A Specification Language for Performance and
Economical Analysis of Short Term Data
Intensive Energy Management Services

Alberto Merino, Rafael Tolosana-Calasanz, José Angel Baiiares (X), and
José-Manuel Colom

Dpto. de Informaética e Ingenieria de Sistemas. Universidad de Zaragoza, Spain
albertomerort@gmail.com, {rafaelt ,banares, jm}@unizar .es

Abstract. Requirements of Energy Management Services include short
and long term processing of data in a massively interconnected scenario.
The complexity and variety of short term applications needs methodolo-
gies that allow designers to reason about the models taking into account
functional and non-functional requirements. In this paper we present a
component based specification language for building trustworthy con-
tinuous dataflow applications. Component behaviour is defined by Petri
Nets in order to translate to the methodology all the advantages derived
from a mathematically based executable model to support analysis, ver-
ification, simulation and performance evaluation. The paper illustrates
how to model and reason with specifications of advanced data flow ab-
stractions such as smart grids.

1 Introduction

The Smart Power Grid (SG) domain is a prototypical scenario to illustrate the
need of different services that will require short and long term processing. The ex-
isting paradigm of passive distribution and one-way communications from large
suppliers to final consumers will be replaced by an active and responsive system.
The development of not only generation but also micro generation at a large
scale may pose a big challenge for different actors interacting within a physi-
cally constrained network through various ICT systems to efficiently operate the
power grid. Actors in SG comprise Bulk Generation, Transmission System Op-
erators, Distribution System Operators, End-users becoming proactive actors,
markets, and third service providers to support processes of others actors [5].

From the ICT point of view, data flow applications processing real-time data
from thousands of devices make possible new ways to monitor the grid net-
works and provide new means to accurately predict and effectively respond to
events. In the SG scenario events related to different actors occur anywhere in
the power generation, distribution and demand chain requiring the joint analy-
sis of heterogeneous massive data sources. It implies different coordinated data
flows (forecasting, monitoring, control, etc.) that should be fed with several het-
erogeneous data sources and that will require the composition of different data
flow abstractions to define its functionality.

Recently, several works have presented the benefits of using large data centers
with massive computation and storage capacities operated by Cloud providers
[4]. Traditional electric utilities and new actors in the SG lack the resources and
expertise on all ICT background. Cloud service providers will be in charge on
the design, deployment, maintenance and upgrades of the plethora of data inten-
sive services that will make possible the next power system generation. Sharing
services executed on scalable platforms that adapt the resources to the evolving
demand of the different actors in the SG domain allow electric utilities reduce
operational cost. From the cloud service provider point of view, it requires the
orchestration of different expertise by means of a common framework that facili-
tates the integration of data intensive analysis tools, and provides data-intensive
engineers the mechanisms to deploy services on cloud infrastructures. This trend
may also inspire new services in the SG domain, such as personal services de-
rived from smart meters that analyze user behaviors and optimize the appliance
consumption; planning electrical vehicle charges to protect components of the
distribution network from being overloaded; or advanced trading services to sup-
port more flexible power grid asset buying and selling operations.

The requirements for several Energy Management services that will facili-
tate effortless energy monitoring and control have been presented in [1]. These
requirements of combining long and short-term processing in different scenarios
have motivated the Lambda Architecture proposed by Nathan Marz[9]: a generic,
scalable and fault-tolerant data processing architecture. In a Lambda architec-
ture data entering the system are dispatched to both the batch layer and the
speed layer for processing. The batch layer manages dataset and pre-computes
batch views; and the speed layer compensates high latency of batch layer dealing
with recent data only and providing real-time views. The speed layer is funda-
mental to develop services related to network operation or real state estimation
of the grid network. Uncertainties in the real-time views of the system state will
still remain, but a certain amount of unpredictability should be assumed, as the
expected systems behaviour is intrinsically random, heterogeneous and adaptive.
One of the Lambda Architecture strengths is the complexity isolation, meaning
that complexity is pushed into the speed layer whose results are only temporary.
However, isolating complexity does not means it disappears resulting in a speed
layer that is far more complex than the batch layer.

In our previous paper [15], we presented the principles of a methodological
approach to specify and analyze real-time data intensive applications executed
over a general cloud software architecture. The execution may incur an econom-
ical cost, and it can be therefore important to conduct an analysis prior to any
execution. Such an analysis can explore how economic cost is interrelated to
performance and functionality. The proposed methodology is based on the in-
tensive use of formal executable models used to obtain qualitative information
and analysis on performance and economic behaviours under different scenar-
ios. The use of formal executable specifications has a twofold objective: 1) To
allow the engineer to conduct and analyse the models in an intensive way before
the deployment of the application in order to understand its behavior, and to

identify the boundaries of QoS parameters of the different adopted solutions;
and 2) Reason on functional and non-functional requirements with functional
and performance models, which constitute an essential element of the system
knowledge.

In this paper we go on in the development of the methodology presenting
a specification language to support the proposed methodology. Then, we show
the reasoning capabilities that provides the use of a formal model. The rest of
this paper is structured as follows. In Section 2 a brief overview of the data
flow language specification is presented. It is illustrated by means of the Matrix-
Vector Multiplication problem in streaming fashion, an example of the kind of
advanced data flow abstractions required for real-time SG state estimations in
the cloud. This problem can be adequately modeled by the wavefront pattern
[18]. Section 3 analyses the use of different analysis possibilities of the Petri net
(PN) underlying the model, and finally conclusions are given in Section 4.

