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ABSTRACT 10 

 11 

Femoral shaft fractures are among the most serious of the skeleton and present high 12 

morbidity and mortality in addition to important complications and consequences. So, 13 

the most appropriate treatment depending on the type of fracture and location level 14 

should be chosen. 15 

 16 

A finite element model of the femur has been developed, analysing various types of 17 

fractures in the subtrochanteric and diaphyseal supracondylar area, with several gap 18 

sizes, stabilizing with a single combination of screws for the intramedullary nail. The 19 

mechanical strength of the nail against bending and compression efforts was studied 20 

comparing two materials for the nail: stainless-steel and titanium alloy  21 

 22 

Beside the FE simulations, a clinical follow-up was realized, considering a sample of 55 23 

patients, 24 males and 31 females, with mean age of 52.5 years. Localizations of 24 

fractures were 22 in the right femur and 33 in the left femur, respectively. 25 

 26 

A good agreement between clinical results and the simulated fractures in terms of gap 27 

size was found. Non-comminuted fractures have a mean consolidation time of 4.1 28 

months, which coincides with the appropriate mobility at fracture site obtained in the 29 

FE simulations, whereas comminuted fractures have a higher mean consolidation period 30 

estimated in 7.1 months, corresponding to the excessive mobility at fracture site 31 

obtained by means of FE simulations. 32 

 33 

The obtained results between both nail materials (stainless steel and titanium alloy) 34 

show a higher mobility when using a titanium nails, which produce a higher rate of 35 

strains at the fracture site, amplitude of micromotions and bigger global movements 36 

compared to stainless steel nails. Steel nails provide stiffer osteosyntheses than the 37 

titanium nails. 38 

 39 

In conclusion, the anterograde locked nail is particularly useful in the treatment of a 40 

wide range of supracondylar fractures with proximal extension into the femoral 41 

diaphysis. 42 



Key terms: Intramedullary nail, Anterograde reamed nail, Femoral fracture, Gap 43 

analysis, Osteosynthesis, Finite element analysis. 44 

 45 

INTRODUCTION 46 

 47 

Femoral shaft fractures are among the most serious of the skeleton, characterized by 48 

high morbidity and mortality in addition to presenting important complications and 49 

consequences [1, 2]. Therefore, they must be treated being conscious of its complexity 50 

looking for the most appropriate treatment depending on the type of fracture and 51 

location level. 52 

 53 

In the 1940s G Küntscher [3] introduced the intramedullary nailing (IM). In the 60’s, 54 

tibial and femoral compression plates slowed the expansion of nailing. But, from the 55 

70's, nailing has gradually become the first choice in the treatment of diaphyseal 56 

fractures of long bones. Since the 80’s, many changes have been performed in order to 57 

improve results such as: design of the nails, morphology, materials, locking system and 58 

placement technique, allowing the locked intramedullary nails to become the standard 59 

of care for most femoral fractures. 60 

 61 

Their indication has been extended to almost all femoral proximal and distal fractures: 62 

running from the lesser trochanter to the supracondylar area zones 2 (subtrochanteric) 63 

and 5 (supracondylar) of Wiss [4, 5]. It can be said that at present locked intramedullary 64 

nailing is the most suitable technique to treat femoral fractures. The advantages of IM 65 

nailing are: is a closed technique, preserves the hematoma in the focus of fracture, 66 

permits an easier extraction [5], exhibits a high rate of consolidation (98%) and a low 67 

percentage of infection (1%). 68 

 69 

Although several improvements in IM nails have been developed, some complications 70 

remain as fatigue failure, non-union, bone-fracture and screw loosening. Reducing the 71 

stiffness of nail material can contribute to diminish stress-shielding and thus accelerate 72 

healing process [6]. When too flexible materials are used, some problems associated 73 

with load transfer such as loosening, malunion or poor-union appear [7, 8]. 74 



Controversial results about rigidity of the implant have been reported leaving optimum 75 

