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Abstract: Daily precipitation datasets are usually large, bulky and hard to handle, but 

they are of key importance in many environmental studies. We developed a tool to 

create custom datasets from observed daily precipitation records. Reference values (RV) 

are computed for each day and location using multivariate logistic regression with 

altitude, latitude and longitude as covariates. The operations were compiled in an Open 

Source R package called reddPrec. The reddPrec package consists of a set of 

functions used to: i) apply a comprehensive quality control over original daily 

precipitation datasets, flagging suspect data based on five predefined criteria; ii) fill 

missing values in original data series by estimating precipitation values using the 10 

nearest observations for each day; and iii) create new series and gridded datasets in 

locations where no data were recorded. 
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Software availability 

Name of package: reddPrec 

Year first available: 2016. 

Developer: Roberto Serrano-Notivoli. 

Email maintainer: rs@unizar.es 

Available from: The Comprehensive R Archive Network (CRAN) (https://cran.r-

project.org/web/packages/reddPrec). 

Software requirement: R versión 3.0 or later. 

Programming language: R. 

Licensing: GNU (General Public License) version 3.0. 

 

1. Introduction 

The use of climate variables in any kind of environmental research requires quality-

controlled, serially complete and, often, spatially dense datasets. These datasets are used 

to assess most of the key aspects of climate change, such as temporal trends in mean 

values and variability, or extreme events. Precipitation is one of the main variables 

under scrutiny in climate change studies, since there are theoretical reasons to expect an 

intensification of the global water cycle (and hence, precipitation) related to global 

warming (Min et al., 2011; Trenberth, 2011; Coumou and Rahmstorf, 2012; Dai, 2013). 

Also, extreme precipitation is expected to increase over most of the mid-latitude 

landmasses by the end of this century (IPCC, 2013). However, statements about 

temporal trends in mean and extreme precipitation are qualified by the IPCC as having a 

medium confidence because of two main reasons: i) the lack of data over specific 

regions and ii) at regional scales, precipitation predictions are hampered by 

observational uncertainties. 

Despite existing global precipitation databases (Haylock et al., 2008; Hofstra et al., 

2009; Yatagai et al., 2012; Mathew et al., 2012; Scham et al., 2014) and tools that 

organise and show this information (Alder and Hostetler, 2015), these data are often not 

adapted to the needs of regional or local studies, for which additional data may exist. 

Researchers are thus often faced with the need to create their own quality-controlled, 

serially complete and spatially dense databases. Presently, several software programs 

are able to create complete and reliable precipitation datasets, but very few are 
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committed to the daily scale. HOMER, for instance (Mestre et al., 2013), is a software 

package with a synthesis of the best methods in monthly homogenisation and quality 

control. This work was adapted to daily data in SPLIDHOM (Mestre et al., 2011) but it 

did not include methods to reconstruct missing data. On the other hand, ProClimDB, 

(Štěpánek, 2008) is able to apply homogenisation procedures and finally fill missing 

values with the created reference series through the process, but despite being free 

software, it relies on a proprietary license and does not have its source code released. 

CLIMDEX (Alexander et al., 2011; WMO-ETCCDI, 2013) is dedicated to creating 

gridded land-based global datasets of indices representing the more extreme aspects of 

climate using daily data of temperature and precipitation; however, it does not make 

reconstructions, so it relies on previously controlled and reconstructed data. RClimDex 

is a version of this program in R language that has detailed quality control called 

EXTRAQC (Aguilar and Prohom, 2011) over daily data. This quality control allows for 

checking internal coherence, duplicate dates, rounding problems and outliers (inter alia), 

but it neither fills missing values nor makes complete reconstructions. A few works 

have described stochastic methods to estimate precipitation at ungauged values (Burton 

et al., 2013; Kretzschmar et al., 2014; Mehrotra et al., 2015), but they neglect prior 

quality control of data. 

