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Abstract: An Artificial Neural Network (ANN) has been developed to predict the distillate produced
in a permeate gap membrane distillation (PGMD) module with process operating conditions
(temperatures at the condenser and evaporator inlets, and feed seawater flow). Real data obtained
from experimental tests were used for the ANN training and further validation and testing. This
PGMD module constitutes part of an isolated trigeneration pilot unit fully supplied by solar and wind
energy, which also provides power and sanitary hot water (SHW) for a typical single family home.
PGMD production was previously estimated with published data from the MD module manufacturer
by means of a new type in the framework of Trnsys® simulation within the design of the complete
trigeneration scheme. The performance of the ANN model was studied and improved through a
parametric study varying the number of neurons in the hidden layer, the number of experimental
datasets and by using different activation functions. The ANN obtained can be easily exported to be
used in simulation, control or process analysis and optimization. Here, the ANN was finally used to
implement a new type to estimate the PGMD production of the unit by using the inlet parameters
obtained by the complete simulation model of the trigeneration unit based on Renewable Energy
Sources (RES).

Keywords: artificial neural networks; machine learning; trigeneration; desalination;
membrane distillation

1. Introduction

Fresh water and energy are closely related issues. Both are critical and mutually dependent
resources, especially in dry and/or isolated areas. Freshwater scarcity is a major challenge facing
modern societies [1], as well as the sustainable management of the water cycle by using RES [2]
Desalination of seawater and brackish water is maybe the unique solution to alleviate freshwater
scarcity nowadays [3]. However, it is an energy intensive process, since distillation processes such as
Multi-Stage Flash (MSF), Multi-Effect Distillation (MED) and Membrane Distillation could consume
about 50–70, 40–60 and 120–1700 kWh of thermal energy per cubic meter of distillate respectively,
whereas membrane techniques such as Reverse Osmosis (RO) consume about 3 to 6 kWh of electricity
per cubic meter of permeate [4]. This close relationship has been dealt with, even in oil rich countries,
in which RES are also planned to cover the 100% of the energy demand, including desalination [5].
Despite its energy consumption, membrane distillation (MD) can help to reduce the water-energy
stress that societies are facing, especially at a reduced scale and when waste heat from other thermal
processes or solar energy is freely available.

Membrane distillation (MD) is a low-heat grade energy consumer and non-isothermal method
for water treatment and desalination. Feed water does not need any kind of chemical pre-treatments
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to operate continuously or intermittently at atmospheric pressure. The process can be carried out
with temperatures in the range from 70 ◦C to 90 ◦C [6,7], but lower values could operate with lower
production. Desalination was one of the first MD applications [8], since salts are not allowed to be
transported through the pores of hydrophobic membranes. This membrane prevents the liquid phase
from entering the membrane, whereas its microporous structure and a temperature difference across
the membrane allow the transport of water vapor [9,10]. Water vapor is produced by an external heat
source and is then transported through the membrane and finally condensed by the aid of a coolant;
consequently, the distillation process is completed [11]. Different MD configurations can be found
according to the coolant agent and system applied. In this paper, a permeated gap type (PGMD) was
analyzed, in which a liquid gap is immersed between the membrane and the condensate surface in
order to reduce thermal losses. The PGMD is also a spiral wound module type, in the sense that its
thermal behavior is rather similar to a counterflow heat exchanger [12].

Mathematical models of membrane distillation processes are based on the superposition of
molecular diffusion, Knudsen flow and Poiseuille flow, as well as on semi-empirical equations and
correlating process using experimental data to determine the mass transfer coefficients [13]. All MD
configurations describe the mechanism of mass transport through the membrane to estimate the
working temperatures, production rate and solute retention; thus, all of them can be modelled by the
simultaneous heat and mass transfer phenomena [14].

Nevertheless, those models, parameters and correlations are only a subset of a very extensive
range of other modeling attempts by other researchers. Moreover, the implementation of these
correlations sometimes could be complex, which can be a limitation for practical use in experimental
tests and their validation in simulation tools. In other words, mathematical models are rather limited
in their practical use for experimental and simulation applications [15].

Despite the existence of mathematical models that can explain the experimental data observed,
sometimes the details underlying that data generation are not known. The complete identification
of the process is not maybe obtained, but a very good and useful approximation could be found
by machine learning. Machines can learn, perform pattern recognition or discover patterns in data.
With the help of those found patterns, the process could be understood and some predictions could
be made [16]. Thus, many authors have applied the use of artificial neural networks (ANN) for
overcoming this situation.

Artificial Neural Networks (ANN) are part of the great variety of machine learning models that
exist. In the engineering field, the use of ANN has been motivated due to their ability to discover
patters in data through a complex adaptive system. ANN have been successfully developed to solve
problems in a variety of applied fields such as plant ecosystems, identification and prediction of disease
spread, chemical reactions, temperature regulation, etc. [17,18].

In the case of energy systems, a review of the usefulness of ANN in modelling, prediction and
the performance of energy engineering systems is presented by Kalogirou in [19]. Data representing
the past history and the performance of a real system are required to provide new estimations of that
performance. Regarding water, ANNs have been applied to predict rainfall [20–22], inlet flows to
reservoirs, stream flows or peak flows to avoid flooding [23–25], water levels in lakes or aquifers [26,27]
or even to detect losses in water networks [28]. In the specific field of desalination, ANNs have been
developed for both modelling and simulation. For instance, Gao et al. [29] analyzed the influence
of air, cooling water and feed water temperatures in the production of fresh water through a heat
pump desalination system. Nevertheless, reverse osmosis (RO) has been the most spread technology
investigated. Aish et al. [30] developed an ANN model to weekly predict the total dissolved solids
(TDS) and permeate flow rate of RO plants in the Gaza strip. In [31] and in [32], an ANN for a
RO plant coupled to a wind turbine was developed to predict the feed flow and operating pressure
set points as a function of power, temperature and feed water conductivity. That ANN model took
data from unsteady conditions coming from an experimental facility in Gran Canaria Island (Spain)
with RO powered by a wind turbine. Barello at al. [33] focused their ANN model to predict the
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permeability constant of the RO process that could be used for different membranes across a wide
range of pressures. Khayet et al. [34] used both, a response surface methodology (RSM) and ANN,
to predict the performance index of an RO system as well as to achieve optimal experimental conditions.
The inlet ANN parameter corresponds to feed properties (concentration, temperature, feed flow and
pressure) under controlled conditions.

Regarding the use of ANN models in MD, their application to a vacuum membrane distillation
(VMD) was first presented in [15]. The model was based on experimental input data such as feed
temperature, flow rate and concentration as well as the vacuum pressure to predict the distillate
flux. Khayet and Cojocaru [35,36] presented two different ANN models to simulate the production of
two MD configurations. In [35], they studied an air gap membrane distillation process (AGMD) to
describe the distillate flow depending on the air gap thickness, condensation temperature, and the inlet
temperature and flow rate of the feed. In [36], a sweeping gas membrane distillation process (SGMD)
to predict the distillate flux and the salt rejection was studied in depth. Here, the three considered
input parameters were inlet temperature and the velocities of water and air.