fixation stiffness as a pending issue [7]. 76 

 77 

The indications for anterograde intramedullary nailing are essentially extra-articular 78 

fractures, inclusive in the rare cases of bi- or trifocal fractures of the distal femur, where 79 

nailing is often the only therapy [9]. The biggest controversy about their indication lies 80 

on the fractures located on the distal third of the femur, which although infrequent 81 

present major difficulties for their treatment. The estimated frequency is 0.4% of all 82 

fractures and 3% of femoral fractures [10]. Different treatments have been proposed for 83 

this type of fracture: blade plate, dynamic compression plate, locking compression 84 

plate, anterograde nailing or retrograde nailing [9]. However,  the anterograde nailing 85 

with the new implants offer multiple distal screw position options that allow articular 86 

reconstruction and sturdy fixation even in intra-articular fractures [11]. 87 

 88 

Despite the multiple designs, techniques and materials, the static locking intramedullary 89 

nail remains the reference treatment of femur fractures located between Zones 2 and 5 90 

of Wiss [4, 12, 13]. The ultimate success depends on the treatment according to the 91 

characteristics of the fracture, the habits of the patient, associated lesions and the 92 

surgeon's experience with the used technique [9, 14]. The great diversity of types of 93 

diaphyseal fracture, according to their anatomical location and degree of comminution, 94 

makes it difficult on multiple occasions the choice of nailing and locking to ensure 95 

stability and to achieve fracture consolidation. Therefore multiple experimental works 96 

to study the biomechanical behavior of different type of nailing and locking them have 97 

been done. 98 

 99 

In vivo animal experimentation on biomechanical behaviour of intramedullary femoral 100 

nails has a difficult extrapolation to humans due to anatomical differences and load 101 

conditions. Similarly, in vitro studies experiments on cadaveric bone or plastic bone 102 

models [15], can hardly be applied to humans, due to the differences between in vivo 103 

and in vitro behaviour. Those difficulties have led to the development of simulation 104 

models using the finite element method (FE).  Analysis of osteosynthesis by means of a 105 

FE models enables the assessment of all critical parameters, such as maximum 106 

permissible load on the nail, local movements at the fracture site and stress 107 

concentrations around the locking screws.  108 



 109 

Few studies have been published on experimental or computational models based on FE 110 

method applied to intramedullary nailing investigation of femoral shaft fractures. So, 111 

Regarding femoral nailing, Wang [16] analyzes the behaviour of short nails in the 112 

management of proximal femoral fractures, by comparing two fixation screws and 113 

studies the stiffness of the distal end in a posterior work [17]. Reference [18] studies a 114 

gamma nail design made in two different materials: titanium and stainless steel. Cheung 115 

performed a study on long nails [19] comparing FE simulation with experimental tests 116 

results, analyzing the differences in the relative stiffness between healthy and nailed 117 

femur. More recently, reference [20] analyzes the mechanical behaviour of a single 118 

screw with the use of two distal locking screws in a gamma locking nail. Chen studied 119 

distal femoral fractures managed with short nails by analyzing the differences in 120 

stiffness between the healthy and the nailed femur [21] . Fracture stability for flexible 121 

nails used in pediatrics was studied, modifying nail stiffness, in [22]. In [23] the 122 

influence of muscle forces on failure of distal nail holes and locking screws is studied. 123 

In [24] a combination of experimental and numerical methods is used to evaluate the 124 

stress distribution in an anterograde intramedullary nail. In [25, 26] a comparison 125 

between nails and locking plates in a metaphyseal wedge fracture in synthetic 126 

osteoporotic bone is executed. Static versus dynamic fixation techniques are compared 127 

in [27]. Finally, in [13] a comparison of strain magnitude and distribution resulting from 128 

two different entry points for anterograde nailing is performed. 129 

 130 

WORK OBJECTIVES 131 

 132 

The present study pretends to evaluate the stability of an IM Stryker femoral nail S2 133 

