
 
Some issues on the concept of Causality in Spatial Econometric models 

 
 

Jesús Mur  
University of Zaragoza 

Department of Economic Analysis 
and 

Jean H.P. Paelinck 
George Mason University 
School of Public Policy 

 
 
 

Abstract: 
 In general, cross-sectional econometric models are specified under the 
assumption of simultaneity, which means that the relations among the agents are solved 
at the same moment in time. This aspect does not facilitate the distinction between 
causes and effects. However, the notion of cause is of paramount importance in order to 
specify any model where it is assumed that a variable, called endogenous, is caused by 
the variables introduced in the right hand side of the equation, the regressors. 
 Our impression is that this problem has been treated very informally in the 
Spatial Econometrics literature, where the specification of the equation depends almost 
exclusively on theoretical considerations. In this sense, the content of the paper focuses 
on questions related to the specification process. We examine what may be called 
current traditional practice and discuss the position that the concepts of identification 
and causality should play in this context. Our objective is to produce useful econometric 
guidelines in order to help the user to improve the theoretical foundations of the 
equation. 
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1.- Introduction 

 The concepts of causality and endogeneity are basic elements on the 

specification of an econometric model. In general, it is supposed that the variables that 

appear on the right-hand side of the equation cause the variable that appears on the left-

hand side. The treatment of the relation is easier if, furthermore, the variables that 

appear in the right-hand part are either exogenous or predetermined. This discussion 

forms part of the habitual practice, although it has not been elaborated so much in a 

spatial context (Anselin, 1988). 

 One of the main difficulties is related with the nature of the data because, on 

many occasions, we only have a cross-section without a time perspective. Nevertheless, 

the literature on causality has, from its origins, insisted on the principle of temporal 

succession, under which the cause must precede the effect. If we loose the temporal 

perspective, the discussion about causality is more complicated, but not irrelevant. On 

the contrary, we think that is very important to be aware of the possible existence of 

relations of causality between the variables of the model. With this objective, we begin 

the discussion by revising a series of concepts such as identification, predeterminedness 

or exogeneity. These concepts are related and they have clear connections with the 

question of causality. 

 In the second section we present the notation that we are going to use, together 

with some fundamental concepts and definitions. The context to which we refer in this 

case is the habitual one of time series. In the third section we introduce the spatial 

dimension which results in different problems. In the fourth section we examine some 

proposals in relation to the question of causality whose behavior is check in the fifth 

section by means of a Monte Carlo experiment. In the sixth section we apply the 

proposed procedure to the case of the relation between income and activity of the 

agricultural sector in the Spanish provinces. We finish the paper with a section of 

conclusions. 

2- Definitions and essential concepts. 

 The econometric literature has discussed the concepts of causality, exogeneity 

and identification in great depth, so there is a certain consensus about the interpretation 

and use of these terms. This section brings together a sample of these definitions (see 

Bresson and Pirotte, 1995, Davidson, 2000, or Greene, 2007, for a more general 

discussion). 
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 An econometric model relates a set of variables with different objectives that can 

range between prediction and simulation. Generally, attention is focused on the 

endogenous variables, yt, whose behavior is explained by the model. The other 

variables, zt, may be also endogenous, predetermined or exogenous and are of interest 

because they explain us how the endogenous variable is formed. There are other 

variables, supposed not to be relevant and concentrated in vector wt. Other elements 

needed to complete the structure of the model are the parameters and different 

deterministic terms (Charemza and Deadman, 1997). 

 The joint density function, ( )tt tD ; ; ;yw z Ψ , where Ψ is a vector of parameters, 

encapsulates the idea of a data generating process (DGP from now on) and a model. As 

Davidson (2000, p. 74) indicates, ‘The analysis is said to be conditional on zt, whereas 

the model is marginalized with respect to wt. The marginalization process is often taken 

for granted in empirical work (....). However, if a variable that should be in zt is 

incorrectly assigned to wt, its omission constitutes a misspecification’. In other words: 

( ) ( )
( ) ( )

t t t 1 t 1 2t t t 1 tw y,zt t

t t 1 t 1 1 t t 1 t 1 2t t 1 tzy z t

D ; ; ; D | ; ; ; ; ; ;y yw w W dz z Y Z
D | ; ; ; ; D | ; ; ; ;y d W dz Y Z z Y Z

− −−

− − − −−

Ψ = Ψ

Ψ Ψ
(1) 

where Wt-1, Yt-1 y Zt-1 refers to the history of the variables w, y and z until (t-1) and dt is 

the set of deterministic elements that intervene in the DGP of the variables. Obviously, 

the factorization of (1) is arbitrary and depends on the objective of the analysis. 

 Ψ1 are the parameters of interest while Ψ2 are nuisance parameters. It is 

important that the density functions w y,zD  and zD  do not depend on vector Ψ1 and 

that there are no crossed restrictions between vectors Ψ1 and Ψ2 (Hendry et al, 1983, 

use the term sequential cut). Similarly, it is important that the conditioned density 

function of y, y zD , does not depend on t j ( j 0)w − ∀ >  which assures that the latter 

variables do not affect y. In fact, if both conditions are verified (there exists a sequential 

cut in Ψ and, also, Wt-j is not relevant in y zD ), all the information we need to know 

about the behavior of y can be found in y zD . The last density function completely 

represents the stochastic mechanism generating the variable y. 