The combination of ANN with existing simulation software has been also extensively used,
specifically in the field of energy efficiency in buildings and solar energy. The idea is to improve
the predictions given by the software with the help of an ANN made from experimental results or
running of the software. In this context, Trnsys® is software that has been widely linked with ANNs.
For instance, Magnier and Haghighat [37] developed an ANN model based on a validated simulation
for the optimization of thermal comfort and energy consumption in a residential house. They found
that integrating ANN into optimization could considerably reduce the simulation time compared with
classical optimization methods. In [38], a multi-objective optimization model using genetic algorithms
and ANNs to improve energy consumption and to reduce thermal discomfort and costs in a school
building was presented. Training data sets were also obtained from parametric runs. Buratti et al. [39]
compared the different approaches of ANN and the simulator of the energy performance of buildings
in Perugia, Italy. They found that the ANN model results were closer to the measured data than the
results from simulation. Furthermore, Souliotis et al. [40] combined the use of an ANN model trained
with experimental uncontrolled data from a solar collector with the simulator to improve the results of
that integrated collector storage. To sum up, an extent review of the ANN and simulation is available
in [41].

As far as the authors’ know, this study is the first implementation of an ANN to a PGMD module.
In this paper, the ANN is devoted to improve the prediction results of the permeate flux of this module,
which is fully integrated in a trigeneration unit based on the hybrid production of desalted water by
consuming heat (PGMD) or power (RO) coming from RES. In this manner, a more accurate prediction
of the three plant products (desalted seawater, SHW and power) could then be done. A first attempt to
include the PGMD in the integrated scheme was based on a simple regression model that accounted
for a reduced band of incoming operating parameters. Thus, higher distillate rates were estimated and
therefore fewer energy resources were derived to supply the PGMD, with the alternate productions of
SHW and power also affected.

On the other hand, the ANN has been constructed using several experimental data sets under
different conditions and does not depend on the energy source applied, as will be explained in
Section 3.1.2. Those data have been precisely the key to provide a better performance of the ANN
model. Most of the datasets belong to a quasi-static process condition, which is typical in a module
immersed in a rather complex unit fully supplied by two aleatory RES sources (solar and wind energy):
in the case of the PGMD module, the heat supply is smoothed out by the existence of the hot water
tank [40]. To sum up, the ANN contributes to the validation of the integrated simulation model, which
is being tested with the final aim of scaling up those trigeneration schemes fully supplied by RES
for small remote settlements. Nevertheless, this ANN model can be freely exported to any kind of
simulation tool or to a control system, in order to predict the performance of any other PGMD module
with similar characteristics.
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2. System Description

2.1. Trigeneration Unit Based on RES

The PGMD module comprises part of one of the main subsystems of a hybrid pilot trigeneration
unit which is fueled by solar and wind energy and produces power, desalted water by means of the
PGMD and an RO module, and Sanitary Hot Water (SHW). The pilot unit was designed to cover the
typical water and energy demands of a single family home isolated from the grid. There are 4 main
subsystems in the plant, as shown in Figure 1. The solar loop is composed of four photovoltaic thermal
(PVT) collectors and one evacuated tube collector (ETC). The power loop consists of the supply of
photovoltaic arrays aided with a micro-wind turbine and the storage on batteries to manage power
demand. Solar energy is collected in a storage tank which feeds both the SHW demand and the PGMD
unit (SHW loop). Finally, the fresh water loop includes the PGMD and the RO units, with the RO as
an additional power demand. Details of the design simulation can be found in [7], where a complete
sensitivity analysis was presented. The project was simulated with weather data from Zaragoza city,
located in the northeast of Spain. The simulation was carried out for a complete year having a time
step of 12 min (43,800 iterations).
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Figure 1. Trigeneration Scheme.

The complete system simulation was later expanded by studying the effects of the battery capacity
and electric load [42]. Exergy analysis has also been implemented to reduce local irreversibilities [43,44].

The trigeneration pilot plant was fully erected during the year 2016 in Zaragoza, Spain [45]. In the
experimental facility, thermal energy is stored in a 325 L water tank that feds the PGMD through a
heat exchanger (HX Tank-MD in Figure 1). The control system number 1 presented in the same figure
allows obtaining stable temperatures inside the tank due to hysteresis between solar collectors and
tank temperature. Tank stratification permits hot water delivery at almost constant temperatures
to HX Tank-MD to feed the membrane system. The PGMD is a commercial module and contains a
spiral wound desalination membrane with a maximum capacity of 20 L/h with a very pure distillate
(<2 ppm of salinity). It has a total exchange area of 10 m2, with the corresponding condenser, distillate
and evaporator channels as explained in [13]. Usually, the set-up temperature to feed the PGMD
was 70 ◦C, but lower temperatures could activate the PGMD. The pilot unit included a sophisticated
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control and monitoring system. Five temperatures were measured at the PGMD inlet/outlets. Inlet
and return flow rates from the HX Tank-MD were also measured to estimate the PGMD thermal
energy consumption. Seawater tank and outside temperatures are measured as well. All temperatures
were measured by PT-100 sensors (±0.2 ◦C) and gathered every minute by an automata, which also
controls valves, pumps and any other safety systems. The PGMD production rate and SHW flow rate
to the PGMD (via the HX Tank-MD) and SHW demand were visually measured by three flowmeters,
with an accuracy estimated in a range of ±2% after calibration. Finally, conductivity of the seawater
tank, PGMD distillate and RO permeate are measured by different conductivity meters, but only the
distillate quality is recorded by the automata. Distillate flow will be then be a varying function of the
heat supplied to the PGMD module, which provokes a temperature drop between the evaporator and
condenser channels of the PGMD. These temperature variations occur gradually, so the system can be
considered a quasi-static process and data can be recorded for different temperatures scenarios.