2 Specification Language for basic and advanced data
flow applications

Once delegated the ICT complexity to third cloud service providers, the first step
is the definition of a methodology providing the strategy to afford the complex-
ity and defining the framework to support it. Different aspects of information
processing information integration, data mining, complex event processing, ma-
chine learning and SG state monitoring must be considered and coordinated.
Several of the focus areas identified above resemble those seen in eScience and
the Big Data.

In [15] we presented the principles of the methodology to cope with the inher-
ent complexity of Continuous Data Flow Applications (CDFAs). The methodol-
ogy considers all involved elements at different abstraction levels. In this paper,
we present the specification language to support the methodology with the fol-
lowing requirements that go beyond pure functionality: (1) The development of
CDFAs must be supported by a specification language that provides different
views of the constructive elements at different abstraction levels. The language
should support complementary capacities for the description of the application
or components of the application: behavioral specification of concurrent pro-
cesses, transformations operated over the data flow, and structural description
of components that configure the application. (2) A formal component-based
development to build models from existing components and capability to reason
about the resulting composition. Reuse of components allows developers to use
knowledge of their properties to predict the new system properties [12]. (3) Work-
flow and data flow patterns have been widely studied [11,18]. More advanced
data flow abstractions such as MapReduce, or Bulk Synchronous parallel (BSP)
constitute the essence of parallel programming frameworks such as Hadoop and
Hama. However, these frameworks are only instances of many possible parallel
execution templates. The reasonable approach is a general specification language
that combines eScience workflow and large-grain dataflow abstractions [13].

These principles have guided the design of our component based specifica-
tion LANGuage of Layers and tIERS (Langliers) to support a methodology for
building trustworthy CDFAs. That is, the design of layers concerned with the log-
ical division of components and functionality, and the design of tiers concerned
with the physical distribution of components. The Hierarchical construction of
the specification of CDFAs requires the definition of composition and refinement
primitives. The semantics of the component-based language will be defined for-
mally through standard PNs in order to translate to the methodology all the
advantages derived from a mathematically based model: Analysis, Verification,
Equivalence Relations, etc. Due to space limitations, the paper sketches a CDFA
language specification focusing on the structural and behavioural specifications.

There are many ways in which a system can be built to provide the same
functionality with different concurrent behaviours and different deployments
over distributed infrastructures [11]. Our methodological approach to identify
the elements to compound our hybrid specification can be summarised with the
equation ’Specification of CDFA = Functional Entities + Communication / Syn-
chronisation mechanisms + Data Dependencies + Resources’. The identification
and characterisation of each building block of the proposed equation defines the
basic specification elements.

The constructive elements of a CDFA application are presented in this sec-
tion, starting from the most basic building blocks and their interpretation as con-
structive primitives of distributed applications and continuing with their com-
position by means of simple operators (subsection 2.1). Composition operators
provide the way to configure components with complex behaviours . Then, we
show how Langliers represents the basic components identified in [15], Com-
putational and Data Transmission Processes, to describe a CDFA network as
a graph showing various connected processing components that operates over a
data stream. This processing network model is an abstraction that describes the
functional behaviour of a CDFA made up of a number of platform-independent
components. The explicit network specification allows developers to visualize the
functional model and apply analysis techniques. The last remaining step to spec-
ify a complete model is to set the implementation of the functional model with
the specification of the resources that will be used to execute the model. This
operational specification can be used to conduct performance optimizations
selecting a good mapping of Computational Processes and Data Transmission
Processes to computational and network resources.

2.1 Basic building blocks and composition operators

The precise and formal specification of components requires a description be-
yond architectural units. It is not enough to specify the interface. Specification
of nonfunctional or quality attributes is also required to enable different types
of reasoning. In Langliers a component is expressed in the form of an interface
and a behaviour description [12]. The interface provides a specification for the
services the component provides and publishes its input and output points. It

gives information at the syntax level that enables data type checking, and pub-
lishes the events that trigger computations and state changes. This way, our
data stream model follows a data driven execution model where events lead to
computations that may generate events on other components. The behaviour
represents components internal states and state changes. A component behavior
description is specified either by one explicit PN or by the PN resulting from
the behavior composition of subcomponents.

Once defined the elements of a component description, we present the basic
building primitive components to describe a distributed system. The behaviour
specification of these building primitives is represented by one of the PNs shown
in Figure 1. Transitions and places used for the composition of behaviours are
part of the interface declaration and can have respectively associated a set of
parameters or data type. Behaviour specification can have inscription expres-
sions labelling arcs in the same way as high-level PNs (HLPNs) [6] (e.g., colored
PNs or predicate/transition nets), which provides more compact and manageable
descriptions. Internal transitions can also be labelled with actions to represent
atomic actions that may be executed after the firing of the transition. It allows
conventional programming language methods to describe operations and pro-
vides an executable functional specification in a similar way to Renew!, which
utilises tuples and Java expressions as the primary inscription language. For the
sake of simplicity, in this paper a detailed description of parameters and PN
inscriptions are left out of the specification.