 A series of interesting properties are fulfilled in (1). For example, vector z is 

weakly exogenous for Ψ1, which means that this vector intervenes in the conditional 

modeling of the variable y but not in the generation process of z. This is a relation 
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between variables and parameters whose meaning and implications are always relative 

to the problem under investigation. 

 The concept of causality relates variables and, in line with Granger (1969), is 

constructed upon the idea of predictability: if the group of variables zt cause yt, the 

information about the former variables must improve our knowledge about the latter, 

which are our variables of interest. 

 This discussion revolves around the structure of y zD  in (1). For example, if 

( ) ( )t t 1 t 1 1 t 1 t 1 1t ty z y zt tD | ; ; ; ; D | ; ; ;y yd dz Y Z Y Z− − − −=Ψ Ψ , the conclusion will be that 

z does not contemporaneously cause y; if the absence of relation also extends to the 

past: ( ) ( )t t 1 t 1 1 t 1 1t ty z y zt tD | ; ; ; ; D | ; ;y yd dz Y Z Y− − −=Ψ Ψ , the conclusion is that z 

does not cause y relative to yt-1. The definition of Granger noncausality is purely 

operative, in the sense that the causal variables should help predict the caused variable 

better, whereas the definition of weak exogeneity is formal. However, and in spite of 

their apparent similarity, the two concepts (Granger noncausality and weak exogeneity) 

are not necessarily related. As is well known, weak exogeneity plus non-causality 

results in strong exogeneity for Ψ1. In fact, if z is weakly exogenous with respect to Ψ1 

and, at the same time, y does not cause z, we can handle the conditional y zD  and the 

marginal zD  separately. For practical purposes, this means that the variables z act as if 

they were fixed in the conditioning model. 

 Another important concept is that of invariance, in reference to a parameter that 

remains constant under a certain type of interventions. In particular, if all the parameters 

of a conditional model are invariant for any change in the distribution function of the 

conditioning variables, we can speak of structural invariance. If, furthermore, we add 

the weak exogeneity property of the conditioning variables (the z’s) in relation to the 

parameters of interest of the conditional model (vector Ψ1), the result is super 

exogeneity with respect to the parameters of interest. 

 Engle et al. (1983, p.286) describe the role of these concepts: ‘weak exogeneity 

validates conducting inference conditional on zt while Granger noncausality validates 

forecasting z and then forecasting y conditional on the future z’s (...) Obviously, if 

estimation is required before conditional predictions are made, then strong exogeneity 

which covers both Granger noncausality and weak exogeneity becomes the relevant 

concept’. 
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 Another part of the story deals with the concepts of predeterminedness and strict 

exogeneity, which refer to the relation between a variable on the right-hand side of the 

equation and the disturbance term of the model. If the variable in question is 

independent of future disturbances, we can speak of predeterminedness and, if this 

relation is maintained whatever the temporal direction considered, we obtain strict 

exogeneity. As Davidson, (2000, p. 79) indicates, the disturbances ‘are fictional 

constructs that have no reality outside of the particular model and parametrization we 

have chosen’ which brings the discussion back to the terrain of the relationship between 

variables and parameters.  

 Weak exogeneity tends to be associated with predeterminedness and strict 

exogeneity with strong exogeneity. However, Engle et al. (1983, Theorem 4.3) 

demonstrate that there remain many situations where they differ given that both 

characterizations (weak exogeneity plus strict exogeneity vs predeterminednes plus 

strong exogeneity) are defined in different contexts. The first, weak exogeneity plus 

strict exogeneity, refers to the parameters of interest in the structural form whereas the 

second, predeterminednes plus strong exogeneity, operates on the reduced form of the 

model. It is important to remember that the relation between the two forms may be 

ambiguous, unless the supposition of identification is verified. Knowledge of the sample 

data moments between the endogenous and the regressors will suffice to determine the 

parameters of the reduced form, but there may exist different structural models 

compatible with the same reduced form equations, so ‘the economic theory must fix 

some elements of these structural matrices in advance. When there are not sufficient 

prior restrictions to rule out observationally equivalent structures, the model is said to 

be underidentified, in whole or in part’ (Davidson, 2000, p.185). For a system of 

homogeneous linear equations, the structural and reduced forms are, respectively: 

 
t tt tt t

Reduced Form:Structural Form:
vyy uz z=+ = +B Γ Π  (2) 

yt is a (Gx1) vector of endogenous variables, zt an (Mx1) vector of predetermined 

variables, tt t tEy yu I⎡ ⎤= − ⎣ ⎦ , and It is the informative base for the period t which 

comprises the previous history of yt and zt as well as contemporaneous data for the 

exogenous variables. B and Γ are structural matrices of order (GxG) and (GxM), 

respectively, and Π is a (GxM) matrix of reduced form parameters which are always 

identified by the sampling information. Finally, vt is the (Gx1) vector of reduced form 
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error terms ( 1
t t v u−= B ). As is well-known, the identification condition for this case 

is: 

 ( )
[ ](Gx(G M))

