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Abstract

Lupaş q-analogues of the Bernstein functions play an important role in Approxi-
mation Theory and Computer Aided Geometric Design. Their collocation matrices
are called Lupaş matrices. In this paper, we provide algorithms for computing the
bidiagonal decomposition of these matrices and their inverses to high relative accu-
racy. It is also shown that these algorithms can be used to perform to high relative
accuracy several algebraic caculations with these matrices, such as the calculation
of their inverses, their eigenvalues or their singular values. Numerical experiments
are included.

Key words: accurate computations, bidiagonal decompositions, Lupaş operator,
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1 Introduction

The rapid development of q-calculus (see [12]), based on q-integers, has also
influenced on the field of Approximation Theory. The Lupaş q-analogues of the
Bernstein functions for q > 0 were introduced in [15]. Their applications can
be seen in [16,19,20]. Recently (see[11]), they have been applied to Computer
Aided Geometric Design (CAGD). In fact, Lupaş Bézier curves present many
shape preserving properties (see [2]) because Lupaş matrices (the collocation
matrices of the Lupaş q-analogues of the Bernstein functions) are totally pos-
itive (see Section 2). In this paper we shall prove that we can perform with
Lupaş matrices many algebraic computations with high relative accuracy, in-
cluding the computation of their inverses, their eigenvalues or their singular
values. Up to now, such computations with high relative accuracy are possible

1 Partially supported by MTM2015-65433 Spanish Research Grant and by Gobierno
de Aragón.

Preprint submitted to Elsevier



with only a few classes of matrices, such as Vandermonde matrices and their
generalizations [6], Bernstein-Vandermonde matrices [17], Said-Ball matrices
[18], rational collocation matrices [3] or Jacobi-Stirling matrices [4].

Now let us introduce the basic definitions. Given a positive real number q we
define a q-integer [r] as

[r] =

 1 + q + · · ·+ qr−1 = 1−qr

1−q
, if q 6= 1

r, if q = 1.

Then we define a q-factorial [r]! as

[r]! =

 [r] · [r − 1] · · · [1], if r ∈ N,

1, if r = 0

and finally we define the q-binomial coefficient as

[
n

r

]
=

[n][n− 1] · · · [n− r + 1]

[r]!
=

[n]!

[r]![n− r]!

for integers n ≥ r ≥ 0 and as zero otherwise. The Lupaş q-analogues of the
Bernstein functions of degree n for q > 0 are defined as

lni,q(t) =
ani,q(t)

wn
q (t)

, t ∈ [0, 1], i = 0, 1, . . . , n, (1.1)

where

ani,q(t) =
[
n

i

]
q

i(i−1)
2 ti(1− t)n−i,

wn
q (t) =

n∑
i=0

ani,q(t) =
n∏

i=2

(1− t+ qi−1t).

Let us observe that for the case q = 1 the Lupaş q-analogues of the Bernstein
functions coincide with these polynomials, the most important polynomial
basis used in CAGD.

The key tool to guarantee computations to high relative accuracy with Lupaş
matrices is their bidiagonal decomposition, so that we can apply the algorithms
of [14]. In Section 2, we obtain bidiagonal decompositions of Lupaş matrices
and their inverses to high relative accuracy. In Section 3 we include numerical
experiments illustrating the accuracy for computing the eigenvalues, singular
values or the solution of linear systems with Lupaş matrices.
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2 Bidiagonal decompositions of Lupaş matrices

We shall call the square collocation matrices Lq := (lnj,q(ti))0≤i,j≤n of the Lupaş
q-analogues of the Bernstein functions (ln0,q, l

n
1,q, . . . , l

n
n,q) at a sequence of pa-

rameters 0 < t0 < t1 < . . . < tn < 1 Lupaş matrices.

A matrix is totally positive (respectively, strictly totally positive) if all its mi-
nors are nonnegative (respectively, positive). These matrices have also been
called in the literature as totally nonnegative and totally positive, respectively.
There are many applications of these matrices in [7], [21] and [1]. From the
results of [11], it can be derived that Lupaş matrices are totally positive. The
following result shows that Lupaş matrices are in fact strictly totally positive.