{Component: Basic_component1 {Component: Basic_component2

Interface: Interface:

Transitions:A, C Places:D, F

Behaviour: N1(initial marking) Behaviour: N2
! NI A B ¢ } N2 D E F
Interpretation 1: Operation Execution Interpretation 1: Preconditions of a (timed) procedure
A -> Beginning of an operation D -> Precondition for the start of procedure

B -> Thread in execution E -> (Timed) Execution of procedure

C -> End of an operation F -> Postcondition/End of procedure
interpretation 2: Sending a Message Interpertaton 2: Preconditions of a (timed) message
A -> Sending of a message D -> Message is ready

B -> Message in transit E -> (Timed) message in transit

C-> Message reception F -> Message received

Interpretation 3: Use of a resource

A -> Release of a resource

B -> Available copies of a resource type
C -> Allocation of a resource copy

(@ (b)

Fig. 1. Component specification of basic component primitives and interpretations.

We propose two basic building-blocks with different precise interpretations.
Figure 1(a) shows the Basic Component! that declares as behaviour the Petri
net A7. Interface Transition A requires a component with a Transition (output

! http://www.renew.de

port) that triggers transition A. Transition A represents the beginning of the
execution of an operation in the first interpretation, the beginning of the sending
of a message in the second interpretation and the release of a resource in the
third interpretation. Interface Transition C' requires a component to trigger the
execution of an event synchronised with the end of the operation in the first
interpretation, the reception of a message in the second interpretation and the
allocation of a resource copy in the third interpretation. Place B in Figure 1(a)
is an internal state with the interpretations presented. An initial marking can be
defined when this component is declared as subcomponent of another component.

Figure 1(b) shows the Basic Component2 that declares as behaviour the PN
N>. Interface Place D represents events received and requires a component that
sends events to this place, and Interface Place F' represents generated events
waiting to be consumed requiring a component that consumes these events.
Place D represents preconditions to start the execution of an operation in the
first interpretation and that a message is ready in the second interpretation.
Place F represents the ending of an operation or a received message waiting to
be consumed. Transition E represents an internal action, for example a procedure
executed in a machine or a network transmission. It can be timed to represent
non-instantaneous actions.

The declaration of a ” Composite” component is similar to a basic component
with an additional declaration of subcomponents, connection of subcomponents
and definition of its interface (ports and data-flow) as a mapping of input and
output ports to the input and output ports of subcomponents. Three simple
composition operators are provided to define Composites. They are based on the
fusion of transitions and places in the interface: split, fusion and copy. The
split operator replaces the argument, place or transition, by a couple of places
or transitions, where the first resulting place or transition has the input arcs of
the split argument, and the second one the output arcs. The fusion operator
replaces the arguments, places or transitions, by a new place or transition that
has the input and output arcs of the arguments. Finally, the copy operator
creates a new place or transition identical to the argument.

The construction of the functional model is based on the identification of
the basic components that configures a CDFA. These components are the Com-
putational Processes (CPs) and the Data Transmission Processes (DTPs). CPs
accomplish functional operations and transformations on data, and DTPs al-
low data dependencies to be conducted among CPs. Both CPs and DTPs need
resources to accomplish the corresponding operation, and these resources also
appear in the model, but at a conceptual, and generic way. Later in subsequent
model refinements, specific resource constraints of different computational in-
frastructures will be added, such as limitations in parallelism, capacity, etc. The
behavioural description of CPs and DTPS was presented in [15]. Figure 2 shows
the Langliers specification of an untimed and timed CPs.

Figure 2.(a). shows a CP defined by Op_Component. This basic component is
defined by the composition of two instances of Component_1, the first one with
the first interpretation and the second with the third interpretation semantic.

The second component declaration includes an initial marking of one token in
Place B. On the left is represented the composition of PNs describing the sub-
components behaviour, and on the right the textual component specification.
Composites consist in a declaration of subcomponents, and a declaration of port
mappings or links by means of the PN based composition operators. The rename
declaration is used to rename places and transitions of subcomponents or the
result of composition operators.

gReady_Opl End_Op1
begin_op In_process end_op
—
A i\ c
B
Idle
s |2
(o)e
@ A
{Component: Op_Component {Component: Timed_Op_Component
Interface: Interface:
Transitions :begin_op, end_op Transitions: begin_op, end_op
Behaviour: Behaviour:
Components: C1:Component_1, C2: Component_1 (1) Components: C1: Op_Component
Links: begin_op:C1(A)+C2(C), end_op:C1(C)+C2(A) C2: Component2(timel)
Rename: In Process: C1(B), Idle: C2(B) Links: impl (C1(Operationl), C2(D), C2(F)),
} Rename: C2(D): Ready_Opl, C2(F): End_Op1,

}
@) (b)

Fig. 2. A Computational Process with Resources. a) A CP composed by 1 state. b)
Timed model assigning time; units of time to the execution of the operation,.

Legend: Textual representation of components on the right follows the frame-
based tradition of concepts as attribute-value pairs: Component: Name of component;
Interface: List of Place and Transitions that can be used to compose components;
Behaviour: Either a reference to a PN A/, or a list of Components, Links that connect
components, and Rename declarations; Places and Transitions are referenced by the
component name followed by the Place/Transition name placed in parenthesis.

The model presented in Figure 2.(a) is untimed. The addition of timed infor-
mation to a CP is introduced by the addition of a sequence place-transition-place
in parallel with a process place representing an operation of the computational
task that consumes time. The transition added is labelled with time information
representing the duration of the computational operation. In Figure 2.(b), the
CP from Figure 2.(a) is refined by assigning timel units of time to the execution
of the operation 1. Note that the Link declaration can be complex enough to re-
quire the use of a procedural language for the composition of operators. Two new
operators are defined using basic operators. Split- Copy splits a copy of a place,
and #mpl operator specifies the way an operation is implemented. The impl

makes a split-Copy of the first argument and fusions the first returned place
with the second argument, and the second place with the third argument. The
Links declaration in Figure 2.(b) uses the ¢mpl operator to refine I'n_process.