((G M)xR)
rank G(G 1) +

+

⎧ = −⎪= − → ⎨
⎪⎩

A B Γ
AΦ

Φ
 (3) 

where Φ is the matrix of restrictions on the structural parameters. That is, we need to 

complete the structural form of (2) with G(G-1) restrictions on the parameters. The 

clause of (3) defines necessary and sufficient conditions to assure identification, 

whereas the order condition, R G 1≥ − , is necessary but not sufficient. Extending the 

discussion for each of the equations of the system, the identification condition of the i-th 

equation, the rank condition, after normalizing, appears to be: 

 irank( ) G 1= −AΦ  (4) 

where iΦ  is the matrix of restrictions of the equation. A necessary condition for the 

identification of the equation is i iM 1gm− ≥ − ; that is, the number of excluded 

predetermined variables, M-mi, should be greater than or equal to the number of 

included endogenous minus one, G-1. It is not necessary to remember the position of 

Sims (1980, p.14) with respect to the indiscriminate use of restrictions on the structural 

form: ‘I have argued earlier that most of the restrictions on existing models are false, 

and the models are nominally overidentified’. 

3- A general spatial model. 

 In this section we are going to specify a general spatial model in order to discuss 

the different concepts introduced in the previous section. We assume that we have 

sample information for a set of R individuals taken over T periods; that is, initially we 

have a panel with which we specify a model of simultaneous equations like the 

following: 

 1t Rtr1 rR rtr1 rRrt 1t Rt

rr

y y y ux ' x '
r 1, 2, , R t 1, 2, ,T 1

= + + + +β βα α
= = =α

" "
… …  (5) 

 In the r-th equation we explain the endogenous variable, yrt, based on what 

happens in its neighborhood, in which we include the variable itself observed in points 

of space other than r, and a vector of predetermined and exogenous variables located 

both at point r and on other different places; xmt is a vector of order (kx1) of 

observations taken at  point m and βrm the corresponding vector of parameters that 

intervene in equation r, also of order (kx1); urt is an error term. Equation (5) has been 

normalized so that αrr=1. 
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 Using a more compact notation: 

mt m1t m2t m3t mkt

11 12 13 1T 11 21 31 R1
12 22 32 R221 22 23 2T
13 23 33 R331 32 33 3T

1T 2T 3T RT (TxRk)R1 R2 R3 RT (RxT)

12 13 1R
22 2

y y y y x x x x
y y y y x x x x

Y Xy y y y x x x x

x x x xy y y y
x x x x x

1
1

B

⎡ ⎤=⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥= = ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

−α −α −α
−α

=

"

" "
" "

""
" " " " "" " " " "

""

"

mr m1r m2r m3r mkr (kx1)

11 21 31 R1
3 2R 12 22 32 R2

31 32 3R 13 23 33 R3

R1 R2 R3 (RxR) 1R 2R 3R RR (RxRk)

11 12 13 1T
21 22 23 2T
31 32 3

1

1

u u u u
u u u u

U u u

⎡ ⎤=⎣ ⎦

β β β β⎡ ⎤⎡ ⎤
⎢ ⎥β β β β⎢ ⎥−α −α
⎢ ⎥Γ =⎢ ⎥ β β β β−α −α −α
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥−α −α −α β β β β⎣ ⎦ ⎣ ⎦

β β β β β

=

"

"
""

" "
" " " " " " " " " "

" "

"
"

3 3T

R1 R2 R3 RT (RxT)

BY X' Uu u

u u u u

⎡ ⎤
⎢ ⎥

⇒ = Γ +⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
" " " " "

"

 (6) 

 From the structural form of (6), the reduced form can be easily obtained: 

 1
(RxRk)

1

BY X' U Y X' V
B

V UB

−

−

= Γ + ⇒ = Π +
Π = Γ

=
 (7) 

 Without loss of generality, we complete the specification with the following 

propositions: 

 

( ) ( )

[ ]
[ ] {

t YY YX
t

XY XXt R(k 1)xR(k 1)(R(k 1)x1)

t t t tt(Rx1)
1

XYXX

t t t t tt(Rx1) t

t tt t

t tt s t s

YY YX(RxR)

0Y N ;z 0X
E D'Y X x x
D

Ev Y Y X x Y
E E E 0v v X x

; t sE E Ev v ' v v ' X x 0; t s

+ ++

−

⎡ ⎤⎡ ⎤ Σ Σ= ⎢ ⎥⎢ ⎥ Σ Σ⎣ ⎦ ⎣ ⎦
→ = ⎡ = ⎤ =μ ⎣ ⎦

= Σ Σ
→ = − ⎡ = ⎤ = − μ⎣ ⎦

⎡ ⎤= ⎡ = ⎤ =⎣ ⎦⎣ ⎦
Ω =⎡ ⎤= ⎡ = ⎤ =⎣ ⎦⎣ ⎦ ≠

Ω = −Σ Σ

∼

1
XYXX

t t t tt t tt t tE E E E E 0; tv ' v ' v 'X x X x

−Σ Σ
⎡ ⎤ ⎡ ⎤= ⎡ = ⎤ ⎡ = ⎤ = ∀⎡ ⎤μ μ μ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (8) 

 There are R(R-1) parameters in matrix B and R2k in matrix Γ, making a total of 

R[R(k+1)-1] structural parameters of interest. Furthermore, in the reduced form of (7), 

there are R2k statistical parameters in matrix Π. In each of the matrices of covariances, 

Δ and Ω, we find another R2 parameters. It is obvious that the model is underidentified. 