This paper presents reddPrec, an R package focused on daily precipitation 

reconstruction (cran.r-project.org/web/packages/reddPrec). Users are able to obtain 

serially complete precipitation datasets, estimate new data at ungauged locations and/or 

create regular grids of daily precipitation based on original data containing missing 

values or even large data gaps. The remainder of this article is organised as follows. 

First we give a short introduction to the methodological procedures (Section 2) and 

provide some information about the internal operation of the functions (Section 3) in the 

R language. Section 4 describes how each function works in a logical sequence from 

quality control to gridding. These three functions are applied to the exemplar data that 

can be found attached to the R package. Finally, we present future developments and 

conclusions (Section 5).  

The analyses described here are based on the exemplar dataset included with the 

reddPrec package and are completely reproducible. The code to generate the figures is 

included as supplementary material. 



	4	

 

2. Method basics 

Most quality control and gap-filling methods rely on the creation of so-called reference 

series, which are created from the data of neighbouring climate observatories. The 

creation of such reference series requires long data series with few missing records and 

a substantial time overlap with the candidate series (i.e. the data series we are interested 

in reconstructing). Other valuable data that may exist in nearby observatories but that do 

not fulfil these requirements need to be discarded, which is a sub-optimal use of 

available information. In contrast, the methodology embedded in the reddPrec package 

creates daily reference values (RV) using all the data recorded at the nearest stations for 

each target day. Multivariate logistic regression (MLR) is used to compute these RV 

based on the data of the 10 nearest neighbours (NNS), and geographic and topographic 

variables as covariates. This method makes an optimal use of all available information, 

does not depend on the length of the precipitation series, and preserves the local 

variability of precipitation distribution.  

The process of RV creation is used to: 1) apply the quality control of original data; 2) 

fill the missing values in data series and 3) create gridded datasets considering each 

point as a blank station. 

 

2.1 Computation of reference values (RV) 

RV computation is based on a set of two predicted values: i) a binomial prediction (BP) 

of the probability of the occurrence of a wet day; and ii) a magnitude prediction (MP) of 

precipitation.  

BP uses the 10 NNS codified as a binomial variable (observed wet or dry day) to 

compute the probability of the occurrence of precipitation on day 𝑖 and location 𝑙, 𝐵𝑃%,': 

𝐵𝑃%,' = 𝛽*%,' 	+ 	𝛽-%,'𝑎𝑙𝑡' + 𝛽0%,'𝑙𝑎𝑡' + 𝛽1%,'𝑙𝑜𝑛' + 𝜀-5,6 						(1) 

where 𝛽:;<%,'	 are regression coefficients, 𝑎𝑙𝑡', 𝑙𝑎𝑡' and 𝑙𝑜𝑛' are the altitude, latitude and 

longitude of the location of interest respectively, and 𝜀-5,6 is the error term. This model 

is implemented in R through glm() using a binomial family.  

MP uses the observed precipitation magnitudes through a quasi-binomial approach: 

𝑀𝑃%,' = 𝛽>%,' 	+ 	𝛽?%,'𝑎𝑙𝑡' + 𝛽@%,'𝑙𝑎𝑡' + 𝛽A%,'𝑙𝑜𝑛' + 𝜀05,6 							(2) 
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where 𝛽:CD%,'	  are regression coefficients and 𝜀05,6  is the error associated with the 

estimation of the precipitation magnitude. 

The final RV is determined by combining MP and BP, using a threshold value of 

𝐵𝑃%,' ≥ 0.5 to determine a wet day: 

𝑅𝑉 = 	 𝑀𝑃 ∀	𝐵𝑃 ≥ 0.5
0 ∀	𝐵𝑃 < 0.5							(3) 

In addition to the estimated RV, the method records the corresponding errors 𝜀05,6 as a 

measure of uncertainty. 