Theorem 2.1 Let Lq = (lnj,q(ti))0≤i,j≤n be a Lupaş matrix whose nodes satisfy
0 < t0 < t1 < . . . < tn < 1. Then:

(a) det



(1− t0)
n t0(1− t0)

n−1 · · · tn0

(1− t1)
n t1(1− t1)

n−1 · · · tn1
...

...
. . .

...

(1− tn)
n tn(1− tn)

n−1 · · · tnn


=

∏
0≤i<j≤n

(tj − ti).

(b) detLq =

∏n
k=0

[
n
k

]
qk(k−1)/2 ∏

0≤i<j≤n(tj − ti)∏n
l=0

∏n
k=2(1− tl + qk−1tl)

(> 0).

(c) Lq is stritctly totally positive.

PROOF.

(a) It was proved in Theorem 3.1 (ii) of [3].
(b) All entries of the k-th column of the matrix Lq have as common factor[

n
k−1

]
q(k−1)(k−2)/2 and all the entries of the l-th row have as common factor

1/
∏n

k=2(1− tl−1 + qk−1tl−1). Then, taking into account (a) of this theorem
we have

detLq =

∏n
k=0

[
n
k

]
qk(k−1)/2∏n

l=0

∏n
k=2(1− tl + qk−1tl)

∏
0≤i<j≤n

(tj − ti).

(c) It is straightforward to check that each minor of a Lupaş matrix at parame-
ters 0 < t0 < t1 < . . . < tn < 1 has the same strict sign as the corresponding
minor of the corresponding collocation matrix of the power basis at the pos-
itive parameters t0/(1 − t0) < t1/(1 − t1) < . . . < tn/(1 − tn). This matrix
is a Vandermonde matrix with positive and strictly increasing nodes, and
so it is well known that it is strictly totally positive (cf. [7]), and the result
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follows.

Given k ∈ {1, 2, . . . , n} let Qk,n be the set of increasing sequences of k positive
integers less than or equal to n. If α, β ∈ Qk,n, we denote by A[α|β] the
k × k submatrix of A containing rows of places α and columns of places β.
Besides let A[α] := A[α|α]. Neville elimination is an elimination procedure to
make zeros in a column of a matrix by subtracting to each row a multiple
of the previous one (see [8]). It has played a key role for totally positive and
strictly totally positive matrices (see [8], [9] and [10]). If A = (aij)0≤i,j≤n is a
nonsingular matrix, this process has n steps, leading to a sequence of matrices:
A = A(0) → A(1) → · · · → A(n) = U, where U is an upper triangular matrix.
The matrix A(t+1) is obtained from A(t) by the following formula

a
(t+1)
ij =



a
(t)
ij , if 0 ≤ i ≤ j ≤ t,

a
(t)
ij − a

(t)
it

a
(t)
i−1,t

a
(t)
i−1,j, if t+ 1 ≤ i, j ≤ n and a

(t)
i−1,t 6= 0,

a
(t)
ij , if t+ 1 ≤ i ≤ n and a

(t)
i−1,t = 0,

(2.1)

for i = n, n− 1, . . . , t+ 1 and for all t ∈ {0, 1, . . . , n− 1}.

The element
pij = a

(j)
ij , 0 ≤ j ≤ i ≤ n, (2.2)

is called the (i, j) pivot of Neville elimination of A. The pivots pii are called
diagonal pivots. The Neville elimination can be performed without row ex-
changes if all the pivots are nonzero and, in this case, Lemma 2.6 of [8] implies
that pi0 = ai0 for 0 ≤ i ≤ n and

pij =
detA[i− j + 1, . . . , i+ 1|1, . . . , j + 1]

detA[i− j + 1, . . . , i|1, . . . , j]
(2.3)

for 0 < j ≤ i ≤ n. The number

mij =


a
(j)
ij

a
(j)
i−1,j

=
pij

pi−1,j

, if a
(j)
i−1,j 6= 0,

0, if a
(j)
i−1,j = 0,

(2.4)

is called the (i, j) multiplier of Neville elimination of A, where 0 ≤ j < i ≤ n.