To achieve identification, it will be necessary to introduce, at least, R(R-1) restrictions 

on the structural parameters. 
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 In a spatial context, these restrictions can be obtained in various ways, for 

example, through the matrix B of (5). If we assume, as usual, that there exists a 

weighting matrix, of binary type for simplicity’s sake, which correctly reflects the 

structure of spatial dependencies, we can write: 

 { r
rs

r

B I W
1 if s Nw 0 if s N

= − ρ
∈= ∈

 (9) 

where Nr is the set of neighbors which are related to point r and ρ a parameter of spatial 

autocorrelation. In (9) we obtain [R(R-1)-1] restrictions. To achieve identification we 

need, at least, one more restriction that can now be obtained from matrix Γ. It appears 

reasonable to restrict the capacity of interaction between the endogenous, located at a 

given point, and the predetermined variables located elsewhere in space. This means 

that some of the β’s located outside the main diagonal of matrix Γ will be zero. If, 

furthermore, we introduce the restriction of homogeneity between these vectors of 

parameters, we can write: 

 { sr
ss rr

0 if s r
if s=r

= ≠β
= = ββ β  (10) 

 We obtain (R2-1)k restrictions on the parameters of matrix Γ, which, added to 

those already introduced in the composition of matrix B, give us a total of [R2(2k+1)-

(R+k)] restrictions. The number of parameters of the reduced form is still R2k while in 

the structural form only intervene (k+1) parameters: 

[ ]
11 12 13 1R
21 22 23 2R11

R 31 32 33 3R

R1 R2 R3 RR

11 12 13 1R
21 22 23 2R1
31 32 33 3R

0 0 0b b b b
0 0 0b b b b
0 0 0WB I b b b b

0 0 0b b b b

B

−−

−

β⎡ ⎤ ⎡ ⎤
β⎢ ⎥ ⎢ ⎥

= = Γ = β−ρ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ β⎢ ⎥⎣ ⎦⎣ ⎦

π π π π
π π π π

Π = Γ ⇒ π π π π

" "
" "

""
" " " " "" " " " "

""����������������	���������������


"
"
"

"

11 12 13 1R
21 22 23 2R
31 32 33 3R

Rk1 Rk2 Rk3 RkR R1 R2 R3 RR
1

R

b b b b
b b b b
b b b b

b b b b

B B I
−

β β β β⎡ ⎤ ⎡ ⎤
β β β β⎢ ⎥ ⎢ ⎥

= β β β β⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥β β β βπ π π π⎣ ⎦ ⎣ ⎦

Π= ⊗β ⇔ Π = ⊗β = Γ

"
"
"

" " " " " " " " "
" "

 (11) 

 The model, now, is overidentified; we have R(R-1) restrictions of 

overidentification. The matrices of variance and covariances would allow us to derive 

new restrictions. For example, if we assume incorrelation between the error terms of the 

cross-sections of the structural form of (6): 
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( )
[ ]

[ ] {

t t t tt(Rx1)

t tt t
1 1

t tt s t s

B Eu Y Y X x
E BE E 0u v X x

; t sB B'E BE E B'u u ' v v ' X x 0; t s
− −

⎡ ⎤= − =⎣ ⎦
⎡ ⎤= ⎡ = ⎤ =⎣ ⎦⎣ ⎦

Λ → Ω = Λ =⎡ ⎤= ⎡ = ⎤ =⎣ ⎦⎣ ⎦ ≠

 (12) 

where Λ is a diagonal matrix. In this way we have R(R-1) new restrictions or (R2-1) if 

we also assume homoskedasticity. In the first case, we have a total of 2R[R(k+1)-1]-k 

restrictions of overidentification and, in the second case, 2R2(k-1)-(R+k+1). That is to 

say, as long as we have a sufficient number of cross-sections (it must hold that T>Rk), 

the simultaneous equations model of (5) can be estimated in the usual way. 

 Problems arise when the temporal size is reduced to only one cross-section 

(T=1). In order to assure the identification of the model we must introduce, at least, all 

the restrictions mentioned previously: 

 

[ ]
rt r1t r2t r3t rkt

1t 1t
2t2t

1t 2t 3t Rt 3t3t (1xRk)

Rt (RxT)Rt (Rx1)

21 31 R1
12 32 R2

R313 23

1R 2R 3R (RxR

y u
y u

Y X Uy x x x x u
x x x x x uy

1 w w w
1w w w

B 1w w

1w w w

⎡ ⎤=⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥= = = ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

−ρ −ρ −ρ⎡ ⎤
⎢ ⎥−ρ −ρ −ρ
⎢ ⎥= −ρ −ρ −α
⎢ ⎥
⎢ ⎥−ρ −ρ −ρ⎣ ⎦

"

"
""

"
"
"

" " " " "
"

1 2 3 k (kx1)

)

RR (RxRk)

I W

0 0 0
0 0 0
0 0 0 I

0 0 0
⎡ ⎤=⎣ ⎦

= − ρ

β⎡ ⎤
β⎢ ⎥

βΓ = = ⊗β⎢ ⎥
⎢ ⎥
⎢ ⎥β⎣ ⎦
β β β β β"

"
"
"

" " " " "
"