RV are the result of the combination of BP and MP computed with MLR. In the first 

stages of the method definition, different approaches were tested: we found that the 

flexibility of other processes, which can be valid for other variables such as 

temperature, produces an overestimation in the case of precipitation. To avoid this, we 

used adaptive asymptotes in MLR depending on the data for each location and day.  

 

2.2 Reconstruction process 

In a first stage, these RV were used to develop a quality control test, based on the 

comparison of them with the original data, in order to detect and remove suspect data. 

Five criteria were defined to detect suspect wet or dry situations (using previous BP) 

and outliers (using RV). Section 4.2 gives further explanations on quality control. 

The gaps in original values were filled to obtain serially complete data series. Once the 

original dataset was cleaned of anomalous data, RV were computed again to replace the 

missing data. These new estimations were multiplied by a correction coefficient based 

in the ratio between the monthly means of daily precipitation of all observed values and 

the same calculation of predicted data. This correction let preserve the peculiarities of 

the original series and avoid including inhomogeneities by maintaining the original 

structure of data series. 

The process of gridding was the same as the used to fill the missing values in original 

series. At this stage, the filled data series were used to compute RV in the new locations 

using their altitude, latitude and altitude values. The precipitation magnitudes at each 

location were estimated using the same 10 NNS each day, so there was not needed a 

subsequent correction. 
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3. Software design 

The precipitation reconstruction method was developed as an R package because of its 

Open Source characteristics. Implementing this complex model in a widespread 

programming language allows us to reach a wider audience, and has two main benefits: 

1) inexperienced users do not need specific knowledge in climate reconstruction to 

obtain serially complete datasets; and 2) advanced users are able to explore the source 

code to learn, modify and improve the procedures therein, and provide useful feedback 

to the maintainers of the code. 

The package snowfall was used to embed parallelisation (Knaus et al., 2009), allowing 

an optimum use of current multi-processor computers. However, we recommend 

making several tests with different numbers of processor cores in a subset of the data 

before running it over the entire dataset. The time elapsed to complete a task can vary 

greatly, even taking more time when executing the same tasks with more CPUs. The 

trade-off between computing and data transfer operations may cause a non-linear 

relationship between the number of CPUs used and the total computational time; often, 

an optimum is found. 

 

4. The reddPrec package 

Application of the functions in the package allows one to obtain i) a dataset free of 

anomalous data; ii) a serially complete precipitation dataset; iii) estimation of data 

series at ungauged locations; and iv) grids of daily precipitation series covering a 

specified area. To achieve these objectives, the package includes three functions that 

need be run sequentially (although they can be run separately with the proper input 

data): 

1) qcPrec() applies quality control to original data by flagging and removing suspect 

data not corresponding to the precipitation distribution of each day; 

2) gapFilling() fills the missing values in each data series from the previously cleaned 

dataset. This cleaned dataset is dependent on the quality control criteria used to detect 

and remove suspect data;  

3) gridPcp() creates new data series in any set of locations based on their latitude, 

longitude and altitude. 
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4.1 Input data requirements 

The reddPrec package does not have a specific function to import data; the input 

variables are different depending on the function that we want to run: 

qcPrec() function needs two objects: i) A matrix with real observations of daily 

precipitation in tenths of millimetre (1/10 mm), with daily observations in rows and 

different stations in columns. Days with missing values (i.e. no record) are codified as 

NA. ii) A data-frame with location information, with four columns corresponding to the 

identifier of the code of the meteorological station (ID) and their longitude, latitude and 

altitude (X, Y, ALT) in metres. For each single day, a minimum number of 11 stations 

where precipitation values were recorded is needed to calculate a reference value and 

complete the quality control process.  

gapFilling() function fills with estimated values the cleaned dataset obtained from 

the qcPrec() function.  

gridPcp() uses the filled dataset obtained from the gapFilling() function (or any 

other daily precipitation dataset), the station information and a data-frame with the 

identifier of each point of the grid (ID), their coordinates (X, Y) in metres, and the 

altitude of each one (ALT). The dataset used as input may still contain NA values, 

depending on the parameters used to fill the station precipitation. Nevertheless, using a 

complete dataset without missing values is recommended, because each point of the 

grid would use the same stations each day to estimate precipitation. 

