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Abstract

Phenomenological action potential (AP) models allow
reproducing characteristic features of cardiomyocytes’
electrical activity without fully describing the underlying
biophysics, thus being very useful for whole-heart elec-
trophysiological simulations. Methods to identify the pa-
rameter values of phenomenological models commonly at-
tempt to reproduce specific AP properties rather than the
whole AP waveform. In this work we propose the use of a
sequential estimation approach based on sigma-point fil-
ters to adjust such parameters. The proposed methodol-
ogy has been tested in estimating the parameters of the
phenomenological Bueno-Cherry-Fenton model to repli-
cate the APs generated with in silico models as well as
experimentally measured APs. With the new method the
whole AP waveforms can be reproduced more accurately
than with previous parameter fitting methods and the AP
duration restitution curves are in better agreement with
available experimental data.

1. Introduction

In recent years, there has been a growing interest in the
use of computational models in cardiac research to com-
plement experimental and clinical investigations. Some of
these models aim at providing detailed descriptions of cel-
lular electrophysiology [1, 2], but they are computation-
ally expensive, particularly for large-scale simulations of
whole-heart electrophysiology. On the other hand, phe-
nomenological action potential (AP) models [3] allow re-
producing characteristic features of cardiomyocytes’ elec-
trical activity without fully describing the underlying bio-
physics, hence being more suitable for simulations with
high computational demand. Additionally, by adjusting a
number of parameters, phenomenological AP models can
be used to represent different cell characteristics.

Current methods used to fit the parameter values of phe-
nomenological models make use of non-linear optimiza-
tion methods [3, 4] and attempt to replicate specific ex-

perimentally measured AP properties like duration, ampli-
tude, upstroke velocity or restitution. In this study a novel
methodology is proposed that allows identifying the pa-
rameter values of phenomenological AP models to repro-
duce the whole morphology of AP waveforms. We hy-
pothesize that with this methodology not only can cellular
behavior be described more accurately but also the vari-
ability among cells can be better represented.

The proposed methodology uses a sequential estimation
approach based on sigma-point filters. To the best of our
knowledge this is the first time that this approach is used
to fit cardiac AP models, yet there has been some related
research in the literature. In [5, 6] Markov Chain Monte
Carlo (MCMC) methods were used to estimate the ionic
conductances of AP models. Our proposed methodology
involves lower computational complexity than that used in
[5, 6] and additionally provides an estimation of the hid-
den states together with the model parameters. Other ap-
proaches based on global optimization methods, like ge-
netic algorithms, have also been considered [7]. However,
those schemes do not take into account the sequential na-
ture of the AP data and provide no information about the
underlying model dynamics. Furthermore, they do not of-
fer confidence measurements for the estimates, as can be
obtained with our proposed method.

2. Methods

2.1. Action potential data

The Bueno-Cherry-Fenton (BCF) phenomenological
AP model was taken as a basis for our study [3]. It is for-
mulated as a four-variable ordinary differential equation
(ODE) system (variables u,v,w,s) with 27 free parameters
that can be adapted to different cell characteristics.

In this study AP traces generated with the ten Tusscher-
Noble-Noble-Panfilov (TNNP) [1] and the O’Hara-Virág-
Varró-Rudy (OVVR) [2] human ventricular models were
used to assess the performance of our proposed method. 50
cycles of steady-state AP data were calculated with each
of the models while stimulating at 1 Hz pacing frequency.
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Forward-Euler with a time step δt = 0.02 ms was used for
numerical integration.

On top of simulated data, the method was tested on ex-
perimental AP traces from an isolated human ventricular
myocyte (see [8] for details on the experimental methods).

2.2. Parameter identification

The system of ODEs was casted into a non-linear
discrete-time state-space model. The state-space model
has the following form [9]:

xk = f(xk−1,ω) + qk (1)
yk = uk + rk (2)

where four types of variables are involved: state variables
in the vector xk = [uk, vk, wk, sk]

T , noise variables (pro-
cess noise qk and observation noise rk), observed variable
yk (in this case the normalized AP uk, corrupted by ob-
servation noise) and static parameters in vector ω, with
elements ω(i), i ∈ {1, ..., 22}. The observation noise rk
was assumed to be zero-mean Gaussian with variance σ2

r .
The process noise vector qk was assumed to be 0. If this
method were used to estimate the parameter values of a
stochastic model, e.g. [4], qk could be defined accordingly
to represent the underlying noise process.