 (13) 

 However, under this setting it is easier to use the structural form of the model: 

1t 1t21 31 R1 11t 21t 31t k1t
12t 22t 32t k2t12 32 R22t 2t
13t 23t 33t k3t13 23 R33t 3t

1Rt 2Rt 3Rt kRt1R 2R 3RRt Rt

y Wy x u
y y0 w w w x x x x
y y0w w w x x x x

0y yw w w x x x x

0 x x x xw w wy y

= ρ + β+ ⇔
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥= ρ +⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣⎣ ⎦⎣ ⎦ ⎣ ⎦

" "
" "

""
" " " " "" " " " "" "

""

1 1t
2t2
3t3

Rtk

u
u
u

u

β⎡ ⎤ ⎡ ⎤⎤
⎢ ⎥β ⎢ ⎥⎢ ⎥
⎢ ⎥ + ⎢ ⎥⎢ ⎥ β
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ β⎦ ⎣ ⎦⎣ ⎦

""

 (14) 

 The equation of (14) contains (k+1) parameters, the same as the reduced form: 

 ( ) ( )1 1y I W x I W u− −= −ρ β+ −ρ  (15) 

 The model is overidentified, giving that the number of cross-sectional 

observations, R, is greater than the number of parameters, k+1, as it is usual. The 
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reduced form of (15) is nonlinear in parameters although it can be ‘linearized’ by using 

the expansion of the inverse matrix in term of powers of the weighting matrix: 

 
( )

( )

1 2 3
1 2 3

(1) (2) (3)
1 2 3

j(j)

j j
1

I W I W W W

y x vx x x
xWx

v I W u

−

−

−ρ ≈ + + + +ρ ρ ρ

⇒ = β+ + + + +β β β
=

=ββ ρ

= −ρ

"

"
 (16) 

being v the error term of the reduced form, spatially autocorrelated and heteroskedastic. 

As said, it is simpler to work with the structural form of (14) than with the reduced form 

of (15); see Paelinck and Nijkamp, 1978, and Paelinck and Klaassen, 1979, for more 

details. In any case, the point that we would like to stress in this moment is that there 

exists a long list of restrictions underlying the specifications of (14) and (15). They must 

be assumed in order to assure the identification of the model and we must be aware of 

them. 

 Another point to note in relation to the problem of identification is that the 

topology of the space does not specially matter; that is, the composition of the 

weighting matrix (which it is supposed to reflect the structure of the space) does not 

have any incidence on that question. The minimum requirement is that, at least, two 

regions should be connected.. The shape of the spatial system (in terms of number and 

distribution of connections) will affect the robustness and the variance of the 

corresponding estimations. 

4-. A first look into the topic of spatial Granger causality. 

 The concept of Granger causality relies, among other things, on the principle of 

‘temporal succession’ which implies that the cause must precede, in a temporal sense, 

the effect. This principle implies, for example, that the past of the variables should be 

used in order to check for the existence of causality relationships between two variables. 

However, a cross-section usually contains observations of the variables that are 

coincident in time or, at least, dated at the same moment of time. This seems to preclude 

the use of time dynamic specifications. Another well-established principle of this 

humenian strand of literature (Pearl, 2000) refers to the ‘contiguity relation’ between 

the cause and the effect: both elements must coincide in a specific time and location. 

However, the ‘allotopy’ is one of the main features of spatial econometrics models 

which, as explained, by Ancot et al (1990, p.141) implies that ‘very often, the factors 
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that explain a given economic fact in a region of space are located in distinct places’. 

The principle of allotropy relaxes the restriction of physical contiguity between the 

agents that intervene in a given. 

 In short, the simultaneity of the data, which is a characteristic of cross sections, 

affects the applicability of the ‘temporal succession’ principle whereas the ‘contiguity 

relation’ should be relaxed because of the type of models in which we are interested. 

The question then is if the concept of spatial dynamics may replace, at least partially, 

the role played bye the concept of temporal dynamics in the analysis of causality. 

 Briefly stated, Granger causality test (Granger, 1969) develops around the idea 

of predictability in the sense that, if variable x causes variable y, the past of the first 

variable must help to improve the forecasting performance of the second: 

( ) ( )2 2
t 1 t t 1 t t

*y | I y | I x+ +σ < σ − , where σ2(-) denotes uncertainty (the variance, in 

general), It the informative base up to period t and t
*x  the information of variable x up 

to period t. The test is very simple (see also Heyde, 1957, or Holly, 1984). The null 

hypothesis implies noncausality and results in a set of zero restrictions: 

 

1 2

2

k k
1k 2kt 0 t k t k 1t

k 1 k 1

21 2k0 0 A 1 2
1 2 2

as2AA 0

y y x u

H : 0 T ( )SR SR k kF F(T ( ); )k k k
H : No H SR k

− −
= =

= α + + +∑ ∑α α

= = = ⎫α α − − +⎪ → = − +⎬
⎪⎭

…
∼

 (17) 
being SR0 and SRA the sum of squared residuals of the model of the null and alternative 

hypothesis, respectively. If we change the terms past/future, which form the basis of the 

equation of (17), by proximity/remoteness, typical of spatial econometric models, we 

obtain: 

 

( )