2.2. PGMD Preliminary Distillate Prediction

Figure 2 shows a sketch of the PGMD where feed water (flow 3) enters into the condenser, takes
energy and then increments its temperature due to the heat transfer from the evaporator and distillate
channels (flow 4). Feed water is then reheated by an external heat source by means of the HX Tank-MD
(flows 1 and 2). Then, hot feed water enters the evaporator (flow 5) where some vapor is produced
and the remaining liquid transfers the heat to the condenser side. Finally, vapor passes through the
membrane and then it is condensed to obtain distillate (flow 7). The salinity of the remaining brine is
then slightly increased (flow 6).
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In [7], the PGMD production was estimated by a linear correlation based on experimental results
from Winter et al. [13]. The regression parameters were chosen in such a way that everyone can
compute the product of a PGMD independently from the heat source type. As already explained,
the distillate depends on the different temperatures and pressures on both sides of the membrane.
Since the purpose of this investigation is to create a model that does not depend on external sources,
evaporator and condenser inlets (the hottest and coldest zones inside the membrane, respectively)
only the thermal inputs, as well as the feed water flow, must be considered. By taking into account
those variables, the model can forecast the fresh water production. The mathematical linear regression
model obtained was:

mdist = −5.48 + 0.043m f eed + 0.079(Tei − Tci) (1)

This linear model produces acceptable results mainly when it is applied to a spiral wound
membrane unit with 10 m2 with temperature drops of about 55 ◦C between the inlets of the evaporator
(Tei) and condenser (Tci), and feed water (mfeed) of 35 g/kg of salinity with a flow range from 200 L/h
to 500 L/h. As stated in [7], this model can give a first estimation even if temperature differences
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are lower than 55 ◦C; then, it can be used as a first approach during the first design stage of the
trigeneration plant.

2.3. PGMD Experimental Validation

In order to characterize the PGMD production, the abovementioned three measured parameters
have been taken into consideration (inlet condenser and evaporator temperatures as well as seawater
feed flow). Two kinds of data sets were obtained from the experimental facility. The first dataset was
obtained by using a 3 kW heating resistance immersed in the hot water tank (“electric”). The hot water
temperature in the tank was monitored with three PT-100 sensors, two inside the tank and one at the
water outlet to control stratification and the temperature of the heat MD source, respectively. By using
the heating resistance, the temperature in the MD heating source was kept constant at different values
to perform the tests at a steady state. Those tests were carried out from December 2016 to February
2017 within the performance tests of the PGMD module. Thus, the second dataset (“solar”) was
obtained from the complete operation of the trigeneration facility by only using solar energy (heating
resistance remained off); here, distillate mainly depended on the weather conditions and heat derived
to supply the SHW demand. However, as explained before, the stratification inside the tank allows
delivering hot water at an almost constant temperature during the characterization of the PGMD with
solar energy, thus assuming that in those tests, a quasi-static process is occurring.

Figure 3 shows the behavior of the system during a solar test in July. At the beginning of
the day, the tank temperature was about 65 ◦C and the heating process due to hysteresis started;
the temperature of the tank increased as the sun radiation intensity increased. When the temperature
in the hot water outlet zone reached about 75 ◦C, the MD test started. It can be seen that due to the
tank stratification, a constant temperature can be maintained during tests. Due to the high energy
rate of the MD evaporator, the tank temperature and therefore that of the evaporator inlet went
down; nevertheless, it can be observed that the system operated at almost constant temperature levels.
Datasets for different temperatures and mass flow rates feeding the MD unit were gathered in the
test bench. A solar dataset was obtained in a campaign from May to October 2017. Table 1 shows the
operating range of the variables used during the data collection.
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Table 1. Operating range of the inlet parameters in experimental datasets.

Variable Electric Tests Solar Tests

Data set samples 372 11,272
Test number 18 53

Average test duration (min) 118 368
Feed water (L/h) 150–500 300–500

Evaporator inlet temperature (◦C) 60–75 60–80
Condenser inlet temperature (◦C) 10–30 18–30

Maximum distillate production (L/h) 21.12 19.48
Ambient temperature (◦C) −5–15 10–43

Solar incident irradiation (W/m2) – 100–1150
Wind speed (m/s) – 0–17.2

Once enough data were collected, results from simulations and real measured data could be
compared. If experimental production of the PGMD and the one predicted by the simulation in their
linear regression model from Equation (1) are balanced, a considerable deviation in the prediction is
found. As an example, Figure 4 shows all the temperatures and permeate samples collected in one
typical summer solar test (24 July 2017) and the product from the linear regression simulation, both
with a seawater feed of 300 L/h. Figure 4 (below) shows that the temperature at the condenser inlet
(blue lines) was very similar in both cases, but the temperature at the evaporator inlet (red lines) was
slightly over predicted by the simulation. As that temperature difference is the driving force to produce
distillate (green lines), and a deviation of 6 ◦C was found, a rather high estimation of the distillate was
encountered. Although it is an acceptable value considering that the simulator uses standard weather
conditions, constant efficiencies and time step approximations, from Figure 4 (above), we can conclude
that the model previously presented in [7] must be strongly improved if PGMD production has to be
finely predicted in the complete trigeneration scheme erected.
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On the other hand, ANN models do not require detailed information about the system, that is, a
standard experimental design is not required to develop the model, and different experimental designs
may be used [34]. They can learn the relationship between the input parameters and the test variable
results, as non-linear regression might perform [40]. To conclude, ANN models are very flexible and it
is not necessary that the variables follow a constant step of variation [35]. They are able to adequately
learn the specific behavior of the entire system and to predict the production in the face of variations
in any of its operating parameters [32].

Consequently, an ANN scheme has been proposed with data obtained from the electric tests,
the solar tests and the combination of both datasets in order to improve the prediction of its
distillate under any other operating conditions that could feed the PGMD module immersed in
that trigeneration scheme. If temperature conditions are controlled, a recurrent neural network
model is not necessary; this fact has already been proven in other types of ANN membrane models
presented in [35,36]. Here, the ANN model was developed by using Matlab R2017b software (version
9.3.0.713579 (R2017b), MathWorks, Natick, MA, USA) and the standard functions included in the
Neural Network Toolbox. In particular, the Levenber-Marquardt back-propagation algorithm was
applied [46]. Levenberg-Marquardt is a curve-fitting method that improves the solution to problems
by only adjusting the learning rate repeatedly. This algorithm combines two minimization methods
such as the gradient decent and Gauss-Newton methods [17].

3. ANN Model

The definite structure of the selected ANN is shown in Figure 5. Measured inlet temperatures of
the evaporator (Tei) and condenser (Tci) and seawater feed flow in the PGMD (mfeed) were used as the
ANN inputs. The output of the ANN is the distillate produced (mdist). The developed ANN-based
correlation will be then adopted to replace the existing linear regression correlation in the previous
simulation presented in [7]. Regardless, the mathematical model of this ANN for this PGMD can be
extrapolated to any other software.
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The ANN modelling was performed using the following procedure:

1. Data preprocessing: Data from the automata were prepared. Some outliers in data were identified
and eliminated. Inputs and outputs were carefully reviewed to provide valuable information,
avoid noise and to assure the correct prediction of the ANN.

2. Structure selection: The architecture of the ANN model includes three inputs, one hidden layer
and one output layer with a single neuron. A small sized ANN was preferred in order to facilitate
exportation and therefore to consume fewer computational resources.
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3. Inputs and targets are normalized following this equation:

y =
(ymax − ymin)(x − xmin)

(xmax − xmin)
+ ymin (2)

where x represents finite and real values to normalize, y represents the normalized values,
ymin and ymax define the limits of the normalization (−1 to 1 in case of Tanh, and 0 to 1 for
Log-Sigmoid).