The next result can be derived from Theorem 4.1 of [8] and p. 116 of [10].

Theorem 2.2 A matrix A is strictly totally positive if and only if the Neville
elimination of A and AT can be performed without row exchanges, all the
mutipliers of the Neville elimination of A and AT are positive and all the
diagonal pivots of the Neville elimination of A are positive.
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We now present bidiagonal decompositions of Lupaş matrices by means of the
diagonal pivots and multipliers of their Neville elimination and the multipliers
of the Neville elimination of their transposes.

Theorem 2.3 Let Lq := (lnj,q(ti))0≤i,j≤n be a Lupaş matrix whose nodes satisfy
0 < t0 < t1 < . . . < tn < 1. Then Lq can be written as

Lq = Fn · · ·F2F1DG1G2 . . . Gn, (2.5)

where Fi and Gi, i ∈ {1, . . . , n} are the lower and upper triangular bidiagonal
matrices given by

Fi =



1
0 1
... ...

0 1
mi0 1

mi+1,1 1

... ...
mn,n−i 1

 , GT
i =



1
0 1
... ...

0 1
m̃i0 1

m̃i+1,1 1

... ...
m̃n,n−i 1


,

(2.6)
and D the diagonal matrix diag(p00, p11 . . . , pnn). The entries mij, m̃ij and pii
are given by

mij =
(1− ti)

n−j(1− ti−j−1)
∏n

k=2(1− ti−1 + qk−1ti−1)
∏i−1

k=i−j(ti − tk)

(1− ti−1)n+1−j
∏n

k=2(1− ti + qk−1ti)
∏i−2

k=i−j−1(ti−1 − tk)
, 0 ≤ j < i ≤ n,

m̃ij =
[n− i+ 1]qi−1 tj

[i](1− tj)
, 0 ≤ j < i ≤ n,

pii =

[
n
i

]
q

i(i−1)
2 (1− ti)

n−i ∏i−1
k=0(ti − tk)∏n

k=2(1− ti + qk−1ti)
∏i−1

k=0(1− tk)
, 0 ≤ i ≤ n.

PROOF. The matrix Lq is strictly totally positive by (c) of Theorem 2.1.
So, by Theorem 2.2 the Neville elimination of Lq and its transpose LT

q can
be performed without row exchanges and, by Theorem 4.3 of [10] joint with
the arguments of p. 116 of [10], we can obtain a bidiagonal factorization (2.5),
where the nonzero off-diagonal entries of the factors Fi and Gi are the multi-
pliers of the Neville elimination of Lq and LT

q , respectively, and the diagonal
entries of D are the diagonal pivots of the Neville elimination of Lq.

To obtain the pivots pij, by (2.3) we need to compute the minors of Lq with
j+1 initial consecutive columns and j+1 consecutive rows starting from row
i− j+1. Taking into account that all entries of the k-th column of the matrix
Lq[i−j+1, . . . , i+1|1, . . . , j+1] have as common factor

[
n

k−1

]
q(k−1)(k−2)/2 and

all the entries of the l-th row have as common factor (1−ti−j+l−1)
n−j/

∏n
k=2(1−
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ti−j+l−1 + qk−1ti−j+l−1), by (a) of Theorem 2.1, we have

det Lp[i−j+1, . . . , i+1|1, . . . , j+1] =

∏j
k=0

[
n
k

]
qk(k−1)/2 ∏i

l=i−j(1− tl)
n−j∏i

l=i−j

∏n
k=2(1− tl + qk−1tl)

∏
i−j≤k<l≤i

(tl−tk).