1 2

2
A 0

k k
1k k 2k k0

k 1 k 0

20 21 2k0 2
2

asA 0

y y x uW W

H : 0
F 2 ( 1)l l kH HH : No H

= =
= α + + +∑ ∑α α

= = = = ⎫α α α ⎪ → = − +χ⎬
⎪⎭

…
∼

 (18) 

where {W1, W2, …. Wkj} is a succession of weighting matrices of order 1, 2, etc., with 

W0 =I; y and x are (Rx1) vectors of observations of the two variables, in period t, and u 

a vector of error terms assumed, for simplicity, white noise. The F statistic is a 
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likelihood ratio, where 
AlH  and 

0lH  refer to the estimated log-likelihood of the model 

of the alternative and null hypothesis respectively. The null hypothesis implies that the 

information about the spatial distribution of the x variable does not help to improve our 

understanding of the spatial distribution of the y variable at time t. Obviously, in 

continuation we have to invert the order of the variables to test the hypothesis that y 

does not cause x. 

 The two-step procedure described can be combined in a direct formulation 

specifying a spatial VAR (Di Giacinto, 2003, 2006, Beenstock and Felsenstein, 2007, 

2008): 

 

11 12

21 22
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22

k k
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k 1 k 0
k k

k k x0 1k 2k
k 1 k 0

20 21 2k0

0 20 21 2k

200

y y xW W u

x x yW W u

x does not cause y H : 0

y does not cause x H : 0

x does not cause y H :
AND

y does not cause x

= =

= =

⎫
= α + + +∑ ∑α α ⎪

⎪
⎬
⎪= β + + +β β∑ ∑ ⎪⎭

→ = = = =α α α

→ = = = =β β β

→

…

…

( )

12

22

A 0

21 2k

20 21 2k

2
J

as

0

F 2 ( )l l kH H

= = = =α α α

= = = =β β β

→ = − χ

…

…

∼

 (19) 

being kJ the number of restrictions corresponding to each case. The bivariate system of 

(19) can be estimated by maximum-likelihood methods. 

 As a kind of exploratory, preliminary analysis of the possible causality 

relationships present in given set of variables, it can be interesting to combine the 

Simultaneous Dynamic Least Squares (SDLS from now on) estimators of Paelinck 

(1990) with a very simple and popular statistic in applied econometrics as the partial 

correlation coefficient. Let us introduce the case assuming a spatial model, like the 

following: 

 0 1y Wy+x +Wx u= ρ +β β  (20) 

where x is a matrix of explanatory (possibly exogenous) variables, if necessary 

including (partial) unit column vectors to take bare of region-specific constants; the x 

matrix can contain on-localized explanatory variables. 
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If the estimators are obtained by SDLS in the case of (20), they are equivalent to 

the estimators of the reduced form (Paelinck, 2007). This implies that, if x is a matrix of 

strongly exogenous variables, the endogenously generated ŷ  vector has the same 

property, and they can both be combined in a matrix z=[x, Wx, ŷ ]. Then the 

incremental contributions of all variables can be computed according to Theil (1971, pp. 

168-169). Recall that 2
iR  is defined as the multiple correlation coefficient from the 

multiple regression of y (observed) on z minus its ith column; it is further known that: 

 k2 2
i 1 iR R=≈ ∑  (21) 

being 2R  the global multiple correlation coefficient of the equation. Obviously, if the x 

variables are not important in explaining the spatial distribution of y, the marginal 

determination coefficient associated to these variables should be very small in 

comparison with that assured from the lag structure of the y variable. 

5- Some Monte Carlo evidence. 

 In this section we are going to present the main results obtained from a small 

Monte Carlo experiment in which we have simulated the likelihood ratios of (18). The 

data have been obtained dynamically, using a dynamic spatial panel data model which 

allows us to respect the principle of ‘temporal succession’. However, we have used only 

the last cross-section to discuss the existence of causality relations between the 

variables. Specifically, the data generating process is the following: 

10 01 11t t 1 t t 1 t t 1 t t 1 t t00 10 01 11

1t 1t 1t 1t

2t 2t 2t 2t
t t t t
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2
t t t m

y y y y x x x x

y x
y x

y ;x ; ;

y x

N(0; I);Cov( ; )

− − − −

ε ±

= + + + + + + + Γ + εβ β β β ⎫α α α
⎪

λ ε⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎪⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥λ ε ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = Γ = ε = ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥λ ε ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎭
ε ε ε =σ

W W W W

# # # #

∼ 0 m 0∀ ≠

 (22) 

where W is the usual weighting matrix, α10, α01, α11, β00, β10, β01 and β11 are parameters 

that measure the dependence (temporal, spatial or mixed) that is present in the panel; Γt 

is a vector of unobservable (fixed or random) individual effects; finally, εt is a white 

noise random vector (assumed to be normal and homoskedastic). The DGP of (22) is a 

simplified version of the general first-order serial and spatial autoregressive distributed 

lag model of Elhorst (2001), which includes a set of exogenous variables as well as their 

time and spatial lags. 
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In each of the T cross-section the data has been simulated on a ( Rx R ) 

regular lattice. We have used four sample sizes as (T;R) = (5; 49), (5; 100); (10;49) and 

(10; 100). The random terms have been obtained from a gaussian distribution with zero 

mean and unit variance, t N(0;I)ε ∼ , whereas the vector x comes from a uniform 

distribution on the (0,1) interval, tx U(0;1)∼ . W matrix has been specified always as a 

first order contiguity matrix, row-standardized. Finally, in these experiments and for the 

sake of simplicity, we have assumed that the Γt vector is composed by only a constant 

term, common to all individuals and cross-section, Γt=Γ=τ1, being l a (Rx1) vector of 

ones and τ a parameter. In the future we will relax this restriction introducing (time, 

spatial) fixed or random effects following Elhorst (2003). 