4. Training: The training phase is performed by constantly updating weights and biases to achieve
a certain Mean Square Error (MSE, at least 0.5) and Coefficient of Determination R (at least 0.95).
In this phase, 90% of the available samples were taken.

5. Validation and testing: The 10% remaining available samples were chosen for validation and
testing. In both stages of the ANN creation, a minimum value of 0.95 is required for R.

6. Development: After the learning phase, the optimal values of the weights and biases are saved,
and the ANN is developed

7. Exportation: Once the ANN has proved to provide most accurate values of the PGMD production,
the model is exported if it is going to be used in any other applications.

The ANN model can be exported in a matrix form as follows:

mdist = [wkj]Activation Function

[wji]

 Tci
Tei

m f eed

 + [w0j]

 + w0k (3)

Note that normalization and de-normalization may be needed, which implies the inclusion of one
or more parameters in the above equation.

3.1. Parametric Modelization of the ANN Performance

The analysis of the main parameters describing the ANN performance is presented next. First,
the number of neurons in the hidden layer is studied in depth. Second, the dataset gathered to create
the ANN was analyzed. Third, the activation function used was also studied.

3.1.1. Number of Neurons in Hidden Layer

There is no common rule to apply to find out the optimum number of neurons in the hidden
layer. Some authors suggest that at least it would be equal to the 75% of the numbers of neurons in the
input layer [47]. On the other hand, others suggest that the simplest way is to identify that number by
trial and error up to the minimum error on the validation dataset [17]. Thus, a parametric study was
performed in this issue.

The first approach used was based on a relationship among the number of samples in the dataset,
the neurons in the input layer (N) and neurons in hidden layer (n) as presented by Martín et al. in [47].

Samples
2N

< n <
2(Samples)

N
(4)

Based on this equation, the number of neurons in hidden layer for the case of the electric dataset
was between 68 and 248, and for the case of solar dataset, was between 1878 and 7514. The trained
ANN model took the form 3-68-1; the performance (MSE) was found to be 0.38 with an R value of
0.9599, which at first seemed to be an adequate model. However, when external data from [13] were
tested, the model proved to be over fitted, and the number of neurons had to be decreased.
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From the same reference [47], the classical Kolmogorov approach can also be used to estimate the
minimum number of neurons in the hidden layer as:

n = 2N + 1 (5)

If the effect of the dataset size is neglected, the minimum number of neurons in the hidden layer
is 7. Therefore, nine different ANN models were trained using inputs from the electrical and solar
datasets, varying the number of neurons from 7 to 15. Figure 6 shows the parametric results of varying
the number of neurons in the hidden layer.
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In Figure 6, it can be seen that the MSE of the ANN model with 7 neurons is 25% higher than
the case with 10 neurons and 26% higher than the case with 15 neurons. The MSE is decreased as
the number of neurons is increased. However, it can be clearly observed that the difference among
the models from 10 to 15 neurons is minimal, about 0.8%. The same trend can be observed with the
coefficient of determination, R. The model with 7 neurons is 1.31% and 1.38% smaller than the cases
with 10 and 15 neurons, respectively. The effect on the R value of the number of neurons in the hidden
layer can be observed in Figure 7 for the case of 7, 9, 10 and 15 neurons. Once again, it can be seen that
after 10 neurons, the performance of the ANN model remains at R values very close to a value of 0.95.

The optimum number of neurons in hidden layer was then established between 10 and 15.
Considering that the model with 10 neurons in the hidden layer is easier to export to external systems,
later analysis will be based on the 10 neuron case. The number of neurons in the hidden layer reported
here coincides with other ANN models presented in [35,36] for similar membrane distillation systems.
Nevertheless, the model with 15 neurons is alternatively presented as supplementary information at
the end of the paper.
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3.1.2. Dataset Collection

Since the ANN model is independent of the heat source, it is possible to present, compare and
combine experimental data under different conditions by only knowing the three abovementioned
parameters. It was found that the performance of the ANN improved as the number of experimental
data sets increased; thus, three data sets were consecutively analyzed to train the ANN. The first two
datasets correspond to the electric and solar, the third one is the combination of both, electric and
solar. The third data set was found to be the best solution in terms of the ANN accuracy. The overall
performance of the ANN based on the different experimental data sets (electric, solar and combined) is
presented in Table 2.

Table 2. ANN and linear regression model performance.

Parameter Linear Regression ANN (Electric) ANN (Solar) ANN (Both
Datasets)

MSE 30.61 10.45 0.86 0.47
R 0.48 0.58 0.91 0.95

In detail, Figure 8 shows the performance of the ANN fed by the three data sets of experimental
values and the linear regression previously presented in [7].
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It can be seen that the linear regression presented in previous investigations is not very accurate;
however, it gave us a first approximation to estimate the PGMD production under real conditions
(Figure 8, top left-hand corner). Alternatively, the ANN model fed by only electric data tests did
not strongly improved the linear regression, since its MSE decreased from 30.61 to 10.45 and the R
increased from 0.48 to 0.58 (Figure 8, top right-hand corner). Table 3 shows some typical inlet and
outlet parameters of some selected samples from the electric dataset at different temperature levels as
described in Section 2.3.

Table 3. Some selected samples from the electric experimental tests (372).

Sample Tei (◦C) Tci (◦C) mfeed (L/h) mdist (L/h)

65 66 12 200 6.48
101 68 19 300 10.80
122 61 25 400 12.84
133 70 22 500 17.76
154 71 16 200 7.68
188 69 18 300 11.4
219 69 20 400 12.60
328 64 20 500 15.72

However, significant progress was found when solar tests used the training information for the
ANN: the MSE decreased to 0.86, and R increased to 0.91 (Figure 8, bottom left-hand corner). Table 4
shows some random samples taken from the solar conditions corresponding to the solar set at different
temperature levels as described in Section 2.3.
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Table 4. Some selected samples from the solar experimental tests (11,272).

Sample Tei (◦C) Tci (◦C) mfeed (L/h) mdist (L/h)

9 77.8 24.5 470 17.5
274 69.2 27.3 450 12.1
510 66.4 22.2 400 10.7
739 61.7 25.1 320 6.0

1220 66.1 21.7 300 8.0
. . . . . . . . . . . . . . .

7879 75.2 26.8 310 9.9
8193 67.9 29.6 300 6.9

10201 56.9 27.5 350 4.8
10580 67.0 27.1 300 6.6
11006 71.2 26.7 310 8.5

Finally, when all data were combined, the ANN model gave the most accurate results, with the
lowest value of MSE (0.47) and highest R value (0.95) (Figure 8, bottom right-hand corner). Thus,
this last set including the combined electric and solar test conditions was used for the definite ANN.