2.2 Langliers specification of a Cloud based Operational Model of
a Matrix-Vector Multiplication in streaming

To illustrate a more complex specification with Langliers we present the spec-
ification of an operational model for Matrix-Vector Multiplication in streaming
based on the wavefront abstraction [18]. The wavefront abstraction is a paradig-
matic regularly structured framework that allow developer to focus on simple
sequential programs to create very large parallel programs. Using the regular
structure and declarative specification, a wavefront may be materialized in dif-
ferent ways on distributed, multicore, and distributed multicore systems showing
different performances. The election of a wavefront pattern illustrates the use
of an advanced data flow abstraction that neither is it present as primitive in
workflow languages, nor in advanced parallel frameworks. However, this kind of
data flow abstraction is essential in SG real time monitoring services. Accurate
state estimation has become a key function in supervisory control and planning
of electric power grids and is widely expected to play a significant role in the
advance of smart grid [8]. Traditional methods compute state estimations by the
least squares solution of linear equations. In the more simple case, as soon the
measurements are obtained, the estimate is obtained by matrix multiplication.
The matrix that converts the measurements to the state estimate is constant as
long as the grid network does not change [3].

The functional PN model of the wavefront algorithm for Z(*) = Y 4 A .
X"k =1,2,... was presented in [15]. In this section is presented a functional
and operational specification in Langliers.

The untimed functional PN specification of the wavefront algo-
rithm is shown in the upper part of the Figure 3. The functional model is
constructed in a modular fashion. Each element of the wavefront array is de-
fined as a composite Cell component made up of basic subcomponents (see
upper Figure 3 Cell component specification): (1) A subcomponent to describe
the Computational Process carried out in a node of the wavefront array; and (2)
two subcomponents to describe Data Transmission Processes of the data streams
from Cells at the north/east to Cells in the south/west. Observe that OP _ij
places are refined adding a sequence place-transition-place in parallel with the
place representing the operation that is executed over each data of the data
flow. The new added transition is labeled with the procedural action that must
be carried by each Cell component: op = aij * j + yi. Each Cell component is
initialised with its aij element of matrix A. Arcs and transitions are annotated
with variables defining a complete functional specification.

To construct the global functional model, nine instances of the Cell compo-
nent are needed (Figure 3.). Each Cell_ij component is connected by a Sync_ij
transition resulting from the fusion of the transition begin_opij with the transi-

tion end_HTransi(j — 1) of the east Cell and the the transition end_VTransij
with the begin_op(i + 1)j of the south Cell.

Each one of Sync_1j transition at the first row does not have a Cell com-
ponent connected at the North, and constitute the I'Yi interface transitions
representing the input stream of the corresponding i-th component of the vector
X () via the fusion of the transitions begin_op_1j with a the end_Transmission
of a DTP component. In the same way, each one of Sync_il transition at of
the first column does not have a left Cell component, and constitute the I.Xj
interface transitions representing the input stream of the corresponding j-th
component of the vector Y(¥) via the fusion of the transitions begin_op_il with
a the end Transmission of a DTP component. Each one of End_HTransi3
transitions in Cell components of the last column is the output stream of the
corresponding i-th component of the vector Z*) and constitute the OZi interface
transitions.

Timed Operational specification for the wavefront algorithm. We
consider a cloud computing infrastructure where each Cell component can be
executed over a different Virtual Machine (VM). We assume a cloud platform
(OpenNebula, OpenStack, etc.) provides networking and computing virtualisa-
tion. For each token in the Idle places Idle_ij we assume that there is a VM
implementing a computational resource that can accomplish the same function-
ality with similar performance, and for each token in the CijH and CijV places
we assume a transmission over the network assuming than the use of virtualisa-
tion technologies does not alter the original incoming data injection rate at each
data flow [16]. In this case, the addition of time to the the model of Figure 3
will be done in the way described in the previous section: adding a sequence
place-transition-place in parallel with the places representing the activities that
consume time by the Cell located at row i-th, column j-th: OP_ij representing
the duration of the computation, and in parallel with places CijH and CijV
representing the consumption of time in the transmission of a data element in
the corresponding DTPs. Following this approach we obtain an operational net
model that is isomorphous to the functional model in Figure 3.

An alternative more complex operational model is shown at the bottom part
of the Figure 3. It shows a pipeline of three nodes and graphically the Node
component specification. Each node component is composed of: (1) A subcom-
ponent to describe the available Computational Resources at each node, and (2)
two subcomponents to describe DTPs between computational resources in the
same node, and to the computational resources of the next step. Each Node
component has a Ci_OP component with a PU 4 place representing the VM
resources in use, and an IdlePU _i place representing available VM allocated for
this step. Transition labelled with time timePU _i represents the time for a VM
to execute the operation in a wavefront Cell. The timed C1_Cz subcomponent
represents the DTPs with the next step in the pipeline or with the component
that receives the OZi output of the wavefront; and the timed C'1_ICx subcom-
ponent represents DTPs between VM in the same node.

