows the force 
required for unbinding (fu) that is proportional to the cantilever deflection. The total tether 
length at which unbinding occurs is defined as unbinding length (lu). b) Percentages of rupture 
events in the formation of FNR-Fd complexes. Black bar data obtained using FNRc samples; 
gray bar shows results for FNRr samples; white bars obtained using blocked FNRc samples. 
 
 



 
 
Fig. 5. Simultaneous a) topography and b) adhesion maps of a FNRc sample. Single FNR 
molecules are resolved in the topography map. The high adhesion peaks in the adhesion map are 
due to molecular recognition events. Blocking effect after addition of free Fld into the imaging 
liquid cell is shown simultaneously in c) topography and d) adhesion maps. Recognition is 
blocked as deduced from the lack of adhesion peaks in the adhesion map. Simultaneous e) 
topography and f) adhesion image of a FNRr sample. The z-axis height varies from 0 nm (black) 
to 8 nm (white) in the topography images. The adhesion force scale varies from 0 pN (black) to 
74 pN (white) in the adhesion images. The measurements were taken in PBS using JM with 
functionalized Fd-tips at a scanning rate of 190 pixel s-1. 
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