Alternatively, Figure 9 presents the global comparison of the 11,643 experimental samples of
distillate produced in the PGMD module (in blue) with those predicted by the linear regression and by
the ANN models (with three different data sets, in red).
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As presented previously in Figure 4, the linear regression overestimates the production of the
PGMD (first). This overestimation is clearly decreased with the use of the ANN model based on the
electric data tests (second). The ANN based on the solar energy supply data tests (third) shows that the
distillate prediction is accurate in the range between 5 L/h and 10 L/h but it fails at higher productions
(about 15 L/h). This problem is solved (without over fitting) when all data, that is, coming from electric
and solar data tests, are included in the definite ANN model (fourth).

3.1.3. Activation Function in the Hidden Layer

The back-propagation algorithm applied requires that the activation function has to be continuous
and therefore derivable to obtain the error in the hidden and output neurons [47]. Here, three basic
functions that comply with this condition are analyzed in the hidden layer: linear function and
sigmoidal functions (log-sigmoid and Tanh). Figure 10 shows a comparison of the MSE and R
performance with three different activation functions.
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Figure 10. Effect of Activation function on MSE.

Linear activation function proved to have an MSE 56% higher than Tanh or log-sigmoid cases.
On the other hand, a higher R value was found in the Tanh model, being 0.02% and 3% higher
than log-sigmoid and linear models, respectively. Regarding the MSE difference between Tanh and
log-sigmoid models, it is only about 0.8%, but both functions showed a rather similar behavior. Thus,
the ANN model with Tanh as activation function is presented in next sections. Regardless, the ANN
model with log-sigmoid activation function will be also presented as supplementary information.

3.2. ANN Fitting Model to Compute PGMD Production

Based on the results discussed in Sections 3.1.1–3.1.3, the model presented here is an ANN
with structure 3:10:1 trained with electric and solar data sets and Tanh as activation function in the
hidden layer.

Equations below include in detail the ANN model parameters for a PGMD. It can be freely used
for anyone who wants to estimate the production of this kind of MD. The model can be used during
the design stages of new projects or to improve the operation and control in existing facilities.

mdist =
(y2 + 1)(21.12 − 1.8)

2
+ 1.8 (6)

y2 = [−0.1036 0.2843 − 0.5347 0.1889 1.7040 − 1.0688 0.7225 0.2251 − 0.4404 0.1936][y1] − 0.095 (7)
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y1 = tanh





2.6307 − 3.58083.2941
0.8648 2.66912.9481

2.2813 0.6201 − 1.0012
1.1497 2.29423.9933

1.4942 1.6630 − 1.4243
1.4043 2.0807 − 1.7711
−2.53961.93541.2389

−6.24040.3534 − 3.3152
−2.30202.9198 1.1061
2.9581 − 0.56525.5083




2(Tci −12)
30.6−12 − 1

2(Tei −33.1)
80.6−33.1 − 1

2(m f eed −160)
500−160 − 1

 +



−2.8264
−3.7409
−1.7708
−1.4090
−1.3074
−1.2844
−1.1861
−0.3998
−1.8377
3.3836




(8)

3.3. ANN Validation

The 3-D view (Figure 11) of the experimental and predicted production of the PGMD shows that
the definite ANN model obtained is flexible, adaptable and is not over fitted. The detail in Figure 11
shows that the ANN accurately predicts the PGMD distillate independently from the feed flow rate or
temperature gap between the condenser and evaporator inlets. Thus, the model can adumbrate the
production in the range from 200 L/h to 500 L/h and with a temperature difference band from 10 ◦C
to 60 ◦C between the inlets of the evaporator and condenser for a feed seawater of 35 g/kg of salinity.
Note that a few samples are only taken in the range from 10 ◦C to 30 ◦C and the band of 200 L/h since
the MD performance was rather low (a very high specific thermal energy consumption was found),
and the major number of tests were located in the range of 300 L/h, which allowed the pilot unit to
maintain the inlet temperature drop in the range of 30–50 ◦C under any sunny condition during the
solar tests.
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3.3. ANN Validation 

The 3-D view (Figure 11) of the experimental and predicted production of the PGMD shows that 
the definite ANN model obtained is flexible, adaptable and is not over fitted. The detail in Figure 11 
shows that the ANN accurately predicts the PGMD distillate independently from the feed flow rate 
or temperature gap between the condenser and evaporator inlets. Thus, the model can adumbrate 
the production in the range from 200 L/h to 500 L/h and with a temperature difference band from 10 
°C to 60 °C between the inlets of the evaporator and condenser for a feed seawater of 35 g/kg of 
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To reinforce that this ANN model is not over fitted, results from Winter et al. [13] were also
introduced and compared in Figure 12, which shows the same results as those presented in Figure 11,
but in a 3-D surface view. The variation of the temperature difference (Tei − Tci) was constrained
from 35 ◦C to 55 ◦C (with a step of 1 ◦C and 20 L/h). Note that in the reference the abovementioned
temperature difference was maintained at 55 ◦C (80 ◦C in evaporator inlet and 25 ◦C in condenser
inlet) in the tests. Although some deviations were found (green line), the ANN model predicts the
PGMD production with rather good accuracy, especially in the range from 200 L/h to 400 L/h for
that energy supply. Furthermore, the ANN model could enlarge the predictions within a wider range
of temperature drops and mass flow rates, corresponding to the typical operation of a PGMD only
supplied by solar energy.
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regression. 
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3.4. ANN Application

In order to demonstrate that this ANN model could really improve simulation results,
experimental data from 24 July 2017 were used again to compare the linear regression model previously
studied, the new predictions from the ANN model, as well as the real production of that day. Figure 13
shows that the linear regression (red line) did not accurately forecast the measured production (blue
line). The total fresh water production measured that day was 32.43 L, and the linear regression
computed 51.06 L, which implies 58% error for the total production. On the other hand, it can be seen
that the ANN model fits the real data better (grey line): total production computed was 31.42 L, having
only a difference of 1.01 L (3% of error). Major differences were found at the start-up of the PGMD unit,
in which the pilot unit is more sensitive than the ANN or regression models to physical phenomena of
thermal inertia, being the only time that real values are lower than those predicted by the ANN.

Water 2018, 10, x FOR PEER REVIEW  15 of 20 

 

 
Figure 12. 3-D surface provided by ANN model and comparison with experimental data from the 
manufacturer [13] (green line). 

3.4. ANN Application 

In order to demonstrate that this ANN model could really improve simulation results, 
experimental data from 24 July 2017 were used again to compare the linear regression model 
previously studied, the new predictions from the ANN model, as well as the real production of that 
day. Figure 13 shows that the linear regression (red line) did not accurately forecast the measured 
production (blue line). The total fresh water production measured that day was 32.43 L, and the linear 
regression computed 51.06 L, which implies 58% error for the total production. On the other hand, it 
can be seen that the ANN model fits the real data better (grey line): total production computed was 
31.42 L, having only a difference of 1.01 L (3% of error). Major differences were found at the start-up 
of the PGMD unit, in which the pilot unit is more sensitive than the ANN or regression models to 
physical phenomena of thermal inertia, being the only time that real values are lower than those 
predicted by the ANN. 