{Functional_Wavefront

Interface:
g """""""""" Tr itions: IY1, IY2, 1Y3, IX1, IX2, IX3, 0Z1, 0Z2, OZ3
Behaviour:
op=all*xi+yi; Components: C11: Cell(all), C12:Cell(al2), C13:Cell(a13),
[xi,yi{_}-op C21: Cell(a21), C22:Cell(a22), C23:Cell(a23),
idle 11 C31: Cell(a31), C32:Cell(a32), C33:Cell(a33)
Ixi.yi ¢ Links:
T v : Sync_12: C11(end_HTrans11)+ C12(begin_op12),
(xi,yi) (op)|)| Sync_13: C12(end_HTrans12)+ C123begin_op13),
O beam HTrane1 1Y2:C11(end_VTrans11)+ C21(begin_op21),
(yi)| {begin_op11l end_opll | ~ end HTrans11 Sync_22:C21(end_HTrans12)+C12(end_VTrans12)+ C22(begin_op22),
).

i

Xi|

Interface:

Behaviour:

Links:

(xi)

(xi)

(i) | begin_VTrans11

Tr11V {e) C11V

end_VTrans11

Wavefront cell
component cefinition

Functional wavefront

TrX1 X1

Sync_23:C13(end_VTrans13)+C13(end_VTrans13)+ C23(begin_op23),
1Y3:C12(end_VTrans21)+ C31(begin_op31),
Sync_32:C31(end_HTrans31)+C22(end_VTrans22)+ C32(begin_op32),
Sync_33:C32(end_VTrans32)+C23(end_VTrans32)+ C33(begin_op33)
Rename:

1Y1:C11(begin_op11), IY2:C21(begin_op21), IY3(begin_op31),
IX1:C11(begin_opl11), IX2:C12(begin_op12), IX3:C13(begin_opl3)

0Z1: C13(end_HTrans13), 0Z2: C21(end_HTrans23), 0Z3(end_HTrans33),

Trx2

X2 X3

Idle_11

Functional level

Idle_12

Idle_13

Operational level

{Operational_Wavefront

Components: WF:Functional_WaveFront; P:Pipeline;

[BPu1,EPul]:split_Copy(P(PU_1)), [BPu2,EPu2]: split_Copy(P(PU_2)),

[BPu3,EPu3]: split_Copy(P(PU_3)),

[BCx1,ECx1]:split_Copy(P(Cx_1)), [BCx2,ECx2]: split_Copy(P(Cx_2)),

[BCx3,ECx3]: split_Copy(P(Cx_3)),

[BICx1,ECx1]:split_Copy(P(ICx_1)), [BICx2,ECx2]: split_Copy(P(Cx_2)),

[BCx3,ECx3]: split_Copy(P(Cx_3)),

impl(WF(Op_12), BPul, EPul),impl(WF(TR12H), BCx1, ECx1),impl(WF(TR12V), BCx1, ECx1),
impl(WF(Op_21), BPul, EPul),impl(WF(TR21H), BCx1, ECx1),impl(WF(TR21V), BCx1, ECx1),
impl(WF(Op_13), BPu2, EPu2),impl(WF(TR13H), BCx2, ECx2),impl(WF(TR13V), BCx2, ECx2),
impl(WF(Op_22), BPu2, EPu2),impl(WF(TR22H), BCx2, ECx2),impl(WF(TR22V), BCx2, ECx2),
impl(WF(Op_31), BPu2, EPu2),impl(WF(TR31H), BCx2, ECx2),impl(WF(TR31V), BCx2, ECx2),
impl(WF(Op_23), BPu3, EPu3),impl(WF(TR13H), BCx3, ECx3),impl(WF(TR13V), BICx3, EICx3),
impl(WF(Op_32), BPu3, EPu3),impl(WF(TR22H), BICx3, EICx3),impl(WF(TR22V), BCx2, ECx2),
impl(WF(Op_33), BPu3, EPu3),impl(WF(TR31H), BCx3, ECx3),impl(WF(TR31V), BCx3, ECx3)

}

impl(WF(Op_11), BPul, EPul),impl(WF(TR11H), BICx1, EICx1),impl(WF(TR11V), BICx1, EICx1), id id

BPulEPul BCX1ECx1 BICXLEICX1 BPU2 EPu2 BCx2ECx2 BICX2EICX2 BPu3 EPu3 BCX3ECx3 BICX3EICX3
PU_T Cx 1 PU_2 x2 PU_3 cx.3
Idle Cx_1 idle pu_2 g idle Cx 2 Idle Cx_3
Idle ICx_1 Node 1 Idle ICx_2 Node 2 Idle ICx_3 Node 3
Pipeline node
h BPul EPul component definition
ic1_opl id/\©) €10 cx1
Transitions: IY1:WF(IY1), IY2:WF(IY2), IY3:WF(IY3), IX1:WF(IX1), : id
IX2:WF(IX2), IX3:WF(IX3), 0Z1:WF(0Z1), 0Z2:WF(0Z2), 0Z3:WF(0Z3) :[time PU_1

Inode1]

EICx1

Fig. 3. Operational 3 x 3 wavefront array executed over a pipeline of cloud VMs with

three steps.

CPs in a left to right diagonal can operate concurrently and propagate in
wavefronts. For this reason, a balanced deployment of the wavefront Cell com-
ponents over the pipeline steps is executed in the first node Cellll, Cell12 and
Cell21 that corresponds from left to right to the first and second diagonal. Cells
in the middle diagonal are executed in the second step, and the rest of Cells are
executed in the last node. Observe that the horizontal connection of the Celll1l
is an internal transmission between VM executing in the same node, while its
vertical connection is a transmission with a VM in the second node. In the case
of the Cell22, all its connections are external transmissions, and the same hap-
pens with the Cells in the diagonal deployed in the middle step. In this case, the
addition of time to the pipeline model will be done by adding a sequence place-
transition-place at each node ¢ in parallel with the places PU _i representing the
execution of procedures in VMs and places Cz_i and ICz_i representing respec-
tively external and internal transmissions. The textual component specification
of the operational wavefront model is presented at the bottom of Figure 3.