(Stryker,Mahwah, NJ, USA). A FE model of the femur has been developed, analysing 134 

various types of fractures in the subtrochanteric and diaphyseal supracondylar area, 135 

stabilizing with one combination of screws, studying the mechanical strength of the nail 136 

against bending and compression efforts, to determine its maximum resistant capacity. 137 

Two materials were studied for the metallic nail: 316 LVM stainless-steel and Ti-6Al-138 

4V alloy. A comparative analysis of the different types of osteosynthesis at different 139 

fractures was done, in order to verify the optimal solution in each case of those 140 

analyzed. 141 

 142 



2.-MATERIALS & METHODS 143 

 144 

2.1.-Modelling of the femur and implants 145 

 146 

A three dimensional (3D) finite element model of the femur from 55 year old male 147 

donor was developed. Outer Geometry of the femur was obtained by means of 3D 148 

scanner Roland3D Roland® PICZA (Irvine, California) scanner, whereas a set of 149 

computed tomography (CT) of the donor’s femur were treated using Mimics® Software 150 

(Materialise, Leuven). Once the inner interface between cortical and trabecular bone 151 

was determined, by means of an in-house algorithm material properties were assigned to 152 

the FE model in I-Deas [28], using the same workflow of a previous study [29].  153 

 154 

The studied femoral nail Stryker S2TM (Stryker, Mahwah, NJ, USA) was 380 mm long, 155 

with a wall thickness of 2 mm and an outer diameter of 13 mm. This reamed 156 

anterograde nail uses locking screws of 5 mm of outer diameter, which were modelled 157 

as cylinders of the same diameter. 158 

 159 

2.2.-Meshing and material properties 160 

 161 

Nail surgery was reproduced in I-Deas in a virtual way, inserting the nail into the femur 162 

with the corresponding screws. Afterwards the assembly of the computer aided design 163 

(CAD) model was performed under surgeon supervision. Bone, nail and screws were 164 

meshed with linear tetrahedra. They were assumed for the bone linear elastic isotropic 165 

properties (ECortical=20000 MPa, =0.3; ETrabecular=959 MPa, =0.3 [30], as reference), 166 

with variable values related with the processed CT images. The metallic nail was made 167 

of 316 LVM steel (E=192.36 GPa, =0.3) or Ti-6L-4V (E=113.76 GPa, =0.34) and 168 

metallic screws of 316 LVM steel, both assumed to be linear elastic isotropic.  169 

 170 

A sensitivity analysis was performed to determine the minimal size mesh required for 171 

an accurate simulation. For this purpose, a mesh refinement was performed in order to 172 

achieve a convergence towards a minimum of the potential energy, both for the whole 173 

model and for each of its components, with a tolerance of 1% between consecutive 174 

meshes. 175 

 176 



2.3.- Configurations used and contact modelling 177 

 178 

All the considered fractures were modelled as transverse by means of an irregular 179 

surface developed to represent a closer geometry to the actual fracture. The effect of gap 180 

size remains unclear in the literature. So, the majority of the reviewed in vivo studies 181 

are referred to a gap size ranging from 0.6 to 6 mm [31, 32] whereas in FE simulation 182 

articles it ranged from 0.7 to 10 mm. [33, 34].  183 

 184 

Thus, using this irregular fracture pattern, three different fracture gaps have been 185 

studied: 0.5 mm (considered as a non-comminuted fracture), 3 mm (as the most 186 

referenced value found in literature, representing a mid-value) and 20 mm as an 187 

example of comminuted fracture (Fig. 1). In addition to this, three localizations of the 188 

fracture were studied: proximal, medial and distal for each gap size. Only one 189 

combination of screws was studied: one oblique placed proximally and two transverse 190 

at the distal part. Table 1 summarizes the list of FE models simulated for the three gap 191 

sizes. 192 

 193 

The study was focused on the immediately post-operative stage. Thus, the interaction at 194 

the fracture site does not take into account any biological healing process. Contact 195 

interaction was assumed between the outer surface of the nail and the inner cortex of the 196 

medullary canal of the femur (Fig. 2). Interaction between screws and cortical bone was 197 

considered to be bonded, whereas contact between screws a femoral nail was simulated. 198 