The Unscented Kalman Filter (UKF) [10] was used to
jointly infer the state vector xk and parameter vector ω.
UKF belongs to the so-called Sigma-Point Filters. Com-
pared to other methods, such as the Extended Kalman Fil-
ter, UKF is able to better capture higher order moments
and, importantly, does not require differentiability of the
model functions. On the other hand, UKF is less computa-
tionally intensive than techniques based on random simu-
lation, such as MCMC methods [11]. In this study the pa-
rameters of the AP model and the hidden states that gener-
ate the data were jointly inferred by following an state aug-
mentation approach (see e.g. [11, Chapter 12]). Specifi-
cally, the parameters were added to the state vector and
that augmented vector was estimated. To avoid singulari-
ties in the estimation a small noise term εk was added to
the parameter vector:

xk = f(xk−1,ωk−1) + qk (3)
ωk = ωk−1 + εk (4)
yk = uk + rk (5)

The noise εk was assumed to be Gaussian with zero mean
and standard deviations σω . As parameters have very dif-
ferent dynamic ranges (see Table 1), the standard devia-
tions in vector σω were taken to be proportional to the pa-
rameter values: σω(i) = γω(i), where γ is selected to trade
off a good learning rate and small steady-state oscillations.

2.3. Performance assessment

The ability of the method to fit an input AP trace
was evaluated in terms of the Root Mean-Squared-Error
(RMSE), defined as:

RMSE =

√√√√ 1

N

N−1∑
n=0

[
V (n)− V̂ (n)

]2
(6)

where N is the number of samples, V is the input AP and
V̂ is the AP calculated with the estimated values of the
BCF model parameters.

Additionally, the performance of the method was as-
sessed by comparing the S1-S2 AP duration (APD) restitu-
tion curve calculated with the estimated parameter values
for the BCF model and the experimental restitution data
measured in [12]. The S1-S2 APD restitution curves cal-
culated with the TNNP model [1] and with the BCF model
using the parameter values derived in a previous study [3]
were also evaluated for comparison purposes.

3. Results

3.1. AP shape

The values of the BCF model parameters that led to best
fitting of the AP traces generated with the TNNP [1] and
OVVR [2] models as well as obtained experimentally from
an isolated cell [8] are presented in Table 1 (third, fourth
and fifth columns). In the second column, the parameters
values estimated in [3] for the TNNP model are reproduced
as a reference for comparison with our proposed model.
As can be seen, there are significant differences between
our method and the method proposed in [3] for some pa-
rameters, e.g. τfi or τo1, whereas other parameters are
only slightly different. While in Table 1 the mean value of
the parameters estimated with our UKF-based method are
presented, an additional advantage of this method is that it
provides uncertainty measures reflecting the confidence of
the algorithm in those values.

The AP traces calculated with the BCF model using our
estimated parameter values are presented in Fig. 1 (a)-
(c) for the three sets of tested input data. Corresponding
RMSE values are shown in Table 2. For the input AP data
generated with the TNNP model, the RMSE associated
with the method proposed in this study is notably lower
than the RMSE of the method used in [3]. These differ-
ences can be appreciated in Fig. 1 (a), where our method
provides a more reliable estimate of the input AP shape.

3.2. APD restitution

Fig. 2 presents the S1-S2 APD restitution curves cal-
culated with the BCF model using the sets of parame-
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Table 1. Parameter values of the BCF model estimated for
different sets of input data.