Additionally, the package includes a daily precipitation dataset as an example to test the 

operation of the functions. The dataset has been random created for this purpose and 

contains the location information of 48 stations with their corresponding daily 

precipitation in 1/10 mm. 

 

4.2 Quality control of daily observations 

The quality control made by qcPrec() is based on a comparison of the recorded values 

at each location and day with their corresponding reference values (RV) built with their 

10 nearest stations (NNS), as explained in Section 2.1.  

Once the data have been loaded, we set the initial and the end date of the quality control 

process. The initial date has to be the initial day recorded in the dataset. We can use 
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parallel processing and set the number of core processors to use based on our hardware 

configuration. 

A threshold parameter (thres) is integrated to set a maximum distance (in km) to the 

search of the 10 NNS. If it is not possible to find 10 NNS within that distance, the RV 

cannot be computed, and the original value will not be checked for quality. If the 

threshold is set as NA no distance limit will be applied. 

When computing RV, if all NNS observations in a day are zero, no suspect data are 

flagged. Otherwise, five criteria have been specified to determinate whether it is 

necessary to flag suspect data. The function applies them sequentially: 

QC.1) Suspect data: Observed value is over zero and all their 10 NNS are zero.  

QC.2) Suspect zero: Observed value is zero and all its 10 NNS are over zero.  

QC.3) Suspect outlier: The magnitude of the observed value is 10 times higher or lower 

than that predicted by its 10 NNS. 

QC.4) Suspect wet: Observed value is zero, wet probability is over 0.99 and predicted 

magnitude is over 5 mm. 

QC.5) Suspect dry: Observed value is over 5 mm, dry probability is over 0.99 and 

predicted magnitude is under 0.1 mm. 

When qcPrec() ends the quality control of all stations, it starts again but using as NNS 

the 10 closest stations with unflagged values. This process is iterated since no more 

observations are flagged. The cleaned dataset is written as an .RData file containing the 

cleaned dataset and the station information. If we set printmeta as TRUE, the removed 

values are recorded in the subfolder ./meta, with one file per day. These files contain 

information about the date, the identifier of the station, the data removed and a 

codification of the removing criteria (1: Suspect data; 2: Suspect zero; 3: Suspect 

outlier; 4: Suspect wet; and 5: Suspect dry).  

These five criteria were defined to generic situations, but they could not work well in 

specific situations or type of climates, when other kind of criteria could work better. 

However, the thresholds can be changed, especially in QC.3, QC.4 and QC.5 to be more 

flexible or stricter. 

 

4.3 Filling missing values 
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The process of filling the missing values implies computing new RV based on the 

depurated dataset resulting from qcPrec(). RV are computed with gapFilling() for 

all days and locations, with and without original observations: 

The function produces a Filled.RData file that contains a matrix with the serially 

completed stations data and a ./days/ subfolder with one file per day. These files have 

seven columns indicating: 1) the identifier (ID) of all stations (with recorded data in that 

day or not); 2) the observed value (obs); 3) the binomial prediction (predb) 

corresponding to the probability of the occurrence of a wet day; 4) the raw magnitude 

prediction of precipitation (pred1); 5) the predicted RV (pred2); and 7) the standard 

error of magnitude prediction (err). In addition, a standardised RV (pred3) (column 6) 

represents the final corrected values. The reconstruction process does not use the same 

stations for all days because it selects the 10 available NNS at each moment. If we use 

the raw estimations (i.e. the outputs of each day and location model) as a final data 

series, it will have a non-time-homogeneous data series. The correction is calculated by 

multiplying pred2 by the ratio between obs and pred2 to obtain RV with same mean as 

that of the observed series. This is applied monthly; that is, computing the ratio of 

observations and predictions in January, then in February, etc., until December. To 

ensure a solid correction, we recommend using data series with at least 10 years of 

original values. 