 
Figure 13. Comparison of distillate predicted by the liner regression model and the one supplied by 
the ANN model with respect to real data (24 July 2017). 

At this point, it is important to remember that the final aim of this paper is to improve the 
previous simulation model. A new PGMD model has been implemented in the simulation to give a 
PGMD forecast production, thus substituting the existing model based on the simple linear 
regression. 

Figure 14 shows the PGMD production (grey line) obtained by the PGMD model based on the 
ANN that uses as input parameters the internal values obtained by the simulation of the complete 
trigeneration unit. Of course, the new prediction is better than the first estimation based on the linear 

Figure 13. Comparison of distillate predicted by the liner regression model and the one supplied by
the ANN model with respect to real data (24 July 2017).

At this point, it is important to remember that the final aim of this paper is to improve the previous
simulation model. A new PGMD model has been implemented in the simulation to give a PGMD
forecast production, thus substituting the existing model based on the simple linear regression.

Figure 14 shows the PGMD production (grey line) obtained by the PGMD model based on the
ANN that uses as input parameters the internal values obtained by the simulation of the complete
trigeneration unit. Of course, the new prediction is better than the first estimation based on the linear
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regression type (see Section 2.2), but it does not follow the same accuracy as that of the proper ANN
fitting model (Figure 13).
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At this point, it is important to remember that the simulation presented in [7] involved several
subsystems (solar loop, Sanitary Hot Water (SHW) loop, electric package, and fresh water loop).
The PGMD could be considered as the last subsystem of the trigeneration unit, thus thermal energy
required to its activation hardly depends on the efficiency of solar energy transformation, the SHW
demands and the heat transfer effectiveness in the storage tank and the HX Tank-MD. Nevertheless,
the new type based on the ANN clearly improved the simulation results by estimating the production
as 37.93 L for that day, which is a 17% error from the real measured data. Since the ANN model
only presented a 3% error, it can be assumed that 14% error comes from simulator estimations (use of
meteorological databases, assuming constant efficiency parameters in devices, time step approximation
errors, etc.).

This means that by combining the use of the ANN model with a dynamic simulator, an
improvement of 41% in the PGMD production could be obtained, that is, error in the PGMD prediction
is reduced by more than 70% in the complete trigeneration scheme.

4. Discussion

The ANN model based in three measured parameters of the PGMD unit has been validated with
data from the experimental facility as presented in Figure 9 (fourth graphic) and Figure 11. Another
validation to demonstrate the wide inlet ranges to apply the ANN is presented in Figure 12, in which
some partial comparison with results from [13] can also be seen. When compared with experimental
data, the ANN model has proved to predict accurate results of the distillate produced: 3% was the
average error found. For instance, only an underestimation of 1.01 liters per day has been found
for a typical day test in the summer period (24 July 2017). This model has also been included in a
simulation tool where the results have been improved if compared with the first attempt, i.e., a PGMD
type based on the linear regression model extracted from the manufacturer [48]. This is a considerable
improvement since the original linear regression model overestimated the production by more than 19
L that day. This means that simulations combined with ANN clearly increased the accuracy of the
PGMD production by the software. The error of the simulation with respect to the PGMD production
was decreased from 58% to 17%; thus, PGMD prediction in the simulator was reduced by up to 41%
on the selected day for the analysis.

5. Conclusions

In this work, distillate provided by a PGMD was reproduced by means of an artificial neural
network (ANN). As a black-box model, the ANN tried to improve the predictions first made by a
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linear regression model, which clearly were overestimated when compared with experimental data
taken from the field tests. The ANN model is based on three inlet measured parameters of the PGMD
unit, and it has been validated with data from the experimental facility. In the case of the electric tests,
the PGMD worked alone under steady experimental conditions. In the case of solar tests, the complete
trigeneration unit was operating by consuming solar and wind energy. It is obvious that experimental
conditions hardly depend on weather conditions, but thermal energy was stored in a water tank and
provided quasi-static conditions to the PGMD unit operation. Those different experimental datasets
allowed us to consecutively improve the ANN model performance. Results from the ANN model
presented were compared to experimental data of the real trigeneration facility. The performance of
the ANN based on all data, that is, using both electric and solar data sets, was substantially better
than conventional linear regression. Furthermore, since this ANN model does not depend on the
heat supply conditions, that is, it does not use any parameter regarding the heat source (for instance,
the flow rate or the temperature drop on the hot side of the HX feeding the PGMD), it can be used for
predicting the production behavior for a wide range of operational conditions and energy resources.

To conclude, it is important to remark that its exportable matrix model makes the ANN an excellent
option for accurate modelling and real-time optimization in complex systems. Here, the usefulness of
the ANN was materialized by improving the complete simulation of a trigeneration scheme based
on the unique supply of RES. In this manner, if the adequate prediction of PGMD is available, its fair
contribution with respect to the RO production to cover the water demands in this scheme could be
found. In this way, the scale-up of this trigeneration scheme with the simulator could be finely used in
the search of sustainable management of the decentralized supply of water, electricity and SHW for
larger communities in remote and water-scarce areas.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4441/10/3/310/s1,
Equations.
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Nomenclature

Acronyms
AGMD Air Gap Membrane Distillation
ANN Artificial Neural Network
DCMD Direct Contact Membrane Distillation
ETC Evacuated Tubes Collector
MED Multi-Effect Distillation
MD Membrane Distillation
MSE Mean Square Error
MSF Multi Stage Flash distillation
PGMD Permeate Gap Membrane Distillation
PVT Photovoltaic Thermal Collector
RES Renewable Energy Systems
RO Reverse Osmosis
RSM Response Surface Methodology
SGMD Sweep Gas Membrane Distillation
SHW Sanitary Hot Water
SSR Residual sum of squares
SST Total sum of squares
TDS Total Dissolved Solids
VMD Vacuum Membrane Distillation
Symbols
n Neurons in hidden layer
N Neurons in input layer
R Coefficient of determination
T Temperature
x Input
y Output function, predicted value
w Weight
Subscripts
ci Condenser inlet
ei Evaporator inlet
I Input
0 Biass

References

1. Khalifa, A.E.; Alawad, S.M.; Antar, M.A. Parallel and series multistage air gap membrane distillation.
Desalination 2017, 417, 69–76. [CrossRef]

2. Đurin, B.; Margeta, J. Analysis of the possible use of solar photovoltaic energy in urban water supply systems.
Water 2014, 6, 1546–1561. [CrossRef]

3. Gao, L.; Yoshikawa, S.; Iseri, Y.; Fujimori, S.; Kanae, S. An economic assessment of the global potential for
seawater desalination to 2050. Water 2017, 9, 763. [CrossRef]