Input Data TNNP AP OVVR AP Experim. AP
Estimation Study [3] This study This study This study
τ−v1 60 59.11 60.19 37.257
τ−v2 1150 1078 1150 1.0263
τ+v 1.4506 2.442 2.7842 1.8218
τ−w1 70 61.686 59.024 53.268
τ−w2 20 20.1 15.05 13.089
τ+w 280 126.172 108.47 290.83
k−w 65 66.41 64.8 83.227
u−w 0.03 0.03 0.011 0.042
τfi 0.11 0.98 0.754 0.987
τo1 6 307.884 303.31 309.87
τo2 6 9.532 9.967 9.883
τso1 43 36.018 47.97 197.694
τso2 0.2 0.163 0.101 0.122
kso 2 3.397 2.21 1.064
uso 0.65 0.988 0.998 0.375
τs1 2.7343 2.88 3.01 4.486
τs2 3 19.619 19.94 2.14
ks 2.0994 3.688 1.3885 1.775
us 0.9087 0.851 0.998 0.387
τsi 2.8723 3.376 3.842 19.693
τw∞ 0.07 126.172 0.009 0.471
w∗∞ 0.94 0.827 0.787 0.976

Table 2. RMSE of the reproduced potentials
TNNP AP OVVR AP Experim. AP

Study [3] This study This study This study
RMSE 6.49 mV 1.115 mV 1.572 mV 2.9856 mV

ter values estimated in this study and in [3] when fitting
data generated with the TNNP model. Also, the restitu-
tion curve calculated with the TNNP model and the exper-
imental data from Morgan et al. [12] used in [1] to fit their
model are plotted for comparison. As can be observed,
our UKF-based method reproduces the experimental APD
restitution data more accurately than the method used in
[3], especially for higher diastolic intervals (DIs).

4. Discussion

According to the results presented in this study, our pro-
posed UKF-based method is able to identify the values of
the relatively large number of BCF model parameters to re-
produce specific AP shapes. Taking as input the AP trace
generated with the TNNP model, our method notably out-
performs a previously proposed approach based on non-
linear constrained optimization [3] in reproducing both the
steady-state AP waveform and the APD restitution curve.
Additionally, our method is able to reliably replicate the
shapes of the APs generated with another human ventricu-
lar cell model, namely the OVVR model, as well as human
ventricular APs recorded experimentally. In future stud-
ies, the proposed method can be used to fit data from a
population of cells, thus allowing to have accurate repre-
sentations of the characteristics of individual cells. Such in
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(a) Fitting of AP trace generated with the TNNP model [1].
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(b) Fitting of the AP trace generated with the OVVR model [2].
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(c) Fitting of experimental AP data (see [8]).

Figure 1. Input AP traces of human ventricular cells (blue)
and estimated AP traces using the BCF model with the pa-
rameter values calculated in this study (dashed red). In
(a) the results of [3] are presented for comparison (dashed-
dotted black).

silico representations can be of great utility to perform re-
alistic tissue and whole-heart simulations at an affordable
cost for arrhythmia investigations.

In this work 22 out of the 27 parameters of the BCF
model were estimated. The thresholding parameters uu,
θv , θw, θ−v and θ0 were not estimated due to the lack
of smoothness in the solution space. Future studies can
deal with estimation of these parameters e.g. by using a
method that iterates between MCMC methods or Genetic
algorithms (not requiring any level of smoothness in the
solutions) and UKF, rather than by using the state augmen-
tation approach considered in this study [13]. This would,
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Figure 2. S1-S2 APD restitution curves for human ventric-
ular cells calculated with the TNNP model (solid blue) and
with the phenomenological BCF model using the parame-
ter values estimated in [3] (dashed-dotted black) and in this
study (dashed red). Experimental measurements from [12]
are also included.

however, significantly increase the algorithm complexity.
Introduction of those additional thresholding parameters

might lead to more accurate fitting of the left part of the
S1-S2 restitution curve corresponding to very small DIs.
Future studies should be undertaken to further investigate
how the methodology proposed in this study could be ex-
tended to improve such fitting.

5. Conclusions

A novel methodology based on sigma-point filters has
been proposed to identify the parameter values of phe-
nomenological cardiac cell models, allowing to replicate
whole AP waveform morphologies. The proposed method-
ology has been successfully tested using human ventricular
APs generated with biophysically detailed models (TNNP
and OVVR models) as well as recorded experimentally.
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