The selected friction values of bone/nail and nail/screws were 0.1 and 0.15, 199 

respectively, in accordance with literature [34-36]. Other similar studies modelled 200 

bone/nail interaction as frictionless, though [24, 37]. 201 

 202 

2.4.- Loads and boundary conditions 203 

 204 

This study considered fully constrained conditions at the condyles and a load case 205 

associated with an accidental support of the leg at early post-operative (PO) stage (Fig. 206 

3). This load was quantified to be about 25% the maximum gait load. According to 207 

Orthoload’s database, the hip reaction force and abductor force (as the prime muscle 208 

group), referred to the 45% of gait, correspond to the maximum and most representative 209 



load [38]. Muscle attachments areas corresponding to abductor group muscle were 210 

determined mimicking anatomy atlas. 211 

 212 

2.5.- Clinical follow-up 213 

 214 

Beside the FE simulations, a clinical follow-up was realized, considering a sample of 55 215 

patients, 24 males and 31 females, with mean age of 52.5 years, all of them treated with 216 

femoral nail Stryker S2TM. Localizations of fractures were 32 in the right femur and 33 217 

in the left femur. The statistic corresponding to fracture localization and fracture grade 218 

are included in Table 2. The comminute grade was measured according to the scale of 219 

Winquist/Hansen [39]. 220 

 
221 

3.-RESULTS 222 

 223 

The FE simulations allow obtaining the mobility results for the different cases analyzed. 224 

Figure 4 shows the deformed shape amplified (x25) and the vertical displacement maps 225 

corresponding to fractures non-comminuted (gap size 0.5 mm) and comminuted (gap 226 

size 20 mm). 227 

 228 

In order to study relative micromotion at fracture site, pairs of homologue points at the 229 

fracture site were identified, as nodes that were opposed as shown in Fig. 5.  230 

 231 

When analysing results, Perren’s method [28] gives a threshold strain value of 10% 232 

beyond which fracture healing is expected to occur. This strain value is defined as the 233 

relative motion in fracture gap divided by the original fracture gap. Tables 3a and 3b 234 

shows the results associated to Perren method at the three fractures sites and gaps 235 

studied for steel and titanium nails, respectively. This reference parameter strongly 236 

depends on the fracture gap size. Thus, according to Table 3a healing condition is 237 

fulfilled for all the fractures of 3 and 20 mm (comminuted) and the medial and distal 238 

location for 0.5 mm gap size. On the other hand, Table 3b exhibit higher strains for 239 

titanium nail compared to steel one, as none of the 0.5 mm gap fractures verify the 240 

condition for callus formation. Thus this strain criterion should be considered with 241 

caution. Conversely according to micromotion results, this parameter is not valid for 242 



small fracture gaps as it gives strain values higher than 10% for proximal and medial 243 

fracture location. 244 

 245 

Tables 4a and 4b show the maximum amplitude of micromotion between homologue 246 

points at the fracture site for steel and titanium nails, respectively. Table 4a shows that 247 

the most rigid behaviour belongs to diaphyseal fracture (40.69-66.43 m) followed by 248 

medial one (51.96-73.39 m) and proximal one (60.29-90.29 m). Micromotion 249 

amplitude follows the same growing tendency with the increase of the gap for all the 250 

three fracture locations. 251 

 252 

Table 4b show the same tendency for titanium at the three fracture locations observed 253 

previously: micromotions at diaphyseal fracture ranges from 62.02 to 123.71 m, 254 

followed by medial one (ranging from 75.88 to 139.80 m) and finally proximal one 255 