 The estimated size of the test, under different configurations, appears in Table 1. 

In case A we have simulated, strictly, the model of the null hypothesis; that is, in the 

DGP of the variable y only intervene its past and/or contemporaneous values plus the 

error term and the intercept: it is a pure spatiotemporal autoregressive model. The case 

B also belongs to the null hypothesis, in the sense that variable x does not appear in the 

DGP of variable y. Indeed, we have simulated the equation of (22) but using a variable 

z, in place of x. However, the testing equation has been specified using the variable x. In 

case B.1 both variables, x and z, are uncorrelated whereas in Case B.2 they have a 

correlation of about 0.5. 
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Table 1: Causality likelihood ratio. Estimated size. 

β00=0; β01=0; β10=0; β11=0 
α01 α10 α11 Case A 

0.1 0.8 0.1 0.8 0.1 0.8 

(5; 49) 0.036 0.043 0.060 0.066 0.009 0.072 

(5; 100) 0.041 0.050 0.062 0.056 0.018 0.088 

(10;49) 0.042 0.058 0.055 0.078 0.069 0.054 

(10; 100) 0.061 0.059 0.072 0.045 0.059 0.066 
β00=0.4; β01=0.4; β10=0; β11=0 

α01 α10 α11 Case B.1 

0.1 0.8 0.1 0.8 0.1 0.8 

(5; 49) 0.075 0.047 0.064 0.035 0.001 0.051 

(5; 100) 0.081 0.033 0.055 0.072 0.002 0.039 

(10;49) 0.049 0.061 0.027 0.072 0.042 0.061 

(10; 100) 0.034 0.081 0.059 0.032 0.035 0.073 
β00=0.4; β01=0.4; β10=0; β11=0 

α01 α10 α11 Case B.2 

0.1 0.8 0.1 0.8 0.1 0.8 

(5; 49) 0.016 0.005 0.019 0.002 0.004 0.018 

(5; 100) 0.008 0.032 0.008 0.022 0.007 0.001 

(10;49) 0.014 0.031 0.019 0.030 0.017 0.020 

(10; 100) 0.029 0.003 0.031 0.032 0.033 0.019 

 In general terms, we can say that the likelihood ratio test of (18) is well sized, 

especially when the DGP is correctly specified (Case A). If the DGP is wrongly 

specified, the test suffers some size distortions, which are more acute when the omitted 

variable (z) presents some correlation with the variable of interest (x), as in Case B.2. 

 Table 2 summarizes the results corresponding to the estimated power of the test. 

We have used two different configurations of the DGP. Case C is a purely static model, 

in the sense that there is any spatial or temporal lag of variable y in the DGP. Case D 

introduces some elements of spatial or temporal dynamics of variable y, in combination 

with the structure associated to variable x. In the configuration D.1 it appears the 

temporal lag of y, the spatial lag in the configuration D.2 and the temporal lag of the 

spatial lag in D.3. Moreover, for simplicity’s sake, we have introduced only one element 

associated to x: the contemporaneous and spatially coincident values, xt (column β00); 

the temporal lag of the spatially coincident values, xt-1 (column β10); the spatial lag of 

the contemporaneous values, Wxt (column β01) or the spatial lag of the temporal lag of 

the values, Wxt-1 (column β11). 



 15

Table 2: Causality likelihood ratio. Estimated power. 

α10=0; α01=0; α11=0 
β00 β10 β01 β11 Case C 

0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8 

(5; 49) 0.663 0.975 0.596 0.780 0.617 0.735 0.633 0.759 

(5; 100) 0.786 0.979 0.673 0.886 0.758 0.822 0.744 0.890 

(10;49) 0.727 0.983 0.699 0.887 0.657 0.855 0.651 0.881 

(10; 100) 0.790 0.983 0.793 0.929 0.856 0.955 0.755 0.940 
α10=0.4; α01=0; α11=0 

β00 β10 β01 β11 Case D.1 
0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8 

(5; 49) 0.587 0.946 0.577 0.664 0.549 0.728 0.517 0.659 

(5; 100) 0.780 0.964 0.617 0.778 0.700 0.805 0.631 0.884 

(10;49) 0.678 0.921 0.686 0.831 0.545 0.762 0.632 0.851 

(10; 100) 0.740 0.936 0.680 0.854 0.830 0.851 0.648 0.866 
α10=0; α01=0.4; α11=0 

β00 β10 β01 β11 Case D.2 
0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8 

(5; 49) 0.591 0.931 0.591 0.729 0.601 0.644 0.557 0.685 

(5; 100) 0.691 0.951 0.665 0.809 0.734 0.752 0.651 0.829 

(10;49) 0.660 0.945 0.611 0.846 0.587 0.813 0.593 0.834 

(10; 100) 0.739 0.884 0.771 0.867 0.829 0.926 0.706 0.849 
α10=0; α01=0; α11=0.4 

β00 β10 β01 β11 Case D.3 
0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8 

(5; 49) 0.624 0.949 0.568 0.714 0.585 0.706 0.590 0.707 

(5; 100) 0.763 0.973 0.662 0.852 0.703 0.776 0.715 0.828 

(10;49) 0.703 0.923 0.633 0.857 0.628 0.819 0.646 0.822 

(10; 100) 0.742 0.936 0.789 0.895 0.827 0.917 0.742 0.924 

 It is evident that the test performs better the simpler is the DGP. The best results 

correspond to Case C where a (spatially and temporally) static model intervenes. 