By the previous formula and (2.3) we derive

pij =
det Lp[i− j + 1, . . . , i+ 1|1, . . . , j + 1]

det Lp[i− j + 1, . . . , i|1, . . . , j]

=
qj(j−1)/2

[
n
j

]
(1− ti)

n−j ∏i−1
k=i−j(ti − tk)∏n

k=2(1− ti + qk−1ti)
∏i−1

k=i−j(1− tk)
.

Then, using (2.4), we conclude that

mij =
pij

pi−1,j

=
(1− ti)

n−j(1− ti−j−1)
∏n

k=2(1− ti−1 + qk−1ti−1)
∏i−1

k=i−j(ti − tk)

(1− ti−1)n+1−j
∏n

k=2(1− ti + qk−1ti)
∏i−2

k=i−j−1(ti−1 − tk)
.

Analogously, with the computation of the pivots p̃ij and the multipliers m̃ij

of the Neville elimination of the matrix LT
p , the result follows.

We shall denote the bidiagonal decomposition (2.5) and (2.6) of a Lupaş matrix
Lq by BD(Lq). From BD(Lq), we can derive from Theorem 2.2 and the results
in [8], [9] and [10] a bidiagonal decomposition of (Lq)

−1, given by

(Lq)
−1 = G1G2 · · ·GnD

−1F nF n−1 · · ·F 1, (2.7)

where F i and Gi, i ∈ {1, . . . , n}, are the lower and upper triangular bidiagonal
matrices of the form of Fi and Gi (respectively), but replacing the off-diagonal
entries {mi0,mi+1,1, . . . ,mn,n−i} and {mi0,mi+1,1, . . . ,mn,n−i} by the entries
{−mi,i−1,−mi+1,i−1, . . . ,−mn,i−1} and {−mi,i−1,−mi+1,i−1, . . . ,−mn,i−1} (re-
spectively).

Let us recall that an algorithm can be computed to high relative accuracy
(HRA) when it only uses products, quotients, additions of numbers with the
same sign or subtractions of initial data (cf. [5]). Since the explicit formulas
for mij, pii and m̃ij in Theorem 2.3 only include substraction of initial data,
BD(Lq) and the bidiagonal decomposition of (Lq)

−1 given by (2.7) can be
calculated to HRA. These factorizations will be used later in order to solve
certain linear systems Lqx = b, and to compute (Lq)

−1, and the eigenvalues
and singular values of Lq in an accurate way.

A fast and accurate algorithm for computing the data corresponding to the
bidiagonal factorization of the Lupaş matrix Lq and of its inverse has been
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developed by using the expressions of mij, m̃ij and pii in Theorem 2.3. Given
the nodes (ti)0≤i≤n ∈ (0, 1), it returns a matrix M ∈ R(n+1)×(n+1) such that

Mii = pi−1,i−1 1 ≤ i ≤ n+ 1,

Mij = mi−1,j−1 1 ≤ j < i ≤ n+ 1 and

Mij = m̃j−1,i−1 1 ≤ i < j ≤ n+ 1.

Now we state in Algorithm 1 the procedure for the accurate computation
of the multipliers mij. The algorithm is accurate because we only perform
subtractions with the initial data.

Algorithm 1 Computation of the multipliers mij

Require: (ti)
n
i=0 and q > 0

Ensure: mij

for i = 1 to n do

M =
(1−ti)

n
∏n

k=2[(1−ti−1)+qk−1ti−1]
(1−ti−1)n+1

∏n

k=2[(1−ti)+qk−1ti]
mi0 = (1− ti−1)M
for j = 1 to i− 1 do
M = (1−ti−1)(ti−ti−j)

(1−ti)(ti−1−ti−j−1)
M

mij = (1− ti−j−1)M
end for

end for

Algorithm 2 provides the multipliers m̃ij with HRA.

Algorithm 2 Computation of the multipliers m̃ij

Require: (ti)
n
i=0 and q > 0

Ensure: m̃ij

for j = 0 to n− 1 do
cj =

tj
1−tj

for i = j + 1 to n do
m̃ij =

[n−i+1]
[i]

qi−1cj
end for

end for

The diagonal elements pii of D are computed accurately by Algorithm 3.