The Operational Wafefront component refines the Functional_wave front
with a Pipeline by means of the split-Copy operator of timed activities repre-
sented by places PU_i, Cz_i and ICx_i, and the impl operator applied to map
activities in the functional model with this timed activities in the pipeline. All
mappings are specified in the Links of the Operational W ave front component,
and a sample of the result of the mapping is illustrated with the arcs connecting
the Cellll with places PU_1, Cx_1 and ICxz_1. Observe than arcs are labelled
with the id label. It represents the identifier of the Cell instance to differentiate
the beginning and ending of activities of cells deployed in the same node. Fi-
nally, observe that in the case that only one VM is used at each node, internal
communications will be with the same machine.

3 PN models for performance and economical analysis.

The proposed methodology supported by a PN based component language aims
at providing different analysis and prediction techniques that allow developer
assessing functional and non-functional properties. Qualitative analysis, that is
desirable/good properties can be formulated and validated with PN models of
complex concurrent and distributed systems. Qualitative analysis can be con-
ducted by different techniques: 1) The construction of the state space of the
model (Reachability analysis) providing a complete knowledge of all is proper-
ties if sate explosion does not hamper the use of this technique; 2) Structural
techniques that allow to reason about some properties of the model just from
the structure of the net using graph theory, linear algebra, convex geometry, or
linear programming. The use of this technique is not constrained by the state
explosion, however it has a limited decision power (semidecision algorithms) ex-
cept for syntactical subclasses of PNs. On the other hand, reduction techniques
allow the simplification of the nets preserving some properties. It is intimately
bound up with the top-down and bottom-up design supported by the proposed
methodology.

Quantitative analysis allow performance-oriented interpretations of the model
such as throughput, utilization rates, queue lengths, etc. from which is is pos-
sible compute reward functions. PNs are executable models, therefore extensive
simulations may detect errors, which are rare and elusive, and provide us with
some performance and reward functions. However simulation cannot guarantee
the absence of errors neither identify under with conditions the simulated perfor-
mance values will be reproduced. The most common analytical model used for
the derivation of exact performance measures are stochastic PNs. The techniques
consist on the derivation of performance measures from the reachability graph
of the model from which a Markov Chain is obtained, under certain assump-
tions on the stochastic specification. Once again state explosion can hamper the
use of the technique. Additionally, the model assume exponential distributions
for transition delays, which may not be acceptable to model CPU performance,
memory speed, sequential and random I/O, or network bandwidth.

Let us to explore the analysis possibilities of the presented model in Figure 3
considering the operational net model that is isomorphous to the functional
flow model. We add a sequence place-transition-place in parallel with the places
representing the activities that consume time by the Cell located at row i-th,
column j-th: OP_ij representing the duration of the computation, and in par-
allel with places C'ijH and CijV representing the consumption of time in the
transmission of a data element in the corresponding DTPs.

Qualitative analysis based on Structural Analysis. In [15] we shown
how the structural analysis could be used to determine the correction of the ob-
tained design. The functional model obtained was a strongly connected marked
graph. From this characteristic we recovered some interesting analysis results
that we summarize: (1) The net is live, therefore the modeled solution is deadlock-
free. (2) The wavefronts propagate in a orderly manner without colliding one into
another validating the functional results. (3) The original solution presented in
[15] showed the model cannot fully operate concurrently, and a solution based
on the structural analysis was suggested to get all CPs working concurrently.
The solution is shown in Cell Component of Figure 3 that incorporates two
DT Ps. In this way, we can observe that the 4 transitions Sync_ij, Sync-i(j+1),
Sync_(i+1)j and Sync_(i+1)(j+ 1) are covered by an elementary circuit con-
taining four tokens. All these results can be obtained using the structure net
resulting from the component based language. A survey of PN tools can be
found in [14].

Quantitative analysis based on Stochastic PNs. A stochastic PN is a
Timed PN that adopts a probability density function (pdf) for the specification
of random delays. Only the use of negative exponential pdf for the specification of
temporal characteristics makes the analysis mathematically tractable. Let us as-
sume that processors service delivery time (1/)) and injection timed transitions
(1/7) follow an exponentially distributed random amount of time with average
100ms (rate =10 data/sec); and a transmission time 100 times faster with aver-
age (1/6=1ms) also following an exponential distribution. From the structural
analysis it is derived that all transitions will have the same throughput: The

minimal repetitive sequence of transition firings contains all transitions of the
net exactly once (it is guaranteed from the existence of only one T-invariant:
right annuller of the incidence matrix of the net). Therefore, the relative firing
frequency vector is 1, and we have the same mean cycle time for all transitions.

We translated our Langliers resulting operational PN to the GreatSPN2.0.2.
The tool generates the reachability state with 1392640 states from which a
Markov chain is derived. The steady-state numerical analysis compute perfor-
mance indices (place markings probability distribution and transitions through-
puts). The calculated throughput for all transition is 3,99258 data/sec. The
result obtained by the GSPN analysis shows a poor throughput with a perfor-
mance lost of 60% for each processor. If we repeat the analysis with a wavefront
of dimension 2x2 the throughput for all transitions is 4.69182 data/sec with a
performance lost of 53% for each processor.