(varying from 93.07 to 140.83 m). If the ratio of the amplitudes between both 256 

materials is calculated, a pitchfork of 1.46 to 2.00 is obtained which is within the range 257 

of the Young’s modulus ratio for both materials (1.69).  258 

 259 

Nevertheless, when evaluating the global stability reported in Table 5a and 5b, by 260 

measuring the displacement at head of the nail (insertion point at trochanter) the trend is 261 

reversed: proximal fracture is the most rigid, followed by medial fracture and distal 262 

fracture. This result can be explained in terms of a basic concept of mechanics. Figure 6 263 

shows a scheme of lever arms between proximal and diaphyseal fractures. Lever arm is 264 

defined as de distance (“D” or “d”) between de mid-plane of de fracture and the head of 265 

the femur. For a proximal fracture, the lever arm is much shorter than for the distal 266 

fracture. Consequently when applying the physiological loads at the head of the femur, 267 

the IM nail blocks the global movement of the femoral head “sooner”  for the proximal 268 

fracture than for the diaphyseal one. According to gap size influence, there is a marked 269 

increase in the interfragmentary movement as well as global stability when the gap 270 

increases. 271 

 272 

For steel nail, Table 5a values range from 1.33 mm (proximal fracture, 0.5 mm gap) to 273 

2.01 mm (diaphyseal fracture, 20 mm. gap), whereas titanium nail yield to a higher rate 274 

of global movement as Table 4b reports: 1.62 mm (proximal fracture, 0.5 mm gap) to 275 



3.14 mm (diaphyseal fracture, 20 mm gap). Calculating the ratio of the global 276 

movement between both materials a pitchfork of 1.22 to 1.56 is obtained.  277 

 278 

With respect to the clinical follow-up, non-comminuted fractures have a mean 279 

consolidation time of 4.1 months, whereas comminuted fractures (grade 4 Winquist and 280 

Hansen) have a higher mean consolidation period estimated in 7.1 months. On the other 281 

hand, intermediate conminution grades lead to longer mean consolidation periods than 282 

non-comminuted fractures (4.9 months for grade 1 and 6.2 months for grade 2, 283 

respectively. Grade 3 was not finally considered because only one case was reported). 284 

So, the healing time increases inasmuch as the comminution grade is higher. 285 

 286 

4.-DISCUSSION 287 

 288 

Difficulties in vivo experimentation and the unreliability of in vitro models, has 289 

conditioned the development of simulation models by FE  that allow studying different 290 

biological systems in both physiological and pathological conditions, and provide a 291 

quick and easy testing in different conditions difficult to achieve experimentally. 292 

However, they are still a very limited number of published papers which study the 293 

behaviour of intramedullary nails in the femur. The models developed in the present 294 

work allow the simulation of fracture in different locations, with different gap and 295 

different alternatives of nailing (material and different locking system), and determine 296 

whether the relative displacement at fracture site fall within acceptable limits, in order 297 

to achieve the fracture healing. The stability of the fracture is essential for the 298 

consolidation. 299 

 300 

Fracture healing depends on general and local factors which may be modified by 301 

extrinsic conditions, such as biomechanics of fracture fixation [40]. The excess of 302 

movement at the fracture site adversely affects callus formation [32], resulting in lower 303 

blood vessels content, a greater presence of fibrocartilage and a lower bone formation 304 

[41, 42].  Therefore, relative displacements between bone fragments must be wide 305 

enough to promote bone formation according to "Wolff’s Law", without exceeding the 306 

threshold value which prevents callus formation [32]. We simulated different types of 307 

fractures located between Zones 2 and 5 of Wiss. 308 

 309 



Although distal fracture (zone 5 of Wiss) is considered to be the most problematic area 310 

in terms of fracture stability, anterograde intramedullary nailing is a suitable option to 311 

provide stability at the fracture site [43]. It is important that the morphology of the 312 

fracture allows the screw to be place at least, at three centimetres of distance to the 313 