The result of this function is a gap-filled matrix of daily precipitation data (Figure 1a). 

However, if days with fewer than 11 observations exist in the original dataset, or if a 

very restrictive distance threshold limiting the possibilities of finding 10 NNS is 

imposed, a final dataset including missing values could be obtained.  
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Figure 1. Reconstruction of a data series (sts_21) with an 8.93% of original missing 

values. a) Final series with original cleaned data (blue) and estimated values (red) for 

missing days; b) Comparison between observations and estimations for days with 

precipitation record.  

 

The result of the gap filling process includes the standard error associated with the 

estimations (Figure 2). Confidence limits can be constructed from the standard errors, 

and they can be propagated to further calculations based on the filled data. 
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Figure 2. Estimated values for a data series (sts_21). a) Daily values (black line) and 

their standard errors (grey lines); b) Aggregated daily values at monthly scale (black 

line) and their corresponding aggregated standard errors (grey shaded areas); c) Detail 

of daily estimations (black line) and their standard errors (grey lines). 

 

4.4 Gridding 

The gridPcp() function allows new daily gridded datasets to be created. The spatial 

resolution of the grid will determine the computational time required to complete the 

estimation process for each day in the dataset. In this case, only the locations of the grid 

(points) are filled, and the original stations (sts) are used as the nearest stations to 

estimate precipitation values. There is no distance limit of searching nearest stations for 

each grid point; this is due to the need to obtain a completely filled precipitation dataset. 

With fewer than 10 observations in a day, the grid cannot be computed. 

The output of this function is a directory named ./gridded/, where one file per day is 

written. These files have the identifier of all the grid points (ID), the estimated 

precipitation values for each (pred), and the standard error (err) associated with the 

estimation. The result is not a continuous surface of precipitation, but is rather the result 

of a statistical inference process that estimates daily precipitation in specific locations 

represented by the grid points. To plot the results for any day, it is necessary to join the 
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ID column to the ID of the matrix containing the points’ coordinates used as input 

(Figure 3). The standard error spatial distribution resulting from the gridding process 

usually shows higher errors where high values have been estimated. However, in 

relative terms (i.e. Std. Error / Predictions), the errors are higher where precipitation is 

more irregular, globally low and with high frequency of extreme events. 

 
Figure 3. Precipitation estimation over a gridded set of coordinates for a specific day 

and its standard error (absolute errors are related to the magnitude of estimations and 

relative errors are highly related to the irregularity of precipitation in each location). 

Dots represent the observatories.  

 

5. Future developments, limitations and conclusions 

The reddPrec R package contains a set of functions to reconstruct daily precipitation 

datasets, including quality-control, gap-filling and estimation at ungauged locations. 

However, one of the main limitations is its applicability to areas where there is a low 

number of observatories, or they are far from each other. Since the quality of the 

reconstruction, and especially the creation of gridded datasets, is strongly affected by 

this lack of original information, the uncertainty of predictions could be spread (as 

noted in Beguería et al. 2015), and final users are not able to minimise the effect of this 

issue. This uncertainty is measured by the standard error values provided for each 

precipitation estimation. These standard errors could be used in a bias-correction post-

processing stage. With respect to quality control, we set five different criteria to detect 
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suspect values in the original dataset. However, such criteria could not be suitable for 

every climate region; different thresholds would be necessary in some contexts. Our 

method is optimised for precipitation data with a daily time resolution. It should not be 

difficult to adapt it to work with data at finer (sub-daily) or coarser (weekly, monthly) 

resolutions, although we have not tested this. Such limitations, and others that can be 

suggested by users, will be implemented in future versions of the package qcPrec(). 
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