Overall, the percentage of rejection seems reasonable and it increases with the sample 

size (with R) and with the symptoms of causality, as reflected by the corresponding 

parameter β. Interestingly, the procedure works better when the cross-section analyzed 

is more distant from the origin. 

6- An application to the Spanish case: Personal income vs agriculture. 

 As an example, we present the case of the spatial distribution of the income per 

capita and the presence of the agricultural sector in the Spanish provinces in the year 

2006. The two variables are represented in Figure1. The first (ipc) is measured as an 
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index, with value 100 for the national average, and the second (ag) as the percentage 

that the agricultural sector represents on the gross value added of each province in 2006. 

 The first question to note is that the spatial distribution of both variables is very 

different. The two are positively spatially correlated, but the structure of the second is 

diffused (with a Moran’s I of 0.15 and pvalue of 0.06) whereas the income per capita 

shows a strong Northeast-Southwest tendency (the Moran statistic is 0.66 with a pvalue 

of 0.00). 

Figure 1: Spatial distribution of income per capita and weight of agriculture. 2006. 

Income per capita (Spain=100) Weight of agriculture on PIB 

 First (lowest)  Second  Third  Fourth  Fifth (highest) 

 To begin with the discussion, let us introduce in the first place the equation 

specified to relate both variables: 

 
2 2

1k k 2k k0
k 1 k 0

y y x uW W
= =

= α + + +∑ ∑α α  (23) 

 It is the same equation that appears in (18) but restricting the lag structure to a 

second order (k1=k2=2), where y and x may correspond to variables ipc or ag. If we 

associate y with ipc and x with ag, we will test for causality relations from agriculture 

(cause) to income (effect), and on the contrary if we identify y with ag and ipc with x. In 

each of these two cases, we have obtained the SDLS estimate of the corresponding y 

variable, ŷ , using a reduced version of (23), namely: 

 
2

11 1 2k k0
k 0

y y x uW W
=

= α + + +∑α α  (24) 

 This allows to complete the matrix z=[W1 ŷ, W2 ŷ , x, W1x, W2x] and proceed as 

indicated in section 4. The results are shown in the upper part of Table 3. Under the 

heading of ipc or ag, there appear the cumulative percentage obtained from the 

corresponding marginal coefficients. For example, the LS regression for the ipc variable 
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produces a multiple correlation coefficient of 0.7667. The spatial structure of the 

variable ipc accounts for the 69.6% of this value, whereas the information of the ag 

variable only amounts to the 30.4%. In the case of the regression for the ag variable, the 

multiple coefficient is smaller, 0.5309, and depends mainly on the information 

associated to the variable ipc, 75.1%, whereas the spatial distribution of the agricultural 

sector only accounts for to the 24,9%. In short, it appears that income may have some 

effect in the distribution of the agricultural sector but the maintenance of the contrary 

relation it is, at least, dubious. 

 At the bottom of the Table, under the heading of ML estimation, we present the 

results of the likelihood ratio of (18). The pvalue of the first relation (agriculture does 

not cause the distribution of income) does not allows to reject the null hypothesis at the 

usual 5% significance level. In the second relation (income does not cause the 

distribution of agriculture) we observe a vey low pvalue for the F statistics which allows 

to reject the null hypothesis at the same significance level. 

Table 3: Income pc vs agriculture. Causality results 

(1) SDLS+ (2) LS Estimation 
Explained ipc  Explained ag 
W1ipc 46.3%  W1ag 19.4% 
W2ipc 69.6%  W2ag 24.9% 
ag 15.3%  ipc 38.3% 
W1ag 15.4%  W1ipc 74.6% 
W2ag 30.4%  W2ipc 75.1% 
Coeff. Corr 0.7667  Coeff. Corr 0.5309 

ML Estimation 
Explained ipc  Explained ag 
Log. ample -202.193  Log. ample -135.068 
Log. restri. -195.785  Log. restri. -120.595 
F statistic 6.408  F statistic 14.473 
p-value 0.0934  p-value 0.0023 

7- Conclusions. 

 This paper is a first approach to the analysis of causality in a spatial context. We 

are convinced that this is a very important topic that must be checked in order to assure 

the consistency of any spatial econometric model. There are obvious difficulties in 

tackling the question and the characteristic of the information used in this type of 

models is not a minor aspect. In this sense, the intention of our paper is to motivate the 

discussion. 
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 We present some preliminary results in terms of an exploratory technique, based 

on the decomposition of the multiple correlation coefficient of an general regression, as 

well as a test which may be seen as an adjusted version of the popular Granger causality 

test. 
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