fracture site [48]. 314 

 315 

Anterograde interlocked intramedullary nails have been used successfully in the 316 

treatment of extra articular distal femoral fractures with 7 cm of intact distal femur or 317 

when a 7-cm fragment could be reconstructed with accessory lag screws or distal 318 

locking screws [44]. Large-diameter nails should be used to avoid fatigue fracture at the 319 

screw holes. When necessary, the intramedullary nail can be shortened to decrease the 320 

distance between the distal locking screw and the nail tip. The anterograde locked nail is 321 

particularly useful in the treatment of supracondylar fractures with proximal extension 322 

into the femoral diaphysis. 323 

 324 

There is a good agreement between clinical results and the simulated fractures in terms 325 

of gap size. Thus, non-comminuted fractures have a mean consolidation time of 4.1 326 

months, which coincides with the appropriate mobility at fracture site obtained in the 327 

FE simulations, whereas comminuted fractures (grade 4 Winquist and Hansen) have a 328 

higher mean consolidation period estimated in 7.1 months, corresponding to the 329 

excessive mobility at fracture site obtained by means of FE simulations. 330 

 331 

On the order hand, the obtained values between both nail materials (Stainless steel and 332 

titanium alloy) show a higher mobility when using a titanium nails, which produce a 333 

higher rate of strains at the fracture site, amplitude of micromotions and bigger global 334 

movements compared to stainless steel nails. This tendency is related with the stiffness 335 

of both materials: steel nails provide stiffer osteosyntheses than the titanium nails. 336 

 337 

The obtained results agree with previous experiences using anterograde intramedullary 338 

nails. So, anterograde interlocked intramedullary nails have been used successfully in a 339 

wide range of fracture types: in the treatment of extra articular distal femoral fractures 340 

with 7 cm of intact distal femur, or when a 7 cm fragment could be reconstructed with 341 

accessory lag screws or distal locking screws [44].  342 

 343 



However, contraindications to anterograde nailing are a pre-existing proximal prosthesis 344 

or hardware, femoral deformity, obliteration of the intramedullary canal, and 345 

insufficient distal bone stock [43, 45]. 346 

 347 

5.-CONCLUSIONS 348 

 349 

The FE models developed allow the simulation of fracture in different locations, with 350 

different gap and different alternatives of nailing, in accordance with the clinical cases 351 

included in the follow-up, and determine whether the relative displacement at fracture 352 

site fall within acceptable limits, in order to achieve the fracture healing.  353 

 354 

There is a good agreement between clinical results and the simulated fractures in terms 355 

of gap size. Non-comminuted fractures have the minimum mean consolidation time, 356 

which coincides with the appropriate mobility at fracture site obtained in the FE 357 

simulations, whereas comminuted fractures have the higher mean consolidation period, 358 

corresponding to the excessive mobility at fracture site obtained by means of FE 359 

simulations. The healing time increases inasmuch as the comminution grade is higher. 360 

 361 

In view of the correspondence between clinical follow-up and simulation results, it is 362 

clear that the biomechanical behaviour of the different osteosyntheses, without forget 363 

other biological and physiological factors, determines the appropriate fracture healing. 364 

 365 

Considering the obtained results, it can be asserted that the anterograde locked nail is 366 

particularly useful in the treatment of a wide range of supracondylar fractures with 367 

proximal extension into the femoral diaphysis. 368 

 369 
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514 



Figure legends 515 

 516 

Figure 1. Different kind of fractures with different gap sizes: 0.5 mm, 3 mm and 20 517 

mm. 518 

Figure 2. Interaction between nail and bone and between screws and nail  519 

Figure 3. Boundary conditions  520 

Figure 4. Deformed shape (x25) and vertical displacement maps corresponding to distal 521 

fractures: a) non-comminuted (gap size 0.5 mm); b) comminuted (gap size 20 mm). 522 

Figure 5. Homologue points for micromotion processing: anterior and posterior view. 523 

Figure 6. Comparative mechanical behaviour scheme between proximal and distal 524 

fractures (deformed shape x50) 525 

526 



Tables 527 

 528 

Table 1. List of FE models according screw combination 529 

Model 
Proximal 

screws 
Distal screws 

Fracture 

location 

Gap size 
 

1 

Oblique (#1) 
2 L/M screws 

(#2,3) 

Proximal 

 

 

0.5 mm. 