4. González, D.; Amigo, J.; Suárez, F. Membrane distillation: Perspectives for sustainable and improved
desalination. Renew. Sustain. Energy Rev. 2017, 80, 238–259. [CrossRef]

5. Caldera, U.; Bogdanov, D.; Afanasyeva, S.; Breyer, C. Role of seawater desalination in the management of
an integrated water and 100% renewable energy based power sector in Saudi Arabia. Water 2018, 10, 3.
[CrossRef]

6. Janajreh, I.; El Kadi, K.; Hashaikeh, R.; Ahmed, R. Numerical investigation of air gap membrane distillation
(AGMD): Seeking optimal performance. Desalination 2017, 424, 122–130. [CrossRef]

7. Acevedo, L.; Uche, J.; Del Amo, A.; Cirez, F.; Usón, S.; Martínez, A.; Guedea, I. Dynamic simulation of a
trigeneration scheme for domestic purposes Based on hybrid techniques. Energies 2016, 9, 1013. [CrossRef]

8. Camacho, L.; Dumée, L.; Zhang, J.; Li, J.; Duke, M.; Gomez, J.; Gray, S. Advances in membrane distillation
for water desalination and purification applications. Water 2013, 5, 94–196. [CrossRef]

http://dx.doi.org/10.1016/j.desal.2017.05.003
http://dx.doi.org/10.3390/w6061546
http://dx.doi.org/10.3390/w9100763
http://dx.doi.org/10.1016/j.rser.2017.05.078
http://dx.doi.org/10.3390/w10010003
http://dx.doi.org/10.1016/j.desal.2017.10.001
http://dx.doi.org/10.3390/en9121013
http://dx.doi.org/10.3390/w5010094


Water 2018, 10, 310 20 of 21

9. Eykens, L.; Reyns, T.; De Sitter, K.; Dotremont, C.; Pinoy, L.; Van der Bruggen, B. How to select a membrane
distillation configuration? Process conditions and membrane influence unraveled. Desalination 2016, 399,
105–115. [CrossRef]

10. Alklaibi, A.M.; Lior, N. Transport analysis of air-gap membrane distillation. J. Membr. Sci. 2005, 255, 239–253.
[CrossRef]

11. Khayet, M. Membranes and theoretical modeling of membrane distillation: A review. Adv. Colloid Interface
Sci. 2001, 164, 56–88. [CrossRef] [PubMed]

12. Ugrozov, V.V.; Elkina, I.B.; Nikulin, V.N.; Kataeva, L.I. Theoretical and experimental research of liquid-gap
membrane distillation process in membrane module. Desalination 2003, 157, 325–331. [CrossRef]

13. Winter, D.; Koschikowsky, J.; Wieghaus, M. Desalination using membrane distillation: Experimental studies
on full scale spiral wound modules. J. Membr. Sci. 2011, 375, 104–112. [CrossRef]

14. Khayet, M.; Matsuura, T. Membrane Distillation Principles and Applications; Elsevier: Amsterdam, The
Netherlands, 2011; pp. 249–293. ISBN 978-0-4445-3126-1.

15. Cao, W.; Liu, Q.; Wang, Y.; Mujtaba, I.M. Modeling and simulation of VMD desalination process by ANN.
Comput. Chem. Eng. 2016, 84, 96–103. [CrossRef]

16. Alpaydin, E. Introduction to Machine Learning, 2nd ed.; MIT Press: Cambridge, MA, USA, 2009; pp. 233–275.
ISBN 978-0-262-01243-0.

17. Samarasinghe, S. Neural Networks for Applied Sciences and Engineering; Auerbach Publications: New York, NY,
USA, 2006; pp. 11–67. ISBN 978-0-8493-3375-0.

18. Mackay, D. Information Theory, Inference, and Learning Algorithms; Cambridge University Press: Cambridge,
UK, 2005; pp. 233–258. ISBN 978-0-5216-4298-9.

19. Kalogirou, S.A. Applications of artificial neural-networks for energy systems. Appl. Energy 2000, 67, 17–35.
[CrossRef]

20. Pasini, A.; Langone, R. Attribution to precipitation changes on a regional scale by network modeling: A case
study. Water 2010, 2, 321–332. [CrossRef]

21. Kim, S.; Singh, V. Spatial disaggregation of areal rainfall using two different artificial neural networks models.
Water 2015, 7, 2707–2727. [CrossRef]

22. Jiao, G.; Guo, T.; Ding, Y. A new hybrid forecasting approach applied to hydrological data: A case study on
precipitation in Northwestern China. Water 2016, 8, 367. [CrossRef]

23. Bogner, K.; Liechti, K.; Zappa, M. Post-processing of stream flows in Switzerland with an emphasis on low
flows and floods. Water 2016, 8, 115. [CrossRef]

24. Wang, J.; Shi, P.; Jiang, P.; Hu, J.; Qu, S.; Chen, X.; Chen, Y.; Dai, Y.; Xiao, Z. Application of BP neural network
algorithm in traditional hydrological model for flood forecasting. Water 2017, 9, 48. [CrossRef]

25. Jimeno-Sáez, P.; Senent-Aparicio, J.; Pérez-Sánchez, J.; Pulido-Velazquez, D.; Cecilia, J. Estimation of
instantaneous peak flow using machine-learning models and empirical formula in peninsular Spain. Water
2017, 9, 347. [CrossRef]

26. Taravat, A.; Rajaei, M.; Emadodin, I.; Hasheminejad, H.; Mousavian, R.; Biniyaz, E. A spaceborne
multisensory, multitemporal approach to monitor water level and storage variations of lakes. Water 2016, 8,
478. [CrossRef]

27. Zhou, T.; Wang, F.; Yang, Z. Comparative analysis of ANN and SVM models combined with wavelet
preprocess for groundwater depth prediction. Water 2017, 9, 781. [CrossRef]

28. Jang, D.; Choi, G. Estimation of non-revenue water ratio using MRA and ANN in water distribution networks.
Water 2018, 10, 2. [CrossRef]

29. Gao, P.; Zhang, L.; Cheng, K.; Zhang, H. A new approach to performance analysis of a seawater desalination
system by an artificial neural network. Desalination 2007, 205, 147–155. [CrossRef]

30. Aish, A.M.; Zaqoot, H.A.; Abdeljawad, S.M. Artificial neural network approach for predicting reverse
osmosis desalination plants performance in the Gaza Strip. Desalination 2015, 367, 240–247. [CrossRef]

31. Cabrera, P.; Carta, J.A.; González, J.; Melián, G. Artificial neural networks applied to manage the variable
operation of a simple seawater reverse osmosis plant. Desalination 2017, 416, 140–156. [CrossRef]

32. Cabrera, P.; Carta, J.A.; González, J.; Melián, G. Wind-driven SWRO desalination prototype with and without
batteries: A performance simulation using machine learning models. Desalination 2017. [CrossRef]