Clearly, the computation of algorithms 1-3 requires O(n2) elementary opera-
tions.
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Algorithm 3 Computation of the pivots pii
Require: (ti)

n
i=0 and q > 0

Ensure: pii
r = 1
p00 =

(1−t0)n∏n

k=2[(1−t0)+qk−1t0]
for i = 1 to n do
r = [n+1−i]

[i](1−ti−1)
r

pii = r
qi(i−1)/2(1−ti)

n−i
∏i−1

k=0
(ti−tk)∏n

k=2[(1−ti)+qk−1ti]
end for

3 Numerical experiments

In [13], assuming that the multipliers and diagonal pivots of an square totally
positive matrix A and its transpose are known with HRA, Koev presents algo-
rithms with HRA for computing the eigenvalues of A, its singular values and
the solution of linear systems of equations Ax = b where b has a chessboard
pattern of alternating signs. In [14] we have a library, which contains an imple-
mentation of the three previous algorithms for using them with Matlab and
Octave, and the name of the corresponding functions are TNEigenvalues,
TNSingularValues and TNSolve, respectively. Their computational cost is
O(n2) elementary operations for TNSolve and O(n3) for the first two func-
tions. These three functions require as input argument the data determining
the bidiagonal decompositions (2.5) of A and (2.7) of A−1. TNSolve also re-
quires a second argument, the vector b of the linear system Ax = b to be solved.
Observe that a computation of A−1 with HRA can be obtained directly by
applying (2.7) with a cost of O(n2) elementary operations.

In the previous section we have deduced how to compute the bidiagonal de-
composition of Lupaş matrices and their inverses accurately (Algorithms 1, 2
and 3) with a total cost of O(n2) elementary operations. We have implemented
them in the function named TNBDLupas for Matlab and Octave, which take as
input arguments a sequence of points 0 < t0 < t1 < · · · < tn < 1 and a real
number q > 0. The accurate bidiagonal decompositions of a Lupaş matrix ob-
tained with TNBDLupas can be used with TNEigenValues, TNSingularValues
and TNSolve in order to obtain accurate solutions for the above mentioned
algebraic problems. Now we include some numerical experiments illustrating
the high accuracy of the algorithms we have presented for solving the algebraic
problems mentioned above.

First let us consider the Lupaş matrix A given by the collocation matrix of
the Lupaş q-analogues of the Bernstein functions of degree 20 for q = 0.5
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(l200,0.5, l
20
1,0.5, . . . , l

20
20,0.5) at the nodes (ti)0≤i≤20, ti = (i+ 1)/22, that is,

A = (l20j,0.5(ti))0≤i,j≤20. (3.1)

Now we consider the linear system Ax = b, where A is the Lupaş matrix
previously defined and

b= (35,−10, 8,−21, 95,−7, 13,−26, 83,−21, 64, (3.2)

−51, 88,−32, 27,−22, 7,−17, 11,−2, 11)T

has its entries randomly generated as integers in the interval [1, 100] with a
chessboard pattern of alternating signs. Then we obtain the exact solution of
the linear system using Mathematica with exact arithmetic. We also compute
two approximations x̂ to the solution x of the linear system with Matlab, the
first one using TNSolve and the bidiagonal decomposition of the matrix A
provided by TNBDLupas, and the second one using the Matlab command A\b.
Finally, we calculate the corresponding componentwise relative errors for both
approximations. In the case of the approximation obtained with command A\b

the componentwise relative errors are always greater than 1.1, whereas, in the
case of commands TNBDLupas and TNSolve the componentwise relative errors
are always lower than 1.2 · 10−15. Hence TNSolve with TNBDLupas provides
a much more accurate approximation to the solution than the corresponding
one to the approximation obtained with A\b. In fact, by using TNSolve with
TNBDLupas x = A−1b is computed through the first formula of (2.7), and due
to the signs of the factors of the bidiagonal decomposition and the signs of b,
all computations have been performed with HRA.