 

 

3.0 mm. 

 

 

20 mm. 

 

2 Medial 

3 Distal 

 530 

Table 2. Statistics for the clinical follow-up 531 

Wiss zone Cases Conminution grade Cases 

2 7 None 29 

3 11 1 9 

4 22 2 9 

5 15 3 1 

  4 7 

Total 55  55 

 532 

 533 

 534 

 535 

 536 



Table 3a. Gap strain verification according to Perren [m]. Nail made of 316 LVM. 537 

  PERREN METHOD 

# Model % ε 0.5 mm. % ε 3.0 mm. % ε 20.0 mm.

Proximal 12.06 2.20 0.45 

Medial 10.39 1.79 0.37 

Distal 8.14 1.61 0.33 

 538 

Table 3b. Gap strain verification according to Perren [m]. Nail made of Ti-6Al-4V. 539 

 PERREN METHOD 

# Model % ε 0.5 mm. % ε 3.0 mm. % ε 20.0 mm.

Proximal 18.61 3.34 0.70 

Medial 15.18 3.59 0.70 

Distal 12.40 3.06 0.62 

 540 

Table 4a. Amplitude of axial micromotion [m]. Nail made of 316 LVM. 541 

  Maximum amplitude of micromotion [m] 

# Model GAP 0.5 mm GAP 3 mm GAP 20 mm 

Proximal 60.29 66.13 90.29 

Medial 51.96 53.77 73.39 

Distal 40.69 48.33 66.43 

 542 

Table 4b. Amplitude of axial micromotion [m]. Nail made of Ti-6Al-4V. 543 

  Maximum amplitude of micromotion [m] 

# Model GAP 0.5 mm. GAP 3 mm. GAP 20 mm. 

Proximal 93.07 100.13 140.83 

Medial 75.88 107.81 139.80 

Distal 62.02 91.87 123.71 

 544 

 545 

 546 

 547 

 548 

 549 



Table 5a. Global movement at the top of the nail [mm]. Nail made of 316 LVM. 550 

Global movement of the top of nail [mm] 

# Model GAP 0.5 mm. GAP 3 mm. GAP 20 mm. 

Proximal 1.33 1.35 1.38 

Medial 1.53 1.54 1.67 

Distal 1.75 1.85 2.01 

 551 

Table 5b. Global movement at the top of the nail [mm]. Nail made of Ti-6Al-4V. 552 

Global movement of the top of nail [mm] 

# Model GAP 0.5 mm. GAP 3 mm. GAP 20 mm. 

Proximal 1.62 1.65 1.73 

Medial 1.98 2.01 2.26 

Distal 2.36 2.85 3.14 

 553 

 554 

  555 

556 



Figures  557 

 558 

 559 

Figure 1. Different kind of fractures with different gap sizes: 0.5 mm, 3 mm and 20 mm. 560 



 561 

Figure 2. Interaction between nail and bone and between screws and nail  562 



 563 

Figure 3. Boundary conditions  564 

 565 



566 

 567 

Figure 4. Deformed shape (x25) and vertical displacement maps corresponding to distal 568 

fractures: a) non-comminuted (gap size 0.5 mm); b) comminuted (gap size 20 mm)  569 



 570 
 571 

Figure 5. Homologue points for micromotion processing: anterior and posterior view. 572 



 573 

Figure 6. Comparative mechanical behaviour scheme between proximal and distal fractures 574 

(deformed shape x50) 575 

 576 