Quantitative analysis based on Structural Analysis: computing per-
formance bounds. The use of stochastic PNs for the derivation of exact per-
formance measures and rewards functions is hampered by two factors: (1) The
explosion of the computational complexity of the analysis algorithm and (2)
Only the use of n exponential pdf for the specification of temporal characteris-
tics makes the analysis mathematically tractable.

In [2] is shown that it is possible to compute, in polynomial time, upper and
lower bounds for the performance of timed and stochastic marked graph. This
bounds are computed with independence of the probability distribution function
of random variables that describe the timing of the system. The lower bound
for the mean cycle time is obtained by solving the following linear programming
problem:

™™ = maximum Y7 .Pre.0

subject to YT.C=0,YT My =1,

Y >0

Where I minimum mean cycle time, Y7 is the left annuller of the incidence
matrix of the net (P-semiflow), Pre is the pre incidence matrix(denoting tokens
removed by transition firing), and My is the initial marking. This means that the
mean cycle times can be computed by the summation of all time delays involved
in a circuit (P-semiflow) divided by the tokens in the circuit. And we obtain the
'™ finding the maximum value of mean cycle times computed by each circuit.
In our model I"™™ is 100 ms (1/A), i.e., a maximum throughout of 10 data/sec.
On the other hand, the upper bound for the mean cycle can be computed by:

mazr __ G 0]
I =2 1)

Where §; denotes the average service time of transition ¢;, and LB(t;) the
liveness bound of t;, ,i.e., its maximum degree of concurrency. In our sample,
the maximum liveness noun is 1 for all transitions. Therefore, I'"™* is given by
the addition of theta; corresponding to the longer circuit given I"™** = 404 ms
and a minimum throughput of 2.47 data/sec.

Quantitative analysis based on Simulation. The distribution of response
time for a cloud modeled as a queue system when service time is not exponen-

tial is complex and rely in some approximation. These approximations are very

sensitive to the probability distribution of task service times, and they become
increasingly inaccurate when the Coefficient of Variation (CoV) increase towards
the value of 1 [17,7,10]. The difficulty increases when we try to analyze perfor-
mance of applications implementing advanced data flow abstraction with a high
level of concurrency constraints. In our previous quantitative analysis based on
stochastic PNs throughput is near the minimum bound. The election of a expo-
nential distributions for task service times is not adequate and results in poor
and not realistic performance results.

-
o

@===Min. Bound
e \/ax. Bound
B Exp. Inj./Unif. Serv.
!‘H—H—'\ A Det. Inj./Unif. Serv.
€ X Exp. Dist. Sim
O GSPN

X' Det. Inj/Nor. Serv.

—Lineal (Exp. Inj./Unif. Serv.)

Throughput
o - N w £~ w (3] ~N [o:] (=}

—Lineal (Det. Inj./Unif. Serv.)
0 01 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

CoV of Service Time

Fig. 4. Simulated throughputs with different Coefficient of variation of the service time.

Once known the throughput bounds, and the fact that CoV can have a high
impact on performance, we conducted simulations to evaluate its impact. Fig-
ure 4 shows the results of different Renew simulations with mean services and
injection times of 10 data/sec. The Figure also shows the point GSPN that
represents the computed performance by the GSPN tool?, and the Ezp. Dist.
Sim. shows the point with the same scenario obtained by simulation, i.e, as-
suming both service delivery times and and interarrival times are exponential.
The proximity of these points shows the accuracy of simulations. Assuming the
computing nodes in the cloud are heterogenous and that the performance capa-
bilities of these computing nodes are uniformly distributed [17] between the time
of the faster node and the time of the slower node we conduct different simula-
tions in Renew. Fzp.Inj./Unif. Serv. shows the impact of CoV on performances
assuming an exponential distribution in injections, and uniform distributions
of service delivery times. Det.Inj./Unif. Serv. shows the same simulations with
a deterministic injection time. Finally, Det.Inj./Nor. Serv. shows that simula-
tions with normal distribution of service delivery times provide the same results
than uniform distribution. These results shows that some mechanism is required

2 http://www.di.unito.it/ greatspn

to regulate injections rates because assuming exponential distribution of interar-
rival times result in performance near 50%. On the other hand with deterministic
injection, it is clear the impact of CoV on performance.

In our previous paper [15] we computed the costs for the processing of streams
of length k& = n, assuming the cost of the time unit per CPU, p: Cost functional =
max{a, B,7} * n* px 9 from the functional level analysis. In this paper we
have shown this costs will be proportional to the service time Coefficient of
Variation CoV' of the cloud platform Costoperationat = k ¥ CoV * Cost yunctional
assuming a mechanism to regulate the data injection to the wavefront is provided
and approximately 2 * Cost punctional i case this mechanism is not provided.
Depending of the CoV value of the platform, the developer can evaluate the
costs of alternative operational models such as the pipeline version presented in
Figure 3.