33. Barello, M.; Manca, D.; Patel, R.; Mujtaba, I.M. Neural network based correlation for estimating water
permeability constant in RO desalination process under fouling. Desalination 2014, 345, 101–111. [CrossRef]

http://dx.doi.org/10.1016/j.desal.2016.08.019
http://dx.doi.org/10.1016/j.memsci.2005.01.038
http://dx.doi.org/10.1016/j.cis.2010.09.005
http://www.ncbi.nlm.nih.gov/pubmed/21067710
http://dx.doi.org/10.1016/S0011-9164(03)00412-0
http://dx.doi.org/10.1016/j.memsci.2011.03.030
http://dx.doi.org/10.1016/j.compchemeng.2015.08.019
http://dx.doi.org/10.1016/S0306-2619(00)00005-2
http://dx.doi.org/10.3390/w2030321
http://dx.doi.org/10.3390/w7062707
http://dx.doi.org/10.3390/w8090367
http://dx.doi.org/10.3390/w8040115
http://dx.doi.org/10.3390/w9010048
http://dx.doi.org/10.3390/w9050347
http://dx.doi.org/10.3390/w8110478
http://dx.doi.org/10.3390/w9100781
http://dx.doi.org/10.3390/w10010002
http://dx.doi.org/10.1016/j.desal.2006.03.549
http://dx.doi.org/10.1016/j.desal.2015.04.008
http://dx.doi.org/10.1016/j.desal.2017.04.032
http://dx.doi.org/10.1016/j.desal.2017.11.044
http://dx.doi.org/10.1016/j.desal.2014.04.016


Water 2018, 10, 310 21 of 21

34. Khayet, M.; Cojocaru, C.; Essalhi, M. Artificial neural network modeling and response surface methodology
of desalination by reverse osmosis. J. Membr. Sci. 2011, 368, 202–214. [CrossRef]

35. Khayet, M.; Cojocaru, C. Artificial neural network modeling and optimization of desalination by air gap
membrane distillation. Sep. Purif. Technol. 2012, 86, 171–182. [CrossRef]

36. Khayet, M.; Cojocaru, C. Artificial neural network model for desalination by sweeping gas membrane
distillation. Desalination 2013, 308, 102–110. [CrossRef]

37. Magnier, L.; Haghighat, F. Multi-objective optimization of building design using TRNSYS simulations,
genetic algorithm, and artificial neural network. Build. Environ. 2010, 45, 739–746. [CrossRef]

38. Asadi, E.; Gameiro da Silva, M.; Antunes, C.H.; Dias, L.; Glicksman, L. Multi-objective optimization for
building retrofit: A model using genetic algorithm and artificial neural network and an application. Energy
Build. 2014, 81, 444–456. [CrossRef]

39. Buratti, C.; Orestano, F.C.; Palladino, D. Comparison of the energy performance of existing buildings by
means of dynamic simulations and artificial neural networks. Energy Procedia 2016, 101, 176–183. [CrossRef]

40. Souliotis, M.; Kalogirou, S.; Tripanagnostopoulos, Y. Modelling of an ICS solar water heater using artificial
neural networks and TRNSYS. Renew. Energy 2009, 34, 1333–1339. [CrossRef]

41. Afram, A.; Janabi-Sharifi, F.; Fung, A.; Raahemifar, K. Artificial neural network (ANN) based model
predictive control (MPC) and optimization of HVAC systems: A state of the art review and case study of a
residential HVAC system. Energy Build. 2017, 141, 96–113. [CrossRef]

42. Bayod, A.; Martínez, A.; Acevedo, L.; Uche, J.; Usón, S. Improved management of battery and fresh water
production in grid connected PVT systems in dwellings. In 10th BIWAES Biennial International Workshop
Advances in Energy Studies, Naples, Italy, 25–28 September 2017; Ulgiati, S., Vanoli, L., Eds.; Graz University of
Technology: Graz, Austria, 2017.

43. Acevedo, L.; Uche, J.; Usón, S.; Cirez, F.; Martínez, A.; Bayod, A.; Jiang, G. Exergy analysis of the transient
simulation of a renewable-based trigeneration scheme for domestic water and energy supply. In 10th BIWAES
Biennial International Workshop Advances in Energy Studies, Naples, Italy, 25–28 September 2017; Ulgiati, S.,
Vanoli, L., Eds.; Graz University of Technology: Graz, Austria, 2017.

44. Acevedo, L.; Uche, J.; Usón, S.; Jiang, G.; Del Amo, A.; Martínez, A.; Bayod, A. Modelling and simulating
a trigeneration plant: Coupling exergy analysis and Trnsys simulation by the creation of new types. In
Proceedings of the International Conference on Energy, Environment and Economics, Edinburgh, Scotland,
11–13 December 2017.

45. Acevedo, L.; Uche, J.; Cirez, F.; Usón, S.; Martínez, A.; Bayod, A. Experimental analysis of a domestic
trigeneration scheme feed by photovoltaic/thermal (PVT) collectors. In 10th BIWAES Biennial International
Workshop Advances in Energy Studies, Naples, Italy, 25–28 September 2017; Ulgiati, S., Vanoli, L., Eds.; Graz
University of Technology: Graz, Austria, 2017.

46. Beale, M.H.; Hagan, M.T.; Demuth, H.B. Neural Network Toolbox Design Book; MathWorks Inc.: Natick, MA,
USA, 2017.

47. Quintín, M.; Sanatana, Y. Application of Artificial Neural Networks to Regression; La Muralla: Madrid, Spain,
2007; pp. 78–99. ISBN 978-84-7133-767-2.

48. Winter, D.; Koschikowsky, J.; Ripperger, S. Desalination using membrane distillation: Flux enhancement by
feed water deaeration on spiral-wound modules. J. Membr. Sci. 2012, 423–424, 215–224. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.memsci.2010.11.030
http://dx.doi.org/10.1016/j.seppur.2011.11.001
http://dx.doi.org/10.1016/j.desal.2012.06.023
http://dx.doi.org/10.1016/j.buildenv.2009.08.016
http://dx.doi.org/10.1016/j.enbuild.2014.06.009
http://dx.doi.org/10.1016/j.egypro.2016.11.023
http://dx.doi.org/10.1016/j.renene.2008.09.007
http://dx.doi.org/10.1016/j.enbuild.2017.02.012
http://dx.doi.org/10.1016/j.memsci.2012.08.018
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	System Description 
	Trigeneration Unit Based on RES 
	PGMD Preliminary Distillate Prediction 
	PGMD Experimental Validation 

	ANN Model 
	Parametric Modelization of the ANN Performance 
	Number of Neurons in Hidden Layer 
	Dataset Collection 
	Activation Function in the Hidden Layer 

	ANN Fitting Model to Compute PGMD Production 
	ANN Validation 
	ANN Application 

	Discussion 
	Conclusions 
	References