We have also used the bidiagonal decomposition of the matrix A for com-
puting the eigenvalues and the singular values of A with TNEigenValues and
TNSingularValues, respectively. In the case of eigenvalues we also compute
their approximations with the Matlab function eig. In order to determine
the accuracy of the approximations to the eigenvalues computed in both
ways we calculate the eigenvalues of the matrix A with Mathematica using
a precision of 100 digits. Then we compute the relative errors corresponding
to the approximations of the eigenvalues obtained with both methods eig

and TNEigenValues wiht TNBDLupas, considering the eigenvalues provided by
Mathematica as exact. The approximations of all the eigenvalues obtained
with TNBDLupas are very accurate, whereas the approximations of the lower
eigenvalues obtained with command eig are not very accurate. Table 1 shows
the decimal form of six exact eigenvalues, including the four lowest, and the
relative errors of the approximations to these eigenvalues (we order the eigen-
values of the greatest to the lowest λ1 > λ2 > · · · > λ21) obtained with both
methods, one of them with HRA.

As for singular values, we have also computed their approximations with the
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Matlab function svd. For determining the accuracy of the approximations to
the singular values computed in both ways we calculate the singular values
of the matrix A with Mathematica using a precision of 100 digits. Table 2
shows the four lowest singular values computed with Mathematica and, the
relative errors of the singular values computed in Matlab with svd, and with
TNBDLupas and TNSingularValues, considering the singular values provided
by Mathematica as exact (we order the singular values of the greatest to the
lowest σ1 > σ2 > · · · > σ21).

On the one hand, we can observe that all the eigenvalues and singular val-
ues computed using the bidiagonal decomposition of the Lupaş matrix are
very accurate. On the other hand, not all the eigenvalues and singular values
computed with eig and svd Matlab functions, respectively, are accurate. In
particular, the lower the eigenvalue (resp., singular value) is, the more unaccu-
rate the approximation obtained with eig (resp., svd) is. In order to illustrate
this fact more generally, we have computed with Matlab the lowest eigenvalue
and the lowest singular value of the Lupaş matrices of order 5, 7, 9, . . . , 41 with
nodes (ti)

n
i=0 given by

ti =
i+ 1

n+ 2
, i = 0, 1, . . . , n, (3.3)

for the values n = 4, 6, 8, . . . , 40, with eig and svd functions, and with
TNBDLupas, TNEigenValues and TNSingularValues functions. Figure 1 shows
the relative errors of the results obtained for the different considered orders.
Once again, TNBDLupas with TNEigenValues and TNSingularValues outper-
forms eig and svd.
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i λi rel.errors with HRA rel.errors with eig

1 1.0000e+ 00 0.0000e+ 00 2.2204e− 16

2 9.5727e− 02 1.4497e− 16 1.5947e− 15
...

...
...

...

18 2.3984e− 34 5.7057e− 15 1.5025e− 09

19 5.7754e− 36 1.1107e− 14 6.0675e− 10

20 1.0913e− 36 7.1947e− 15 1.4395e− 09

21 2.2562e− 38 1.6543e− 14 2.3703e− 09

Table 1
Eigenvalues of a Lupaş matrix of order 21

i σi rel.errors with HRA rel.errors with svd

1 2.2869e+ 00 0.0000e+ 00 1.9419e− 16

2 1.3443e+ 00 6.6068e− 16 1.6517e− 16
...

...
...

...

18 6.9344e− 41 3.9699e− 15 4.6494e+ 01

19 1.0242e− 46 3.2278e− 15 4.8234e+ 03

20 4.9347e− 53 6.0132e− 15 4.4492e+ 04

21 5.2446e− 60 4.4262e− 15 7.2861e+ 06

Table 2
Singular values of a Lupaş matrix of order 21
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Fig. 1. Relative errors for the lowest eigenvalue and the lowest singular value of
Lupaş matrices
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