4 Conclusions and Future work

The SG scenario is a prototypical scenario for the Big data where a trusthworthy
design of real time streamming applications is essential. Although the design of
real time streaming applications is recognised as a complex task in the Big Data
context [9], neither of proposed development languages and frameworks allow de-
velopers a component based reasoning that guides design decisions at all phases
of the life cycle, and to address functional and non-functional requirements to-
gether with the specification of the execution infrastructure and the involved re-
sources. This work has presented a component PN based specification language
that allows developers to specify functional and operational levels at different
levels of abstraction and reason with the models. A complex wavefront opera-
tional model for the Matrix-Vector Multiplication problem in streaming fashion
has been presented and the way the developer can reason with the model has
been illustrated. A detailed analysis of advanced data flow abstraction, or a com-
position of them, allow the developer reason about the functional correctness of
the proposed solutions, and guide the simulations to evaluate different proposals
to obtain the best performances as the base to analyze alternative solution costs.

Future work will consider the modelling of parallel and architectural patterns,
and the deployment of specifications directly on cloud platforms. The character-
ization of the models and a limited set of building blocks will allow us to know
the limits of the formal analyses and develop tools to validate the models.

Acknowledgments This work was supported by the Spanish Ministry of Econ-
omy under the program “Programa de I+D-i Estatal de Investigacion, Desar-
rollo e innovacién Orientada a los Retos de la Sociedad”, project id TIN2013-
40809-R.

References

1. Aman, S., Simmhan, Y., Prasanna, V.: Energy management systems: state of the
art and emerging trends. Communications Magazine, IEEE 51(1), 114-119 (2013)

10.

11.

12.

13.

14.

15.

16.

17.

18.

Campos, J., Chiola, G., Colom, J.M., Silva, M.: Properties and performance bounds
for timed marked graphs. Circuits and Systems I: Fundamental Theory and Ap-
plications, IEEE Transactions on 39(5), 386-401 (1992)

Elizondo, D., Gardner, R., Leon, R.: Power and Energy Society General Meeting,
2012 ieee. In: Synchrophasor technology: The boom of investments and information
flow from North America to Latin America. pp. 1-6 (July 2012)

Fang, X., Misra, S., Xue, G., Yang, D.: Managing smart grid information in the
cloud: opportunities, model, and applications. Network, IEEE 26(4), 32-38 (2012)
Government, U.: NIST Framework and Roadmap for Smart Grid Interoperability
Standards, Release 3.0. General Books (Sep 2014)

Jensen, K., Rozenberg, G. (eds.): High-level Petri nets: theory and application.
Springer-Verlag, London, UK (1991)

Khazaei, H., Misic, J., Misic, V.: Performance analysis of cloud computing cen-
ters using m/g/m/m+r queuing systems. Parallel and Distributed Systems, IEEE
Transactions on 23(5), 936-943 (2012)

Maheshwari, K., Lim, M., Wang, L., Birman, K., van Renesse, R.: Toward a reli-
able, secure and fault tolerant smart grid state estimation in the cloud. In: IEEE
PES Innovative Smart Grid Technologies Conference, ISGT 2013. pp. 1-6 (2013)
Marz, N., Warren, J.: Big Data: Principles and best practices of scalable realtime
data systems. Manning Publications Co. (2015)

O’Loughlin, J., Gillam, L.: Performance evaluation for cost-efficient public infras-
tructure cloud use. In: Economics of Grids, Clouds, Systems, and Services - 11th
International Conference, GECON’14 , Cardiff, UK, September 16-18, 2014. LNCS,
vol. 8914, pp. 133-145 (2014)

Pautasso, C., Alonso, G.: Parallel computing patterns for Grid workflows. In: Pro-
ceedings of the HPDC 2006 Workshop on Workflows in Support of Large-Scale
Science, WORKS 2006, June 19-23, Paris, France. pp. 1-10 (2006)

Seceleanu, C.C., Crnkovic, I.: Component models for reasoning. IEEE Computer
46(11), 40-47 (2013)

Simmhan, Y., Kumbhare, A.G.: Floe: A continuous dataflow framework for dy-
namic cloud applications. CoRR abs/1406.5977 (2014)

Thong, W., Ameedeen, M.: A survey of Petri Net Tools. In: Sulaiman, H.A., Oth-
man, M.A., Othman, M.F.I., Rahim, Y.A., Pee, N.C. (eds.) Advanced Computer
and Communication Engineering Technology, Lecture Notes in Electrical Engineer-
ing, vol. 315, pp. 537-551. Springer International Publishing (2015)
Tolosana-Calasanz, R., Bafares, J.A., Colom, J.M.: Towards Petri net-based eco-
nomical analysis for streaming applications executed over cloud infrastructures.
In: Economics of Grids, Clouds, Systems, and Services - 11th International Con-
ference, GECON’14, Cardiff, UK, September 16-18, 2014. LNCS, vol. 8914, pp.
189-205 (2014)

Tolosana-Calasanz, R., Banares, J.A., Rana, O.F., Pham, C., Xydas, E., Marmaras,
C.E., Papadopoulos, P., Cipcigan, L.: Enforcing quality of service on opennebula-
based shared clouds. In: CCGRID’14 Workshop on Data-intensive Process Man-
agement in Large-Scale Sensor Systems, DPMSS’14, Chicago, IL, USA, May 26-29,
2014. pp. 651-659. IEEE (2014)

Yeo, S., Lee, H.H.: Using mathematical modeling in provisioning a heterogeneous
cloud computing environment. Computer 44(8), 55-62 (2011)

Yu, L., Moretti, C., Thrasher, A., Emrich, S.J., Judd, K., Thain, D.: Harness-
ing parallelism in multicore clusters with the All-Pairs, Wavefront, and Makeflow
abstractions. Cluster Computing 13(3), 243-256 (2010)

